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Abstract

The global in-time semiclassical and relaxation limits of the bipolar quantum hydrodynamic model for
semiconductors are investigated in R3. We prove that the unique strong solution exists and converges
globally in time to the strong solution of classical bipolar hydrodynamical equation in the process of
semiclassical limit and that of the classical drift—diffusion system under the combined relaxation and semi-
classical limits.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Recently, the quantum hydrodynamic (QHD) model for semiconductors is derived and studied
in the modelings and simulations of semiconductor devices (like MOSFET and RTD) in ultra-
small size (say nano-size), where the effects of quantum mechanics, such as particle tunneling
through potential barriers and built-up in quantum well, are taken into granted and dominate the
transportation of electron and/or hole under the self-consistent electric field.
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The basic observation concerning the quantum hydrodynamics is that the energy density
consists of one additional new quantum correction term of the order O (%) introduced first by
Wigner [31] in 1932, and that the stress tensor contains also an additional quantum correction
part [2,3] related to the quantum Bohm potential (or internal self-potential) [4]

R AYp
Q(P)——%W, (1.1

with observable p > 0 the density, m mass, and % the Planck constant. The quantum potential
QO was introduced by de Broglie and explored by Bohm to make a hidden variable theory and
is responsible for producing the quantum behavior, so that all quantum features are related to
its special properties. Such possible relation was also implied in the original idea initialized by
Madelung [26] in 1927 to derive quantum fluid-type equations, in terms of Madelung’s transfor-
mation applied to wave function of Schrodinger equation of pure state. In fact, based on this idea,
one is able to derive quantum fluid-type equations from the (nonlinear) Schrodinger equation of
pure state [10,17].

The moment method is employed recently to derive quantum hydrodynamic equations for
semiconductor device at nano-size based on the Wigner—Boltzmann (or quantum Liouville) equa-
tion [28]

W, +& onW—{-%IP’[@]W:[Wt]C (1.2)

where W = W(x,&,1), (x,&,1t) € R3 x R3 x R is the distribution function, and P the pseudo-
differential operator defined by

j x4+ L) —d(x—Ln) ,

The electrostatic potential @ = @ (x, t) is self-consistent through Poisson equation

)\OAqbzq(deg —C),

with Ao > O the permittivity characteristic of device, ¢ the elementary charge, and C =C(x) >0
the given doping profile [28], and [W;]. refers to the collision term. In fact, applying mo-
ment method to the Wigner—Boltzmann equation (1.2) near the “momentum-shifted quantum
Maxwellian” [31] together with appropriate closure assumption [8,11], one can obtain the quan-
tum hydrodynamic equation [8]. For more derivation and related topics on the modeling of
quantum models, one refers to [8,10,28] and the references therein.

In the present paper, we consider the bipolar quantum hydrodynamic model of semiconductors
(for carriers of two type)

0 pi +V - (piu;) =0, (1.3)
2
O (piui) +V - (piu; ®u;) + VPi(p;) =qipi E + —in(— V’) -, (1.4)
2 A/ Pi T

MV -E=ps—pp—C, VXxE=0, Ex)—0, |x|— 400, (1.5)



G. Zhang et al. / J. Differential Equations 245 (2008) 1433—-1453 1435

where (x,7) € R? x R and the index i = a, b and qa = 1, gp = —1. The observable p, > 0,
o» >0, uy, up and E are the densities, velocities and electric field, respectively. P,(.), Pp(.) are
the pressure—density functions. The parameters ¢ > 0, 1, = 1, = T > 0, and A > 0 are the scaled
Planck constant, momentum relaxation time, and Debye length respectively. C = C(x) is doping
profile.

In the real simulations of semiconductor devices, the size of the device is rather small (in
nano-size, for instance). This in turn makes the scaled parameters t, €, A rather smaller due to
different situations under consideration [28,29]. In general, the scaled parameters ¢, T, A are
expressed as

e2 = h? 2 Mok Ty 2 KB T()‘L'O2
2mipToL?’ Ng2?L?’ mlL2

where we recall that the physical parameters are the elementary charge ¢, the Boltzmann con-
stant kp, the elective electron mass m, the reduced Planck constant %, the permittivity ¢, the
ambient temperature T, and the characteristic device length L and density N. The typical values
of the parameters for semiconductors are given in [28]. Therefore, one of the both mathematically
and physically important problems is to justify the asymptotic approximation (or behavior) of the
macroscopic observable of the quantum hydrodynamical model subject to the small parameters
mentioned above.

In the present paper, we investigate the asymptotical analysis with respect to the scaled small
parameters of bipolar time-dependent quantum hydrodynamical model. To begin with, let us
present a complete description about the small-scale asymptotics of the QHD model. We first
consider the semiclassical limit. Let ¢ — 0 formally in (1.3)—(1.5), we get the well-known bipolar
hydrodynamic (HD) model [1,9]

0rpi +V - (piu;) =0, (1.6)
ot
0 (piut1) +V - (pisti @ i) + V Pi(p) = qipi £ — = (1.7)
1
MV -E=p,—pp—C, VXE=0, E()—0, |x|]— +oo. (1.8)

This limiting process shows the semiclassical approximation of bipolar quantum hydrodynamical
model in terms of bipolar hydrodynamical model for small Planck constant, and describes the
relation from quantum mechanics to the classical Newtonian mechanics.

