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Abstract

A parabolic equation/inequality in an infinite domain is considered. The lateral Cauchy data are given

at an arbitrary C2-smooth lateral surface. The inverse problem of the interest of this paper consists in an
estimate of the unknown initial condition via these Cauchy data.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Statement of the main result

All functions considered in this paper are real-valued. Hence, Hilbert spaces considered here
are spaces of real-valued functions. Let Ω ⊆ R

n be a convex unbounded domain with the bound-
ary ∂Ω ∈ C1. For any T = const > 0 denote QT = Ω × (0, T ), ST = ∂Ω × (0, T ). For any
function s(x), x ∈ R

n denote si = ∂s/∂xi, i = 1, . . . , n, whenever the differentiation is appro-
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priate. Also, denote ∇s = (s1, . . . , sn). Let L = L(x, t,D) be an elliptic operator of the second
order in QT ,

Lu := L(x, t,D)u =
n∑

i,j=1

aij (x, t)uij +
n∑

i,j=1

bj (x, t)uj + b0(x, t)u,

with its principal part L0,

L0u := L0(x, t,D)u =
n∑

i,j=1

aij (x, t)uij ,

where coefficients

aij = aji, aij ∈ C1(QT ) ∩ B(QT ); a
ij
k , bj , b0 ∈ B(QT ),

where B(QT ) is the set of functions bounded in QT . Naturally, we assume the existence of two
positive numbers σ1, σ2, σ1 � σ2, such that

σ1|ξ |2 �
n∑

i,j=1

aij (x, t)ξiξj � σ2|ξ |2, ∀(x, t, ξ) ∈ QT × R
n. (1.1)

Let the function u ∈ H 2,1(QT ) be a solution of the parabolic equation

ut = Lu + f (x, t), a.e. in QT , (1.2)

with the zero Dirichlet boundary condition

u|ST
= 0 (1.3)

and the initial condition g(x)

u(x,0) = g(x) ∈ H 1(Ω), (1.4)

where the function f ∈ L2(QT ). In the case Ω = R
n the boundary condition (1.3) is ignored and

the classic Cauchy problem (1.2), (1.4) is considered. Along with Eq. (1.2) we will also consider
a more general case of the parabolic inequality

|ut − L0u| � M
[|∇u| + |u| + ∣∣f (x, t)

∣∣], a.e. in QT , (1.5)

where the function u ∈ H 2,1(QT ) satisfies conditions (1.3), (1.4) and M = const > 0.
If the function u ∈ H 2,1(QT ) satisfies either conditions (1.2)–(1.4) or conditions (1.3)–(1.5),

then the following classic estimates hold:

‖u‖2
H 1,0(QT )

� K
(‖g‖2

L2(Ω) + ‖f ‖2
L2(QT )

)
, (1.6)

‖ut‖2
L (Q ) � K

(‖g‖2
1 + ‖f ‖2

L (Q )

)
, (1.7)
2 T H (Ω) 2 T
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where the positive constant K depends on the domain Ω and numbers σ1, σ2, T , a and A; in
the case of (1.2)–(1.4), and A should be replaced with M in the case of (1.3)–(1.5), see, e.g.,
Ladyzhenskaya, Solonnikov and Uraltceva [8]. Here

a = max
1�i,j�n

(
sup
QT

∣∣∇aij
∣∣, sup

QT

∣∣aij
t

∣∣) + 1 (1.8)

and

A = max
0�j�n

(
sup
QT

∣∣bj
∣∣).

Let P ⊂ Ω , P ∈ C2 be a finite hypersurface. In particular, in the case Ω 
= R
n one might

assume that P ⊂ ∂Ω , although this is not necessary. Denote PT = P × (0, T ). Let n = n(x),
x ∈ P , be a unit normal vector on P . As to the direction of n: If P ⊂ ∂Ω , then n is directed
outwards of Ω . Alternatively, we choose any of two directions of n at an arbitrary point x0 ∈ P

and since the function n(x) is continuous on P , the direction of the vector n(x) at all other points
of P is uniquely defined.

Two inverse problems considered below have applications in such processes of diffusion,
heat conduction and wave propagation, in which one is required to determine initial states using
appropriate time dependent measurements at a surface.

Inverse Problem (IP). Assume that the following lateral Cauchy data h(1)(x, t) and h(2)(x, t)

are given

u|PT
= h(1)(x, t),

∂u

∂n

∣∣∣∣
PT

= h(2)(x, t), (1.9)

where PT = P × (0, T ) and the function u ∈ H 2,1(QT ) satisfies either conditions (1.2)–(1.4) or
conditions (1.3)–(1.5). Estimate the unknown initial condition g and the function u via functions
h(1), h(2) and f .

This is an inverse problem of the determination of the initial condition in the parabolic equa-
tion using the lateral Cauchy data (1.9). Applications are in such diffusion and heat conduction
processes, in which one is required to determine the initial state using time dependent measure-
ments at a surface. We now describe a more specific applied example. Consider a cooling process
of a solid. Suppose that its size of this solid is so large that one can assume that it coincides
with an unbounded domain Ω ⊆ R

3. Assume that the initial temperature of this solid is high,
unknown, and is a subject of ones interest. Suppose also that the major part of this solid is unavail-
able for the temperature measurements. Instead, one is measuring the time dependence of both
the temperature u and the heat flux at a surface P ⊂ Ω (the heat flux is proportional to the normal
derivative ∂u/∂n, at least in the case when the principal part of the operator L near the surface
P is L0 = �). Hence, in this application the IP is the problem of the determination of the spatial
distribution of the initial temperature u(x,0) of that solid from these surface measurements.

A particular use of this applied example is that it helps to understand the naturality of the as-
sumption that in Theorem 1 a priori upper estimate is actually imposed on the norm ‖|∇g|‖L2(Ω).
Indeed, this assumption means a priori knowledge of the absence of high gradients in the initial
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temperature, which is quite natural in this application. A similar idea, although in a more general
form, is one of the basic facts of the theory of ill-posed problems, and it was first introduced
by Tikhonov in 1943 [12]; also see the book [13] for the Tikhonov fundamental theorem [12]
about the continuity of the inverse operator on a compact set. In the applied literature, such a
compact set is sometimes called “the set of admissible parameters.” As to a priori bound of the
norm ‖g‖2

L2(Ω\Φ), it is often natural to assume in the above cooling process that an estimate of
the initial temperature outside of a bounded domain of interest Φ is known.

Let Φ ⊂ Ω be a convex bounded subdomain. We assume convexity for the sake of brevity
only; it seems that results can be extended on the case of non-convex domains, although such
an extension is outside of the scope of this paper. We shall say that Φ has the P -property,
if the following two conditions are fulfilled: (1) For any point x ∈ Φ there exists a point
x̃(x) ∈ P such that the straight line connecting points x and x̃ does not lie in the hyperplane,
which is tangent to the hypersurface P at the point x̃, and (2) dist[Φ, (∂Ω \ P)] > 0, where
dist[Φ, (∂Ω \ P)] := ds(Φ) is the Hausdorff distance. An example of the P -property is the
case when either P ⊆ ∂Φ or P ⊂ ∂Ω and ds(Φ) > 0. Another example is when the hypersur-
face P is a part of a hyperplane, P ⊂ {x1 = 0}, ds(Φ) > 0 and either Φ ⊂ {x1 > 0} ∩ Ω or
Φ ⊂ {x1 < 0} ∩ Ω .

Theorem 1 is the main result of this publication. The new feature of this result is that the
domain Ω is infinite, rather than finite, as in previous publications, see Section 1.2 for more
details.

