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Let {A1, . . . , AK } ⊂ C
d×d be arbitrary K matrices, where K and d

both � 2. For any 0 <Δ<∞, we denote by Lpc
Δ (R+,K) the set of

all switching sequences u = (λ., t.) : N →{1, . . . , K }×R+ satisfying
t j − t j−1 � Δ and

0 =: t0 < t1 < · · ·< t j−1 < t j < · · · with t j →+∞.

Differently from the classical weak-∗ topology and L1-norm,
we equip Lpc

Δ (R+,K) with the topology so that the “one-sided
Markov-type shift” ϑ+ : Lpc

Δ (R+,K)→ Lpc
Δ (R+,K), defined by

u = (λ j, t j)
+∞
j=1 �→ ϑ+(u)= (λ j+1, t j+1 − t1)

+∞
j=1,

is continuous, which is different from and simpler than the clas-
sical continuous-time “translation”. We study the stability of the
linear switched dynamics (A):

ẋ(t)= Au(t)x(t), x(0) ∈ Cd and t > 0

where u(t) ≡ λ j if t j−1 < t � t j , for any u ∈ Lpc
Δ (R+,K). By in-

troducing the concept “weakly Birkhoff recurrent switching signal”,
we show that if, under some norm ‖ · ‖, the principal matrix Φu(t)
of (A) satisfies ‖Φu(t)‖ � 1 for all u ∈ Lpc

Δ (R+,K) and t > 0, then
for any ϑ+-ergodic probability P on Lpc

Δ (R+,K), either

lim
j→+∞

1

j
log
∥∥Φu(t j)

∥∥< 0 for P-a.s. u = (λ j, t j)
+∞
j=1;
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or∥∥Φ
ϑ

j
+(u)

(t j+k − t j)
∥∥= 1 ∀k, j � 0 for P-a.s. u = (λ j, t j)

+∞
j=1 .

Some applications are presented, including: (i) equivalence of var-
ious stabilities; (ii) almost sure exponential stability of periodi-
cally switched stable systems; (iii) partial stability; and (iv) how
to approach arbitrarily the stable manifold by that of periodically
switched signals and how to select a stable switching signal for
any initial data.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

A switched system is a dynamical system that consists of a family of subsystems and a logical rule,
called “switching signal” in this paper, which orchestrates switching between these subsystems. One
popular way to classify switched systems is based on the dynamics of their subsystems, for example,
continuous-time or discrete-time, linear or nonlinear and so on. In this paper, we introduce new
methods, different from the traditional Lyapunov functions, to the stability study of the continuous-
and discrete-time linear switched dynamics. We use a unified treatment to both the continuous- and
discrete-time cases by introducing new “indicator” and “discretization”.

In this introductory section, we establish some basic notations and several lemmas needed and
formulate precisely the fundamental theorems and then roughly describe their applications.

1.1. Fundamental theorems

We state our fundamental results in continuous-time case and discrete-time case, respectively.

1.1.1. Continuous-time switched dynamics and discretization
We first consider the continuous-time dynamics case. Let A = {A1, . . . , AK } ⊂ Cd×d be arbitrarily

given K complex d × d matrices, where K � 2 and d � 2. Then associated to A, a continuous-time,
time-invariant, and linear switched dynamical system can be described as follows

ẋ(t)= Au(t)x(t), x(0)= x0 ∈ Cd and t ∈ R+ (A)

where x0 ∈ Cd , viewed as a column vector, is the initial state and R+ := (0,+∞) the positive time-
axis, and where the admissible switching signal

u : R+ → K := {1, . . . , K }
is piecewise constant and left-hand side continuous, which has at most finite number of discontinu-
ities in every interval of finite-length. Given any 0 < Δ < +∞, such a switching signal u(t) can be
defined by a sequence (λ j, t j)

+∞
j=1 ⊂ K × R+ , not necessarily unique, with

0 =: t0 < t1 < · · ·< t j−1 < t j < · · · with t j →+∞ and 0 < t j − t j−1 � Δ,

in this way:

u(t)≡ λ j ∀t j−1 < t � t j and j � 1;
and vice versa. Notice here that we do not impose the restriction λ j �= λ j+1 for all j � 1.
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We will identify an admissible switching signal u : R+ → K with such an associated sequence
(λ j, t j)

+∞
j=1 . Let Lpc

Δ (R+,K) be the set of all such switching signals/sequences u = (λ j, t j)
+∞
j=1 . Then,

we define the “one-sided Markov-type shift” transformation on it as follows:

ϑ+ : Lpc
Δ (R+,K)→ Lpc

Δ (R+,K); u = (λ j, t j)
+∞
j=1 �→ ϑ+(u)= (λ j+1, t j+1 − t1)

+∞
j=1, (1.1)

which is different from and simpler than the classical “translation” as in Footnote 1 below. To
introduce the ergodic-theoretic and dynamics methods for the stability analysis of the switched dy-
namics (A), we need to equip Lpc

Δ (R+,K) with a reasonable topology. Although there already have
been various classical topologies on it, for example, the weak-∗ topology as done in [1,59] and the
L1-norm as in [11], yet we will introduce an other simpler topology for our convenience here, as
follows.

For any pair u = (λ j, t j)
+∞
j=1 , u′ = (λ′

j, t′j)
+∞
j=1 ∈ Lpc

Δ (R+,K), we define

d�
(
u,u′)= +∞∑

j=1

|λ j − λ′j| + |(t j − t j−1)− (t′j − t′j−1)|
� j(1 + |λ j − λ′j| + |(t j − t j−1)− (t′j − t′j−1)|)

(1.2)

where � > 1 is an arbitrarily preassigned constant. Clearly, d�(·,·) satisfies the standard metric axioms
and so (Lpc

Δ (R+,K),d�) is a metric space. Here, the induced topology by d�(·,·) is much more simpler
than the standard weak-∗ topology as in [1,59] and L1-norm as in [11].1

Now, letting Δ j = t j − t j−1 for u = (λ j, t j)
+∞
j=1 ∈ Lpc

Δ (R+,K), there exists a 1-to-1 correspondence:

Lpc
Δ (R+,K) 
 u = (λ j, t j)

+∞
j=1

←→ σ = (λ j,Δ j)
+∞
j=1 ∈ (K × (0,Δ])N with

+∞∑
j=1

Δ j =+∞, (1.3)

where and in the sequel N := {1,2, . . .} denotes the set of all natural numbers. This correspondence
is topological; so, (Lpc

Δ (R+,K),d�) is a separable metric space, since the infinite product topological
space (K × [0,Δ])N is compact by the Tychonoff product theorem; see Lemma 1.1 below. Under this
topology, it is easily seen that ϑ+ is a continuous transformation; that is to say, (Lpc

Δ (R+,K),ϑ+) is
a topological dynamical system.

For any switching signal u = (λ j, t j)
+∞
j=1 ∈ Lpc

Δ (R+,K), we denote by Φu(t) the “principal matrix”

of the dynamics (A), namely, Φu(0) = Id
Cd and d

dt Φu(t) = Au(t) · Φu(t) for all t > 0, where d
dt |t=t j

means the left-hand side derivative at jump discontinuities t = t j for each j � 1. So,

Φu(t)=
{

et Aλ1 if 0 < t � t1;
e(t−t j−1)Aλ j · · · eΔ1 Aλ1 if t j−1 < t � t j for j � 2.

1 Traditionally, one needs to consider the two-sided switching signal u : R → K and the translation

ϑ : (τ ,u) �→ uτ , where uτ (t)= u(τ + t) ∀τ , t ∈ R.

Under the weak-∗ topology, ϑ is continuous [1,59]. On the other hand, since we will aim for the asymptotic stable behavior of
the output (x(t))t>0 of (A) associated to an input (x0,u), here u ∈ Lpc

Δ (R+,K) need not belong to L1(R+;K). So, the L1-norm,
as done in [11], does not work in our situation now.
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Our aim of this paper is to analyze the stability of the output (Φu(t) · x0)t>0 of (A) corresponding to
an input (x0,u) in Cd × Lpc

Δ (R+,K). Since 0 < Δ < +∞, we can see that for any x0 ∈ Cd \ {0} and
any u = (λ j, t j)

+∞
j=1 ∈ Lpc

Δ (R+,K), we have

lim inf
t→+∞

1

t
log
∥∥Φu(t) · x0

∥∥= lim inf
j→+∞

1

t j
log
∥∥Φu(t j) · x0

∥∥ (1.4a)

and

lim sup
t→+∞

1

t
log
∥∥Φu(t) · x0

∥∥= lim sup
j→+∞

1

t j
log
∥∥Φu(t j) · x0

∥∥, (1.4b)

to be independent of the norm ‖ · ‖ on Cd used here. By the cocycle property

Φ
ϑ

j
+(u)

(t) ·Φu(t j)=Φu(t + t j)

for any t > 0 and all u = (λ j, t j)
+∞
j=1 , we can think of (A) as a linear skew-product semiflow driven by

the one-sided Markov-type shift transformation ϑ+ : Lpc
Δ (R+,K)→ Lpc

Δ (R+,K).
However, transition from the switching instants t = t j to t = tk+ j , we will not be interesting to the

dwelling period of time T = tk+ j − t j ; yet we will only care k, the times of switching or transition.
For this reason, we now introduce a new quantity, called the switching indicator of the dynamics (A) at
the switching signal u, as follows:

ζ(u,A) := lim sup
j→+∞

1

j
log
∥∥Φu(t j)

∥∥, (1.5)

for any u = (λ j, t j)
+∞
j=1 ∈ Lpc

Δ (R+,K). It is easily checked that ζ(u,A) is independent of the norm ‖ · ‖
used here.

Clearly, if u is “slowly switching”, i.e., 0 < ε � t j − t j−1 � Δ uniformly for j � 1, then there holds
one of the following relationships (1.6a) and (1.6b):

εχ(u,A) � ζ(u,A) � Δχ(u,A), (1.6a)

εχ(u,A) � ζ(u,A) � Δχ(u,A), (1.6b)

where the function χ(u,A), given by

χ(u,A)= lim sup
j→+∞

1

t j
log
∥∥Φu(t j)

∥∥, (1.7)

is just the traditional (maximal) “Lyapunov exponent” of the dynamics (A) at the switching signal u,
for example, see [3,4,13].

This enables us to use ergodic-theoretic and dynamics methods to prove the following alternative
result, which is fundamental for our applications later.

Theorem A. Consider the switched dynamics (A) based on A = {A1, . . . , AK } ⊂ Cd×d. If the principal ma-
trix Φu(t) of (A) satisfies ∥∥Φu(t)

∥∥� 1 ∀u ∈ Lpc
Δ (R+,K) and t > 0,

then there holds that for any ϑ+-ergodic probability P supported on Lpc
Δ (R+,K), one has
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(1) either the switching indicator

ζ(u,A)= lim
j→+∞

1

j
log
∥∥Φu(t j)

∥∥< 0 for P-a.s. u = (λ j, t j)
+∞
j=1,

(2) or ∥∥Φ
ϑ

j
+(u)

(t j+k − t j)
∥∥= 1 ∀k ∈ N and j ∈ Z+ for P-a.s. u = (λ j, t j)

+∞
j=1 .

Here such a u is called a “‖ · ‖-extremal switching signal” of the switched dynamics (A).

To prove this theorem, based on (1.4) and (1.6) we will deal with the dynamics (A) by consider-
ing its “discretization”, borrowing a Markov-type shift symbolic dynamical system. This approach is
different from what has been done by taking the 1-time transformation

Φu(1) : Cd → Cd

in available literature.
For lack of the “ε-slowly switching” condition, there only holds the right-hand side inequality

in (1.6). However, under the situation of Theorem A, from Theorem B stated in Section 3 it follows
that no existence of (2) is equivalent to that χ(u,A) < 0 holds for P-a.s. u ∈ Lpc

Δ (R+,K).
Let K×[0,Δ] be the compact product space of K = {1, . . . , K } endowed with the discrete-topology

and the interval [0,Δ], and we write the set of all discrete-time switching signals σ : N → K × [0,Δ]
as Σ+

K×[0,Δ] , i.e.,

Σ+
K×[0,Δ] =

(
K × [0,Δ])N, where N = {1,2, . . .} as before.

Then, Σ+
K×[0,Δ] is a compact topological space with the product topology that is compatible with the

following metric

d�(σ ,ς)=
+∞∑
j=1

d(σ ( j),ς( j))

� j(1 + d(σ ( j),ς( j)))
∀σ ,ς ∈Σ+

K×[0,Δ],

where d((λ, τ ), (λ′, τ ′))= |λ− λ′| + |τ − τ ′| for any i = (λ, τ ), i′ = (λ′, τ ′) ∈ K × [0,Δ] and � > 1 is a
preassigned constant as in (1.2). Then, the classical one-sided Markov shift transformation, setting by

θ+ :Σ+
K×[0,Δ] →Σ+

K×[0,Δ]; σ = (i j)
+∞
j=1 �→ θ+(σ )= (i j+1)

+∞
j=1, (1.8)

is continuous and surjective under this topology. Moreover, the following diagram commutes:

Lpc
Δ (R+,K)

π

ϑ+
Lpc
Δ (R+,K)

π

Σ+
K×[0,Δ]

θ+
Σ+

K×[0,Δ]

where π :u = (λ j, t j)
+∞
j=1 �→ σu = (λ j, t j − t j−1)

+∞
j=1,

and π is continuous and injective, but it is not surjective; for example, π−1(σ )= ∅ for any sequence
σ = (λ j,Δ j)

+∞
j=1 in Σ+

K×[0,Δ] with
∑+∞

j=1 Δ j <+∞.
However, one can simply observe the following useful fact, which tells us a clear topological struc-

ture of the admissible switching-signal space Lpc
Δ (R+,K) for (A):
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Lemma 1.1. π(Lpc
Δ (R+,K)) is dense in Σ+

K×[0,Δ] , i.e., for any σ ′ = (λ′
j, τ

′
j)
+∞
j=1 ∈ Σ+

K×[0,Δ] and ε > 0,

one can find some σu = (λ j, τ j)
+∞
j=1 ∈ Σ+

K×[0,Δ] with
∑+∞

j=1 τ j = +∞ such that d�(σ ′, σu) < ε. So,

(Lpc
Δ (R+,K),d�) is a separable metric space, but not complete.

Proof. It is easily seen that π(Lpc
Δ (R+,K)) is a θ+-invariant dense subspace of Σ+

K×[0,Δ] , neither
closed nor open. So, we need to prove only the non-completeness. Let

σuk = (λ j, τ
(k)
j

)+∞
j=1 ∈ π

(
Lpc
Δ (R+,K)

)
with τ

(k)
j =
{

Δ
k for 1 � j � k;
Δ for j � k + 1.

Then, σuk → σ = (λ j,0)+∞
j=1 as k → +∞, and so {uk}k�1 is a Cauchy sequence in (Lpc

Δ (R+,K),d�).