The semiclassical limits of the stationary unipolar quantum hydrodynamical model (carrier of
one type) are well studied recently. In one-dimensional bounded domain, the semiclassical limit
of the thermal equilibrium solutions [5] and the isentropic subsonic solutions [12] are analyzed
respectively due to different boundary conditions. This limit is also investigated for a stationary
unipolar viscous quantum hydrodynamical system [7] for a special class of viscosity in one-
dimensional interval subject to the boundary condition of density and quantum Fermi potential,
where the communication between vanishing viscosity and semiclassical limit is also investigated
in subsonic regime. For bipolar stationary quantum hydrodynamical model, the semiclassical
limits are investigated in multi-dimensional bounded domain for isothermal solutions in thermal
equilibrium state [22,30], by recovering the minimizer of limiting functional of a quantized en-
ergy functional corresponding the original system, and in multi-dimensional unbounded domain
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for stationary isentropic system [34]. A rigorous analysis is also made for the bipolar viscous
quantum hydrodynamical system [22].

However, all those analyses for stationary problems cannot apply to the time-dependent case
because that unlike the case of stationary problem, the maximum principle usually does not apply
to the time-dependent case and it is not clear how to derive enough the a priori estimates with
respect to time (derivatives) so as to pass into the semiclassical limit. Although such process of
semiclassical limit has been investigated recently for nonlinear Schrodinger equation [6,23] for
potential flow in terms of Friedrich—Kato-Lax’s theory and is concerned with the finite (short)
time theory, the frame work does not apply here to general multi-dimensional rotational (non-
potential) flow and is not fit for global in-time theory. We should do the semiclassical limit
for QHD model in a different way in order to present the global in-time semiclassical limit for
general non-potential flow.

Next, we turn to the analysis of relaxation limit. To this end, let us introduce the diffusion
scaling as [20,27]

t i t
xX—>x, t—>—, (pl-’,ui’,E’)(x,t)=(pi,ﬂ,E><x,—). (1.9)
T T T
Then (1.3)—(1.5) can be rewritten as

dpf +V - (pfuf) =0, (1.10)

2 A T
128,(pful~f) +72v. (pful’ ® uf) + VP (,ol’) =qipf E" + %pr( \/{)_'?) —pfui, (1.11)
i

MV-E'=pl —pf —C(x), VXE =0, E"(x)—=0, |x|—+4o0o. (1.12)

Also formally, let T — 0 in (1.10)—(1.12), the quantum drift—diffusion (QDD) model is obtained

2
e A/ pi
0 0i + V[qmiE —VPi(pi)+ 701V< _pil )} =0, (1.13)
MV -E=p,—pp—Cx), VXxE=0, Ex)—0, |x|— +o0. (1.14)

This limiting process provides a singular approximation of quantum hydrodynamical model via
parabolic quantum drift—diffusion model for small momentum relaxation time. Note that al-
though there are many results obtained for classical hydrodynamic model [1,21,27], few is known
for the relaxation limit for the quantum hydrodynamical model due to the less of enough infor-
mation to control the nonlinear third-order dispersion term. Although the relaxation limit of the
stationary solutions are investigated in one-dimensional bounded domain for unipolar case [12],
and in multi-dimensional bounded domain for bipolar case [22], like the situation of semiclassi-
cal analysis, all these studies seems not enough in the resolution of the time-dependent problems.
Note that, the singular relaxation time limit presented above is not mathematically rigorous, the
first rigorous analysis result about relaxation time limit of QHD model has been obtained recently
in [20], where the QHD system is proven to be approximated by a quantum drift—diffusion model
(QDD), a nonlinear parabolic equation, for small relaxation time. However, this analysis depends
strongly on the effects of the nonlinear dispersion. That is, the scaled Planck constant is required
to be fixed in order to help getting enough control to pass into the relaxation limit, which is
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therefore not enough to prove the relaxation limit for possibly arbitrary small Planck constant ¢.
Thus, it is natural for us to consider the relaxation limit of quantum hydrodynamical model for
any small Planck constant ¢ and furthermore the combined relaxation and semiclassical limit. In
fact, we can show in the present paper that one can derive the following limiting drift—diffusion
(DD) model

dpi + V][qipiE — VP (pi)] =0, (1.15)

MV -E=p,—pp—Cx), VXxE=0, Ex)—0, |x|— 4o, (1.16)

by setting T — 0 and ¢ — 0 in (1.10)—(1.12) for strong solutions. Note here that although we
only deal with the combined relaxation and semiclassical limits for the quantum hydrodynamical
model (1.10)—(1.12), we claim that the analysis made here does not require any (communication)
restriction between ¢ and t. That is, one can fix any of the two parameters ¢ and 7 and let the
other tend to zero.

We shall also mention the asymptotical analysis about the zero-Debye length limit for QHD
model. This process is quite well understood for both stationary problems [12,30] for one
and multi-dimension bounded domain respectively and the time-dependent problem for multi-
dimension [24]. We omit the corresponding analysis here.

The rest part of the paper is arranged as follows. The main results related to semiclassical
limit and relaxation time limit are presented in Section 2, the proofs are established in Section 3.

Notations. C or ¢ always denote the generic positive constants. L>(R3) is the space of square
integral functions on R3 with the norm || - || or | - 2R3 H*(R3) with integer k > 1 denotes

the usual Sobolev space of function f satisfying 8)’; f e L>(R?) (0 <i < k) with norm

Ifle= | Y [pes|’

0< | <k

k]

here and after « € N3, D% = dy1 03203 for || = s1 + 52 + s3. Especially || - [lo = || - ||. Let B be
a Banach space, Ck([0, 11; B) denotes the space of B-valued k-times continuously differentiable
functions on [0, t]. We can extend the above norm to the vector-valued function u = (u1, uy, u3z)
with [D%u|? =3"3_, |D%u,|? and

Dl = [ (i > <D“ur)2) d.