Theorem 1. Suppose that above conditions imposed on coefficients of the operator L(x, t,D),
the domain Ω and the surface P are fulfilled. Let the function u ∈ H 2,1(QT ) satisfy con-
ditions (1.3)–(1.5). Let Φ ⊂ Ω be a convex bounded subdomain of the domain Ω , which
has the P -property. Let the function h(1) ∈ H 1,1(PT ). Consider the vector-valued function
F = (h(1), h(2), f ) and denote

‖F‖ = [∥∥h(1)
∥∥2

H 1,1(PT )
+ ∥∥h(2)

∥∥2
L2(PT )

+ ‖f ‖2
L2(QT )

]1/2
.

Suppose that ‖F‖ � B , where B is a positive constant. Choose an arbitrary number μ ∈ (0,1).
Then there exist constants C1 > 0 and ε0 ∈ (0,1) such that the following stability estimate holds:

‖g‖2
L2(Φ) � C1

μ

[
ln

(
B

ε0‖F‖
)]−1[∥∥|∇g|∥∥2

L2(Ω)
+ ‖g‖2

L2(Ω\Φ)

]
+ C1

(
B

ε0

)2μ

‖F‖2(1−μ). (1.10)

Here the constant C1 = C1(σ1, σ2, a,M,d(Φ), ds(Φ),P ) depends on σ1, σ2, a, T ,M,d(Φ),
ds(Φ) and P , where d(Φ) is the diameter of the domain Φ . The constant ε0 depends on the
same parameters as ones listed for C1, as well as on the number μ. In addition, the following
estimate for the function u holds:

‖u‖H 1,0(QT ) � C1

μ

[
ln

(
B

ε0‖F‖
)]−1[∥∥|∇g|∥∥2

L2(Ω)
+ ‖g‖2

L2(Ω\Φ)

]
+ C1

(
B

)2μ

‖F‖2(1−μ) + C1‖g‖2
L2(Ω\Φ). (1.11)
ε0
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The major difficulty of the proof of this theorem is due to the fact that the idea of a combi-
nation of “lateral” and “backwards” Carleman estimates, which worked well in the case of finite
domains in [7,14,15] (see some details in Section 1.2) cannot be applied to the case of an infinite
domain Ω . This is because a lateral Carleman estimate would estimate the function u(x, t0) only
in a finite subdomain Ω ′ ⊂ Ω , because lateral Carleman estimates in infinite domains are un-
known. Here t0 ∈ (0, T ) is a certain number. On the other hand, a backwards Carleman estimate
would rely on an estimate of the function u(x, t0) in the entire domain Ω .

A lateral Carleman estimate is the one, which estimates solution of the parabolic equation (or
inequality) via lateral Cauchy data. A backwards Carleman estimate is the one, which estimates
the solution u(x, t) of the parabolic equation for t ∈ (b, c) ⊂ (0, T ) via the function u(x, c), i.e.,
it estimates solutions of parabolic equations with the reversed direction of time. In the above
problem, a conventional lateral Carleman estimate of [9] would enable one to estimate the norms
‖u(x, t0)‖L2(Φ),‖|∇u(x, t0)|‖L2(Φ) via functions h(1), h(2) and f . At the same time, it is unclear
how to properly estimate the norm ‖u(x, t0)‖L2(Ω\Φ) (at least in the case n > 1), unless some
stringent conditions would be imposed on the function g(x). This prevents one from applying the
backwards Carleman estimate on the second stage of the proof (unlike [7,14,15]), because the
latter uses an estimate of the L2-norm of the function u(x, t0) in the entire domain Ω [1,7,9,10].

To overcome this difficulty, we derive a new lateral Carleman estimate for the parabolic oper-
ator ∂t − L0 (Theorem 2 in Section 2). The level surface of the corresponding Carleman Weight
Function (CWF) is contained in a thin strip t ∈ {|t − δ| < δ

√
ω0}, where δ > 0 is sufficiently

small and the number ω0 ∈ (0,1). The main new feature of the estimate of Theorem 2 is that, un-
like previously known Carleman estimates, this one does not break down when the width 2δ

√
ω0

of this strip approaches zero as δ = δ(‖F‖) → 0+ for ‖F‖ → 0. This is achieved via an incor-
poration of the large parameter 1/δ2 in the function q(x, t) (Section 2). The authors believe that
Theorem 2 might be of an interest in its own right for other possible applications.

Actually, we derive a pointwise Carleman estimate, see Chapter 4 of the book of Lavrent’ev,
Romanov and Shishatskii [9]. The proof is cumbersome, which seems to be inevitable, see, e.g.,
Èmanuilov (Imanuvilov) [2], the book of Klibanov and Timonov [6] and Romanov [11] for some
other examples of cumbersome proofs of Carleman estimates.

Since the function u ∈ H 2,1(QT ), functions h(1) ∈ H 1,0(PT ) and h(2) ∈ L2(PT ) automati-
cally. The condition h(1) ∈ H 1,1(PT ) means a little over-smoothness. It is fulfilled if, for example
u ∈ H 2,1(QT ) and ut ∈ H 1,0(QT ). If it is known a priori that supp(g) ⊆ Φ , then the term
‖g‖L2(Ω\Φ) should be dropped in (1.10) and (1.11). The estimate (1.11) follows immediately
from (1.10) and the standard estimate (1.6). Hence, we will concentrate on the proof of (1.10).
It follows from (1.10) that the L2(Φ)-norm of the initial condition tends to zero with the speed
proportional to the square root of the logarithm, as long as ‖F‖ → 0. The above are the so-called
“conditional stability estimates,” see, e.g., [9] for the definition of conditional stability estimates.
This is because these estimates rely on a priori upper bounds of the stronger norm ‖|∇g|‖L2(Ω)

and the norm ‖g‖2
L2(Ω\Φ)

.
Conditional rather than conventional (i.e., unconditional) stability estimates are inevitable in

inverse problems, since they are ill-posed. In addition, because of the ill-posedness, it is natural in
such an estimate to impose a priori bound on a certain norm of the data, e.g., ‖F‖ � B . In many
works such a bound is replaced by the assumption that this norm is sufficiently small, because
one is interested in the behavior of the solution when the error in the data tends to zero, see,
e.g., Chapter 4 in [9]. One of basic facts of the theory of ill-posed problems, which follows from
the above mentioned Tikhonov theorem is that a conditional stability estimate for an ill-posed
problem enables one to obtain an a priori estimate of the difference between the approximate
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and the exact solutions of this problem, provided that the exact solution belongs to an a priori
chosen compact (or, more generally, a bounded set), see, e.g., (2.6) in §1 of Chapter 2 of [9].
For example, in the case of the IP, that bounded set would be the set of all functions g ∈ H 1(Ω)

whose norms ‖|∇g|‖L2(Ω),‖g‖L2(Ω\Φ) are bounded by an a priori chosen constant D, and one
would look to determine the initial condition (1.4) in an a priori chosen finite domain Φ . Such
conditional stability estimates are usually quite helpful for establishing convergence rates of
corresponding numerical methods, see, e.g., Section 2.5 in [6].

1.2. Published results

In the case n > 1 an analogue of Theorem 1 for an infinite domain Ω is unknown. Hölder sta-
bility estimates for solutions of parabolic equations and inequalities with the lateral Cauchy data
are well known since the publication of the book [9]. They are obtained via Carleman estimates
and hold in finite subdomains of cylinders QT which are bounded by lateral surfaces (of arbitrary
shapes and sizes) and level surfaces of CWFs. These subdomains are finite and the domain G0
in (3.9) is a typical example of such a subdomain, except that in previous publications the width
of subdomains with respect to t was not “allowed” to tend to zero. Since those subdomains do
not intersect with {t = 0, T }, then those Carleman estimates do not allow one to estimate initial
conditions. Indeed, the break down at t → 0+. At the same time, the uniqueness of the IP follows
from these results. The only known Carleman estimate which is valid in the entire cylinder QT

is one of Èmanuilov (Imanuvilov) and Fursikov [2,3] and it is valid in the case of a finite do-
main Ω . The CWF of [2,3] vanishes exponentially at {t = 0, T }, which does not allow one to
estimate the initial condition. Summarizing, the topic of stability estimates of initial conditions
is more complicated one than its ‘uniqueness counterpart.’