Since σ does not belong to π(Lpc
Δ (R+,K)), (Lpc

Δ (R+,K),d�) is not complete, as claimed. �
Now, for any ϑ+-ergodic probability measure P on Lpc

Δ (R+,K), we can define a corresponding
θ+-ergodic probability measure μP on Σ+

K×[0,Δ] in this way:

μP(B)= P
(
π−1 B
)

for each Borel set B ⊂Σ+
K×[0,Δ].

Then, μP(π(Lpc
Δ (R+,K)))= 1. Next, define

Si = exp(τ Aλ) ∀i = (λ, τ ) ∈ K × [0,Δ].
Clearly,

SA : K × [0,Δ]→ Cd×d; i �→ Si (1.9)

is a bounded continuous matrix-valued function. We define the cocycle, denoted also by SA for saving
symbol,

SA : Z+ ×Σ+
K×[0,Δ] → Cd×d by ( j,σ ) �→

{
Id

Cd for j = 0,
Sσ ( j) · · · Sσ (1) for j � 1.

(1.10)

Here Id
Cd stands for the identity matrix. Clearly Φu(t j)= SA( j, σu) for any j � 1 and we have

SA( j + k,σ )= SA
(
k, θ j

+(σ )
) · SA( j,σ ) ∀ j,k ∈ Z+ and σ ∈Σ+

K×[0,Δ],

which is just the so-called “cocycle property” of SA , driven by the one-sided Markov shift transforma-
tion θ+ :Σ+

K×[0,Δ] →Σ+
K×[0,Δ] .

Then, SA or (1.10) can induce the following discrete-time linear switched dynamical system with
subsystems {Si}i∈K×[0,Δ] and admissible switching signals σ ∈Σ+

K×[0,Δ]

x j = SA( j,σ ) · x0, x0 ∈ Cd and j � 1, (SA)

which is called the discretization of the continuous-time dynamics (A).
It should be noticed that our discretization (SA) of the continuous-time system (A) is different

from the discrete-time Euler approximating system

x j = (Id
Cd + τ Au(t j)) · x j−1, x0 ∈ Cd and j � 1

for sufficiently small τ > 0, considered in [6].
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1.1.2. Discrete-time switched dynamics
In this paper, we will indeed consider a more general discrete-time linear switched dynamics than

the discretization SA corresponding to (A). From now on, assume

S : I → Cd×d; i �→ Si (1.11)

is an arbitrary continuous matrix-valued function, defined on an arbitrary separable metric space I ,
not necessarily compact, with a metric d : I × I → R+ . For example, I is a finite or countable sym-
bolic space with the discrete-topology induced by the trivial metric d(i, i′)= 0 if i = i′ , 1 if i �= i′ , for
all i, i′ ∈ I .

Then, the family {Si}i∈I generates a multiplicative semigroup, write S+ . We say S is “product
bounded” if S+ is bounded in Cd×d . This property is also called “absolute stability” of S in [35] and is
independent of the norm ‖ · ‖ used here. Clearly, if 0 < ‖S‖ := sup{‖Si‖: i ∈ I}<+∞, then ‖S‖−1S is
product bounded.

Particularly, there follows immediately from Lemma 1.1 the following important result, for any
finite family A = {A1, . . . , AK } ⊂ Cd×d and 0 <Δ<+∞.

Lemma 1.2. The switched dynamics (A) is uniformly Lyapunov stable, i.e.,

{
Φu(t)

∣∣ u ∈ Lpc
Δ (R+,K) and t > 0

}
is bounded in Cd×d, if and only if its discretization SA is product bounded in Cd×d.

For the general case where S is as in (1.11), let (Σ+
I , θ+) and S( j, σ ) be defined similar to SA for

the discretization of the dynamics (A), as done in (1.8) and (1.10) replacing K × [0,Δ] by I ; i.e.,

Σ+
I = {σ : N → I}, θ+ :Σ+

I →Σ+
I ; (i j)

+∞
j=1 �→ (i j+1)

+∞
j=1,

and

S( j,σ )=
{

Id
Cd if j = 0;

Si j · · · Si1 if j � 1 ∀σ = (i j)
+∞
j=1 .

Then, S gives rise to the discrete-time linear switched dynamical system

x j = S( j,σ ) · x0, x0 ∈ Cd and j ∈ N (S)

where σ = (i j)
+∞
j=1 ∈Σ+

I is also called a switching signal. We study the stability of the output (x j) j�1

of (S). The following three concepts,

(I) σ -pointwise asymptotic stability: lim j→+∞ ‖S( j, σ ) · x0‖ = 0 ∀x0 ∈ Cd \ {0},
(II) σ -asymptotic stability: lim j→+∞ ‖S( j, σ )‖ = 0,

(III) σ -exponential stability: lim sup j→+∞ 1
j log‖S( j, σ )‖< 0,

all are important for the fundamental theory and applications of linear switching systems, which all
are independent of the norm ‖ · ‖ used here.
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When conditions (I), (II) and (III) hold for all σ ∈Σ+
I , (S) is said to be absolutely pointwise asymp-

totically stable, absolutely asymptotically stable and absolutely exponentially stable, respectively. Because
a real-world control system often obeys some switching constraints imposed by uncertainty about
the model or about environment in which the object operates, usually one needs to consider a
θ+-invariant probability μ on Σ+

I ; for example, μP on Σ+
I pushed out by P on Lpc

Δ (R+,K) where
I = K×[0,Δ]. Then, (S) is called, respectively, to be μ-almost surely pointwise asymptotically, asymp-
totically, and exponentially stable, provided that conditions (I), (II) and (III) hold, respectively, for
μ-a.s. σ ∈Σ+

I .
From (1.6), we can see that the u-exponential stability of (A) need not be equivalent to the σu-

exponential stability of (SA), unless 0 < ε � t j − t j−1 � Δ for all j � 1, for an arbitrary u = (λ j, t j)
+∞
j=1 .

Yet, since Φu(t j)= SA( j, σu) for all u = (λ j, t j)
+∞
j=1 in Lpc

Δ (R+,K), we can easily obtain the following
equivalence relationships for any A = {A1, . . . , AK } and 0 <Δ<+∞.

Lemma 1.3. For the switched dynamics (A) and its discretization (SA), there hold the following equivalence
relationships: for any u = (λ j, t j)

+∞
j=1 ∈ Lpc

Δ (R+,K),

(1) the u-pointwise asymptotic stability of (A), i.e., limt→+∞Φu(t) · x0 = 0 ∀x0 ∈ Cd, is equivalent to the
σu-pointwise asymptotic stability of (SA);

(2) the u-asymptotic stability of (A), i.e., limt→+∞ ‖Φu(t)‖ = 0, is equivalent to the σu-asymptotic stability
of (SA);

(3) the u-exponential switching-stability of (A), i.e., ζ(u,A) < 0, is equivalent to the σu-exponential sta-
bility of (SA).

We note here that if (A) is u-exponentially stable, i.e., ‖Φu(t)‖ converges exponentially fast to 0
as t → +∞, then its discrete-time Euler approximating system, associated to u defined as before,
is exponentially stable for sufficiently small τ > 0.2 However, there is no an equivalence available in
literature. Importantly, parallel to the statement of Theorem A, we can obtain its discrete-time version
as follows:

Theorem A′ . If the family S = {Si}i∈I ⊂ Cd×d is product bounded, then one can define a norm ‖ · ‖∗ on Cd

such that for any θ+-ergodic Borel probability μ supported on Σ+
I , one has

(1) either the Lyapunov exponent

χ(σ ,S)= lim
j→∞

1

j
log
∥∥S( j,σ )

∥∥∗ < 0 for μ-a.s. σ ∈Σ+
I ;

(2) or ∥∥S(k, θ j
+(σ )
)∥∥∗ = 1 ∀k � 1 and j � 0 for μ-a.s. σ ∈Σ+

I .

So in this case, μ-a.e. σ is ‖ · ‖∗-extremal of S.

Note 1. In fact, if a ‖ · ‖∗ satisfies ‖Si‖∗ � 1 ∀i ∈ I , then there holds the same statement. Such a norm
‖ · ‖∗ is called to be “pre-extremal” of S in [22]. We notice that a pre-extremal norm ‖ · ‖∗ of S need
not be an “extremal norm” of S defined in literature, for example, in [2,5,30,58,17,22]. However, if the
above case (2) happens, then ‖ · ‖∗ is exactly an extremal norm of S.

Note 2. If S has joint/generalized spectral radius 1 and is irreducible, then extremal norms always
exist for S from Barabanov’s extremal norm theorem [2].

2 This assertion is communicated by professor Zhendong Sun.
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We notice here that it is already known from [8,7,36,37,31,19,22] that the system (S) need not be
asymptotically stable almost surely even if S is product bounded.

1.2. Applications of Theorems A and A′

The above Theorem A/A′ is inspired by the following three important aspects, which have attracted
in recent years the interests of researchers from quite different fields.

(1) From the viewpoint of numerical analysis, one always expects that ‖S( j, σ )‖ converges exponen-
tially fast to 0 as j → ∞ when (S) is σ -asymptotically stable. But, is this the case? In addition, if
(S) is σ -pointwise asymptotically stable then, is it σ -exponentially stable?

(2) For a periodically switched signal σ = (w, w, . . .) composed by a word w = (i1, . . . , iκ ) in I k , the
stability of the deterministic switching system

x j = S( j,σ ) · x0, x0 ∈ Cd and j � 1

is easily determined by the spectral radius ρ(Siκ · · · Si1 ). If (S) is periodically switched stable, i.e.,
(S) is σ -asymptotically stable for all periodically switched signals σ , can it be concluded that (S) is expo-
nentially stable almost surely in the sense of some typical probability μ?

(3) Let S ⊂ GL(d,C) for which the Euclidean vector norm ‖ · ‖2 on Cd is pre-extremal, i.e., ‖Si‖2 � 1
∀i ∈ I . If its admissible switching-signal set Λ � Σ+

I possesses the dynamics property – mini-
mality, then we will verify that
(a) either (S) is Λ-absolutely exponentially stable,
(b) or ‖S( j, σ ) · x‖2 = ‖x‖2 for all x ∈ Cd , σ ∈Λ and j � 1,
(c) or there exists a continuous, invariant splitting of Cd into subspaces

Cd = Es(σ )⊕ Ec(σ ), 1 � dim Es(σ )≡ i < d ∀σ ∈Λ

satisfying for any j � 1

∥∥S( j,σ ) · x0
∥∥

2 = ‖x0‖2 ∀x0 ∈ Ec(σ ),∥∥S( j,σ ) · y0
∥∥

2 � Cξ j‖y0‖2 ∀y0 ∈ Es(σ ),

where C > 0 and 0 < ξ < 1 are constants that both are independent of the choices of inputs
(y0, σ ) ∈ Es(σ )×Λ.

See Theorems D and D′ shown in Section 5.
When the case (c) appears, the stability analysis of the switched system (S) with admissible
switching-signal set Λ becomes very complicated. For any σ ∈Λ non-periodic, the stable mani-
fold Es(σ ) depends completely upon the infinite switching sequence σ = (i j)

+∞
j=1 , not upon any

sub-word (i1, . . . , i�) of finite-length of σ . So, in engineering, the question is this: Whether or
not there are suitable ways to approximate arbitrarily the stable manifold Es(σ ) by that of periodically
switched signals?
On the other hand, can one, for any fixed initial state y0 ∈ Cd, design an exponentially stable switching
signal, i.e., does there exist any σ ∈Λ satisfying the output/trajectory {S( j, σ ) · y0}+∞

j=1 to be exponentially
stable? For example, a launcher of rockets could be regarded as an initial data. This stabilization
problem is one of the fundamental problems for linear switched systems and has been widely
addressed in the literature; for example, see the survey papers [54,39] for some recent develop-
ment.

For these problems above and their continuous-time versions, we need to study the weak recur-
rence of switching signals in the sense of Z. Zhou [60] and to study the rotation number of switching
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signals. Our approaches presented in this paper are new and completely different from those ad-
dressed in the current available literature.

1.3. Outline

This paper is organized as follows. In Section 2, by introducing some dynamics and ergodic-
theoretic approaches, particularly “weakly Birkhoff recurrent switching signals”, we will prove mainly
Theorems A and A′ . The reason why we will introduce the weakly Birkhoff recurrent signal there is
that, according to the classical theory [43], by the recurrence, switching signals can be described by
the layers:

{periodic signals} ⊂ {almost periodic signals} ⊂ {Birkhoff recurrent signals}
⊂ {Poisson stable signals}.

If a switching signal is Birkhoff recurrent, then it has a positive recurrent frequency; but the recurrent
frequency of a Poisson stable signal might be zero. However, the set of all the Poisson stable signals
is of total measure 1; but this is not true for the Birkhoff recurrent signals. Under our context below,
we will need both the properties of total measure 1 and the positive recurrent frequency. So, we will
need to insert a new recurrent layer between the Birkhoff recurrence and the Poisson stability. This
is the most important point of the present paper.

In the rest sections, we will apply Theorem A (resp. A′) to the stability analysis of a linear,
continuous-time (resp. discrete-time), switched system driven by the one-sided shift transforma-
tions ϑ+ (resp. θ+).

In Section 3, as a consequence of Theorem A, if the “joint spectral radius ρ̂(A) of (A)” is equal to 1
(we note that ρ̂(A) � 1, in general, from Lemma 3.1 by our definition in the statement of Theorem B
below), then its pointwise asymptotic stability is equivalent to its exponential stability almost surely;
see Theorem B and Corollary 3.2 stated in Section 3, which seem to be important for the numerical
analysis of linear switched systems.

We shall apply Theorem A to a linear switched system that is periodically switching-stable in
Section 4; see Theorem C stated there, which asserts that if a ϑ+-ergodic probability P can approach
arbitrarily to a periodical switching signal, then (A) is exponentially stable P-almost surely.

In Section 5 we will study the partial stability of a continuous-time, linear, switched system driven
by a recurrent switching signal, using Theorem A. The main result Theorem D proved there is a
continuous-time version of corresponding theorems of Ian D. Morris [40, Theorems 2.1 and 2.2] for
invertible driving dynamics, using different methods.

Moreover, we will further consider, in the case driven by minimal dynamics, how to approximate
arbitrarily a stable initial data by ones of periodically switched signals and how to pick a stable
switching signal for any given initial data; see Theorems E and F stated in Section 6. These seem to
be very interesting for one to design desired switches in engineering. To prove Theorems D and E, we
will introduce two known theorems respectively in Sections 5.2.1 and 6.1 from [14,16]. The rotation
number has been well defined and studied for a random orientation-preserving circle homeomor-
phism driven by a quasi-periodically dynamical system. To prove Theorem F, we will introduce it into
the more general framework of switched dynamics in Section 6.2.1, using an approach that different
from the traditional methods, presented in [33,32] for example. Here we will employ a quasi-additive
ergodic theorem, which is an improvement of the classical Birkhoff ergodic theorem and itself of
interest independently for the study of rotation numbers; see Theorem 6.10 stated in Section 6.3
below.