R3 r=1 |a|=k

and [lulle = llull gt g3y = Sb—o 1Dl £l qg0.71:8) = SuPocs <7 £ ()15 We also use the
space HK(R?) = {f € LS(R%), Df € H*"!(R®)}, k > 1. Sometimes we use [|(., ., ...) || &z
or ||(,,.,...)|lx to denote the norm of the space HK(R3) x H¥(R3) x -+ x HX(R?) and the
H*(R3) as well.
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2. Main results and preliminary
2.1. Main results

We consider the initial value problem for the quantum system (1.3)—(1.5) with the following
initial data

(pi, ui)(x,0) = (pig, uig) (),  piy(xX) = pf',  ujp(x) >0, |x| > 400, 2.0

with i = a, b. From now on, we set the scaled Debye length to be one A = 1 for simplicity.
First of all, we have the global existence and uniqueness theory of the IVP problem for the
quantum system (1.3)—(1.5) and (2.1).

Theorem 2.1 (Global existence). Let the parameters ¢ > 0, T > 0 be fixed. Assume P,, P, €
C3(0, +00) and C(x) = c* is a constant satisfying for two positive constants p, py that

pa—pp—c*=0,  Pi(py). Py(oy) > 0. 22

Suppose pay > 0, pby > 0 and (fBay = /Pa» /oo — v/ Pp» Uags ) € (HO(R))? x (H(R?))?.

Then, there is A1 > 0 so that if Ay = ||(/Pag — /P /Pbo — / L} > Uag» Mbo)”HGX'HS(R}) < Ay,
the unique solution (pj;, py,, us,, uy, E®) of the IVP problem (1.3)—(1.5) and (2.1) exists globally
in time with p};, p, > 0 and satisfies

(of — pi  Ef) e 0, T; HO(RY)),  uf e k(0,7 H*(R?), k=0,1,2,
and

” (pj — Pa: P — pZ)“LOO(R3) + ” E* ||L°°(R3) + ” (”Z ”i)“Lw(m) -0,
as time tends to infinity.

Remark 2.2. Unlike the unipolar quantum hydrodynamical model [14—-16,25], we cannot get the
exponential convergence to the asymptotical equilibrium state for bipolar quantum model due to
the coupling and cancellation of two carriers. It has been shown recently that usually the optimal
decay rate is algebraic for charge density and exponential for electric field [33].

We then state semiclassical limit ¢ — 0 of the global in-time solutions to the IVP (1.3)—(1.5)
and (2.1) for any fixed momentum relaxation time 7 > 0.

Theorem 2.3 (Global semiclassical limit). Let T = 1 and (pf, pi, us, ui, E¥®) be the solution of
the IVP problem (1.3)—(1.5) and (2.1) given by Theorem 2.1. Then, there is (pq, Ug, Pb, Up, E)
with p, > 0, pp > 0 so that as the Planck constant ¢ — 0, it holds
e . .3 5—s
p; —> pi Strongly in C(O, T;Cy,NH ),

loc

ui — u; strongly in C(0, T; cin HS*),

loc

1
E® — E strongly in C(O, T; Cg ﬂ’Hlﬁozs), RS (0, 5),
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forany T >0, i =a,b. Note here that (p;,u;, E) withi = a, b is the global in-time solution of
IVP problem of the bipolar hydrodynamic model (1.6)—(1.8) and (2.1).

Finally, we consider the combined semiclassical and relaxation limits for the quantum hydro-
dynamical model (1.3)—(1.5). To this end, we consider indeed the initial value problem for the
re-scaled system (1.10)—(1.12) together with the following initial data

(o7, uf) (x,0) = (o, uf)) = <p,~0, %)(x). (23)

It is easy to verify that there is a unique global in-time strong solution (pi(r’g), u?r’s), E®®)) with
i = a, b for the IVP problem (1.10)—(1.12) and (2.3) based on Theorem 2.1 and the diffusion
scaling (1.9). What left is to establish the uniform estimates with respect to the parameters ¢ > 0,
7 > 0 in order to pass into the limits. We have

Theorem 2.4 (Global relaxation and semiclassical limits). Let (,oi(f’s), uEr’g), E(®9)
with i = a, b be the unique global solution of the bipolar QHD equations (1.10)—(1.12) and

(2.3) given by Theorem 2.1, then there exists (pq, pp, E) such that as ¢ — 0 and T — 0

i(rys) — p; strongly in C(O, T, CZ N H4_S(R3))’

p loc
E™®  E  strongly in C(O, T; CZ’ N Hlsozs (RS)),

loc

t2|ul§r’8)|2 — 0 strongly in L' (O, T; W3’3(R3)), s € <O, %),

and (pg, pp, E) is the strong solution of the IVP problem of bipolar drift—diffusion system (1.15)—
(1.16) with initial data (p4, pp)(x,0) = (a0, PBO)-

Remark 2.5. Although we only state the combined relaxation and semiclassical limits for the
quantum hydrodynamical model (1.10)—(1.12) here, we should mention that the analysis made
here does not require any (communication) restriction between & and t. That is, one can fix any
of the two parameters ¢ and 7 and let the other tend to zero. Moreover, our analysis for the bipolar
model (1.10)—(1.12) can be applied to justify the semiclassical limit and relaxation limit for the
unipolar model [14,15,20].