Stability estimates of initial conditions of parabolic equations via the lateral Cauchy data
were obtained by Isakov and Kindermann [5], Xu and Yamamoto [14], Yamamoto and Zou [15],
and Klibanov [7]. In [5] the equation ut = uzz, z ∈ R, with the lateral Cauchy data at {z = 0,

t ∈ (0, T )} was considered, and the initial condition u(z,0) was estimated in a finite z-interval.
The property of the analyticity of the function u(z, t) with respect to t > 0 was used essentially
in [5]. Note that this property cannot be guaranteed neither for a solution of Eq. (1.2) nor for a
solution of the inequality (1.5). In [7,14,15] finite domains Ω ⊂ R

n were considered. Proofs in
these three references consist of two steps. First, the norms ‖u(x, t0)‖L2(Ω),‖|∇u(x, t0)|‖L2(Ω)

for a t0 ∈ (0, T ) are estimated via the lateral Cauchy data using a Carleman estimate, which we
call “lateral.” On the second step the function u(x,0), x ∈ Ω , is estimated via u(x, t0), using
the backwards estimates. In [14] and [15] the heat equation ut = �u was considered and the
logarithmic stability method for the backwards estimate was used, see, e.g., books of Ames and
Straugan [1] and Payne [10] for this method. Hence, results of [14] and [15] are also valid for
parabolic equations with general self-adjoint operators L with x-dependent coefficients, since the
logarithmic convexity method can be applied in this case. In [7] a certain newly observed feature
of the backwards Carleman estimate for the parabolic operator led to the stability estimate for
the inequality (1.5) for a general elliptic operator L with (x, t)-dependent coefficients.

In Section 2 we establish the above mentioned Carleman estimate. We prove Theorem 1 in
Section 3.

2. Carleman estimate

Let Ω ′ ⊂ Ω be a certain bounded subdomain and the function p ∈ C2(Ω ′) has the following
properties:
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p(x) ∈ (β, γ ), ∀x ∈ Ω ′,∣∣∇p(x)
∣∣ ∈ (

1,p1), ∀x ∈ Ω ′,

where numbers β,γ ∈ (0,1), β < γ , and the number p1 > 1. Let the number δ ∈ (0,min(1, T /2)).
Consider the function

q(x, t) = p(x) + (t − δ)2

δ2
.

Consider the domain G0,

G0 = {
(x, t): x ∈ Ω ′, q(x, t) < γ < 1

}
. (2.1)

Since p(x) ∈ (β, γ ) in Ω ′, then G0 ∩ {t = δ} 
= ∅, which means that G0 
= ∅. By (2.1)

G0 ⊂ {
t ∈ δ(1 − √

γ ,1 + √
γ )

} ⊂ (0, T ). (2.2)

Also,

qi = pi. (2.3)

By (2.3),

|∇q| ∈ [
1,p1] in G0. (2.4)

We have

qt = 2(t − δ)

δ2
. (2.5)

Hence,

|qt | < 2
√

γ

δ
in G0. (2.6)

Denote

Gω = {
(x, t) ∈ Ω ′ × (0, T ): q(x, t) < γ − ω

}
, ∀ω ∈ (0, γ − β). (2.7)

Obviously

Gω2 ⊂ Gω1 ⊂ G0, ∀ω1,ω2 ∈ (0, γ − β) with ω1 < ω2. (2.8)

Denote

p = max |pxx |. (2.9)

G0
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Let ν � 1 be a parameter which will be chosen later. We define the CWF ϕ(x, t) as

ϕ(x, t) = exp

(
q−ν

δ

)
. (2.10)

In this section we prove

Theorem 2 (Pointwise Carleman estimate). There exist a sufficiently large constant ν0 =
ν0(σ1, σ2,p

1, a,p,β, γ ) > 1, a sufficiently small constant δ0 = δ0(σ1, σ2,p
1, a,p,β, γ ) ∈

(0,min(1, T /2)) and a constant C = C(σ1, σ2) > 1 such that for all ν � ν0, δ ∈ (0, δ0) and
for all functions u ∈ C2,1(G0) the following pointwise Carleman estimate holds in G0:

(ut − L0u)2ϕ2 � Ca
ν

δ
|∇u|2ϕ2 + C

ν4

δ3
q−2ν−2u2ϕ2 + ∇ · U + Vt , (2.11)

where the vector function U and the function V satisfy

|U | � C
ν3

δ3
q−2ν−1(|∇u|2 + u2

t + u2)ϕ2, (2.12)

|V | � C
ν3

δ3
q−2ν−1(|∇u|2 + u2

t + u2)ϕ2. (2.13)

Remark 2.1. The dependence of the parameter ν0 from the number a in (1.8) occurs in the
course of the proof only in (2.47), (2.50), and (2.63). This observation might be useful for further
research. The Carleman estimate (2.11) has the same pointwise character as the well-known
Carleman estimate of §1 of Chapter 4 in [9]. The main difference compared with [9], however,
is that the large parameter 1/δ is now included in both the function q in (2.5) and in exp(q−ν/δ).
This causes additional difficulties in the proof. While (2.11) is a pointwise estimate, it seems that
its intregral analog can be derived via the pseudoconvexity [4]. However, such a development is
outside of the scope of this publication.

The proof of this theorem consists of proofs of three lemmata. Below in this section nota-
tions and conditions of Theorem 2 hold. Also, ν0, δ0 and C denote different positive constants
depending on parameters listed in the formulation of this theorem.

2.1. Lemma 1

Lemma 1. There exist constants ν0, δ0,C such that for all ν � ν0, δ ∈ (0, δ0) and for all functions
u ∈ C2,1(G0) the following estimate holds in G0:

(ut − L0u)uϕ2 � σ1

2
|∇u|2ϕ2 − C

ν2

δ2
q−2ν−2 ·

(
n∑

i,j=1

aijpipj

)
u2ϕ2 + ∇ · U(1) + V

(1)
t ,

(2.14)
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where the vector function (U(1), V (1)) satisfies the estimate

∣∣U(1)
∣∣ � C

(
|∇u|2 + ν

δ
q−ν−1u2

)
ϕ2, V (1) = u2

2
ϕ2. (2.15)

Proof. We have

(ut − L0u)uϕ2 = utuϕ2 −
n∑

i,j=1

aijuij uϕ2 = M + N, (2.16)

where

M = utuϕ2

and

N = −
n∑

i,j=1

aijuijuϕ2.

Estimate from the below terms M and N separately in five steps.

Step 1. Estimate M . By (2.5)

M = utuϕ2 =
(

u2

2
ϕ2

)
t

+ 2ν

δ
q−ν−1 · 2(t − δ)

δ2
u2ϕ2

= 4ν

δ
q−ν−1 · (t − δ)

δ2
u2ϕ2 + V

(1)
t .