We will end this paper with concluding remarks in Section 7.

2. Weak recurrence of switching signals and exponential stability of switched dynamics

This section is devoted to proving Theorem A and Theorem A′ stated in Section 1.1, using topo-
logical dynamics and ergodic-theoretic approaches. Particularly, we will introduce the important no-
tation – weakly Birkhoff recurrent switching signals.
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2.1. Weakly Birkhoff recurrent points

In this subsection, we will consider first an abstract topological dynamical system defined on a
separable metric space � with a metric dist(·,·). Let

T :�→�

be a continuous surjective transformation of the space �, where � is not necessarily compact.
Recall from [56] that a probability measure P on the Borel measurable space (�,B�) is said to be

T -invariant, if P = P◦T −1, i.e., P(B)= P(T −1 B) ∀B ∈ B� . Further, a T -invariant probability measure P
is called T -ergodic, provided that for any B ∈ B� , P(B�T −1 B)= 0 implies that P(B)= 1 or 0, where
A�B is the symmetric difference of two subsets A, B of �.

From the topological structure of our switching-signal space Σ+
I defined as in Section 1.1.2, there

always exist θ+-ergodic Borel probability measures P supported on it. For example, a periodically
switched signal, that will be precisely defined in Section 4, can induce an atomic θ+-ergodic proba-
bility measure on Σ+

I .
To prove Theorem A/A′ , we need to study the recurrence of the switching signals u in Lpc

Δ (R+,K)

or σ in Σ+
I . A point ω ∈ � is said to be “Poisson stable” of T , if there is a sequence of positive

integers nk ↗+∞ such that T nk (ω)→ω as k →+∞; ω is called “Birkhoff recurrent” of T , if for any
ε > 0 one can find a relatively dense subset L(ε) of N = {1,2, . . .} such that dist(T k(ω),ω) < ε for
all k ∈ L(ε). See [43]. However, the recurrence of a Birkhoff recurrent motion T n(ω) is so strong that
it is too minor to capture. Although the Poisson motions T n(ω) are abundant, their recurrence is too
weak to satisfy our requirement here. So, we need to insert a new recurrence.

The following important concept is due to Z. Zhou:

Definition 2.1. (See [60,61].) A point ω ∈� is called a “weakly Birkhoff recurrent point” of T , provided
that for any ε > 0, there exists an integer N � 1 such that

jN−1∑
k=0

I
B(ω,ε)

(
T k(ω)

)
� j ∀ j ∈ N,

where I
B(ω,ε) :� → {0,1} stands for the indicator function of the open ball B(ω,ε) ⊂ � of radius ε

centered at ω.

In Z. Zhou’s paper [60], such a point is called a “weakly almost periodical point” of T . Here
we rename it “weakly Birkhoff recurrent point”, this is because it lies, by recurrence of the mo-
tion T n(ω), between the Birkhoff recurrent motion and the Poisson stable motion. And the recurrence
of an “almost periodical motion”, however, is stronger than a Birkhoff recurrent motion, see [43], also
Definition 5.1 below.

We denote by W (T ) the set of all weakly Birkhoff recurrent points of T . Clearly, from the con-
tinuity of T it follows that the set W (T ) is T -invariant; namely, T (W (T )) ⊆ W (T ); or, equivalently,
T −1(W (T ))⊇ W (T ). On the other hand, W (T ) is independent of the compatible metric dist(·,·) on �

used here.
Notice here that if T is situated in a compact metric space �, then W (T ) is of total measure 1

from Z. Zhou [60]. In his talks, Z. Zhou has asked the following question: Is W (T ) a Borel subset of �?
A positive answer to this question is also convenient for our arguments later. For that, we define

d(ω,ε)= lim inf
�→+∞

1

�

�−1∑
k=0

I
B(ω,ε)

(
T k(ω)

)
.

It is easily seen that for any ε > 0, the function d(·, ε) :�→[0,1] is Borel measurable.
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Then, the following lemma gives an affirmative answer to Zhou’s question above:

Lemma 2.2. W (T )=⋂∞
k=1{ω ∈� | d(ω, 1

k ) > 0} and so W (T ) is a Borel subset of �.

Proof. Let

Wk(T )=
{
ω ∈�

∣∣ d(ω, 1

k

)
> 0

}
.

Since d(·, 1
k ) is Borel measurable on �, we need to prove only that W (T )=⋂∞

k=1 Wk(T ). From Defi-
nition 2.1, there follows immediately that W (T )⊆⋂∞

k=1 Wk(T ), noting

d(ω,ε)= lim inf
j→+∞

1

jN

jN−1∑
k=0

I
B(ω,ε)

(
T k(ω)

)
for any N � 1; the other direction inclusion is obvious from the definition of the function d(ω, 1

k ) as
well.

This proves the lemma. �
We notice that in the case where � is noncompact, for example, T : x �→ x + 1 that preserves

the Lebesgue measure defined on � = R the 1-dimensional real Euclidean space, W (T ) might be
empty. However, we could obtain the following result, which shows that if the dynamics (�, T ) has
an invariant probability measure, then there always exist weakly Birkhoff recurrent motions.

Theorem 2.3. If μ is a T -ergodic Borel probability on �, then μ(W (T ))= 1.

Proof. Let supp(μ) be the support of μ, which is defined by

supp(μ)= {ω ∈�
∣∣μ(B(ω,ε))> 0 ∀ε > 0

};
it is just the minimal, closed, T -invariant subset of � with μ-measure 1, since � is separable.3 On
the other hand, according to [15, Lemma 3] one could find a T -invariant Borel subset Gμ(T )⊂� of
μ-measure 1 such that for any continuous, bounded function ϕ :� → R and any ω ∈ Gμ(T ), there
holds

lim
�→+∞

1

�

�−1∑
j=0

ϕ
(
T j(ω)

)= ∫
�

ϕ dμ.

So, to prove the statement of Theorem 2.3, it is sufficient to prove that supp(μ)∩ Gμ(T )⊆ W (T ).
In fact, let ω ∈ supp(μ) ∩ Gμ(T ) and ε > 0 both be arbitrarily given. Let E be the closure of

the open ball B(ω,ε/2) in � and F =� \ B(ω,ε). Then, by Urysohn’s lemma there is a continuous
function ψ :�→[0,1] with ψ(x)= 1 for all x ∈ E , ψ(y)= 0 for all y ∈ F . From

3 The separable property implies that for μ-a.s. ω ∈� its forward T -orbit,

Orb+
T (ω)=

{
T n(ω)

∣∣ n = 0,1,2, . . .
}
,

is dense in supp(μ). In the proof of Theorem A/A′ and Section 5 we will need this.
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lim inf
�→+∞

1

�

�−1∑
j=0

IB(ω,ε)
(
T j(ω)

)
� lim

�→+∞
1

�

�−1∑
j=0

ψ
(
T j(ω)

)
=
∫
�

ψ dμ�μ
(
B(ω,ε/2)

)
> 0,

it follows that ω belongs to W (T ).
Thus, this completes the proof of Theorem 2.3. �
From this theorem proved, it is easy to see that W (T ) is of total measure 1 whenever � is com-

pact.

2.2. Weakly Birkhoff recurrent switching signals and exponential stability

We now turn to the study of the exponential stability of the linear, discrete-time, switched dy-
namical system of the form

x j = S( j,σ ) · x0
(
x0 ∈ Cd, j � 1 and σ ∈Σ+

I
)
, (2.1)

where the set I of control values is a separable metric space with a metric d : I × I →[0,+∞), and
where

S : I → Cd×d; i �→ Si

is continuous, which defines the cocycle S( j, σ ) in this way: for any σ = (i j)
+∞
j=1 ∈Σ+

I ,

S( j,σ )=
{

Id
Cd for j = 0,

Si j · · · Si1 for j � 1. (2.1)′

Hereafter, write W (θ+) as the weakly Birkhoff recurrent point set of the one-sided Markov shift

θ+ :Σ+
I →Σ+

I

defined in the manner as in Section 1.1.2. Let μ be a θ+-ergodic Borel probability measure on Σ+
I .

Then, W (θ+) is a nonempty Borel set such that μ(W (θ+))= 1 from Theorem 2.3 above.
Next, for any switching signal σ ∈ W (θ+), we will study the stability of the corresponding linear

switched dynamical system

x j = S( j,σ ) · x0
(
x0 ∈ Cd and j � 1

)
. (S)

Using the recurrence of a switching signal, the following criterion of stability is the key step towards
the proof of Theorem A/A′:

Theorem 2.4. Let S = {Si}i∈I ⊂ Cd×d be continuous in i ∈ I and assume σ = (i j)
+∞
j=1 ∈ W (θ+) is arbitrarily

given. If there exists a pre-extremal norm ‖ · ‖∗ on Cd (i.e. ‖Si‖∗ � 1 ∀i ∈ I ) for which ‖S i� · · · S i1‖∗ < 1 for
some � � 1, then (S) is σ -exponentially stable, i.e.,

lim
j→+∞

1

j
log
∥∥S( j,σ )

∥∥∗ < 0.
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Proof. Let σ = (i j)
+∞
j=1 , ‖ · ‖∗ and �� 1 all be given as in the hypothesis of the statement. Then, from

the continuity of S it follows that there exist two constants ε > 0 and ξ ∈ (0,1) such that for any
σ ′ = (i′j)

+∞
j=1 ∈ B(σ , ε) there holds the following inequality:

‖Si′� · · · Si′1‖∗ � ξ, i.e., ‖Si′� · · · Si′1 · x‖∗ � ξ‖x‖∗ ∀x ∈ Cd.

Here the open ball B(σ , ε) ⊂ Σ+
I of radius ε centered at the given σ is defined under the met-

ric d�(·,·) on Σ+
I as in Section 1.1. Since σ is a weakly Birkhoff recurrent point of the one-sided

Markov shift transformation θ+ :Σ+
I →Σ+

I , there exists an integer N � � such that

jN−1∑
k=0

I
B(σ ,ε)

(
θk+(σ )

)
� j ∀ j � 1.

This implies that for any j � 1 one could find j integers, say ǩ1, . . . , ǩ j , such that

0 � ǩ1 < ǩ2 < · · ·< ǩ j � jN − 1 and θ
ǩs+ (σ ) ∈ B(σ , ε) for 1 � s � j.

As j is big sufficiently, there exist at least [ j/�] integers in {ǩ1, . . . , ǩ j}, say ǩ j1 , . . . , ǩ j[ j/�] , such that

0 � ǩ j1 < ǩ j2 < · · ·< ǩ j[ j/�] � jN − 1,

ǩ js−1 + � � ǩ js for 2 � s � [ j/�]
and

θ
ǩ js+ (σ ) ∈ B(σ , ε) for 1 � s � [ j/�].

Therefore,

lim sup
n→+∞

1

n
log
∥∥S(n,σ )

∥∥∗ = lim sup
j→+∞

1

jN
log
∥∥S( jN,σ )

∥∥∗
= lim sup

j→+∞
1

jN + �
log‖S i jN+�

· · · S i1‖∗

� lim sup
j→+∞

1

jN
log ξ [ j/�]

= 1

N�
log ξ

< 0

which shows that (S) is σ -exponentially stable, as desired.
This proves the theorem. �
From the above proof, one can find the importance of the positive frequency of recurrence of a

switching sequence to ensure the exponential stability.
This theorem possesses the same flavor as the celebrated Pliss lemma [45] and Liao sifting

lemma [38] which both are powerful tools in the hyperbolicity theory of differentiable dynamical
systems.



3598 X. Dai / J. Differential Equations 250 (2011) 3584–3629
2.3. Proof of Theorem A′

For proving Theorem A′ , we need a basic important result due to R.K. Brayton and C.H. Tong:

Lemma 2.5. (See [10, Theorem 1], also [35, Theorem 3].) If S = {Si}i∈I ⊂ Cd×d is product bounded, then one
can define a pre-extremal norm ‖ · ‖∗ on Cd for it; that is to say, it holds that ‖Si‖∗ � 1 for all i ∈ I .

It should be noted that this pre-extremal norm ‖ · ‖∗ given by Lemma 2.5 is not necessarily an
extremal norm of S; see [22] for a counterexample. To keep things as simple as possible, we give the
proof here.

Proof. Let Si �≡ 0d×d for all i ∈ I ; otherwise any norm is pre-extremal for S. Define

‖x‖∗ = sup
{∥∥S( j,σ ) · x

∥∥
2: σ ∈Σ+

I , j � 1
}
,

where ‖ · ‖2 denotes the standard Euclidean vector norm on Cd . Then, ‖Si‖∗ � 1 for all i ∈ I . This
completes the proof of the lemma. �

Now, with Theorems 2.3 and 2.4 at hands, we can readily prove our discrete-time main result
Theorem A′ .

Proof of Theorem A′ . Let S : I 
 i �→ Si ∈ Cd×d be product bounded and continuous, and let μ be a
θ+-ergodic Borel probability on Σ+

I . From Lemma 2.5, it follows that there is a vector norm ‖ · ‖∗
on Cd such that ‖Si‖∗ � 1 for all i ∈ I . Let

E = {σ = (i j)
+∞
j=1 ∈Σ+

I ; ‖Si� · · · Si1‖∗ < 1 for some �� 1
}
.

Since S : i �→ Si is continuous with respect to i ∈ I , E is an open subset of Σ+
I and so Borel measur-

able. Then, either μ(E) > 0 or μ(E)= 0.
Case (1). If μ(E) > 0, then from Theorem 2.3, it follows that μ(W (θ+) ∩ E) > 0. And moreover,

from Theorem 2.4, it follows that for any σ ∈ W (θ+) ∩ E , (S) is σ -exponentially stable. Thus in this
case, it holds that

χ(μ,S) := lim
j→∞

1

j
log
∥∥S( j,σ )

∥∥∗ < 0 for μ-a.s. σ ∈Σ+
I

from the θ+-ergodicity of μ and the classical multiplicative ergodic theorem [27,44]. We notice that
the quantity χ(μ,S) is independent of the norm ‖ · ‖∗ used here.

Therefore, in this case the statement (1) of Theorem A′ holds.
Case (2). We now assume μ(E)= 0. This concludes that∥∥S( j,σ )

∥∥∗ = 1 ∀ j � 1 for μ-a.s. σ ∈Σ+
I ;

that is to say, there is a Borel subset B0 of Σ+
I with μ(B0)= 1 such that ‖S( j, σ )‖∗ = 1 ∀ j � 1 for

any σ ∈ B0.
Now, let B = ⋂+∞

k=0 θ
−k+ (B0). Since μ is θ+-ergodic, there holds that B is θ+-invariant (i.e.,

θ+(B)⊆ B) with μ(B)= 1. Thus, for any σ ∈ B∥∥S(k, θ j
+(σ )
)∥∥∗ = 1 ∀k � 1 and j � 0.

