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compact surface is metrically transitive. We also build smooth
topologically transitive flows on surfaces which are not metrically
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1. Introduction

In what follows S will denote a surface, that is, a second countable Hausdorff topological space
which is locally homeomorphic to the plane. For a set U ⊂ S we will say that a continuous map
Φ : A ⊂ R × U → U is a local flow on U when the following properties hold:

(a) A is open in R × U and, for any fixed u ∈ U , the set of numbers t for which Φ(t, u) is defined is
an open interval Iu � 0;
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(b) Φ(0, u) = u for any u ∈ U ;
(c) If Φ(t, u) = v then I v = {s − t: s ∈ Iu}; moreover, Φ(s, v) = Φ(s,Φ(t, u)) = Φ(s + t, u) for any

s ∈ I v .

If A = R × U then the local flow is said to be a flow on U . It is easy to check that any local flow on a
compact connected surface is in fact a flow.

Recall that any surface S admits an analytic structure which is unique up to diffeomorphisms,
see [1,2], [3, Example 3.1.6] and [4, p. 16]. Then the notion of analytic local flow arises in a natural
way and it is closely related to the one of analytic vector field. Namely, see S analytically embedded
in R

m (with m = 3 or m = 4 depending on the surface). If u ∈ S then its tangent plane T Su can be
seen as a subset of R

m , and we can define an analytic vector field on an open set U as an analytic map
F : U → R

m such that F (u) ∈ T Su for any u ∈ U . It turns out that if Φ : A → U is an analytic local
flow then there is an analytic vector field F : U → R

m such that ∂Φ
∂t (t, u) = F (Φ(t, u)) for any t and u

and that, conversely, for any analytic vector field F on U there is an analytic local flow Φ on U such
that ∂Φ

∂t (t, u) = F (Φ(t, u)) for any t and u.
We remind some classical definitions related to the local flow notion. Let Φ : A ⊂ R × U → U be

a local flow, then the map Φu : Iu → U is defined by Φu(t) = Φ(t, u), the orbit of u ∈ S is Φu(Iu) =
Φ(Iu × {u}) and we will generically refer to this set as a Φ-orbit. For any interval I ⊂ Iu , Φu(I) is
called a sub-orbit of the orbit Φu(Iu). If the orbit of u just consists of u then it is called a singular
point and the orbit {u} is called a singular orbit, otherwise u is said to be a regular point and Φu(Iu) a
regular orbit; when Φu is a periodic nonconstant map then the orbit of u is called periodic. The set of
singular points from the flow Φ is denoted by Sing(Φ).

Let us now consider that Φ is a flow, then a set A ⊂ S is said to be invariant if Φ(R × A) = A. The
ω-limit set of u is defined by ωΦ(u) = {v ∈ S: ∃(tn)∞n=1 → +∞; (Φu(tn))∞n=1 → v} and the α-limit set
of u is similarly defined by αΦ(u) = {v ∈ S: ∃(tn)∞n=1 → −∞; (Φu(tn))∞n=1 → v}, both sets are closed
and invariant and if S is compact they are also connected. The set ωΦ(u) (resp. αΦ(u)) is also called
the ω-limit set of the orbit Φu(R) (resp. α-limit set of the orbit Φu(R)). A point u ∈ S or its orbit Φu(R)

is said to be recurrent if u ∈ ωΦ(u) or u ∈ αΦ(u). Singular points and those from periodic orbits are
examples of recurrent points, so-called trivial. All other recurrent points are nontrivial. Let L = Φu(R),
the orbit L is called proper if L\L is closed in S (for example periodic orbits are proper). If L is
non-proper, it is called nontrivial recurrent. In particular, any dense orbit L is nontrivial recurrent and
L = ωΦ(u) or L = αΦ(u).

The class of the orbit L, cl(L), is the union of the Φ-orbits, G , such that G = L. We note that the
orbits which are in the same class are either all proper or recurrent. In particular, if L is proper,
cl(L) = L.

The flow Φ is said to be topologically transitive if there is u ∈ S such that Φ(u) = S . Denote by μ
the Lebesgue measure of S . In particular, μ is positive on any open set of S . The flow Φ is called
metrically transitive if any invariant closed set has either zero measure or full measure with respect
to μ.