Since by (2.1) q < γ < 1, then (2.5) and (2.6) imply that

M � −C
νq−ν−1

δ2
u2ϕ2 + V

(1)
t . (2.17)

Step 2. Estimate N from the below,

N = −
n∑

i,j=1

aijuijuϕ2

=
n∑

j=1

(
−

n∑
i=1

aijuiuϕ2

)
j

+
n∑

i,j=1

(
aijuϕ2)

j
ui =

n∑
j=1

(
−

n∑
i=1

aijuiuϕ2

)
j

+
n∑

i,j=1

aijuiujϕ
2 +

n∑
i,j=1

a
ij
j uiuϕ2 − 2ν

δ
q−ν−1

n∑
i,j=1

aijpjuiuϕ2. (2.18)

Estimate from the below each term in the last line of (2.18) separately.
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Step 3. Estimate the first term. We have

n∑
i,j=1

aijuiujϕ
2 � σ1|∇u|2ϕ2. (2.19)

Step 4. Estimate the second term. The Cauchy–Schwarz inequality implies that

n∑
i,j=1

a
ij
j uiuϕ2 � −σ1

2
|∇u|2ϕ2 − Ca2u2ϕ2. (2.20)

Step 5. Estimate the third term. We have

−2ν

δ
q−ν−1

n∑
i,j=1

aijpjuiuϕ2

=
n∑

i=1

(
−ν

δ
q−ν−1

n∑
j=1

aijpju
2ϕ2

)
i

− ν(ν + 1)

δ
q−ν−2

(
n∑

i,j=1

aijpipj

)
u2ϕ2

+ ν

δ
q−ν−1

n∑
i,j=1

(
a

ij
i pj + aijpij

)
u2ϕ2 − 2ν2

δ2
q−2ν−2

(
n∑

i,j=1

aijpipj

)
u2ϕ2. (2.21)

By (1.1) and (2.4)

n∑
i,j=1

aijpipj � σ1 in G0. (2.22)

Hence

−
(

n∑
i,j=1

aijpipj

)−1

� − 1

σ1
. (2.23)

Hence, (2.9) and (2.21)–(2.23) imply that

−2ν

δ
q−ν−1

n∑
i,j=1

aijpjuiuϕ2 � −C
ν2

δ2
q−2ν−2

(
n∑

i,j=1

aijpipj

)(
1 + δaqν+1 + δpqν+1)u2ϕ2

+
n∑

i=1

(
−ν

δ
q−ν−1

n∑
j=1

aijpju
2ϕ2

)
i

.

Since ν � 1 and q < 1, then δaqν+1 + δpqν+1 < 1 for δ ∈ (0, δ0). Hence,
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−2ν

δ
q−ν−1

n∑
i,j=1

aijpjuiuϕ2 � −C
ν2

δ2
q−2ν−2

(
n∑

i,j=1

aijpipj

)
u2ϕ2

+
n∑

i=1

(
−ν

δ
q−ν−1

n∑
j=1

aijpju
2ϕ2

)
i

. (2.24)

Note that

ν

δ2
q−ν−1 <

ν2

δ2
q−2ν−2, ∀ν � 1, ∀δ > 0.

This, (2.17) and (2.23) imply that

M � −C
ν2

δ2
q−2ν−2

(
n∑

i,j=1

aijpipj

)
u2ϕ2 + V

(1)
t .

Combining this with (2.16), (2.18)–(2.20), we obtain

(ut − L0u)uϕ2 � σ1

2
|∇u|2ϕ2 − C

ν2

δ2
q−2ν−2

(
n∑

i,j=1

aijpipj

)
u2ϕ2 + ∇ · U(1) + V

(1)
t ,

(2.25)

where

∇ · U(1) =
n∑

i=1

(
−

n∑
j=1

aijuiuϕ2 − ν

δ
q−ν−1

n∑
j=1

aijpju
2ϕ2

)
i

, V (1) = u2

2
ϕ2. (2.26)

Hence,

∣∣U(1)
∣∣ � C

(
|∇u|2 + ν

δ
q−ν−1u2

)
ϕ2. (2.27)

Relations (2.24)–(2.27) imply (2.14) and (2.15). �
2.2. Lemma 2

Lemma 2. There exist constants ν0, δ0,C such that for all ν � ν0, δ ∈ (0, δ0) and for all functions
u ∈ C2,1(G0) the following estimate holds in G0:

(ut − L0u)2qν+2ϕ2 � −Ca
ν

δ
|∇u|2ϕ2 + C

ν4

δ3
q−2ν−2

(
n∑

i,j=1

aijpipj

)2

u2ϕ2

+ ∇ · U(2) + V
(2)
t , (2.28)

where the vector function (U(2), V (2)) satisfies the estimate
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∣∣U(2)
∣∣ � C

ν3

δ3
q−2ν−1(|∇u|2 + u2

t + u2)ϕ2, (2.29)

∣∣V (2)
∣∣ � C

ν2

δ2
q−νu2ϕ2. (2.30)

Proof. Denote

v = uϕ = u exp

(
q−ν

δ

)
.

Hence,

u = vϕ−1 = v exp

(
−q−ν

δ

)
.

Express derivatives of the function u through derivatives of the function v,

ut =
(

vt + 2νq−ν−1

δ
· (t − δ)

δ2
v

)
ϕ−1,

ui =
(

vi + νq−ν−1

δ
piv

)
ϕ−1,

uij =
[
vij + νq−ν−1

δ
(pivj + pjvi)

]
ϕ−1

+
[

ν2q−2ν−2

δ2
pipj − ν(ν + 1)q−ν−2

δ
pipj + νq−ν−1

δ
pij

]
vϕ−1.

Hence,

(ut − L0u)2qν+2ϕ2 = (z1 + z2 + z3 + z4 + z5)
2qν+2 = [

z1 + z3 + (z2 + z4 + z5)
]2

qν+2.

Hence,

(ut − L0u)2qν+2ϕ2

�
[
z2

1 + 2z1z2 + 2z1z3 + z2
3 + 2z2z3 + 2z1(z4 + z5) + 2z3(z4 + z5)

]
qν+2, (2.31)

where

z1 = vt ,

z2 = −
n∑

i,j=1

aij vij ,

z3 = −νq−ν−1

δ

n∑
aij (pivj + pjvi),
i,j=1
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z4 = −ν2q−2ν−2

δ2

n∑
i,j=1

aijpipj

(
1 + O

(
δqν

))
v,

z5 = 2νq−ν−1

δ
· (t − δ)

δ2
v.

Here and below O(δqν) denotes different C1(G0)-functions independent on the function v and
such that limδ→0 O(δqν) = 0, uniformly for all ν � 1, γ ∈ (0,1) and all (x, t) ∈ G0. The same
is true for their first x-derivatives. As to the t-derivative: by (2.6)∣∣∣∣ ∂

∂t
O

(
δqν

)∣∣∣∣ � Cν. (2.32)

The major part of the proof of Lemma 2 consists in estimating from the below each term in the
right-hand side of (2.31). This is done in five steps below.

Step 1. Estimate 2z1z2q
ν+2. We have

2z1z2q
ν+2 = −

n∑
i,j=1

aij vt (vij + vji)q
ν+2

=
n∑

j=1

(
−

n∑
i=1

aij vtviq
ν+2

)
j

+
n∑

i,j=1

aij vtj viq
ν+2

+ vt

n∑
i,j=1

a
ij
j viq

ν+2 + (ν + 2)qν+1vt

n∑
i,j=1

aij vipj

+
n∑

i=1

(
−2

n∑
j=1

aij vtvj q
ν+2

)
i

+
n∑

i,j=1

aij vtivj q
ν+2

+ vt

n∑
i,j=1

a
ij
i vj q

ν+2 + (ν + 2)qν+1vt

n∑
i,j=1

aij vjpi

=
n∑

j=1

(
−2

n∑
j=1

aij vtviq
ν+2

)
j

+
n∑

i,j=1

aij (vtj vi + vtivj )q
ν+2

+ 2vt

(
n∑

i,j=1

a
ij
j viq

ν+2 + (ν + 2)qν+1
n∑

i,j=1

aij vjpi

)