Remark 2.6. Although we have only taken the steady state of constant solution in the profile in

the above theorems, our analysis in the present paper can be applied for general subsonic steady

state.

2.2. Some lemmas

Lemma 2.7. Let f € H'(R%), s > % There is a unique solution of the divergence equation
Viu=f, Vxu=0, ulx)—0, [x|]— 400,

satisfying

||M||L6(R3) < C||f||L2(R3)» ||Du||H5(R3) < C||f||HS(R3)-
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Lemma 2.8. Let f € H*(R%), s > % with V - f = 0. There is a unique solution u of the vorticity
equation

Vxu=f, V-u=0, ukx)—0, [x]— 400,
satisfying
lull orsy < CIFIIL2R3) | Dull s g3y < CILS s g3y
We will also use the Moser type calculus lemmas.
Lemma 2.9. Let f, g € H*(R3) N L°°(R3), then it holds
| D“(f9)| < Cligle - [ D*F[| + Clifllze - [ D*g|
fora e N3 1< lo| <5, 8 >0 is an integer.

Lemma 2.10. Let f € H°(R?) with s > 0 be an integer and function F(p) smooth enough and
F(0) =0 then F(f)(x) € H*(R?) and

| FO s rsy < CUF s oy
3. The proof of main results

The local in-time existence result of QHD model has been obtained in [15,25]. The framework
used there is to study an extended problem derived based on a deposition of the original problem,
which in turn implies the expected problem as a special case. The method employed in [15,25]
can be applied to our bipolar model directly. The proof is straightforward, and we have

Lemma 3.1 (Local existence). Let the parameters ¢ > 0, T > 0, A > 0 be fixed. Assume that
there are constants p;, p, > 0 and c* satisfying p;; — py —c* =0, C(x) —c* € H3(R?), and
Py, Py € C5(0, +00). Assume (/D — \/pF - uiy) € HS(RY) x H3(R®) with pj, > 0, then there
exists a finite time T* > O such that the unique solution (pq4, pPp, Uq, Up, E) with pg > 0, pp >0
of the problem (1.3)—(1.5) and (2.3) exists in [0, T™*], and it satisfies

pi — pi € CK([0, T*]; HO2*(R?)), u; € CH([0, T*); HO7*(RY)), k=0,1,2,
E e cX([0, T*]; H**(R?)), k=0,1.

Here, we also mention the global existence theory for the quantum hydrodynamical model and
bipolar hydrodynamical model. The well-posedness of steady state subsonic solutions has been
proved also in [18,19,32]. Transient solutions are shown to exist either locally in time [13,14] or
globally in time for data close to a steady state [15,16,19,25]. The bipolar hydrodynamic (HD)
model of the global solutions has been studied in [9].
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3.1. Reformulation of original problem

In this section, we study the global solutions and the asymptotic limits with the case
C(x) = c*. Inspired by [20] we consider the problem when the initial data of (o], u;, E?) is
around the steady state (p;", 0,0) and make use of energy estimates to analyze perturbation of
the global in-time solutions. To this end, we employ the fourth-order wave equations for \/ﬁ
and the equation of the vorticity of velocity u;. The Poisson equation is used to deal with the
coupling of the two carriers and some technique is used to deal with the smallness both of ¢
and 7.

Since we are interested in not only the global existence theory but also the asymptotical
analysis of strong solutions with respect to small parameters, we deal with the scaled IVP prob-
lem (1.10)—(1.12) and (2.3) directly. Because the scaled IVP problem (1.10)—(1.12) and (2.3) is
equivalent to the original IVP problem (1.3)—(1.5) and (2.1) for strong (classical) solutions. For
simplicity, we take A = 1 and let (.); denote d;(.) and omit the index ¢, t to simplify the presen-
tation in the following argument. From (1.10)—(1.12) and (2.3) the equations for 1; = \/ﬁ with
u; =u; (i =a,b) can be obtained

A g 1
fzwitt'f‘lﬂit"‘ 1 +2—wiv' (W,zE)— 2—%V2(1//i2ui®u,')
1 vl e Ayl
— AP; 12 + L2 7 =0, 3.1
2 AP G-D

with the initial value
Vi (x, 0) 1= i (x) = ¥ (x) =/ pi (x),
1
Vit (x,0) := 91 (x) = _E’ﬁ,{)v : uiro - ’/‘,’ro ’ Vlﬁ,{)-

Also from (1.10)—(1.12) and (2.3) with the fact (u; - V)u; = lV(|ui|2) —u; X (V x u;), the
equations for u; = u; (i =a,b)

2 2 2
T V(?) I3 AY;
2up +up + 7v(|u,-|2) —22u; x i + t/f,-zl =qgE + 7v(Ti‘ (3.2)
where ¢; = V x u; denotes the vorticity of u;. Taking curl of (3.2), we have
i+ ¢+ Wi - V)i + TGV - wi — (i - Vug =0. (3.3)

Introduce new variables w; = v; — /pl.* with i = a, b, then the system for (w,, wp, P, ¢, E) is

22
A w 1
T2 Warr + war + 7 ? +§(wa+\/P:)V'E_P,;(P:)Awa:fals (3.4
22
e Awp 1
T2 Wprr + wey + n _E(wb+ P;)V'E_P};(P;;)Awbszl» (3.5)