So, in this case the statement (2) of Theorem A′ holds.
Thus, the proof of Theorem A′ is completed. �
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From Theorem A′ , we could immediately obtain the following results.

Theorem 2.6. Assume {Si | i ∈ I} ⊂ Cd×d satisfies ‖Si‖ � 1 for all i ∈ I under a vector norm ‖ · ‖ of Cd. Let

E =
{
σ ∈Σ+

I ; lim
j→∞

1

j
log
∥∥S( j,σ )

∥∥< 0

}
,

U = {σ ∈Σ+
I ; ∥∥S(k, θ j

+(σ )
)∥∥= 1 ∀k � 1 and j � 0

}
.

Then, E is a θ+-invariant Borel subset and U a θ+-invariant closed subset; and E ∪ U is of total measure 1, i.e.,
μ(E ∪ U )= 1 for any θ+-ergodic Borel probability μ on Σ+

I .

Note here that E ∩ U = ∅. So, either μ(E)= 1 and μ(U )= 0 or μ(U )= 1 and μ(E)= 0, from the
θ+-ergodicity of μ.

Theorem 2.7. Let {Si}i∈I ⊂ Cd×d satisfy 0 < ‖S‖ := supi∈I ‖Si‖<∞ under a vector norm ‖ · ‖ of Cd. Then,
for any θ+-ergodic Borel probability μ supported on Σ+

I , one has

(1) either

lim
j→∞

1

j
log
∥∥S( j,σ )

∥∥< log‖S‖ for μ-a.s. σ ∈Σ+
I ;

(2) or ∥∥S(k, θ j
+(σ )
)∥∥= ‖S‖k ∀k � 1 and j � 0 for μ-a.s. σ ∈Σ+

I .

Proof. We need to consider only ‖S‖−1S instead of S using Theorem A′ . �
We notice that, for any θ+-ergodic Borel probability μ, if its (maximal) Lyapunov exponent

λ(μ,S) := lim
j→+∞

1

j
log
∥∥S( j,σ )

∥∥ for μ-a.s. σ ∈Σ+
I (2.2)

is not less than log‖S‖, then

lim
j→+∞

1

j
log
∥∥S( j,σ )

∥∥= log‖S‖ for μ-a.s. σ ∈Σ+
I . (2.3)

However, the statement (2) of Theorem 2.7 is more stronger than the above (2.3), this is because it
implies that μ-almost every σ = (i j)

+∞
j=1 ∈Σ+

I are ‖ · ‖-extremal of S.

2.4. The continuous-time version

Based on Theorem A′ proved in Section 2.3, we now can prove Theorem A by considering its
discretization introduced in Section 1.1.

Proof of Theorem A. Let P be an arbitrary ϑ+-ergodic Borel probability supported on Lpc
Δ (R+,K). Let

SA be defined in the manner as in (1.9) or (1.10). By Lemma 1.2, it follows that ‖SA( j, σ )‖ � 1 for all
j � 1 and any σ ∈Σ+

I , where I = K×[0,Δ]. Then, Theorem A follows immediately from Theorem A′
with μ=μP .

The proof of Theorem A is thus completed. �
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2.5. A remark on the dynamics model (2.1)

The switching dynamics model (2.1) considered here includes the very interesting case of linear
skew-product dynamical systems.

Let T :Ω →Ω be a continuous map of a Polish space Ω and S :Ω → Cd×d; ω �→ Sω a continuous
matrix-valued function. Then, one can define a linear skew-product dynamical system:

ST :Ω × Cd →Ω × Cd; (ω, x) �→ (T (ω), Sω(x)
)

(2.4)

driven by T :Ω →Ω .
Let ΩT = {ω̄ = (ω, T (ω), T 2(ω), . . .) | ω ∈ Ω}. Then, ΩT is a θ+-invariant closed subset of the

Markov symbolic space Σ+
Ω . Moreover, if μ is a T -ergodic Borel probability measure on Ω , then one

could define a Borel probability Pμ which is θ+-ergodic on Σ+
Ω such that Pμ(ΩT ) = 1 from [15].

Clearly, the μ-stability of ST is equivalent to the stability of the switched system (S) in terms of Pμ .
Conversely, corresponding to the switched system (2.1), it will be convenient to write

Sθ+ :Σ+
I × Cd →Σ+

I × Cd; (σ , x) �→ (θ+(σ ), Sσ (1)(x)
)
, (2.5)

it is a discrete-time linear skew-product dynamical system driven by the one-sided Markov shift
θ+ :Σ+

I → Σ+
I , induced by the random matrix S :σ �→ Sσ(1) . Then, for any j � 0, x ∈ Cd and σ ,

the cocycle S( j, σ ) · x is defined by the equation S j
θ+ (σ , x)= (θ

j
+(σ ),S( j, σ ) · x).

3. Equivalence relationships of pointwise asymptotic and exponential stabilities

As the background, let us consider first the continuous-time linear switched dynamical system of
the form

ẋ(t)= Au(t)x(t), x(0)= x0 ∈ Cd and t ∈ R+ (3.1)

where u(t) ∈ K = {1, . . . , K }, K � 2, is the switching signal to be designed, and where Ak ∈ Cd×d are
known matrices for all k ∈ K. The switching signal u : R+ → K is a piecewise constant and left-hand
side continuous function of positive time t such that the number of switches is finite in any finite
time interval. In other words, u belongs to Lpc

Δ (R+,K), for some 0 < Δ < +∞. Let {Φu(t) · x0}t∈R+
denote the state trajectory – output – initiated by Φu(0) · x0 = x0 via the switching signal u. Recall
from [53] that system (3.1) is said to be

(1) switched convergent, if for each x0 ∈ Cd there corresponds a switching signal, say u′
x0

, that makes
Φu′

x0
(t) · x0 convergent to 0 as t →+∞, that is, limt→+∞ ‖Φu′

x0
(t) · x0‖ = 0;

(2) exponentially stabilizable, if there exist two real numbers α > 0, β > 0 such that to any x0 ∈ Cd

there corresponds a switching signal, say u′′
x0

, satisfying∥∥Φu′′
x0
(t) · x0

∥∥� β‖x0‖exp(−αt) ∀t ∈ R+.

In [53, Theorem 1], it has been proved by Z. Sun that for system (3.1), the switched convergence is
equivalent to the exponential stabilizability. From Sun’s proof presented in [53], however, it is easily
seen that although (1) and (2) are equivalent to each other, yet there u′

x0
�= u′′

x0
that results in different

outputs, for any given same initial data x0 ∈ Cd . This is very limited in applications, because a real-
world situation often obeys some constraints; that is to say, the admissible switching signals only
form a proper subset of all the switching signals. So, the question is this: When u′

x0
∈ U satisfies (1),

could one guarantee that u′′
x0

∈ U satisfies (2) and further u′
x0

= u′′
x0

? Here U � Lpc
Δ (R+,K) is a preassigned

set.
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On the other hand, it is easy to see, from definitions, that asymptotic stability is weaker than
exponential stability for an individual function; for example, to ϕ(t)= 1√

t

∣∣ϕ(t)∣∣→ 0 but
∣∣ϕ(t)∣∣ not exponentially fast−−−−−−−−−−−−→ 0, i.e.

1

t
log
∣∣ϕ(t)∣∣→ 0 ≮ 0 as t →+∞;

so, ϕ(t) converges asymptotically to 0, but does not exponentially fast. It shows that the difference of
the two concepts, asymptotic and exponential stabilities, is essential for a deterministic linear switch-
ing system.

Let S : I → Cd×d be an arbitrary continuous function. In [19,23], it has been proved that if the
space I of control values is compact and if to any θ+-ergodic probability μ of Σ+

I , there holds that

x j = S( j,σ ) · x0, x0 ∈ Cd and j ∈ N (S)

is exponentially stable for μ-a.s. σ ∈Σ+
I , then the discrete-time dynamics (S) is absolutely exponen-

tially stable.
In general, for an arbitrary θ+-ergodic probability μ on Σ+

I , the μ-a.s. asymptotic stability is
essentially weaker than the μ-a.s. exponential stability for (S). However, here we ask the following
question: If to any θ+-ergodic probability μ on Σ+

I there (S) is asymptotically stable μ-almost surely then,
is (S) absolutely asymptotically stable?

In this section, using Theorem A, we will provide an affirmative answer to this question; see
Corollary 3.2 below. In fact, we can obtain a more general continuous-time result, stated as follows:

Theorem B. Let A = {A1, . . . , AK } ⊂ Cd×d and 0 <Δ<∞ be arbitrarily given and assume the joint spectral
radius ρ̂(A) of (A) is equal to 1, where4

ρ̂(A) := lim sup
j→+∞

{
sup

u=(λ j,t j)
+∞
j=1∈Lpc

Δ (R+,K)

∥∥Φu(t j)
∥∥1/ j
}
.

Then, for any ϑ+-ergodic Borel probability P on Lpc
Δ (R+,K), the following statements are equivalent to each

other:

(a) The dynamics (A) is u-pointwise asymptotically stable, i.e.,

lim
t→+∞

∥∥Φu(t) · x0
∥∥= 0 ∀x0 ∈ Cd,

for P-a.s. u ∈ Lpc
Δ (R+,K).

(b) The dynamics (A) is u-asymptotically stable, i.e.,

lim
t→+∞

∥∥Φu(t)
∥∥= 0,

for P-a.s. u ∈ Lpc
Δ (R+,K).

4 Here ρ̂(A) is defined very differently from the traditional one in the continuous-time case in available literature, for exam-
ple, in [13,58,59,4], there the joint spectral radius of (A) was defined by

ρ̂(A)= lim sup
t→+∞

{
sup

u∈Lpc
Δ (R+,K)

∥∥Φu(t)
∥∥1/t
}
.
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(c) The dynamics (A) is u-exponentially switching-stable, i.e.,

ζ(u,A)= lim
j→+∞

1

j
log
∥∥Φu(t j)

∥∥< 0,

for P-a.s. u = (λ j, t j)
+∞
j=1 ∈ Lpc

Δ (R+,K).
(d) The dynamics (A) is u-exponentially stable, i.e.,

χ(u,A)= lim
j→+∞

1

t j
log
∥∥Φu(t j)

∥∥< 0,

for P-a.s. u = (λ j, t j)
+∞
j=1 ∈ Lpc

Δ (R+,K).

The statements of Theorem B are all independent of the norm ‖ · ‖ used. We notice that our
u-pointwise asymptotic stability is similar to the notion “consistent asymptotic stabilizability” in
Z. Sun [51, Definition 2] where Φu(t) is required to be uniformly bounded for t ∈ R+ . We also no-
tice that the condition that ρ̂(A)= 1 is weaker than the uniform boundedness of Φu(t); let us see a
discrete-time simple example:

S =
[

1 1
0 1

]
for which ρ̂(S) = 1, but ‖Sm‖ → +∞ as m tends to +∞. Under his situation, Z. Sun [51] showed
that u-consistent asymptotic stabilizability implies u′-exponential stabilizability; however, u need not
be equal to u′ there. But in our statement, u is exactly equal to u′ P-almost surely.

Let SA be the discretization of the switched dynamics (A) as in (1.9) or (1.10) in Section 1.1. Then
from Lemma 1.1, we can easily obtain the following

Lemma 3.1. The joint spectral radius ρ̂(A), defined as in Theorem B, of (A) equals the joint spectral radius of
its discretization (SA), i.e., ρ̂(A)= ρ̂(SA), where

ρ̂(SA) := lim
j→+∞

{
sup
σ∈Σ+

I

∥∥SA( j,σ )
∥∥1/ j
}
.

So, ρ̂(A) � 1 always holds.

Proof. This follows obviously from

sup
σ∈Σ+

I

∥∥SA( j,σ )
∥∥1/ j = sup

u=(λ j,t j)
+∞
j=1∈Lpc

Δ (R+,K)

∥∥Φu(t j)
∥∥1/ j ∀ j ∈ N

by Lemma 1.1. �
The joint spectral radius was firstly introduced by G.-C. Rota and G. Strang in [47] for the discrete-

time case. It is well known from [2] that a discrete-time linear switched system (S) with a compact
control-value set I is absolutely exponentially stable if and only if ρ̂(S) < 1. However, Lemma 3.1
implies that this is not true for continuous-time case under the sense of our definition given in
Theorem B; see Footnote 4 before. For example, when {A1, . . . , AK } are commutative and each of
the subsystems is exponentially stable, the switched dynamics (A) with admissible set Lpc

Δ (R+,K) is
absolutely exponentially stable from [42]; but ρ̂(A) � 1 by Lemma 3.1. This is caused partially by the
topological structure of Lpc

Δ (R+,K), noncompactness; see [18].
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As a result of the statements of Lemmas 3.1 and 1.3, Theorem B comes immediately from the
following discrete-time version with S = SA and μ=μP .

Theorem B′ . Let S : i �→ Si ∈ Cd×d be continuous in i ∈ I and bounded, where I is a separable metric space,
not necessarily compact or countable. Assume ρ̂(S)= 1. Then, for a θ+-ergodic Borel probability μ on Σ+

I , the
following statements are equivalent to each other:

(a) The switched dynamics (S) is σ -pointwise asymptotically stable, for μ-a.s. σ ∈Σ+
I .

(b) The switched dynamics (S) is σ -asymptotically stable, for μ-a.s. σ ∈Σ+
I .

(c) The switched dynamics (S) is σ -exponentially stable, for μ-a.s. σ ∈Σ+
I .

This theorem shows some equivalence relationships under the hypothesis ρ̂(S) = 1. They are
important for creating upper bounds, finding convergence rates and exploiting other basic system
properties for switched linear systems, see Remark 4.5 below. For example, as a consequence of The-
orem B′ above, we can obtain the following statement:

Corollary 3.2. Let S : i �→ Si ∈ Cd×d be continuous in i ∈ I , where I is compact. If to any θ+-ergodic Borel
probability μ on Σ+

I there (S) is asymptotically stable μ-almost surely, then (S) is absolutely exponentially
stable and moreover, ∥∥S( j,σ )

∥∥→ 0 as j →+∞

uniformly for σ ∈Σ+
I .

Here the uniformity follows from the semi-uniform subadditive ergodic theorem independently
due to [48,55]; see [19] for an elementary simple proof.

The rest of this section will be devoted to proving Theorem B′ .

3.1. Equivalence theorem in the product-bounded case

To prove Theorem B′ , based on Theorem A′ , we will first prove the following result, which implies
the pointwise asymptotic stability is equivalent to the exponential stability almost surely for product
bounded systems. It is somewhat interesting itself.