It is well known that a metrically transitive flow on a compact surface is always topologically
transitive. The converse is not true in general. Morse conjectured that the converse is true for analytic
flow. In [5], T. Ding constructed a topologically transitive C∞-flow on any closed n-manifold (n � 2)
which is not metrically transitive and proved that the Morse conjecture is true for analytic flow on
the torus T

2. The Morse conjecture is also true in the special cases like the stated in the following
theorem.

Theorem 1 (Ding–Marzougui). Let S be a compact orientable surface and let Φ : R× S → S be a topologically
transitive C1-flow. Then the following statements hold:

• If Sing(Φ) is finite then Φ is metrically transitive (T. Ding, [6]).
• If Sing(Φ) is countable then Φ is metrically transitive (H. Marzougui, [7]).

For analytic flows, we mention the preprint [8] by Aranson and Zhuzhoma where they proved the
Morse conjecture for analytic flows on compact orientable surfaces and on non-orientable ones if the
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flow is highly topologically transitive. Note that an analytic flow can have an uncountable singular
points.

In this paper we prove the Morse conjecture for analytic flows by other methods different from
those given in [8], moreover we show that we can dispose of the restriction on the cardinality of
Sing(Φ) and the orientability of the surface. Our main result is the following:

Main Theorem. Let S be a compact surface (orientable or not) and let Φ : R × S → S be a topologically
transitive analytic flow. Then Φ is metrically transitive.

We will denote by Mg (resp. Ng ) the only—up to homeomorphisms—orientable (resp. non-
orientable) surface of genus g . As a complement of the previous result we will prove:

Theorem A. Let S = Mg (g � 1) or S = Ng (g � 3), then S admits a smooth topologically transitive flow
which is not metrically transitive.

The remainder of the present work is divided in three sections. The first one presents some theo-
rems about singular points and ω-limit sets. In Sections 3 and 4 we prove, respectively, Main Theorem
and Theorem A.

2. Structure of singular points from an analytical flow

We begin by introducing some common notions. A curve B in S is the image B = ϕ(I) of a con-
tinuous one-to-one map ϕ : I → S , with I being an interval or I = S

1. We call any such map ϕ a
parametrization of B . If I is a compact interval or I = S

1 then we call B an arc or a circle, respectively.
If A is an arc, ϕ : [a,b] → A is a parametrization of A, ϕ(a) = u and ϕ(b) = v we will use the nota-
tion A = [u; v]. If A is additionally contained in a curve B (resp. in an orbit of Φ) we will also write
A = [u; v]B (resp. A = [u; v]Φ ).

As usually a disk is any set homeomorphic to {(x, y) ∈ R
2: x2 + y2 < 1} and for any U ⊂ S , Bd U

and Int U respectively denote the topological boundary and the interior of U . By an r-star we mean a
topological space R homeomorphic to {z ∈ C: zr ∈ [0,1]}, the homeomorphism maps 0 to a point p
which is called the vertex of the star and maps the r-roots of the unity to the endpoints of the star.
When r is 1 or 2 then R is just an arc. Any single point will be said to be a 0-star.

Theorem 2. (See [9, Theorem 4.3].) Let Φ : R × S → S be an analytic flow such that Sing(Φ) 	= S and let
u ∈ Sing(Φ). Then Sing(Φ) is locally a 2n-star having u as its vertex for some nonnegative integer n. Moreover
each of the branches of the star admits an analytic parametrization.

Neighbourhoods of isolated singular points from a topologically transitive analytic flow have a
simple structure. In order to describe it we need the classical notion of hyperbolic sector. Let h(x, y) =
(x,−y), Sh = {(x, y) ∈ R

2: 0 � x < 1, 0 � y < 1, xy < 1
2 } and Φh the local flow defined by z′ = h(z)

on Sh . Let Φ : R × S → S be a flow and u ∈ Sing(Φ), a set N � u is said to be a hyperbolic sector of u
if the induced local flow by Φ on N is topologically equivalent to the induced local flow by Φh on Sh;
that is, there exists a homeomorphism g : N → Sh which maps Φ-orbits onto Φh-orbits and moreover
g preserves the orientation of the orbits.

Theorem 3. Let Φ : R × S → S be a topologically transitive analytic flow and let u be an isolated singular
point, then it has a neighbourhood which is a union of an even number of hyperbolic sectors. Moreover, the
orbits separating the sectors approach u from definite directions.