2 Par + P = fa2, (3.6)
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i+ b = fin, 3.7)
and
V-E:wg—wg—i—Z pFwg —2,/ppwp, Vx E=0, 3.8)
where
2,2
f,’] ::fil(x,t)_ l+\/_—quwiE+ w,+,/ Aw,
// 2 |le|2
wl+\/ wl +\/ |sz| +P wz+\/
2(Aw)? | TPVA(wi+ /) ui @ i)
+ = , (3.9)
4(w, +/07) 2(w; ++/0;)
fiz= fG. ) =2 (@i - Vui — (i - Vi — iV -u;), i=a,b. (3.10)
The last term in (3.9) can be decomposed by using Eq. (1.10) as
V(i + /o)) ui @ ui)
2(wi +/p])
=2 Vs — 2 Vg — VY G (- Vg
=t —w;;V-u; —2u; - w,t—m"f‘ u),.((u,. )u,)
3
(Wi +/P) o 2 (wi+/P0)
Y gl | - P — i Vg V)
2 2
k=1
+ ! (wir + Vw;)(u; - Vw;) ) b (3.11D
—(w; uij - Vw;)(u; -Vw;) ¢, i=a,b. .
2(wl+\/p—l*) it 1 1 1 1

The initial conditions for (3.4)—(3.7) are
w; (x, 0) 1= w;o (x) = Yiy — /0] ¢i(x,0) := iy (x) = —V X ujy (x),
1 1 - .
wir (x,0) :=w;1(x) = 2 i Vw;, — E(wio + )V uiy ), i=a,b.
We will also use the relation between V - u; and Vw;, w;;

2wir + 2ui - Vw; + (wi +/pf)V-u; =0, i=a,b. (3.12)
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3.2. The a priori estimates
In this section, we will mainly study the reformulated equations (3.4)—(3.8) in order to obtain
the a priori estimates of w,, wp, ¢a, ¢p, E
Set the workspace as
2 2
X(T) = {(wa, wp. ua,up) € L([0, T1; (H°(R?))” x (H*(R%))")}

and assume the quantity

Al wa wp)(, D3 + |2 @wa. wp) (. 0[5 + | 7 @tar 16) (. 0|35}

ax

t<T

T
[ a0 s+ e wn 0l + [ £G0 [ (3.13)
0

is small, then by Sobolev embedding theorem we know that the sufficiently small §7 can assure
the positivity of ¥, ¥ as

o 3 o 3
‘/nga+\/p_;<5/FJ, ggwb+\/p7;<§\/;;'

By Sobolev embedding theorem, from the assumption for 7, we also have

|(D*wa, D*wyp, T DPwey, T DP wh,)||Loo(R; corp SOyl <20 IBIS L (3.14)

|(tD*uq, v D*up) o] <2, (3.15)

||L°°(R3><[O,T]) S adr,
T

/H (D“ua,D“ub,zzum,zzub,)(.,t)||ioo(R3)dz <edr, ol < 1. (3.16)
0

The last inequality (3.16) is obtained from the equations for u,, u, and Sobolev embedding
theorem, the assumption for §7. The ¢ or C denote the generic positive constant and does not
necessarily be the same here and after. Using Lemma 2.7, from the Poisson equation (3.8) we
have

IE || oo 0. 71745 (%)) < €8T ||D°‘E||LOC(R3X[OTD\C(ST, la| < 3. (3.17)

Next, we will establish energy estimates to extend the solution to global one.
We have the main a priori estimate lemma.

Lemma 3.2. Suppose (wq, Wp, Ug, up, E)(x, t) is local solution with §7 < 1, then it holds

t

El(t)+[E2(s)ds cAo (3.18)
0
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fort € (0, T) and c > 0 is a constant independent of € and t. The Ay is defined in Theorem 2.1,
and here

Ev@) = { | wa, w) (. 0[5 + (2 +2) | (D wa, D wp) (. 0)])®
+ 762 (DCwa, DOwp) ()| * + 72 (war, wo) (- 1)]3
+ 2 (D*war, D*wpe) (|7 + 72| s up) (D0
+ 2 (Do, D2up) (0P + |EC0) |55

Ex@) = {[| (Vwa, Vwp) (. 0[5 + 62| (D°wa, DOwp) (., 1)
+ [ war wi) (0[5 + 7 (D*war, D*wpe) . 1)

+ [ us) (1) [ + 7 (Dua, Do) D"+ [ EC 055}

Proof. Step 1. The estimates for w,, wp. Step 1.1. Basic estimates. Assume t < 1 for simplic-
ity. Multiplying (3.4) by (w, + 2wg,) and (3.5) by (wp 4+ 2wy, ), integrating by parts the resulted
equations over R, summing the resulted two equalities and noticing the facts from Eq. (3.8)

[{(é(wﬁ 70 Yo (o) o
ST AR AR
and
[ {%«wﬁ o)V - E) 2 — 3 (s + )V E>zwbz}dx_ / V. EPdx,

then after a tedious but straightforward calculation we have

2 2

i 2.2 Wy Wy 2
T T wa,—}—r WoWgar + > a4 72 wbt—i—r wpWpy + > +P (,oa)|Vwa|

R3

1
+ Py(p )|Vw;,| + & (|Awa| +|Aw,,|) ZlV-E|2}dx

+/{(2 = 7) (e + wi) + Po(03) I Vwal® + Py (03) V|
R3

[ ]

€ 2 1 2
Z(|Awa| +|Awp|?) + ZIVEPpdx
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= %/(anwa —wpVwp) - Edx
R3
+ /{fal(x’ D) (wa + 2War) + fi1 (x, 1) (wa + 2wpy) } dx. (3.19)
R3

The right-hand side of (3.19) can be analyzed as follows. By Sobolev embedding theorem and
Holder inequality, Young’s inequality