Theorem 3.3. Let S : i �→ Si ∈ Cd×d be continuous in i ∈ I and product bounded, where I is a separable metric
space, not necessarily compact or countable. If for a θ+-ergodic Borel probability μ on Σ+

I , (S) is σ -pointwise
asymptotically stable for μ-a.s. σ ∈Σ+

I , then (S) is σ -exponentially stable for μ-a.s. σ ∈Σ+
I .

Proof. Since the two types of stabilities involved in this theorem both are independent of the choice
of a norm of Cd , the statement comes immediately from Theorem A′ .

In fact, for an arbitrary θ+-ergodic Borel probability μ on Σ+
I , we only need to show that (S)

is exponentially stable μ-almost surely if it is σ -pointwise asymptotically stable for μ-a.s. σ ∈ Σ+
I .

Assume the statement (1) of Theorem A′ were not true. Then for μ-a.s. σ ∈Σ+
I , we have∥∥S(n,σ )∥∥∗ = 1 ∀n � 1 for some fixed pre-extremal norm ‖ · ‖∗ of S.

Let

Ec
n(σ )=

{
x ∈ Cd:

∥∥S(k,σ ) · x
∥∥∗ = 1 for 0 � k � n

}
for all n � 0. It is easily checked that Ec

n(σ ) is a compact subset of Cd such that Ec
n(σ )⊇ Ec

n+1(σ ) �= ∅
for all n � 0, for μ-a.s. σ ∈Σ+

I . Then
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Ec(σ ) :=
⋂
n�0

Ec
n(σ ) �= ∅

for μ-a.s. σ ∈Σ+
I . Now, for any x0 ∈ Ec(σ ), there follows that ‖S(n, σ ) · x0‖∗ = 1 � 0 as n →+∞, a

contradiction to the pointwise asymptotic stability μ-almost sure.
This proves the theorem. �
We notice here that the product boundedness of S implies ρ̂(S) � 1, yet the converse is not the

case as is shown by the simple example presented in the notices behind Theorem B. So, Theorem B′
is more general than Theorem 3.3.

3.2. Three important lemmas

For the proof of Theorem B′ , we need three important lemmas besides Theorem 3.3.
Recall that the generalized spectral radius of (S) (cf. I. Daubechies and J.C. Lagarias [24], also

see [59,18] for systems with constraints), is defined by

ρ(S)= lim sup
�→+∞

{
sup

w∈I�

ρ
(
S(w)
)1/�}

or equivalently ρ(S)= sup
��1

{
sup

w∈I�

ρ
(
S(w)
)1/�}

,

where ρ(A) denotes the usual spectral radius of a matrix A ∈ Cd×d and where

S(w)= Si� · · · Si1

for any word w = (i1, . . . , i�) ∈ I� of length �.
We need the famous Gel’fand-type spectral-radius formula due to M.A. Berger and Y. Wang [5],

stated as follows:

Lemma 3.4 (Generalized Gel’fand spectral-radius formula). (See [5].) If S : I → Cd×d is bounded in Cd×d, then
there holds the identity ρ(S)= ρ̂(S).

In addition, we need a reduction theorem due to L. Elsner [25], stated as follows:

Lemma 3.5. (See [25].) Let S : I 
 i �→ Si ∈ Cd×d be bounded in Cd×d. If ρ̂(S) = 1 and S is not product
bounded, there is a nonsingular B ∈ Cd×d and 1 � n1 < d such that

B−1 Si B =
[

S(1,1)i S(1,2)i

0(d−n1)×n1 S(2,2)i

]
∀i ∈ I

where S(1,1)i ∈ Cn1×n1 and S(2,2)i ∈ C(d−n1)×(d−n1) for all i ∈ I .

One can find simple proofs for the above two theorems in the recent work [17].
The third lemma needed is on the growth of the spectral radius, due to Ian D. Morris, which is

proved based on the multiplicative ergodic theorem (cf. [27,44,26]) using invariant cone.

Lemma 3.6. (See [41].) Let T : (�,B�,μ)→ (�,B�,μ) be a measure-preserving continuous transforma-
tion over a metrizable space � and ψ : Z+ ×�→ Cd×d a Borel measurable linear cocycle driven by T , i.e.,

ψ(0,ω)= Id
Cd and ψ(�+ m,ω)=ψ

(
�, T m(ω)

) ·ψ(m,ω) ∀ω ∈� and �,m � 1.

If
∫
�

log+ ‖ψ(1,ω)‖dμ(ω) <∞ where log 0 =−∞ and log+ x = max{0, log x} for any x � 0 then, one can
find a T -invariant Borel subset Υ of � with μ(Υ )= 1 and a T -invariant measurable function χ(ω) such that
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χ(ω)= lim sup
�→+∞

1

�
logρ
(
ψ(�,ω)

)= lim
�→+∞

1

�
log
∥∥ψ(�,ω)

∥∥
for all ω ∈ Υ . Particularly, if μ is ergodic, then χ(ω) is constant for all ω ∈ Υ .

Here χ(ω) is just the (maximal) Lyapunov exponent of ψ at the base point ω ∈ Υ .
Next for proving Theorem B′ we will apply this lemma to the case where � = Σ+

I , T = θ+ ,
ψ(0, σ )= Id

Cd , and ψ( j, σ )= S( j, σ ) for all j � 1 and σ ∈Σ+
I .

3.3. Proof of Theorem B′

After these preliminaries, we now are in a position to prove Theorem B′ by induction on the
dimension d of the state-space Cd:

Proof of Theorem B′ . Let μ be a θ+-ergodic Borel probability on Σ+
I such that (S) is σ -pointwise

asymptotically stable for μ-a.s. σ ∈ Σ+
I . In addition, by the hypothesis of the statement we have

ρ̂(S)= 1. So, ρ(S)= 1 by the Berger–Wang formula (Lemma 3.4).
Step 1. In the case d = 1, condition ρ(S) = 1 implies that S is product bounded because of the

following identity

ρ(S)= sup
��1

{
sup

w∈I�

ρ
(
S(w)
)1/�}

.

So, from Theorem 3.3 it follows that (S) is exponentially stable μ-almost surely.
Step 2. Now, let m � 2 be an arbitrary integer and assume the assertion holds for any dimension

d <m.
Step 3. We need to prove only that (S) is exponentially stable μ-almost surely in the case of d = m.
Indeed, if S is product bounded then Theorem 3.3 implies that the statement holds. So, we next

assume S is product unbounded. Thus, by Lemma 3.5 there exists a nonsingular B ∈ Cm×m and an
integer 1 � n1 < m such that

B−1 Si B =
[

S(1)i S(1,2)i

0n2×n1 S(2)i

]
∀i ∈ I

where S(1)i ∈ Cn1×n1 , S(2)i ∈ Cn2×n2 for all i ∈ I , where n2 = m − n1. Set

S(r) : I 
 i �→ S(r)i , r = 1,2.

Then, both systems (S(1)) and (S(2)) are σ -pointwise asymptotically stable for μ-a.s. σ ∈ Σ+
I . Since

n1, n2 both < m, from the induction assumption, both (S(1)) and (S(2)) are σ -exponentially stable for
μ-a.s. σ ∈Σ+

I . Since for any �� 1 and any word w ∈ I� of length � there holds that

ρ
(
S(w)
)= max

{
ρ
(
S(1)(w)

)
,ρ
(
S(2)(w)

)}
,

from Lemma 3.6 there follows that one can find a constant 0 < α < 1 which is such that for μ-a.s.
σ = (i j)

+∞
j=1 ∈Σ+

I

ρ(Si� · · · Si1)
1/� � α
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as � sufficiently large. Then, by using Lemma 3.6 once again, it follows that

lim
�→+∞

1

�
log
∥∥S(�,σ )∥∥� logα < 0 for μ-a.s. σ ∈Σ+

I .

Thus, (S) is σ -exponentially stable for μ-a.s. σ ∈Σ+
I , as desired.

This therefore proves the statement of Theorem B′ . �
4. Linear switched systems periodically switched stable

Let us first consider the continuous-time case. For any given set A = {A1, . . . , AK } ⊂ Cd×d and any
0 <Δ<+∞, A gives rise to as before the switched dynamics

ẋ = Au(t)x, x ∈ Cd and t ∈ R+ (A)

where the admissible switching signals u : R+ → K = {1, . . . , K } belong to Lpc
Δ (R+,K) that is defined

in the same manner as in Section 1.1. An u = (λ j, t j)
+∞
j=1 is said to be periodically switched, provided

that there is an integer k � 1 so that

λ j+k = λ j and t j+k − t j+k−1 = t j − t j−1 ∀ j � 1.

In other words, u is periodic if and only if ϑk+(u) = u for some integer k � 1. The dynamics (A) is
called to be periodically switched stable if (A) is u-asymptotically stable for any periodically switched
signal u ∈ Lpc

Δ (R+,K).
It is easily seen that the periodically switched stability implies ρ̂(A) = 1 from Lemma 3.1 in the

continuous-time case. For this kind of switched system, E.S. Pyatnitskiĭ has asked this important ques-
tion:

Problem. (E.S. Pyatnitskiĭ, cf. [46,49].) Does periodically switched stability imply absolute asymptotic
stability, and further exponential stability, for the linear switched dynamics (A)?

In this section, we will present a weak positive solution to this problem using Theorem A.

Theorem C. Let 0 < Δ < +∞, A = {A1, . . . , AK } ⊂ Cd×d satisfy ρ̂(A) = 1 and assume that P is a
ϑ+-ergodic probability on Lpc

Δ (R+,K). If supp(P) contains a periodically switched signal u′ for which (A)
is u′-asymptotically stable, then (A) is exponentially switching-stable P-almost surely, i.e., ζ(u,A) < 0 for
P-a.s. u ∈ Lpc

Δ (R+,K).

This result implies that if the dynamics (A) is periodically switched stable and P has a periodical
density point u′ , then (A) is asymptotically and exponentially stable P-almost surely from Theorem B.

Next, we consider the discrete-time case. Let S : I 
 i �→ Si ∈ Cd×d be continuous, where the
set I of control values is a separable metric space. Then, it defines naturally the discrete-time lin-
ear switched system

x j = S( j,σ ) · x0, x0 ∈ Cd and j � 1 (S)

where the admissible switching signals σ : N → I belong to Σ+
I , which can be thought of as a linear

cocycle driven by the one-sided Markov shift θ+ :Σ+
I → Σ+

I . Similarly, σ is said to be periodical if
σ( j + k) = σ( j) for all j � 1 for some integer k � 1. (S) is called to be periodically switched stable,
provided that (S) is σ -asymptotically stable for each periodically switched signal σ ∈Σ+

I . This implies
that ρ̂(S) � 1 and that particularly, S is product bounded in the cases d � 3 from [22]. Here, it is
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interesting to note that the discretization (SA) is not itself periodically switched stable, since Id
Cd

belongs to SA .
In the discrete-time case, it is a known fact that periodically switched stability need not imply the

absolute asymptotic stability even in the case that I is finite as is shown by [8,7,36,37]. In [21], the
authors induced the exponential stability almost surely from periodically switched stability for canon-
ical Markovian θ+-ergodic measures in the case that I is finite. Now, we shall induce the exponential
stability almost surely for some more general θ+-ergodic measures. The following is the discrete-time
version of Theorem C.

Theorem C′ . Let S : I 
 i �→ Si ∈ Cd×d be continuous and bounded with ρ̂(S)= 1, where I is not necessarily
compact. Assume that μ is a θ+-ergodic probability on Σ+

I . If supp(μ) contains a periodically switched signal
that is asymptotically stable, then (S) is σ -exponentially stable for μ-a.s. σ ∈Σ+

I .

We notice that since I is not necessarily compact in the situation of Theorem C′ , the statement is
nontrivial even in the special case d = 1.

We can prove Theorem C by applying Theorem C′ with S = SA and μ=μP . So, here we need only
to prove Theorem C′ .

In [21], the proof relies sharply on a stability criterion established in [20]. Here the main new
ingredient of proving Theorem C′ is Theorem A′ proved before.

The rest of this section will be devoted to proving Theorem C′ stated above.

4.1. Stability in the product-bounded case

To prove Theorem C′ above, we need a lemma using Theorem A′ .

Lemma 4.1. Let S : i �→ Si ∈ Cd×d be continuous in i ∈ I and product bounded, where I is not necessarily
compact. Assume μ is a θ+-ergodic Borel probability on Σ+

I . If supp(μ) contains a periodically switched
signal that is asymptotically stable, then (S) is exponentially stable μ-almost surely.

Proof. Since S is product bounded, from Lemma 2.5 we could assume that there exists a norm, de-
noted by ‖ · ‖, on Cd such that ‖Si‖ � 1 for all i ∈ I .

Assume, by contradiction, that the statement of the lemma were not true. Then, from Theorem A′ ,
it follows that there exists a Borel subset Γ with μ(Γ )= 1 such that

‖Sin+k · · · Sin‖ = 1 ∀n � 1 and k � 0

for all σ = (i j)
+∞
j=1 ∈ Γ . By the assumption of the lemma, one can pick a periodically switched signal

of period k � 1, say

σ ′ = (i′1, . . . , i′k�������
, i′1, . . . , i′k�������

, . . .
) ∈Σ+

I , write w ′ = (i′1, . . . , i′k�������

)
,

such that σ ′ ∈ supp(μ) and (S) is σ ′-asymptotically stable. Then, one can find some switching signal
σ ∈ supp(μ) ∩ Γ such that σ ′ is an ω-limit point of σ under the action of the one-sided Markov
shift θ+ , that is to say, there is a sequence jk ↗ +∞ so that θ

jk+ (σ )→ σ ′ as k → +∞. This implies
that ∥∥(S(w ′))�∥∥= 1 ∀�� 1,

which contradicts that (S) is σ ′-asymptotically stable.
This proves the lemma. �
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4.2. Proof of Theorem C′

Using Lemma 4.1 proved and Lemmas 3.4, 3.5, 3.6, one could prove Theorem C′ by induction on
the dimension of the state-space Cd similar to the proof of Theorem B′ . But we now will prove it
following the framework of [21].

First, the following lemma comes immediately from Barabanov’s norm theorem [2], which is sim-
ply proven in the recent work [17].

Lemma 4.2. If the bounded family S = {Si}i∈I ⊂ Cd×d is irreducible (i.e., there is no a common, nontrivial,
and proper linear subspace of Cd for each Si ) with ρ̂(S)= 1, then it is product bounded.

The following is a standard reduction lemma in the theory of linear algebras.

Lemma 4.3. (See [2].) For any family S = {Si}i∈I ⊂ Cd×d, there exists a nonsingular (unitary) matrix
O ∈ Cd×d and r positive integers n1, . . . ,nr with n1 + · · · + nr = d such that for each i ∈ I

O Si O−1 =

⎡⎢⎢⎢⎢⎣
S̃(1,1)i S̃(1,2)i · · · S̃(1,r)i

0n2×n1 S̃(2,2)i · · · S̃(2,r)i
...