Proof. From [9, Theorem 4.4] and the topological transitivity of Φ u has a neighbourhood which is
a union of nh ∈ N hyperbolic sectors. Moreover by [10, p. 36, Theorem 4.1] 2−nh

2 ∈ N (this number is
the index of u), then nh is even. �
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As it is remarked in [9] next theorem is an old folklore result, however it is proved in the cited
paper since it is not easy to provide a reference, see [11].

Theorem 4. (See [9, Theorem 4.5].) Let g = (g1, g2) : O ⊂ R
2 → R

2 be an analytic map, (0,0) ∈ O , and
assume that g(0,0) = (0,0). Then there are an open neighbourhood U of the origin and analytic functions
C, f1, f2 : U → R such that g1 = C f1 and g2 = C f2 in U , and z′ = f (z), f = ( f1, f2), has no singular points
in U\{(0,0)}.

Last result shows that, in a sense, it is possible to apply Theorem 3 to non-isolated singular points.
In particular combining Theorems 2, 3 and 4 we obtain:

Theorem 5. Let Φ : R × S → S be a topologically transitive analytic flow and let u be a non-isolated singular
point. Then there is a disk U neighbouring u and a finite set of arcs, {Ai = [ai; u]}2k

i=1 , such that:

• R = ⋃2k
i=1 Ai is a 2k-star whose vertex is u.

• R intersects Bd U exactly at its endpoints.
• Ai ⊂ Sing(Φ) or Ai is a Φ-sub-orbit such that if v ∈ Ai then αΦ(v) = {u} or ωΦ(v) = {u}.
• If V is a component from U\R then the induced local flow by Φ on V is topologically equivalent to the

local flow induced by Φh on Int Sh.

Proof. By Theorem 2 there are an open disk U containing u and a 2l-star (l is a nonnegative integer),
T , such that: Sing(Φ) ∩ U = T , u is the vertex of T and the endpoints of T are in Bd U . It is not
restrictive to assume that we can apply Theorem 4 to U and define a local flow on U , Ψ : A ⊂
R × U → U , satisfying: (i) Sing(Ψ ) = {u}; (ii) any nonsingular sub-orbit of Φ in U is a Ψ -orbit;
(iii) any branch of T is a Ψ -orbit separating hyperbolic sectors from Ψ .

Apply Theorem 3 to define the 2k-star (k is a nonnegative integer) R whose vertex is u and whose
branches are the Ψ -orbits separating hyperbolic sectors. Now it is clear that T is (possibly strictly)
contained in R and then the theorem follows by the relation between Ψ and Φ described in the
previous paragraph. �

The open set V in the previous theorem is said to be a quasi-hyperbolic sector of u.

Lemma 6. Let Φ be a topologically transitive analytic flow on a compact surface S. Then the set of singular
points having more than two quasi-hyperbolic sectors is finite.

Proof. Let us denote by nu the number of quasi-hyperbolic sectors from u ∈ Sing(Φ). Assume that
the result does not hold, then there is a set of singular points {wm}m∈N converging to w such that
nwm � 4. Since w ∈ Sing(Φ) there is a disk W � w and a finite set of arcs, {Aw

i = [aw
i ; w]}nw

i=1, with
the properties stated in Theorem 5.

Recall that any component from W \⋃nw
i=1 Aw

i is a quasi-hyperbolic sector and thus it does not
contain any singular point, then there exists l ∈ N such that wm ∈ ⋃nw

i=1 Ai if m � l. For any m � l

there is a set of arcs {Awm
i = [awm

i ; wm]}nwm
i=1 as in Theorem 5, two of them are contained in the arc

Aw
j to which wm belongs. Since nwm � 4 there exists some Awm

p included in a quasi-hyperbolic sector

of w , but either Awm
p ⊂ Sing(Φ) or for any point v ∈ Awm

p we have ωΦ(v) = {wm} or αΦ(v) = {wm}.
A contradiction. �
Proposition 7. Let S be a compact surface and Φ a topologically transitive analytic flow on S. Then the set
Sing(Φ) has zero Lebesgue measure.
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Proof. Use that S is compact, Theorem 5 and Lemma 6 to decompose Sing(Φ) as the following dis-
joint union set