/inwl Edx <|willsIVwillz2 - 1 Ell s
R3
<c(llwill 2 + 1Vwill 2) (IVwill g2 - 1E |l 6)

1
e (IVwi > + 1V - El?), (3.20)

i =a, b. Here we have used Lemma 2.7 to estimate | DE||*> by ||V - E||?. Some other key terms
of the right-hand side are analyzed as

1
/ ((wi +/0¥) )] Aw; - Qi) dx < c@r)2 (I1Aw 1> + wil?),  (3.21)
R3
/ 22u; - Vwi, Qi) dx = — / 22V i (wip)? dx < c(07)2 w2, (3.22)
R3 R3
/ 220V (u; - V) Quip) dx < c(67)? | (Vw;, Awi, wir, )| (3.23)
R3

In (3.23) we have used || Du; || < c(IV - uill* + |V x u;||?), and ||[Vw; |2, |wi||* to estimate
V - u; through Eq. (3.12). Then, by (3.19)—(3.23), using integration by parts, Holder inequality,
Young’s inequality and the Moser type Lemmas 2.9, 2.10 to estimate the other terms of the
right-hand side of (3.19), we can arrive at

d 2
E/{ﬂwﬁt—kt wawu,—l- > +T wb,—i—T wbwb,—i—?—i—P (pa)IVwa|

R3

1
+ Py (o7) IV wp? + - (|Awa| +1Awpl?) + Z|V-E|2}dx

+ {(2 —2%) (wz, + wh) + Po(03) IVwal® + Py (05) [ Vws |

_|_
-|>|°’.\,;3’\

1
(IAwa|* + [Awp|?) + 7V E|2} dx
< ()2 | (Vwa, Viwp, War, war, V - E, dar d)|* + (617 | (Awa, Awp) |, (3.24)

The right-hand side of estimate (3.24) will be used later in the closure of the a priori estimates.
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Step 1.2. The hzgher—order estimates for wq, Wp. D1fferent1ate (3.4) and (3.5) with respect
to x, then the functions w, := D*w,, Wy, := D*w;, and E:=DE (1 < || < 3)! satisfy

2
~ ~ € ~ i ~ ~
T iy + Wiy + ZAzwi + %l(wi +/pF)V - E — P/(p}) Aw;
= D" fi1(x.1) — D“(%(w,» +/PF)V - E) + Twi+fo)V - E
def .
e (=ab, gu=1, gy=—1). (3.25)

Multiplying (3.25) for i = a by (w, + 2wy;), and (3.25) for i = b by (w), + 2wy;), integrating
by parts over R3, summing the resulted equalities, also noticing the facts

1
/{E(wﬁ 78NV - (EXG+ 200 — 5 (w1 +07)V (E)(wb+2wb,>}

R3
1
/|v E| dx—i———/lv E| dx—Z/V ED*(w? — w}) dx
R3
1 ~oaf 22 1 ~
-5 V.- ED*(w; — wy), dx + 5wav-(E)(waJrzwa,)dx
R3 R3
1 -
_/Ewbv'(E)(@‘l‘z@t)dX, (3.26)
R3

after a tedious but straightforward computation one can get
d 2~2 2~~~ Lo o0 o~ 1y . _~0»
o T Wa; + T WaWqr + Ewa + Twp; + T WpwWp + Ewb + Pa(pa)|Vwa|

2 1 -
+ Py (ep) IV + - (1ATa* + | ADp %) + Z|V-E|2}dx

+ [le-o@i+ @)+ rwar + ryes)vare
R3

2
& — — 1 ~
+ Z(|Awa|2 + AT, ) + 7V E|2}dx

~ ~ ~ ~ 1 = o 2 2
= {Fa-(wa+2wa,)+Fb-(wb+2wb,)}dx+Z V- ED*(w; — wy)dx

R3 R3

1 We can first assume the solution (wq, wp, Uqg, Up) has higher-order regularity so that we can take derivatives since
the final a priori estimation will be still valid for these solutions by applying the Friedrich mollifier to (wq, wp, uq, up).
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1 ma(,,2 2 1 e ~
+—- | V-ED (wa—wb)ldx—i weV - E(wy +2wg;)dx
R3 R3

1 ~
+ 3 / wpV - E(Wp + 2Wp,) dx. (3.27)

R3

Similar with the analysis of basic estimates, using Moser type inequality Lemmas 2.9, 2.10 and
the prior assumptions (3.13)—(3.17) and using Holder inequality, Young’s inequality to estimate
the terms of the right-hand side of (3.27), we can arrive at

d _ —_— 1 _ —_— 1 ~
E/{r2wat2 + r2wawat + Ewaz + rzwbtz + tzwbwb, + Ewbz + Pa’(,oj;)|Vwa|2
R3

2
—_~ & - — 1 ~
+ P} (p5) IV | + Z(|Awa|2 + AT ) + Z'V : Elz}dx

+/{(2—r2)(u7;3+@;,3)+pa/(p;)|v@|2+p,;(p;)|v@|2
R3
e 0 ~ oy 1 =2

+Z(|Awa| + |Awp| )+Z|V-E| dx

1 1
< 87| (Vwa, Vwp, war, wors das b5, V - E) |3 + 82 | (D wa, DOwp) . (3.28)

Note that we cannot deal with the last term in (3.28) by the energy of left-hand side now, so we
have to do the highest-order estimates in different way in order to overcome the difficulty.