...
. . .

...

0nr×n1 0nr×n2 · · · S̃(r,r)i

⎤⎥⎥⎥⎥⎦ ,

where

S̃(k) := {̃S(k,k)i

}
i∈I ⊂ Cnk×nk

is irreducible for each 1 � k � r.

Based on this triangularization, we further have got the following useful result.

Lemma 4.4. (See [21].) Let μ be an arbitrary θ+-ergodic Borel probability on Σ+
I . Then, for the continuous

bounded family S = {Si}i∈I ⊂ Cd×d, under the block-triangular decomposition of Lemma 4.3, one has

λ(μ,S)= max
1�k�r

λ
(
μ, S̃(k)

)
.

Here the Lyapunov exponents

λ(μ,S)= lim
j→+∞

1

j
log‖Si j · · · Si1‖ and λ

(
μ, S̃(k)

)= lim
j→+∞

1

j
log
∥∥̃S(k,k)i j

· · · S̃(k,k)i1

∥∥
for μ-a.e. (i j)

+∞
j=1 ∈Σ+

I , all are independent of the norm ‖ · ‖ used.

Remark 4.5. This lemma shows that if every sub-blocks S̃(k) are exponentially stable μ-almost surely,
then S is exponentially stable μ-almost surely. However, if every sub-blocks S̃(k) are only asymptoti-
cally stable μ-almost surely, we cannot guarantee the μ-almost sure asymptotic stability for S. This
proves the importance of Theorems B and B′ .

We now can finish the proof of Theorem C′ .

Proof of Theorem C′ . By the hypothesis of the statement, because of Lemma 4.2 the sub-block sys-
tems S̃(k) , 1 � k � r, defined by Lemma 4.3, all are product bounded. Then from Lemma 4.1, they
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are exponentially stable μ-almost surely. This together with Lemma 4.4 completes the proof of Theo-
rem C′ . �
5. A trichotomy result of continuous-time linear switched systems

For a continuous-time linear switched dynamics, if its admissible switching signal u is recurrent,
for example, almost periodic, we can obtain a trichotomy result that is more subtler than the state-
ment of Theorem A.

Throughout this section, let 0 <Δ<+∞ and A = {A1, . . . , AK } ⊂ Cd×d , d � 2 be arbitrarily given,
which give rise to the switched dynamics

ẋ = Au(t)x, x ∈ Cd and t ∈ R+ (A)

where the admissible switching signals u : R+ = (0,+∞)→ K = {1, . . . , K } belong to Lpc
Δ (R+,K) that

is defined in the same manner as in Section 1.1 and on which there is the topological dynamical
system

ϑ+ : Lpc
Δ (R+,K)→ Lpc

Δ (R+,K); u = (λ j, t j)
+∞
j=1 �→ ϑ+(u)= (λ j+1, t j+1 − t1)

+∞
j=1 .

Definition 5.1. (See [43].) For a switching signal u ∈ Lpc
Δ (R+,K), it is called, under the dynamics ϑ+ ,

to be

1. almost periodic if for any ε > 0 there exists an integer L(ε) defining an L(ε)-relatively dense set
of integers {τk} in Z+ = {0,1,2, . . .}, such that

d�
(
ϑ

j
+(u),ϑ

j+τk+ (u)
)
< ε ∀ j ∈ Z+;

2. Birkhoff recurrent if for any ε > 0 the set of values of j ∈ N = {1,2, . . .} for which

d�
(
u,ϑ

j
+(u)
)
< ε

be relatively dense in Z+ .

Clearly, if u is periodical, it is almost periodic. From the definitions, there hold the following inclu-
sions:

{almost periodic u} ⊆ {Birkhoff recurrent u} ⊆ {weakly Birkhoff recurrent u}.

For any u, let

Orb+
ϑ+(u)=

{
ϑ

j
+(u)
∣∣ j = 0,1, . . .

}
,

which is called the forward ϑ+-orbit of u. By Cl(Orb+
ϑ+ (u)) we denote the closure of Orb+

ϑ+ (u) in the

space (Lpc
Δ (R+,K),d�).

Let ‖ · ‖2 denote the usual Euclidean vector norm on Cd . We will prove the following result.

Theorem D. Let A = {A1, . . . , AK } ⊂ Cd×d be such that ‖Φu(t)‖2 � 1 for all t > 0 and any u ∈ Lpc
Δ (R+,K).

If u = (λ j, t j)
+∞
j=1 in Lpc

Δ (R+,K) is Birkhoff recurrent under ϑ+ , then there holds one of the following three
statements.
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(1) The dynamics (A) is Cl(Orb+
ϑ+ (u))-uniformly exponentially switching-stable, namely, there are two

constants C > 0 and 0 < ξ < 1 so that∥∥Φu′
(
t′j
)∥∥

2 � Cξ j ∀ j ∈ N and u′ = (λ′j, t′j
)+∞

j=1 ∈ Cl
(
Orb+

ϑ+(u)
)
.

(2) The dynamics (A) is of Cl(Orb+
ϑ+ (u))-rigid motion, that is to say,

∥∥Φu′
(
t′j
) · x
∥∥

2 = ‖x‖2 ∀ j ∈ N, x ∈ Cd and u′ = (λ′j, t′j
)+∞

j=1 ∈ Cl
(
Orb+

ϑ+(u)
)
.

(3) The dynamics (A) is Cl(Orb+
ϑ+ (u))-partially switching-stable, i.e., for some integer 1 � i < d, some con-

stants 0 < ξ < 1, C > 0, and a continuous splitting

Cl
(
Orb+

ϑ+(u)
) 
 u′ �→ Cd = Ec(u′)⊕ Es(u′), dim Es(u′)= i

with the invariance Φu′ (t′j) · Ec/s(u′) = Ec/s(ϑ
j
+(u′)) for all j � 1 and any u′ = (λ′

j, t′j)
+∞
j=1 in

Cl(Orb+
ϑ+ (u)), such that ∥∥Φu′

(
t′j
) · x0
∥∥

2 = ‖x0‖2 ∀x0 ∈ Ec(u′)
and ∥∥Φu′

(
t′j
) · y0
∥∥

2 � Cξ j‖y0‖2 ∀y0 ∈ Es(u′)
for all j ∈ N and any u′ = (λ′

j, t′j)
+∞
j=1 ∈ Cl(Orb+

ϑ+ (u)).

Note. According to the classical Lyapunov exponent theory,5 the stable manifold Es(u′) is invariant
with respect to a vector norm ‖ · ‖ of Cd used here in the following sense:∥∥Φ

ϑk+(u)(t j+k − tk) · y0
∥∥� C‖·‖ξ j

‖·‖‖y0‖ ∀ j � 1 for y0 ∈ Es(ϑk+(u)
)

where C‖·‖ > 0, ξ‖·‖ > 0 are two constants associated to the norm ‖ · ‖. In addition, we do not know
if there holds the classical partial stability, i.e.,∥∥Φu′

(
t′j
) · y0
∥∥

2 � Cξ t′j‖y0‖2 ∀y0 ∈ Es(u′)
instead of j by t′j in the statement (3) of Theorem D.

5 In fact, here we need only the following simple facts: let ϕ( j), ψ( j) be any given C
d-valued functions defined on Z+ such

that

λϕ := lim sup
j→+∞

1

j
log
∥∥ϕ( j)
∥∥ and λψ := lim sup

j→+∞
1

j
log
∥∥ψ( j)

∥∥,
then for any α,β �= 0,

lim sup
j→+∞

1

j
log
∥∥αϕ( j)+ βψ( j)

∥∥= max{λϕ,λψ } when λϕ �= λψ

and the exponents λϕ , λψ both are independent of the choice of the vector norm ‖ · ‖ on C
d .
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As σu , the discretization of u, is also Birkhoff recurrent under θ+ whenever u is Birkhoff recur-
rent under ϑ+ , from Birkhoff’s theorems [43, Theorems V.7.07 and V.7.07] which claim: If a dynamics
T :�→� is situated in a complete metric space �, then ω ∈� is (Birkhoff) recurrent if and only if
Cl�(Orb+

T (ω)) is a compact, minimal set; here “minimal set” means that it is nonempty, closed and
invariant, and has no proper subset possessing these three properties, it follows that ClΣ+

I
(Orb+

θ+ (σu))

is a compact minimal set of the compact metric space Σ+
I under θ+ , where I = K × [0,Δ] is as

in the discretization of (A). Meanwhile from Lemma 5.2 below, it follows that u ∈ Lpc
Δ (R+,K) is

Birkhoff recurrent under ϑ+ if and only if Cl(Orb+
ϑ+ (u)) is a compact, minimal set in Lpc

Δ (R+,K).
This shows that Birkhoff’s theorems are still valid in our situation without the completeness by
Lemma 1.1.

So, the discrete-time version of Theorem D can be formulated as follows:

Theorem D′ . Let S : I 
 i �→ Si ∈ GL(d,C) be continuous such that ‖Si‖2 � 1 for all i ∈ I . If Λ is a compact
minimal subset of Σ+

I under the dynamics θ+ , then there holds one of the following three statements.

(1) (S) is Λ-absolutely exponentially stable,6 i.e.,

lim sup
j→+∞

1

j
log
∥∥S( j,σ )

∥∥
2 < 0 ∀σ ∈Λ.

(2) (S) is of Λ-rigid motion, that is to say,∥∥S( j,σ ) · x
∥∥

2 = ‖x‖2 ∀ j � 1 and x ∈ Cd, for all σ ∈Λ.

(3) (S) is Λ-partially stable, that is to say, for some integer 1 � i < d, some constants 0 < ξ < 1, C > 0, and
a continuous splitting

Λ 
 σ �→ Cd = Ec(σ )⊕ Es(σ ), dim Es(σ )= i

with the invariance property S( j, σ ) · Ec/s(σ )= Ec/s(θ
j
+(σ )) for all j � 1, such that

∥∥S( j,σ ) · x0
∥∥

2 = ‖x0‖2 ∀ j � 1 for x0 ∈ Ec(σ )

and

∥∥S( j,σ ) · y0
∥∥

2 � Cξ j‖y0‖2 ∀ j � 1 for y0 ∈ Es(σ )

for all σ ∈Λ.

Here S(n, σ )= Sin · · · Si1 for any σ = (i j)
+∞
j=1 ∈Σ+

I and n � 1.

It should be noted here that the above Theorem D′ has been proved by Ian D. Morris in the case
where Λ is a compact minimal subset of the two-sided Markov shift transformation

θ :ΣI →ΣI; (i j) j∈Z �→ (i j+1) j∈Z.

6 Since here Λ is a compact θ+-invariant set, the Λ-absolute exponential stability is equivalent to the Λ-uniform exponential
stability.
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See [40, Theorems 2.1 and 2.2]. Since for any two-sided switching signal (i j) j∈Z ∈ ΣI or u : R → K
the associated switched dynamics is, in fact, completely determined by the one-sided subsequence
(i j)

+∞
j=1 or u�R+ , it appears more reasonable for us to choose the one-sided Markov shift on Σ+

I as
the driving system here; see Footnote 1 in Section 1.1.1.

We will prove Theorem D in Section 5.1 based on Theorem D′ . And we will prove Theorem D′
in Section 5.2 using an approach completely different from [40] to overcome the difficulty caused
by the noninvertibility of the one-sided Markov shift θ+ . Moreover, following our framework, one
could easily obtain a more general continuous-time version than Theorem D, see Theorem D′′ in
Section 5.3.

5.1. Proof of Theorem D

Let

π : Lpc
Δ (R+,K) 
 u = (λ j, t j)

+∞
j=1 �→ σu = (λ j,Δ j)

+∞
j=1 ∈Σ+

I ,

where Δ j = t j − t j−1 for all j � 1 and I = K × [0,Δ], as in Section 1.1. According to Theorem D′ , to
prove Theorem D it is sufficient to prove the following basic fact.

Lemma 5.2. If u = (λ j, t j)
+∞
j=1 is Birkhoff recurrent in Lpc

Δ (R+,K) under ϑ+ , then

π
(
Cl
(
Orb+

ϑ+(u)
))= ClΣ+

I

(
Orb+

θ+(σu)
)
.

So, Cl(Orb+
ϑ+ (u)) is a compact, minimal subset of Lpc

Δ (R+,K) under ϑ+ .

Proof. We need to prove only that ClΣ+
I
(Orb+

θ+ (σu))⊆ π(Cl(Orb+
ϑ+ (u))), where σu = (λ j,Δ j)

+∞
j=1 be-

longs to Σ+
I with Δ j = t j −t j−1 for all j � 1. Let σ ′ = (λ′

j,Δ
′
j)
+∞
j=1 be an ω-limit point of σu under θ+ .

Then there is a sequence k j →+∞ such that θ
k j
+ (σu) converges to σ ′ as j →+∞. We claim that σ ′

belongs to π(Cl(Orb+
ϑ+ (u))). For that, we only need to prove that

∑+∞
j=1 Δ

′
j =+∞.

By contradiction, assume that
∑+∞

j=1 Δ
′
j < +∞. Then for an arbitrary γ > 0 with γ � 1

4 , there

exists an integer Nγ � 1 such that
∑+∞

j=1 Δ
′
j+Nγ

< γ .

Since θ+ is continuous, we have get that θ
Nγ+k j
+ (σu)→ θ

Nγ

+ (σ ′) as j →+∞.

On the other hand, by θ
Nγ

+ (σu)= (λ j+Nγ ,Δ j+Nγ )
+∞
j=1 we see

∑+∞
j=1 Δ j+Nγ =+∞. So, one can find

an integer L � 1 so that
∑L

j=1 Δ j+Nγ � 1. Moreover, there is an ε > 0 sufficiently small such that for

any σ̂ = (λ̂ j, Δ̂ j)
+∞
j=1 ∈Σ+

I ,

L∑
j=1

Δ̂ j � 1

2
whenever d�

(
θ

Nγ

+ (σu), σ̂
)
< ε.

Since θ
Nγ

+ (σu) is also Birkhoff recurrent under θ+ , there is some integer �(ε) � 1 such that for any

j � 1, one can find some n j ∈ [Nγ + k j,Nγ + k j + �(ε)− 1] satisfying d�(θ
Nγ

+ (σu), θ
n j
+ (σu)) < ε.

Finally, one can choose some J > 1 sufficiently large such that

L+�(ε)∑
Δi+Nγ+k j � 2γ whenever j � J .
i=1
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However,

1

2
�

L∑
i=1

Δi+n j �
L+�(ε)∑

i=1

Δi+Nγ+k j � 2γ

for all j � J ; it is a contradiction.
This shows the lemma. �
This fact is nontrivial, because (Lpc

Δ (R+,K),d�) is not complete from Lemma 1.1.