{ui}r
i=1 ∪ {vi}s

i=1 ∪
t⋃

i=1

Ai,

where: (i) for any 1 � i � r, ui is an isolated point of Sing(Φ); (ii) for any 1 � i � s, the set Sing(Φ) is
locally a 2ni -star in a neighbourhood of vi , for some integer ni � 2; (iii) for any 1 � i � t , Ai is either
a circle or an arc whose endpoints are in {vi}s

i=1. Thus Sing(Φ) has zero Lebesgue measure. �
We now introduce a notion related to the flow box one. Let hs : (−1,1) × [0,1) → S (resp.

h : (−1,1) × (−1,1) → S) be an embedding satisfying that hs((−1,1) × {s}) (resp. h((−1,1) × {s}))
is a sub-orbit of Φ for every s ∈ (0,1) (resp. s ∈ (−1,1)), then we call hs((−1,1)×[0,1)) a semi-open
flow box (resp. h((−1,1)× (−1,1)) a flow box). The set hs((−1,1)×{0}) is the border of the semi-open
flow box and for any interval I ⊂ (0,1) (also J ⊂ (−1,1)) the set hs({0}× I) (also h({0}× J )) is said to
be a transversal curve to Φ . A closed transversal to Φ is a smoothly embedded circle in S and nowhere
tangent to Φ .

Lemma 8 (Local structure of ω-limit sets). Let Φ be an analytic flow on S and let u ∈ S such that ωΦ(u) does
not consist of a single singular point. Then, for every v ∈ ωΦ(u) there are a disk U neighbouring v and an
n-star R ⊂ ωΦ(u) ∩ U , n � 2, with the following properties:

1. v is the vertex of R;
2. R intersects Bd U exactly at its endpoints;
3. if O is any of the components of Int(U\R), then either O ∩ Φu(R) = ∅, or O ∪ B is a semi-open flow box

with border B the boundary of O in Int U .

Proof. See [9, Proof of Lemma 4.6]. �
Proposition 9. Let Φ be a continuous flow on a compact and connected surface S and let u ∈ S. If ωΦ(u) or
αΦ(u) contains a periodic orbit then it reduces to this periodic orbit.

In particular, if Φ is topologically transitive then it does not admit periodic orbits.

Proof. This follows from [12, p. 67, Proposition 7.11]. �
Proposition 10. Let Φ be a continuous flow on a compact and connected surface S and let u ∈ S such that
L = Φu(R) is nontrivial recurrent. Then every orbit contained in L\cl(L) is closed in S\Sing(Φ).

Proof. This result corresponds with [13, Proposition 2.1] for orientable surfaces. It remains valid for
non-orientable ones by pulling-back the flow to the orientable 2-cover. �
Proposition 11. Let Φ be an analytic flow on a compact and connected surface S, let u ∈ S such that L =
Φu(R) is nontrivial recurrent and let v ∈ L\cl(L). Then ωΦ(v) (resp. αΦ(v)) is a singular point.

Proof. If v ∈ Sing(Φ) then the result follows trivially. Assume that v ∈ S\Sing(Φ) and write G =
Φv (R). Since L is nontrivial recurrent then L = ωΦ(u) or L = αΦ(u), one can suppose for exam-
ple that L = ωΦ(u). So, there exists a closed transversal τa ⊂ S\G meeting L infinitely many times,
take yn = Φ(sn,a) ∈ τa ∩ L where {sn}n∈N ⊂ [0,+∞[ and limn→+∞ sn = +∞. Let x0 ∈ G and τx0 be
a transversal curve passing by x0. Since G ⊂ ωΦ(u), there exist xn = Φ(tn,a) ∈ τx0 ∩ L such that
limn→+∞ xn = x0, {tn}n∈N ⊂ [0,+∞[ and limn→+∞ tn = +∞. One can then choose for every n ∈ N,
sn < tn < sn+1 < tn+1. Define Ln = [yn; yn+1]Φ ⊂ L, hence G is adherent to

⋃
n∈N

Ln . For every n ∈ N

we let θn = Ln ∪ [yn; yn+1]τa . Then, each θn defines a class [θn] in H1(S;Z). Since the sub-group H



2686 H. Marzougui, G.S. López / J. Differential Equations 247 (2009) 2681–2687
of H1(S;Z) generated by {[θn]}n∈N is of finite type, there exists k ∈ N such that {[θ1], [θ2], . . . , [θk]}
generates H.