Step 1.3. The highest-order estimates for w,, wp. Taking || = 4, we can get the equations for
Wy 1= D%w,, Wy := D*wy, and E := D*E. We also use the form of (3.25) for simplicity. This
time, using (W, + 21 Wy,) to multiply (3.25);—, and (wp + 2T Wp,) to multiply (3.25);— but for
|o| = 4. We can get as former

d — — 1 - —_— 1 ~
o /{r3wa,2 + 2 W War + Ewaz + 3,2 + W0y, + Ewbz + TPl (p}) IV, ?
R3

2
, ~ TE ~ ~ T ~
+1Py(p}) IV |* + e (1A T, 1> + |AT, ) + Z|v . E|2}dx

+ / {(Zr = ) (Wa + W57) + P (p3) IVl + Py (0}) 1V |?
R3
e 0 —~o 1 =2

+Z(|Awa| + |Awp| )+Z|V~E| dx

~ ~ ~ ~ 1 ~
:/{Fa-(wa+21wa,)+Fb~(u)b+2twb,)}dx+Z/V-ED“(wg—wi)dx
R3 R3
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1 (2 2 1 | end ~
+§ tV-ED (u)a—wh)tdx—i weV - E(w, +2twg,)dx
R3 R3
1 ~ —
+ E/wbv -E(wp +2twps) dx. (3.29)
R3

In the right-hand side of (3.29), the terms multiplied by 27w, 2wy, need a special analysis.
Taking i = a for example, the key terms are analyzed as

JUPitCwa+ Vo0 = ool - 20 d

R3
d 2 — I
<= [ TlPal(wa+Vei)") = Paled)IVilal? dx + b7 Vi |
R3
3~ 2
+C8%‘C”wat” ) (3'30)
1
ffzuav% '2T@tdx:—/r3v-ua|u7;,|2dx<c5%r||u7;[||2, (3.31)
R3 R3

and
/tzuaV(ua -Vig) - 2ty dx
R3

d ~ —~ ~
<-— / T(tug - Viog)? dx + / 203 (uy - Vb )ty Vig dx
R3 R3
1 1
+ 82|V |* + 82T || 1% (3.32)
The other terms in the right-hand side of (3.29) can be analyzed just use Moser type Lemmas 2.9,

2.10, the assumptions (3.13)—(3.17) and the Sobolev embedding theorem, the Holder inequality,
Young’s inequality. In a word, these estimates with the above estimates (3.29)—(3.32) will lead to

d —_ —_— 1 — —_— 1 ~
Z/{T3watz + rzwawa, + Ewaz + ‘L'watz + rzwbwb, + Ewb2 + rP‘;(,o;")Wwal2
R"&

2
~ TE —~ - T ~
+ 7Py (05) IV + — = (1AT P + [ ATH?) + 71V - E|2}dx

—~ d —~
0 [ el Pal(wa + V0E)") = Paled) ]IV dx + - / T(tuq - Vi, dx
R3 R3
d ’ %\ 2 1 % ~ 2 d ~ 2
+E/T[Pb((wb+ ,ob) )—Pb(pb)]|Vwb| dx—i—E/r(tuwab) dx

R3 R3
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+ / {(% — ) (Wa7 + Bb7) + Po(02) IV ial® + Py (05) VD |
R3

2
& 1 ~
+7 (1ATL 1> + | AT, 1) + 2V EP>+23ug - VwNG)uati~a}dx

1 1 1
< 82| (Vwa, Vup) |3 + 8262 (DOwa, DOwy) |* + c8211V - ENI}

1 1
+ 0827 | (D war, D*wpe) |+ 82 | (bas ) |- (3.33)

Note that the right-hand side of the estimates (3.24), (3.28), (3.33) will be treated later in terms
of the estimates of ¢, ¢p.

Step 2. The estimates for ¢,, ¢,. Differentiating Eqgs. (3.6) and (3.7) for ¢,, ¢ with respect
to x, then ¢>a = D%,, q>b = D%, (|a| < 4) will satisfy (taking ¢, for example)

% Pu; + ba = D° fa2, (3.34)

recall f;» in (3.10) for i = a. Taking inner product between 2¢q and (3.34), integrating over R,
we obtain

f Gl dx +2 / ol dx = / D" f1r - 260 dx. (3.35)

R3

The terms in right-hand side of (3.35) can be estimated using Moser type Lemmas 2.9, 2.10,
Young’s inequality and the assumptions (3.13)—(3.17) and the inequality ||Du|| < c(||V - u] +
IV x u||) and also the presentation of V - u, by wy;, Vw, through Eq. (3.12) for i = a. Then we
deduce

d ~ ~ 1 1 1
r25/|¢a|2dx+2/|¢a|2dx<c6%||¢a||ﬁ+ca%rnwmui+c5;||Vwa||ﬁ. (3.36)
3

Step 3. The closure of energy estimates. The assumption §7 < 1 and the combination of the
estimates (3.24), (3.28) for all |a| < 3, and (3.33) for all |o| =4, (3.36) for all |«| < 4 can give
us

d 2
THI(0) + (1) < igbr”ui(., O ooy 17210 GO | ooy - [ D wi] - 3.37)

where Hi(t), H>(t) are two terms satisfying
O<clE(t) <H{(t) <cE (1), 0 <c3Ex(t) < Hy(t) < caEr(t)

for t € [0, T], and cy, c¢2, c3, ¢4 are positive constants independent of ¢, 7, the E(¢), E»(¢) are
the terms defined in Lemma 3.2. From (3.37) we can write

d
EHl )+ Hx(t) <cg(t)Hi(t), tel0,T], (3.38)
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with

g0 =Y JuiC O o gy - 20 701t D | ooy
i=a,b

The assumption (3.13) then (3.16) with the Gronwall inequality applying to (3.38) makes us
know

Hi(t) < el 8995 F,(0) < ceT Hy (0) < CH,y (0) (3.39)

for t € [0, T'] provided §7 « 1. Integrating (3.38) on [0, 7] and using (3.39), we derive
/Hz(S)ds < Hi(0) + H (t) + C87 H,(0) < C"H{(0). (3.40)

The above constants ¢, C and C’ denote the positive constant independent of the parameters
e>0,7>0.