5.2. Proof of Theorem D′

In this subsection, we will devote our attention to proving Theorem D′ using some known result
cited from [14,15] and Theorem A′ .

5.2.1. A semi hyperbolicity theorem
For simply proving Theorem D′ , we will need a semi hyperbolicity theorem cited from [14]. Here,

for the convenience we will introduce it in details.
We now adopt the terminology of cocycle. Let S : I → GL(d,C); i �→ Si be a continuous, non-

singular, d × d, complex matrix-valued function on a separable metric space I , where I need not
be compact. Let W be a compact θ+-invariant closed subset of the discrete-time switching-signal
space Σ+

I that is a separable metric space with the induced metric d�(·,·) as in Section 1.1. We
consider the induced cocycle by S, also write as S,

S : Z+ × W → GL(d,C); ( j,σ ) �→ S( j,σ )=
{

Id
Cd for j = 0;

Sσ ( j) · · · Sσ (1) for j � 1,

which is driven by θ+ :σ = (i j)
+∞
j=1 �→ θ+(σ ) = (i j+1)

+∞
j=1 restricted to the compact invariant sub-

space W .
Let χ̂ ∈ R be arbitrarily given and assume that to ‘a.s.’ σ ∈ W , there exists a measurable direct

decomposition of Cd into subspaces7

σ �→ Es(σ , χ̂ )⊕ Eu(σ , χ̂ ) with S( j,σ ) · Es/u(σ , χ̂ )= Es/u(θ j
+(σ ), χ̂

) ∀ j � 1

such that

lim
j→+∞

1

j
log
∥∥S( j,σ ) · x

∥∥
2 < χ̂ ∀x ∈ Es(σ , χ̂ ) \ {0}

and

lim
j→+∞

1

j
log
∥∥S( j,σ ) · x

∥∥
2 > χ̂ ∀x ∈ Eu(σ , χ̂ ) \ {0}.

Es(σ , χ̂) and Eu(σ , χ̂) are called the χ̂ -stable and χ̂ -unstable manifolds of S at the regular base
point σ ∈ W , respectively. Moreover, we call

Index(σ , χ̂ )= dim Es(σ , χ̂ )

the χ̂ -index of S at the base point σ ∈ W .

7 We notice that since θ+ is not invertible, such a decomposition need not exist in general.
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We should notice here that σ �→ Es/u(σ , χ̂) is only measurable, not necessarily continuous, with
respect to σ in W .

Next, we introduce the notation “χ̂ -semi hyperbolicity”.

Definition 5.3. (See [14].) Given χ̂ ∈ R, S is called χ̂ -semi hyperbolic on W , provided that S is almost
uniformly χ̂ -expanding along Eu(σ , χ̂); that is to say, there are constants �′ > 0 and C ′ > 0, which
both are independent of σ , such that∥∥S( j,σ ) · x

∥∥
2 � C ′‖x‖2 exp

(
j
(
χ̂ + �′)) ∀x ∈ Eu(σ , χ̂ ) and j � 1

for ‘a.s.’ σ ∈ W .

Here and in the following, ‘a.s.’ means relative to all θ+-ergodic Borel probabilities supported on W
unless an explicit measure μ is given and write ‘μ-a.s.’ in this case.

Then, the semi hyperbolicity theorem proved in [14] could be stated as follows:

Theorem 5.4. (See [14, Theorem 1].) Let S be χ̂ -semi hyperbolic on W . If Index(σ , χ̂ ) is constant for ‘a.s.’
σ ∈ W , then S is almost χ̂ -hyperbolic on W ; that is to say, there exists a continuous invariant splitting of Cd

into subspaces

σ �→ Eu(σ , χ̂ )⊕ Es(σ , χ̂ )

and constants � > 0, C > 0 such that

∥∥S( j,σ ) · x
∥∥

2 � C‖x‖2 exp
(

j(χ̂ − �)
) ∀x ∈ Es(σ , χ̂ ) and j � 1

and

∥∥S( j,σ ) · y
∥∥

2 � C−1‖y‖2 exp
(

j(χ̂ + �)
) ∀y ∈ Eu(σ , χ̂ ) and j � 1

for ‘a.s.’ σ ∈ W .

Note. This result implies immediately that S is contracting uniformly restricted to Es on a θ+-invariant
closed subset of W of total probability 1 if χ̂ < 0.

This theorem has been proven in [14] using Liao theory.

5.2.2. Proof of Theorem D′
For convenience, for any σ ∈Σ+

I write

Ec(σ )= {x ∈ Cd:
∥∥S(n,σ ) · x

∥∥
2 = ‖x‖2 ∀n � 1

}
.

Since the Euclidean norm ‖ · ‖2 is pre-extremal for S by the hypothesis of the theorem, Ec(σ ) is a
linear subspace of Cd . It is easy to check the invariance Si1 · Ec(σ )⊆ Ec(θ+(σ )) for σ = (i j)

+∞
j=1 .

Proof of Theorem D′ . If, for any θ+-ergodic Borel probability μ with supp(μ)⊆Λ, (S) is exponentially
stable μ-almost surely, then (S) is Λ-absolutely exponentially stable from [19] and so the property (1)
of Theorem D′ holds. And we then could stop our proof here. So, we next assume that (S) is not
exponentially stable P-almost surely for some θ+-ergodic Borel probability P with supp(P)⊆Λ.
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Then from Theorem A′ , it follows that dim Ec(σ ) � 1 for P-a.s. σ ∈Λ. As Λ is θ+-minimal, from
the Birkhoff recurrence of every σ ∈Λ and the continuity of S, it follows that there exists a continu-
ous, non-zero distribution σ �→ Ec(σ ) over Λ satisfying that for any σ ∈Λ and any j � 1

S( j,σ ) · Ec(σ )= Ec(θ j
+(σ )
)

and
∥∥S( j,σ ) · x0

∥∥
2 = ‖x0‖2 ∀x0 ∈ Ec(σ ),

and that to any v ∈ Cd − Ec(σ ) there are some nv � 1 and 0 � δv < 1 so that∥∥S( j,σ ) · v
∥∥

2 � δv‖v‖2 ∀ j � nv .

It is easily seen that dim Ec(σ )≡ d − i ∀σ ∈Λ for some integer 0 � i � d − 1.
If i = 0 then, the property (2) of Theorem D′ holds and we could stop the proof here. Therefore,

we next assume 1 � i � d − 1.
Write Ec(σ )⊥ = {x ∈ Cd | 〈x,Ec(σ )〉 = 0}, i.e., the orthogonal complement of Ec(σ ) in Cd , for all

σ ∈Λ, and define a natural (Grassmannian) topological vector bundle

Ec(Λ)
⊥ =
⊔

σ∈ΛEc(σ )
⊥
.

Further, we define, based on θ+�Λ :Λ→Λ, a linear skew-product dynamical system as follows:

S⊥ : Z+ × Ec(Λ)
⊥ → Ec(Λ)

⊥; ( j, (σ , y)
) �→ (θ j

+(σ ),S⊥( j,σ ) · y
)

where

S⊥( j,σ ) : Ec(σ )
⊥ → Ec(θ j

+(σ )
)⊥

is defined by the projection of S( j, σ ) · y onto Ec(θ
j
+(σ ))

⊥
for any y ∈ Ec(σ )⊥ , such that∥∥S⊥( j,σ ) · y

∥∥
2 �
∥∥S( j,σ ) · y

∥∥
2 � ‖y‖2 ∀ j � 1.

Then, it follows from Theorem A′ that for any θ+-ergodic Borel probability μ supported on Λ,

χ⊥(μ) := lim
j→+∞

1

j
log
∥∥S⊥( j,σ )

∥∥
2 < 0 μ-a.s. σ ∈Λ.

Moreover, from the upper-semi continuity of χ⊥(μ) with respect to μ ([15, Proposition 5], also
see [19]), one could find some γ < 0 such that χ⊥(μ) � γ for all θ+-ergodic Borel probability μ
supported on Λ.

Thus, from the Liao spectrum theorem, for example see [15, Main Theorem 1], it follows that for
any θ+-ergodic Borel probability μ supported on Λ, the linear switched system (S) (or the cocycle S)
has i negative Lyapunov exponents which are less than or equal to γ , counting with multiplicity, for
μ-a.s. σ ∈ Λ. Then, from the multiplicative ergodic theorem [27,44], one could find a θ+-invariant
Borel subset Γ ⊂Λ with μ(Γ )= 1 for any θ+-ergodic Borel probability μ on Λ, such that there is a
measurable, invariant splitting of Cd into subspaces

Γ 
 σ �→ Cd = Ec(σ )⊕ Es(σ )

satisfying

lim
j→+∞

1

j
log
∥∥S( j,σ ) · y

∥∥
2 � γ ∀y ∈ Es(σ ) \ {0}.
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From the semi hyperbolicity theorem (Theorem 5.4) with χ̂ = γ /2 and W =Λ, it follows that S�Es(Γ )

is contracting uniformly. So, the above splitting over Γ could be extended onto the closure Cl(Γ ).
Since Λ is minimal, there follows Cl(Γ )=Λ. So, the property (3) of Theorem D′ holds.

This thus proves Theorem D′ . �
5.3. A more general continuous-time version

Let � be a Polish space. A more general continuous-time version of Theorem D′ can be stated as
follows:

Theorem D′′ . Let Φ·(·) :�×R+ → GL(d,C) be a continuous linear cocycle based on a semiflow (�,ϕ) such
that

∥∥Φω(t)
∥∥

2 � βt ∀ω ∈� and t � 0

for some constant β � 1. If Λ is a ϕ-invariant compact minimal subset of �, then

(1) either

lim sup
t→+∞

1

t
log
∥∥Φω(t)

∥∥
2 < logβ ∀ω ∈Λ

(2) or,

∥∥Φω(t)
∥∥

2 = βt‖x‖2 ∀t � 0, x ∈ Cd for all ω ∈Λ;

(3) or Φω(t) is Λ-partially stable, i.e., for an integer 1 � i < d, two constants 0 < ξ < 1, C > 0, and a
continuous splitting

Λ 
ω �→ Cd = Ec(ω)⊕ Es(ω), dim Es(ω)= i

with the invariance property Φω(t)Ec/s(ω)= Ec/s(ϕ(t,ω)) for all t > 0, such that

∥∥Φω(t) · x0
∥∥

2 = βt‖x0‖2 ∀t � 0 for x0 ∈ Ec(ω)

and

∥∥Φω(t) · y0
∥∥

2 � Cβtξ t‖y0‖2 ∀t � 0 for y0 ∈ Es(ω)

for all ω ∈Λ.

By a modification of the proof of Theorem D′ , one could obtain the statement. So, we omit the
details here.

A very interesting case for Theorem D′′ is that Λ is the hull of an almost periodic control function
u : R+ → Cd×d and ϕ is the one-sided translation flow; see Footnote 1 in Section 1.1.1.
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5.4. Remarks

For a general topological dynamics T :� → �, the set W (T ) of weakly Birkhoff recurrent points
is of total measure 1 from Theorem 2.3, but need not be true for the set of all the Birkhoff recurrent
points.

Clearly a Birkhoff recurrent point must be weakly Birkhoff recurrent, but the converse is not the
case as is shown by a counterexample in Z. Zhou and W. He [62] for the one-sided Markov shift θ+
of finitely many letters. Here, we could construct a simple example as follows:

Example 5.5. Let I = {0,1} endowed with the discrete-topology metric. Let p = (1/2,1/2) be a
2-dimensional probability vector. Then the corresponding Markovian probability measure μp , defined
in the means

μp
([i1, . . . , i�]

)= (1

2

)�
∀(i1, . . . , i�) ∈ I�,

is ergodic for the one-sided Markov shift θ+ :Σ+
I →Σ+

I such that supp(μp)=Σ+
I . Since the periodic

points of θ+ are dense in Σ+
I , Σ+

I is not minimal. Thus, for μp-a.s. σ ∈ Σ+
I , it is weakly Birkhoff

recurrent from Theorem 2.3, but not Birkhoff recurrent.

This example shows that Theorem A/A′ is essentially different from Theorem D/D′ .
Parallel to the continuous-time case considered in Section 3, the discrete-time linear switched

dynamics (S) is called to be

(1) “switched convergent”, if to each x0 ∈ Cd \ {0} there corresponds some σx0 ∈Σ+
I satisfying∥∥S( j,σx0) · x0

∥∥
2 → 0 as j →+∞;

(2) “exponentially stabilizable”, if there exist two constants α < 0 and β > 0 such that to each x0 ∈
Cd \ {0} there corresponds some σ ′

x0
∈Σ+

I satisfying∥∥S( j,σ ′
x0

) · x0
∥∥

2 � β‖x0‖2 exp( jα) ∀ j � 1.

Next, using Theorem D′ we are going to prove that if S is product bounded and switched conver-
gent, then there must be a subset restricted to which (S) is either absolutely exponentially stable or
partially stable. For this, we need first the following lemma due to Z. Sun:

Lemma 5.6. (See [53, Theorem 1].) The following two statements are equivalent:

(i) S is switched convergent.
(ii) S is exponentially stabilizable.

Now, the following is a result of the statements of Theorem D′ and Lemma 5.6.

Corollary 5.7. Let S : I → GL(d,C) satisfy ‖Si‖2 � 1 for all i ∈ I , where I is compact. If (S) is switched
convergent, then there must be at least one θ+-minimal subset Λ⊂Σ+

I such that (S) is either Λ-absolutely
exponentially stable or Λ-partially stable.

Proof. By Lemma 5.6, (S) is exponentially stabilizable. Let α < 0, β > 0 be defined as in the item (ii)
of Lemma 5.6 above. We define the set

Σs.c. =
{
σ ∈Σ+

I
∣∣ ∃xσ ∈ Cd \ {0} so that

∥∥S( j,σ ) · xσ
∥∥ � β‖xσ ‖2 exp( jα) ∀ j � 1

}
.
2
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Clearly, Σs.c. is θ+-invariant, and nonempty by the exponential stabilizability. Moreover, Σs.c. is a
closed subset of Σ+

I ; in fact, let {σ( j)}∞j=1 be a sequence in Σs.c. satisfying σ( j) → σ(0) as j → +∞;

one can take a sequence of unit vectors {x( j)} in Cd with∥∥S(�,σ( j)) · x( j)
∥∥

2 � β exp(�α) ∀�� 1;

by the compactness of the unit sphere in Cd , there is no loss of generality in assuming that x( j) → x(0)
with ‖x(0)‖2 = 1; so, ‖S(�,σ(0)) · x(0)‖2 � β exp(�α) ∀� � 1; this implies that σ(0) ∈Σs.c. . Thus, from
the compactness of Σ+

I and so Σs.c. , one can find a θ+-minimal subset Λ⊆Σs.c. . Then, the statement
follows immediately from Theorem D′ .