=
n∑

j=1

(
−2

n∑
i=1

aij vtviq
ν+2

)
j

+ 2vt

(
n∑

i,j=1

a
ij
j viq

ν+2 + (ν + 2)qν+1
n∑

i,j=1

aij vjpi

)

+
(

n∑
aij vivj q

ν+2

)
−

n∑
a

ij
t vivj q

ν+2 − 2(ν + 2)qν+1 (t − δ)

δ2

n∑
aij vivj .
i,j=1 t i,j=1 i,j=1
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Hence,

2z1z2q
ν+2 = 2vt

(
n∑

i,j=1

a
ij
j viq

ν+2 + (ν + 2)qν+1
n∑

i,j=1

aij vjpi

)

−
n∑

i,j=1

a
ij
t vivj q

ν+2 − 2(ν + 2)qν+1 (t − δ)

δ2

n∑
i,j=1

aij vivj

+
n∑

j=1

(
−2

n∑
i=1

aij vtviq
ν+2

)
j

+
(

n∑
i,j=1

aij vivj q
ν+2

)
t

. (2.33)

Using (1.1), (2.1) and (2.6), we obtain

−
n∑

i,j=1

a
ij
t vivj q

ν+2 − 2(ν + 2)qν+1 (t − δ)

δ2

n∑
i,j=1

aij vivj � −C
νqν+1

δ
(1 + δa)|∇v|2.

Since δa < 1, then −C(1 + δa) > −2C. Hence, with a new constant C (2.33) leads to

2z1z2q
ν+2 � −C

νqν+1

δ
|∇v|2 + 2z1

(
(ν + 2)qν+1

n∑
i,j=1

aij vjpi +
n∑

i,j=1

a
ij
j viq

ν+2

)

+ ∇ · U(2,1) + V
(2,1)
t , (2.34)

where

∣∣U(2,1)
∣∣ � C

ν2q−ν

δ2

(|∇u|2 + u2
t + u2)ϕ2, (2.35)

∣∣V (2,1)
∣∣ � C

ν2qν

δ2

(|∇u|2 + u2)ϕ2. (2.36)

Step 2. Estimate (z2
1 + z2

3 + 2z1z3 + 2z1z2)q
ν+2. Using (2.34)–(2.36), we obtain

(
z2

1 + z2
3 + 2z1z3 + 2z1z2

)
qν+2

� −C
νqν+1

δ
|∇v|2 + (

z2
1 + z2

3

)
qν+2

+ 2z1

(
z3 + (ν + 2)q−1

n∑
i,j=1

aij vjpi +
n∑

i,j=1

a
ij
j vi

)
qν+2 + ∇ · U(2,1) + V

(2,1)
t

� −C
νqν+1

δ
|∇v|2 + z2

3q
ν+2 −

(
z3 + (ν + 2)q−1

n∑
i,j=1

aij vjpi + 2
n∑

i,j=1

a
ij
j vi

)2

qν+2

+ ∇ · U(2,1) + V
(2,1)
t . (2.37)
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Estimate the sum of the second and third terms in the 4th line of (2.37). We have

z2
3q

ν+2 −
(

z3 + (ν + 2)q−1
n∑

i,j=1

aij vjpi +
n∑

i,j=1

a
ij
j vi

)2

qν+2

= −2(ν + 2)qν+1z3

n∑
i,j=1

aij vjpi − 2qν+2z3

n∑
i,j=1

a
ij
j vi

− (ν + 2)2qν

(
n∑

i,j=1

aij vjpi

)2

−
(

n∑
i,j=1

a
ij
j vi

)2

qν+2

− 2(ν + 2)qν+1

(
n∑

i,j=1

aij vjpi

)(
n∑

k,s=1

aks
s vk

)
. (2.38)

We have

−(ν + 2)qν+1z3

n∑
i,j=1

aij vjpi = 2
ν(ν + 2)

δ

(
n∑

i,j=1

aijpivj

)2

. (2.39)

Also, by the Cauchy–Schwarz inequality and (1.8)

−2(ν + 2)qν+1

(
n∑

i,j=1

aij vjpi

)(
n∑

k,s=1

aks
s vk

)
−

(
n∑

i,j=1

a
ij
j vi

)2

qν+2

� −(ν + 2)2qν

(
n∑

i,j=1

aij vjpi

)2

− Ca2qν+2|∇v|2.

Hence, (2.39) implies that the right-hand side of the equality (2.38) can be estimated as

−2(ν + 2)qν+1z3

n∑
i,j=1

aij vjpi − 2qν+2z3

n∑
i,j=1

a
ij
j vi − (ν + 2)2qν

(
n∑

i,j=1

aij vjpi

)2

−
(

n∑
i,j=1

a
ij
j vi

)2

qν+2 − 2(ν + 2)qν+1

(
n∑

i,j=1

aij vjpi

)(
n∑

k,s=1

aks
s vk

)

� 2
ν(ν + 2)

δ

(
1 + O

(
δqν

))( n∑
i,j=1

aij vjpi

)2

− Ca2qν+2|∇v|2 � −Ca2qν+2|∇v|2.

Substituting this in (2.38), we obtain with a new constant C

z2
3q

ν+2 −
(

z3 + 2(ν + 2)q−1
n∑

aij vjpi + 2
n∑

a
ij
j vi

)2

qν+2 � −Ca2qν+2|∇v|2.

i,j=1 i,j=1
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Hence, (2.37) implies that

(
z2

1 + z2
3 + 2z1z3 + 2z1z2

)
qν+2 � −C

ν

δ
|∇v|2 + ∇ · U(2,1) + V

(2,1)
t . (2.40)

Step 3. Estimate 2z1(z4 + z5)q
ν+2. We have

2z1(z4 + z5)q
ν+2 = −2

ν2q−ν

δ2

n∑
i,j=1

aijpipj

(
1 + O

(
δqν

))
vtv − 4νq

δ
· (t − δ)

δ2
vtv

=
[
−ν2q−ν

δ2

n∑
i,j=1

aijpipj

(
1 + O

(
δqν

))
v2 − 2νq

δ
· (t − δ)

δ2
v2

]
t

− 2ν3q−ν−1

δ2
· (t − δ)

δ2

n∑
i,j=1

aijpipj

(
1 + O

(
δqν

))
v2

+ 2
ν2q−ν

δ2

n∑
i,j=1

aijpipj

[
O

(
δqν

)]
t
v2

+ 4ν

δ
· (t − δ)2

δ4
v2 + 2νq

δ3
v2 + ν2q−ν

δ2

n∑
i,j=1

a
ij
t pipj

(
1 + O

(
δqν

))
v2.

Hence, using (2.32), we obtain

2z1(z4 + z5)q
ν+2 � −C

ν3q−ν−1

δ3

(
n∑

i,j=1

aijpipj

)
v2 + V

(2,2)
t , (2.41)

where

∣∣V (2,2)
∣∣ � C

ν2q−ν

δ2
u2ϕ2. (2.42)

Step 4. Estimate 2z3(z4 + z5)q
ν+2. We have

2z3(z4 + z5)q
ν+2 = 4

νq

δ

(
n∑

i,j=1

aijpivj

)

×
(

ν2q−2ν−2

δ2

n∑
k,s=1

akspkps

(
1 + O

(
δqν

))
v + 2νq−ν−1

δ
· (t − δ)

δ2
v

)
.