It follows from (3.39), (3.40) and the equivalence between Hj(¢) and Ej(¢), and between
H(t) and E>(t) the conclusion stated in Lemma 3.2. Thus the proof of Lemma 3.2 is com-
pleted. O

3.3. The global existence and asymptotical limits

The proof of global existence (Theorem 2.1). Theorem 2.1 is a direct conclusion of the combi-
nation of the local existence theory Lemma 3.1 and global a priori estimates Lemma 3.2 in terms
of the variable transformation presented above and the standard continuity argument, we omit
the details. O

The proof of semiclassical limit (Theorem 2.3). Starting from Lemma 3.2, using a continu-
ity argument, one can easily prove the existence of the global in-time solutions of the original
problem (1.10)—(1.12) and (2.3) with any small ¢ and t provided the A > 0 then Ay > 0 small
enough.

Let (Y5, ¥, uj,, uj, E) be the solution of (1.10)—~(1.12) and (2.3), then from Lemma 3.2 and
the Poisson equation (3.8) the uniform estimates to ¢ hold

1

mew—ﬁﬂww—f‘<wﬁ+2eﬁwk<ohw

k=0

+ B .03 < o, (3.41)

t

S =20 i = ol + N s o [ s < w2

0

f{Z” (%us, okus) (., s)||H5 ’ +Z|| (3FE*) (., s)HH6 ,}ds cAg (3.43)

0 k=0
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for any ¢ > 0. The right-hand sides of the above inequalities are independent of ¢. Thus these
uniform estimates and Aubin’s lemma imply the existence of subsequence denoted also by
(Y, ¥y, ug,, uy, E¥) such that

Ve —>Va  Yp— ¥ inC(0,1;CyNHL(RY)), (3.44)
ub —ug,  uh—up inC(0,1;C;NH(RY)), (3.45)
Ef - E inC(0,1; CfnHE S (RY)), (3.46)

with s € (0, %), as ¢ — 0. We also have

4 .
7V< W,'E >—>0 in L2(0,t;H1%)C(R3)),

as € — 0. Thus (3.41)—(3.46) allow the ¢ pass to the zero, and the limiting solutions satisfy

2WadhVa + V- (Y7ua) =0,
220, (V2ua) + 72V (V2ua ® ua) + V Py (W2) + W2ua — Y2IE =0,
290, + V - (Yjup) =0,
23, (Ygup) + TV (WEup @ up) + V Py (V) + Vi up + Y7E =0,
MV-E=y2—yf—C, VxE=0.
Let p, = (1/fa)2, Pp = (1//b)2. It is easily to verify that (o4, pp, E) solves the bipolar hydro-

dynamic model (1.6)—(1.8). The convergence of the bipolar quantum QHD model to bipolar
hydrodynamic model is established, and the proof of Theorem 2.3 is complete. O

The proof of combined semiclassical and relaxation limits (Theorem 2.4). Since the esti-
mates established for the solutions in Lemma 3.2 hold uniformly for any small ¢ and t, thus we
can study the combined limits as both ¢ and t tends to zero freely.

Let (v\™* w(r ) ylne) uém), E ™)) be the global solution derived in Theorem 2.1, by the
estimates (3.18) in Lemma 3.2, we have the uniform estimates about ¢ and 7 as

[ = Vo v = o D3+ [ (e ) D 3 < co, B47)
| (28w, ta ™) 0 3+ [EO (0|5 < c o, (3.48)

and

t

[0 = V2952 = o)+ Lo i) ) ds <t a9
0
t

JU@EO )+ 1 s[5 ds < cag (3.50)
0

for any ¢ > 0.
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Also use Aubin’s lemma with the above uniform estimates, we can get the subsequence (not
relabeled) and functions denoted also by ¥, ¥p, u4, up, E suchthatas e, 7 — 0r

U > e, Yt = g inC(0,1; C2NHES(R)), (3.51)
W ~ug,  u"? = up  weakly in L2(0,7; H*(R%)), (3.52)
E®® 5 E inC(0,1;C3NHYS (RY)) (3.53)

forany r > 0 and s € (0, %).
From (3.47), (3.48) we know ¥, ¥, are positive in (0, ) x R3, and also

2P >0, P >0 inL'0,5 W23 (RY), ast,e —> 0. (3.54)
Thus the above converging results allow the solutions to pass to the limit 7,& — 0 from the
bipolar QHD model to the bipolar drift—diffusion (DD) model:

2Wadia — V- [V Pa((Y0)) = () E] =0,
203 — V - [V Po((W)?) + (5)2E] =0,
MV-E=W)*— W) —C, VxE=0,

which is equivalent to the bipolar DD model (1.15)—(1.16) in Section 1 for strong solution.
Namely, (o, = (1/fa)2, = (wb)z, E) solves the bipolar drift—diffusion model (1.15)—(1.16).
The proof of Theorem 2.4 is completed. O
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