Now suppose that ωΦ(v) is not reduced to a singular point. Since ωΦ(v) ⊂ Sing(Φ) (by Propo-
sitions 9 and 10), take p ∈ ωΦ(v) and apply Lemma 8 to obtain a semi-open flow box h : (−1,1) ×
[0,1) → S where h(0,0) = p, and h({0} × (0,1)) is a transversal curve meeting G infinitely many
times. Hence, there exists a closed transversal τ1 meeting G and disjoint from L1 ∪ L2 ∪ · · · ∪ Lk .
Therefore, τ1 has no intersection with each generator of H; this contradicts the fact that G is adher-
ent to the union of Ln , n ∈ N. �
3. Main Theorem

We assume that we are in the conditions of Main Theorem.
From Proposition 11, we have:

Corollary 12. Let L = Φu(R) be a dense orbit, then S\cl(L) is a union of singularities and non-periodic orbits
whose ω-limit set (resp. α-limit set) is a singular point.

Proposition 13. The number of regular Φ-orbits whose ω-limit set (resp. α-limit set) has exactly one point is
finite.

Proof. We must show that the number of orbits whose ω-limit set consists of one point from Sing(Φ)

is finite. Apply Theorem 5 to decompose Sing(Φ) as the disjoint union A ∪ B ∪ C , where (i) A is the
set of isolated singular points; (ii) any point from B is not isolated in Sing(Φ) and has more than
two quasi-hyperbolic sectors; (iii) any point from C is not isolated in Sing(Φ) and has exactly two
quasi-hyperbolic sectors.

Since S is compact A is finite and by Lemma 6, B is also finite. Then by Theorems 3 and 5 only
finitely many orbits have exactly one point from A ∪ B as ω-limit set.

Let now u ∈ C , let {[au
1; u], [au

2; u]} be the set of arcs from Theorem 5 and let U be the open disk
neighbouring u from the same theorem. Then any orbit from S\([au

1; u] ∪ [au
2; u]) does not have {u}

as ω-limit set. Moreover by Theorems 2 and 5, [au
1; u] ∪ [au

2; u] ⊂ Sing(Φ) and then we conclude that
{u} is not the ω-limit set of any regular Φ-orbit.

Therefore the number of regular Φ-orbits which have one point as ω-limit set is finite. Reasoning
analogously we obtain that the number of regular Φ-orbits having one point as α-limit set is finite
and the proposition follows. �
3.1. Proof of Main Theorem

Now we are in position to prove our main result. Let M be a closed invariant set such that S 	= M
and let L be a dense orbit of Φ . Then M ⊂ S\cl(L). Let S1 be the union set of orbits, Φu(R), such
that the cardinal of ωΦ(u) and αΦ(u) is equal to 1. By Corollary 12, M is contained in Sing(Φ) ∪ S1
and then μ(M) � μ(Sing(Φ) ∪ S1). Finally, by Propositions 7 and 13, μ(Sing(Φ) ∪ S1) = 0. Therefore,
μ(M) = 0. This means that Φ is a metrically transitive flow.

4. Theorem A

In order to prove Theorem A we introduce a definition and a theorem which characterizes surfaces
admitting topologically transitive flows.

Two orientable circles (i.e. admitting neighbourhoods homeomorphic to the annulus R
2\{(0,0)})

on S are said to be a pair of crossing circles if they intersect transversally at exactly one point.

Theorem 14. (See [14, Theorem A].) Let S be a connected surface. Then the following statements are equivalent:

(i) S admits smooth topologically transitive flows;
(ii) S admits topologically transitive flows;
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(iii) S is not homeomorphic to S
2 (the sphere), P2 (the projective plane), nor to any surface in B

2 (the Klein
bottle);

(iv) S contains a pair of crossing circles.

4.1. Proof of Theorem A

Let A and B be a pair of crossing circles on S , let D be a disk on S\(A ∪ B) and take a compact
set K ⊂ D homeomorphic to C × [0,1] where C is a Cantor set and μ(K) > 0.

The surface T = S\K is connected and contains A ∪ B , a pair of crossing circles. Then, by the pre-
vious theorem, T admits a smooth topologically transitive flow, Ψ : R × T → T . Finally we apply [15,
Lemma 2.1] to obtain a smooth topologically transitive flow, Φ : R × S → S , such that K ⊂ Sing(Φ)

and the orbits from Ψ coincide with those of Φ contained in S\K. Now it is clear that Φ is topolog-
ically transitive but it is not metrically transitive since K is invariant and its measure is not 0 neither
the full measure of S .
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