(2.43)

First, estimate I1, where
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I1 = 4
ν3q−2ν−1

δ3

(
n∑

i,j=1

aijpivj v

)(
n∑

k,s=1

akspkps

(
1 + O

(
δqν

)))

=
n∑

j=1

[
2
ν3q−2ν−1

δ3

(
n∑

i=1

aijpi

)(
n∑

k,s=1

akspkps

(
1 + O

(
δqν

)))
v2

]
j

+ 2
ν3(2ν + 1)q−2ν−2

δ3

(
n∑

i=1

aijpipj

)(
n∑

k,s=1

akspkps

(
1 + O

(
δqν

)))
v2

− 2
ν3q−2ν−1

δ3

[(
n∑

i=1

aijpi

)(
n∑

k,s=1

akspkps

(
1 + O

(
δqν

)))]
j

v2. (2.44)

Since 1 + O(δqν) � 1/2, we obtain

2
ν3(2ν + 1)q−2ν−2

δ3

(
n∑

i,j=1

aijpipj

)(
n∑

k,s=1

akspkps

(
1 + O

(
δqν

)))
v2

� 2
ν4q−2ν−2

δ3

(
n∑

i,j=1

aijpipj

)2

v2. (2.45)

In addition, (1.1), (1.8) and (2.4) imply that

−2
ν3q−2ν−1

δ3

[(
n∑

i=1

aijpi

)(
n∑

k,s=1

akspkps

(
1 + O

(
δqν

)))]
j

v2

� −Ca
(
p1)3 ν3q−2ν−2

δ3
v2. (2.46)

One can choose ν0 = ν0(σ1, σ2,p
1, a) so large that

ν >
Ca(p1)3

2σ 2
1

, ∀ν � ν0. (2.47)

Hence, using (2.23) and (2.44)–(2.47), we obtain

I1 � ν4q−2ν−2

δ3

(
n∑

i,j=1

aijpipj

)2

v2 + ∇ · U(2,2), ∀ν � ν0, (2.48)

where

∣∣U(2,2)
∣∣ � C

ν3q−2ν−1

δ3
u2ϕ2. (2.49)

Because of (2.43), we now should estimate I2, where
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I2 = −8
ν2q−ν

δ2

(
n∑

i,j=1

aijpivj

)
· (t − δ)

δ2
v

=
n∑

j=1

[
−4

ν2q−ν

δ2
· (t − δ)

δ2
v2

n∑
i=1

aijpi

]
j

− 4
ν3q−ν−1

δ2
· (t − δ)

α2δ2

(
n∑

i,j=1

aijpipj

)
v2 + 4

ν2q−ν

δ2
· (t − δ)

α2δ2

(
n∑

i=1

aijpi

)
j

v2

� −C
ν3q−ν−1

δ3

(
1 + a

ν

)(
n∑

i,j=1

aijpipj

)
v2 + ∇ · U(2,3).

Hence, assuming that in addition to (2.47)

a

ν
< 1, ∀ν � ν0, (2.50)

we obtain

I2 � −C
ν3q−ν−1

δ3

(
n∑

i,j=1

aijpipj

)
v2 + ∇ · U(2,3), (2.51)

where

∣∣U(2,3)
∣∣ � C

ν2q−ν

δ3
u2ϕ2. (2.52)

By (2.1) q−2ν−2 > 2Cq−ν−1. Also, by (2.43) 2z3(z4 + z5)q
ν+2 = I1 + I2. Hence, (2.48)–(2.52)

lead to

2z3(z4 + z5)q
ν+2 � ν4q−2ν−2

2δ3

(
n∑

i,j=1

aijpipj

)2

v2 + ∇ · U(2,4), (2.53)

where U(2,4) = U(2,2) + U(2,3) and

∣∣U(2,4)
∣∣ � C

ν2q−2ν−1

δ3
u2ϕ2. (2.54)

Step 5. We now estimate 2z2z3q
ν+2. We have

2z2z3q
ν+2 = 2

ν

δ
q

n∑
i,j,k,s=1

aij aksvij (pkvs + psvk)

=
n∑(

2
ν

δ
q

n∑
aij aksvi(pkvs + psvk)

)

j=1 i,k,s=1 j
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− 2
ν

δ

n∑
i,j,k,s=1

[(
aij aksq

)
j
vi(pkvs + psvk) + aij aksqvi(pkj vs + psj vk)

]
− 2

ν

δ

n∑
i,j,k,s=1

aij aksqvi(pkvsj + psvkj )

� −Ca
ν

δ
|∇v|2 − 2

ν

δ

n∑
i,j,k,s=1

aij aksqvi(pkvsj + psvkj ) + ∇ · U(2,5), (2.55)

where

∇ · U(2,5) =
n∑

j=1

(
2
ν

δ
q

n∑
i,k,s=1

aij aksvi(pkvs + psvk)

)
j

. (2.56)

Estimate from the below the second term in the right-hand side of the inequality (2.55). We have

−2
ν

δ

n∑
i,j,k,s=1

aij aksqvi(pkvsj + psvkj )

= −4
ν

δ

n∑
i,j,k,s=1

aksaij qpkvivsj = −4
ν

δ

n∑
k,s=1

aksqpk

(
n∑

i,j=1

aij vivsj

)

= −2
ν

δ

n∑
k,s=1

aksqpk

(
n∑

i,j=1

aij (vivsj + vjvsi)

)
.

(2.57)

Since (vivsj + vjvsi) = (vivj )s , then

−2
ν

δ

n∑
k,s=1

aksqpk

(
n∑

i,j=1

aij (vivsj + vjvsi)

)
= −2

ν

δ

n∑
i,j,k=1

aij qpk

n∑
s=1

aks(vivj )s

=
n∑

s=1

(
−2

ν

δ

n∑
i,j,k=1

aksaij qpkvivj

)
s

+ 2
ν

δ

n∑
i,j,k=1

(
n∑

s=1

(
aksaij qpk

)
s

)
vivj

� −Ca
ν

δ
|∇v|2 + ∇ · U(2,6), (2.58)

where

∇ · U(2,6) =
n∑

s=1

(
−2

kν

δ

n∑
i,j,k=1

aksaij qpkvivj

)
s

. (2.59)

Thus, (2.55)–(2.59) lead to

2z2z3q
ν+2 � −Ca

ν |∇v|2 + ∇ · U(2,7), (2.60)

δ
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where U(2,7) = U(2,5) + U(2,6) where

∣∣U(2,7)
∣∣ � C

ν3

δ3
q−2ν−1(|∇u|2 + u2)ϕ2. (2.61)

The estimate (2.61) is obtained via expressing the function v and its first derivatives through the
function u = vϕ−1 and its first derivatives.

We are now ready to obtain estimates (2.28)–(2.30). Sum up (2.40), (2.41), (2.53) and (2.60)
and compare with (2.31). Also, sum up expressions for divergent terms and use estimates (2.35),
(2.36), (2.42), (2.54) and (2.61) for them. Then express the function v and its first derivatives
through the function u = vϕ−1 and its first derivatives. Then we obtain estimates (2.28)–
(2.30). �
2.3. Proof of Theorem 2

Multiply the inequality (2.14) by 4Caν/(δσ1) and sum up with the inequality (2.28). Also,
using (2.15) and (2.29) and (2.30), denote

U = 4Ca
ν

δσ1
U(1) + U(2), V (3) = 4Ca

ν

δσ1
V (1) + V (2).

We obtain

4Ca
ν

δσ1
(ut − L0u)uϕ2 + (ut − L0u)2qν+2ϕ2

� Ca
ν

δ
|∇u|2ϕ2 + C

ν4

δ3
q−2ν−2

[
1 − 4Ca

σ1ν
·
(

n∑
i,j=1

aijpipj

)−1](
n∑

i,j=1

aijpipj

)2

u2ϕ2

+ ∇ · U + Vt , (2.62)

where the vector function (U,V ) satisfies the estimate (2.12). Choose ν0 = ν0(σ1, σ2,p
1, a) so

large that in addition to (2.47) and (2.50)

1 − 4Ca

σ 2
1

· 1

ν
<

1

2
, ∀ν � ν0. (2.63)

Then (2.23) and (2.62) imply that for ν � ν0

4Ca
ν

δσ1
(ut − L0u)uϕ2 + (ut − L0u)2qν+2ϕ2

� Ca
ν

δ
|∇u|2ϕ2 + C

ν4

δ3
q−2ν−2u2ϕ2 + ∇ · U + Vt . (2.64)

Note that
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4Ca
ν

δσ1
(ut − L0u)uϕ2 + (ut − L0u)2qν+2ϕ2

� 3(ut − L0u)2ϕ2 + 2

(
Ca

σ1

)2
ν2

δ2
u2ϕ2.

Substituting this in (2.64), we obtain (2.11).

3. Proof of Theorem 1

Change variables

(x′, t ′) =
(

x

2d(Φ)
,

t

4d2(Φ)

)
, (3.1)

leaving for new variables, domains and coefficients of the operator L the same notations as
before, for brevity. By (3.1)

|x| � 1

2
, ∀x ∈ Φ. (3.2)

The number a in (1.7) is replaced with

a1 = (a − 1)d + 1, d := max
[
d(Φ), d2(Φ)

]
. (3.3)

Also, the number ds(Φ) is replaced with

ds1(Φ) = ds(Φ)

2d(Φ)
. (3.4)

Denote x = (x1, y1, . . . , yn−1) = (x1, y), y2 = y2
1 + · · · + y2

n−1. Consider an arbitrary point
x0 ∈ Φ and let x̃(x0) be a point at the hypersurface P such that the straight line connect-
ing x0 and x̃(x0) does not lie in the hyperplane, which is tangent to P at the point x̃(x0).
Without loss of generality we assume that x̃(x0) = 0. Consider a piece of the straight line
l′(x0) ⊂ Φ passing through points {0} and x0. Extend l′(x0) beyond the point x0 until its in-
tersection with the boundary ∂Φ at the point x′

0 ∈ ∂Φ . Denote l(x0) the part of the straight line
connecting points {0} and x′

0. Rotate the coordinate system in such a way that l(x0) becomes
l(x0) = {x = (x1, y): x1 ∈ (0, x′

10), y = 0}. Hence x0 = (x10,0, . . . ,0), x′
0 = (x′

10,0, . . . ,0) and
x′

10 > x10.
We can represent the equation of a small part P ′, 0 ∈ P ′, of the hypersurface P as x1 = η(y),

|y| < θ , η(0) = 0, where θ is a small positive number and the function η ∈ C2(|y| � θ). Change
variables as (x, y) ↔ (x′, y) = (x − η(y), y) for y ∈ {|y| � θ}, leaving again “old” notations for
these new variables, for brevity. Hence, in new variables

P ′ = {
x1 = 0, |y| < θ

}
. (3.5)

Points x0 and x′
0 remain the same and the operator L still remains elliptic, with the same constants

σ1, σ2. However, the constant a1 in (3.3) will change depending on the C1(|y| � θ)-norm of the
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function η(y), and this is why the constant C1 in Theorem 1 depends on the hypersurface P .
Next, choose a number α0 such that

0 < α0 = α
(
x′

0, ds1(Φ)
)
<

1

2
min

(
1

4
, ds1(Φ)

)
and denote

PR(x0) =
{
x: x1 + y2

θ2
+ α0 < x′

10 + 2α0, x1 > 0

}
. (3.6)

Hence, by (3.1) and (3.2)

x0, x
′
0 ∈ PR(x0) ⊂ Ω and PR(x0) ∩ (∂Ω \ P) = ∅. (3.7)

We now specify the function q(x, t) (beginning of Section 2) as

q(x, t) = x1 + y2

θ2
+ (t − δ)2

δ2
+ α0. (3.8)

Because of (3.8), we specify the domain G0 as (see (2.1))

G0 = {
(x, t): q(x, t) < x′

10 + 2α0, x1 > 0
}

=
{
(x, t): x1 + y2

θ2
+ (t − δ)2

δ2
+ α0 < x′

10 + 2α0, x1 > 0

}
. (3.9)

Hence, by (3.6) and (3.7)

x0, x
′
0 ∈ G0 ∩ {t = δ} = PR(x0) ⊂ Ω. (3.10)

Note that by (3.2)

α0 < q(x, t) < x′
10 + 2α0 < 3/4, (x, t) ∈ G0. (3.11)

Following (2.7), (3.9) and (3.11), we specify the domain Gω as follows

Gω = {
(x, t): q(x, t) < x′

10 + 2α0 − ω, x1 > 0
}
, ∀ω ∈ (

0, x′
10 − x10 + α0

)
.

By (3.10) there exists a small ω0 = ω0(x0) ∈ (0, x′
10 − x10 + α0) such that

x0, x
′
0 ∈ {

G5ω0 ∩ {t = δ}}. (3.12)

Consider a cut-off function χ(x, t) ∈ C2(G0) such that 0 � χ � 1 and

χ(x, t) =
{

1 for (x, t) ∈ G2ω0

0 for (x, t) ∈ G \ G

}
.

0 ω0
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Note that by (2.8)

G5ω0 ⊂ G3ω0 ⊂ G2ω0 ⊂ Gω0 ⊂ G0.

Consider the function v(x, t) = (χu)(x, t). Then u = χu + (1 − χ)u = v + (1 − χ)u. Hence, by
(1.5) and (3.3)

|vt − L0v| � M1
[|∇v| + |v| + (1 − χ)|∇u| + (1 − χ)|u| + |f |], a.e. in G0, (3.13)

v|PT
= χh(1),

∂v

∂n

∣∣∣∣
PT

= χh(2)(x, t) + h(1) ∂χ

∂n
. (3.14)

Here M1 = M1(M,d) is a positive constant depending on constants M in (1.5) and d in (3.3).
Since the constant C1 in the formulation of Theorem 1 also depends on these parameters (as
well as on some others), then M1 is “absorbed” by C1 in the proof below. Consider an arbitrary
function w ∈ C2,1(G0) such that w = 0 in G0 \ Gω0 . Substitute w in (2.11) and integrate that
formula over the domain G0 using (2.12), (2.13) and the Gauss’ formula. Using (3.2) and (3.4),
set in Theorem 2

ν := ν0 = ν0
(
σ1, σ2, θ, a1, ds1(Φ)

) := ν0
(
σ1, σ2,P , a, d(Φ), ds(Φ)

)
. (3.15)

We obtain from (2.11)–(2.13)

∫
G0

(wt − L0w)2ϕ2 dx dt � C1

δ

∫
G0

|∇w|2ϕ2 dx dt + C1

δ3

∫
G0

w2ϕ2 dx dt

− C1

δ3
exp

(
2

δ
α−ν0

)∫
PT

(|∇w|2 + w2
t + w2)dS, ∀δ ∈ (0, δ0), ∀w ∈ C2,1(G0).

The standard density arguments imply that this inequality is also valid for the function
v ∈ H 2,1(G0) since v = 0 in G0 \ Gω0 . Hence, (3.11), (3.13) and (3.14) imply that

∫
G0

[|∇v|2 + v2 + f 2]ϕ2 dx dt +
∫

G0\G2ω0

[|∇u|2 + u2]ϕ2 dx dt

+ C1

δ3
exp

(
2

δ
α−ν

0

)∫
PT

[∣∣∇h(1)
∣∣2 + (

h
(1)
t

)2 + (
h(2)

)2]
dS

� C1

δ

∫
G0

|∇v|2ϕ2 dx dt + C1

δ3

∫
G0

v2ϕ2 dx dt, ∀δ ∈ (0, δ0).

Denoting δ1 = min[δ0,1/(2C1)], we obtain with a new constant C1



M.V. Klibanov, A.V. Tikhonravov / J. Differential Equations 237 (2007) 198–224 221
∫
G0\G2ω0

[|∇u|2 + u2]ϕ2 dx dt + C1

δ3
exp

(
2

δ
α−ν

0

)
‖F‖2

� C1

2δ

∫
G0

|∇v|2ϕ2 dx dt + C1

2δ3

∫
G0

v2ϕ2 dx dt, ∀δ ∈ (0, δ1). (3.16)

We have

ϕ2(x, t) � exp

[
2

δ

(
x′

10 + 2α0 − 2ω0
)−ν

]
in G0 \ G2ω0 .

Also,

C1

2δ

∫
G0

|∇v|2ϕ2 dx dt + C1

2δ3

∫
G0

v2ϕ2 dx dt

� C1

2δ

∫
G3ω0

|∇v|2ϕ2 dx dt + C1

2δ3

∫
G3ω0

v2ϕ2 dx dt

= C1

2δ

∫
G3ω0

|∇u|2ϕ2 dx dt + C1

2δ3

∫
G3ω0

u2ϕ2 dx dt

� C1

2δ3
exp

[
2

δ
(x10 + 2α0 − 3ω0)

−ν

] ∫
G3ω0

u2ϕ2 dx dt.

Hence, (3.16) implies that∫
G3ω0

u2 dx dt � C1 exp

(
2

δ
α−ν

0

)
‖F‖2 + C1 exp

(
−ρ0

δ

)
‖u‖2

H 1,0(QT )
, (3.17)

where

ρ0 = ρ0(x0) = (x10 + 2α0 − 3ω0)
−ν − (x10 + 2α0 − 2ω0)

−ν > 0. (3.18)

Consider the domain D(x0,ω0),

D(x0,ω0) =
{
x: x1 + y2

θ2
< x′

10 + α0 − 5ω0, x1 > 0

}
.

By (3.6), (3.10) and (3.12) D(x0,ω0) ⊂ PR(x0) and x0, x
′
0 ∈ D(x0,ω0). Also, the time cylinder{

(x, t): x ∈ D(x0,ω0), |t − δ| < δ
√

ω0
} ⊂ G3ω0 .
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There exists a neighborhood N(x0,ω0) = {x: |x − x0| < ξ(x0,ω0), ξ(x0,ω0) > 0} of the point
x0 such that N(x0,ω0) ⊂ D(x0,ω0). Hence, the time cylinder

N(x0,ω0, δ) = N(x0,ω0) × {
t : |t − δ| < δ

√
ω0

} ⊂ G3ω0 .

Hence, (3.17) and (3.18) imply that∫
N(x0,ω0,δ)

u2 dx dt � C1 exp

(
2

δ
α−ν

0

)
‖F‖2 + C1 exp

(
−ρ0

δ

)
‖u‖2

H 1,0(QT )
. (3.19)

Consider a finite number of points {x(i)
0 }si=1 ⊂ Φ such that

Φ ⊂
s⋃

i=1

N
(
x

(i)
0 ,ω

(i)
0

) := N

and dist(N, (∂Ω \ P)) � ds1(Φ)/2, where N(x
(i)
0 ,ω

(i)
0 ) is a neighborhood of the point x

(i)
0

which is constructed similarly with the neighborhood N(x0,ω0). Note that the number ν in
(3.15) is independent on the point x0, and, therefore, we chose it the same for all points x

(i)
0 . Let

{x′(i)
0 }si=1 ⊂ ∂Φ be the set of corresponding point x′

0 and {ω(i)
0 }si=1 be the set of corresponding

numbers ω0. Denote

ρ = min
1�i�s

ρ0
(
x

(i)
0

)
, α = min

1�i�s

[
α0 = α0

(
x

′(i)
0 , ds1(Φ)

)]
, ω1 = min

1�i�s
ω

(i)
0 .

Then (3.19) implies that∫
Φδ

u2 dx dt � C1 exp

(
2

δ
α−ν

)
‖F‖2 + C1 exp

(
−ρ

δ

)
‖u‖2

H 1,0(QT )
, ∀δ ∈ (0, δ1), (3.20)

where Φδ = Φ × {t : |t − δ| < δ
√

ω1}. Note that since ω1 ∈ (0,1/2) then {|t − δ| < δ
√

ω1} ⊂
(0, T ). By the mean value theorem there exists a number t∗ ∈ δ(1 − √

ω1,1 + √
ω1 ) such that∫

Φ

u2(x, t∗) dx � 1

2δ
√

ω1

∫
Φδ

u2 dx dt.

Hence, using (3.20) and (1.6), we obtain∫
Φ

u2(x, t∗) dx � C exp

(
3

δ
α−ν

)
‖F‖2 + C exp

(
− ρ

2δ

)
‖g‖2

L2(Ω), ∀δ ∈ (0, δ1). (3.21)

Now,

g(x) = u(x,0) = u(x, t∗) −
t∗∫

ut (x, t) dt.
0



M.V. Klibanov, A.V. Tikhonravov / J. Differential Equations 237 (2007) 198–224 223
Hence,

‖g‖2
L2(Φ) � 2

∥∥u(x, t∗)
∥∥2

L2(Φ)
+ 2δ(1 + √

ω1 )
∥∥ut (x, t)

∥∥2
L2(QT )

, ∀δ ∈ (0, δ1).

Hence, (1.7) implies that

‖g‖2
L2(Φ) � K

∥∥u(x, t∗)
∥∥2

L2(Φ)
+ δK

(‖g‖2
H 1(Ω)

+ ‖f ‖2
L2(Ω)

)
.

Let

δ2 = min

(
δ1,

1

2K

)
. (3.22)

Then

‖g‖2
L2(Φ) � K

∥∥u(x, t∗)
∥∥2

L2(Φ)
+ δK

(∥∥|∇g|∥∥2
L2(Ω)

+ ‖g‖2
L2(Ω\Φ) + ‖f ‖2

L2(Ω)

)
, ∀δ ∈ (0, δ2).

Substituting this in (3.21), we obtain

‖g‖2
L2(Φ) � C1δ

[∥∥|∇g|∥∥2
L2(Ω)

+ ‖g‖2
L2(Ω\Φ)

] + C1 exp

(
3

δ
α−ν

)
‖F‖2, ∀δ ∈ (0, δ2).

(3.23)

Denote

g̃ = ε0

B
g, F̃ = ε0

B
F,

where the number ε0 > 0 will be chosen later. Then ‖g̃‖H 1(Ω) � ε0,‖F̃‖ � ε0 and (3.23) holds
for functions g̃ and F̃ . Take an arbitrary number μ ∈ (0,1) and choose δ = δ(F ) such that

exp

(
3

δ
α−ν

)
‖F̃‖2 = ‖F̃‖2(1−μ).

Hence,

δ = 3

2μαν

[
ln

(
B

ε0‖F‖
)]−1

. (3.24)

Since we should have δ ∈ (0, δ2) and

ln

(
B

ε0‖F‖
)

� ln

(
1

ε0

)
,

then (3.24) implies the following requirement for the number ε0

ε0 � exp

(
− 3

ν

)
,

2μδ2α
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where the number δ2 is defined in (3.22). Hence, we choose

ε0 = exp

(
− 3

2μδ2αν

)
. (3.25)

Therefore, (3.23) and (3.24) lead to

‖g‖2
L2(Φ) � C1

μ

[
ln

(
B

ε0‖F‖
)]−1[∥∥|∇g|∥∥2

L2(Ω)
+ ‖g‖2

L2(Ω\Φ)

]
+ C1

(
B

ε0

)2μ

‖F‖2(1−μ). (3.26)

Relations (3.22), (3.25) and (3.26) complete the proof of Theorem 1.
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