This proves the corollary. �
Remark 5.8. From Theorem E and Lemma 6.1 to be proven in Section 6.1, we see that Λ given by
Corollary 5.7 might be required to consist of periodically switched signals.

6. Approximation and stabilizability of linear systems driven by minimal dynamics

How to design, for an initial state x0 ∈ Cd , a stabilizing switching signal u(t) for a linear switched
system (A) is a primary synthesis issue in the theory of control; see [57,9,50–52,28,29] for example.
However, we need first to establish a theoretic foundation before one begins to design such a stabi-
lizing switching signal; that is the existence theorem of stabilizing switching signal/law for any initial
state. This section will be devoted to this topic. It is just the aspects (3) described in Section 1.2. The
main results are Theorem E and Theorem F proved in this section. Theorem 6.10 below is an ergodic
result that seems important for further study of rotation numbers.

6.1. Approximation of stable manifold by periodically switched signals

Corresponding to “partial hyperbolicity” in the differentiable dynamical systems, as is shown by
Corollary 5.7 before, here the “partial stability” defined as in the statement of Theorem D′ could be
an interesting, typical phenomenon in the linear control theory. However, the stable manifold Es(σ )
depends completely upon the infinite switching sequence σ = (i j)

+∞
j=1 , not upon any finite-length sub-

word (i1, . . . , i�) of σ .
So, for applications in engineering, in the partially stable case we often need to find suitable ways

to approach arbitrarily the stable manifold bundle Es(Λ), since for any input (σ , x0) ∈ Es(Λ) the
output/solution {xn}n�0 of (S) is exponentially stable. For this, we can obtain the following theorem.

Theorem E. Let S : I 
 i �→ Si ∈ GL(d,C) be continuous, where I is a compact metric space. Assume (S)
is Λ-partially stable for a θ+-invariant minimal subset Λ of Σ+

I . If {σ (k)}+∞
k=1 is a sequence of periodically

switched signals with

Orb+
θ+
(
σ (k)) in the sense of Hausdorff metric−−−−−−−−−−−−−−−−−−→Λ as k →+∞,

then for any χ̂ < 0 sufficiently large

Es(Orb+
θ+
(
σ (k)), χ̂) in the sense of Grassmann−−−−−−−−−−−−−−−→ Es(Λ) as k →+∞.

Here Es(Orb+
θ+ (σ

(k)), χ̂ )=⊔σ∈Orb+
θ+ (σ (k)) Es(σ , χ̂) is the χ̂ -stable manifold bundle over the peri-

odical orbit Orb+
θ+ (σ

(k)) and Es(σ , χ̂) is defined in the same manner as in Section 5.2.1. In fact, if

σ (k) = (i j)
+∞
j=1 has period τk , then Es(σ (k), χ̂ ) is just the direct sum of the eigenspaces associated to

the eigenvalues with absolute value < exp(τkχ̂ ) of the product matrix Siτ · · · Si1 .

k
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In addition, since Λ is minimal, such a sequence {σ (k)}+∞
k=1 always could be selected out from the

following closing lemma.

Lemma 6.1. Let θ+ :Σ+
I →Σ+

I be the one-sided Markov shift based on a compact metric space I . Then, for
any ε > 0 there exists a constant δ > 0 such that whenever d�(σ , θτ+(σ )) < δ for σ ∈Σ+

I and τ � 1, one can
find a point σ ′ satisfying the following two conditions:

(1) θτ+(σ ′)= σ ′ , i.e., σ ′ is a periodically switched signal of period τ ;
(2) d�(θk+(σ ), θk+(σ ′)) < ε for 0 � k � τ .

Here d�(·,·) is the metric on Σ+
I defined as before.

Proof. This statement follows easily from the definition of the metric d�(·,·) and a standard argument
similar to that of I = {1,2}. �

In the proof of Theorem E, we will employ a theorem quoted from [16]. Here we will introduce it
in details for the convenience of readers.

Let σ ∈Σ+
I be a periodically switched signal of period τ � 3. We simply write

O = {σ , θ+(σ ), . . . , θτ−1+ (σ )
}
.

Clearly, θ+ is 1-to-1 restricted to O. The following is an improved version of the classical Alexseev
theorem.

Theorem 6.2. (See [16, Lemma 3.3].) Let  ·!w be a vector norm of Cd, for any w ∈ O. Suppose that Cd has a
Whitney decomposition

Cd = F1(w)⊕ F2(w) ∀w ∈ O

such that dim F1(w) is constant and that S(1, w) and S−1(1, θ−1+ (w)) could be, respectively, represented as[
F11(w) F12(w)

F21(w) F22(w)

]
: F1(w)⊕ F2(w)→ F1(θ+(w)

)⊕ F2(θ+(w)
)

and [
F̂11(w) F̂12(w)

F̂21(w) F̂22(w)

]
: F1(w)⊕ F2(w)→ F1(θ−1+ (w)

)⊕ F2(θ−1+ (w)
)

for all w ∈ O, where θ−1+ is restricted to O. Assume for any w ∈ O

max
{⌊

F11(w)
⌋
,
⌊

F̂−1
11 (w)

⌋}
< eς1 , max

{⌊
F−1

22 (w)
⌋
,
⌊

F̂22(w)
⌋}

< e−ς2

and

max
{⌊

F12(w)
⌋
,
⌊

F21(w)
⌋
,
⌊

F̂12(w)
⌋
,
⌊

F̂21(w)
⌋}

< εe−|ς1+ς2|/2

where

−∞< ς1 < ς2 <+∞ and 0 < ε < min
{

1 − e(ς1−ς2)/2, e(ς2−ς1)/2 − 1
}
.
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Let

χ− = ς1 + ς2

2
− log
[
e(ς2−ς1)/2 − ε

]
,

χ+ = ς1 + ς2

2
+ log
[
e(ς2−ς1)/2 − ε

]
.

Then there is an invariant decomposition of Cd into subspaces

Cd = E1(w)⊕ E2(w) with dim E1(w)= dim F1(w) ∀w ∈ O

such that

⌊
S(�, w) · v1

⌋
θ�+(w)

� K e�χ− v1!w ∀v1 ∈ E1(w), � � 1

and

⌊
S(�, w) · v2

⌋
θ�+(w)

� K−1e�χ+ v2!w ∀v2 ∈ E2(w), �� 1.

Here K > 0 is a constant.

Remark 6.3. The fact that the constants χ− and χ+ are such that

χ− ↘ ς1 and χ+ ↗ ς2 as ε→ 0,

will be useful for proving Theorem E.

Proof of Theorem E. Assume the admissible switching-signal set Λ is nontrivial, i.e., Λ is not itself a
periodical orbit. Otherwise, the statement holds trivially.

From the hypothesis of the theorem, there is a sequence εk ↘ 0 such that the Hausdorff distance

dH(Ok,Λ) < εk where Ok := Orb+
θ+
(
σ (k)) for all k � 1.

For any w ∈ Ok , there is some σw ∈Λ which is such that d�(w, σw) < εk; so by translation we have
the Whitney decomposition

Cd = F1(w)⊕ F2(w) where F1(w)= Es(σw) and F2(w)= Ec(σw).

Here the stable and central manifolds Es/c(σw) over σw are defined by Theorem D′ . Let

1

2
log ξ < ς1 < ς2 < 0,

where ξ is defined by Theorem D′ . Since the splitting Es(Λ) ⊕ Ec(Λ) is continuous in σ ∈ Λ and
S(�,σ ) is continuous in σ ∈Σ+

I , there holds the condition of the Alexseev theorem (Theorem 6.2) as
k large sufficiently. Thus, the statement follows from Theorem 6.2.

This completes the proof of Theorem E. �
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6.2. Switching-exponential stabilizability and rotation number

Let A = {A1, . . . , AK } ⊂ Cd×d and 0 < Δ < +∞ both be arbitrarily given. An input (y0,u) in
(Cd \ {0})× Lpc

Δ (R+,K) is said to be switching stable for A, if the output {y j =Φu(t j) · y0} j�1 of (A)
is exponentially switching-stable, not necessarily exponentially stable in the traditional sense; that is
to say, the switching indicator

ζ(y0,u,A) := lim sup
j→+∞

1

j
log
∥∥Φu(t j) · y0

∥∥
2 < 0.

The problem that if one can design some switching-stable signal u for an initial data y0 ∈ Cd \ {0}
given previously, is very important in engineering.

In applications, such a switching signal, found for the above problem, should be restricted to some
constrained switching-signal subset Λ⊂ Lpc

Δ (R+,K). Particularly, if Λ is ϑ+-dynamics minimal, then
the problem is trivial in the case of items (1) and (2) of Theorem D. So, we will devote our attention
to the case (3) of partial switching-stability.

On such a basis, we need to use the rotation number of a switching signal defined in Section 6.2.1
below. Our main result of this part can be stated as follows:

Theorem F. Let 0 <Δ<+∞ and A = {A1, . . . , AK } ⊂ R2×2 be such that ‖Φu(t)‖2 � 1 for all t > 0 and any
u ∈ Lpc

Δ (R+,K). Assume (A) is Λ-partially switching-stable for a compact, minimal subset Λ of Lpc
Δ (R+,K)

under ϑ+ . If there exists a u′ ∈Λ having an irrational rotation number α(u′;A), then to any y0 ∈ R2 \ {0},

(1) there exists some uy0 ∈Λ switching stable for y0 such that y0 ∈ Es(uy0 );
(2) there exists some u′

y0
∈Λ such that y0 ∈ Ec(u′

y0
).

Here the stable manifold Es and the central manifold Ec are defined in the same manner as in Theorem D.

This theorem shows that in the partially switching-stable case, the stabilizability problem is very
complicated.

6.2.1. Rotation numbers of continuous-time linear switched systems
Rotation number possibly becomes an important tool for study of the chaotic behavior of switched

dynamical systems. So, in this part, we will introduce the theory of rotation numbers for linear
switched dynamics using a very simple approach.

Hereafter, we let 0 <Δ<+∞ and A = {A1, . . . , AK } ⊂ R2×2 be arbitrarily given. We first consider,
for an arbitrary u = (λ j, t j)

+∞
j=1 ∈ Lpc

Δ (R+,K), the continuous-time linear switched dynamical system

ẋ(t)= Au(t)x(t), x(0)= x0 ∈ R2 and t ∈ R+. (6.1)

Write

Au(t) =
[

A11
u(t) A12

u(t)

A21
u(t) A22

u(t)

]
.

Introduce the polar coordinates (r,ϕ) in the (x1, x2)
T-state space R2, i.e.,

x1 = r cos 2πϕ and x2 = r sin 2πϕ,

where r � 0, ϕ ∈ R. Then from Eq. (6.1), one can see that ϕ satisfies the equation

ϕ̇ = fu(t)(ϕ)= 1

2π

{
A21

u(t) cos2 2πϕ − A12
u(t) sin2 2πϕ + A22

u(t) − A11
u(t)

2
sin 4πϕ

}
. (6.2)
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For any initial state ϕ0 ∈ R, we let ϕ(t)= ϕu(t,ϕ0) denote the solution of (6.2) with ϕ(0)= ϕ0. Then,
for any x0 = (r0 cos 2πϕ0, r0 sin 2πϕ0)

T with r0 > 0, the solution x(t)=Φu(t) · x0 of (6.1) satisfies that

x(t)= ∥∥x(t)∥∥2

(
cos 2πϕu(t,ϕ0), sin 2πϕu(t,ϕ0)

)T ∀t > 0. (6.3)

This motivates us to introduce the following definition.

Definition 6.4. For any u ∈ Lpc
Δ (R+,K) and any ϕ0 ∈ R, the limit (if exists)

α(u;A)= lim
j→+∞

ϕu(t j,ϕ0)− ϕ0

j
(6.4)

is called the rotation number of (A) at the switching signal u.

The following lemma shows that such a rotation number is well defined, i.e., if α(u;A) is defined
for some initial state ϕ0 ∈ R, then it is independent of the choice of ϕ0.

Lemma 6.5. Let u ∈ Lpc
Δ (R+,K) be any given. Then, for any ϕ′

0,ϕ
′′
0 ∈ R, one has∣∣(ϕu

(
t,ϕ′

0

)− ϕ′
0

)− (ϕu

(
t,ϕ′′

0

)− ϕ′′
0

)∣∣� 1 ∀t ∈ R+.

Proof. From the fact fu(t)(ϕ + 1)= fu(t)(ϕ) in (6.2), it follows that

ϕu(t,ϕ0 + k)= ϕu(t,ϕ0)+ k ∀t > 0,

for all k ∈ Z and ϕ0 ∈ R. We may assume, without loss of generality, that ϕ′
0 <ϕ′′

0 <ϕ′
0 + 1. From the

monotone increasing property of ϕu(t,ϕ0) with respect to ϕ0 ∈ R, it follows that

ϕu

(
t,ϕ′

0

)− ϕ′
0 � ϕu

(
t,ϕ′′

0

)− ϕ′′
0 + ϕ′′

0 − ϕ′
0 <ϕu

(
t,ϕ′′

0

)− ϕ′′
0 + 1.

Hence we have (
ϕu

(
t,ϕ′

0

)− ϕ′
0

)− (ϕu

(
t,ϕ′′

0

)− ϕ′′
0

)
� 1.

On the other hand, from

ϕu

(
t,ϕ′

0

)− ϕ′
0 = ϕu

(
t,ϕ′

0 + 1
)− ϕ′

0 − 1

� ϕu

(
t,ϕ′′

0

)− ϕ′′
0 + (ϕ′′

0 − ϕ′
0

)− 1

>ϕu

(
t,ϕ′′

0

)− ϕ′′
0 − 1 by ϕ′′

0 − ϕ′
0 > 0

it follows that (
ϕu

(
t,ϕ′

0

)− ϕ′
0

)− (ϕu

(
t,ϕ′′

0

)− ϕ′′
0

)
� −1,

which implies the required result. �
In the classical theory of ordinary differential equations, for example [12,33], the traditional defi-

nition of rotation number requires instead of the denominator in (6.4) by t j . Following our definition,
however, we can obtain the following result in the switched dynamics situation.
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Theorem 6.6. Let 0 < Δ < +∞ and A = {A1, . . . , AK } ⊂ R2×2 be arbitrary. Assume Λ is a compact
ϑ+-invariant subset of Lpc

Δ (R+,K). If P is a ϑ+-ergodic probability measure supported on Λ, then there
exists a (rotation) number α(P;A) such that

α(u;A)= α(P;A) for P-a.e. u ∈ Lpc
Δ (R+,K).

Here

α(P;A)= lim
k→+∞

1

k

∫
ϕu(tk,0)dP(u)

is a well-defined real number.

Proof. Motivated by Lemma 6.5, we define a continuous transformation

Ξ : Z+ ×Λ→ R; (k,u) �→ ϕu(tk,0) for u = (λ j, t j)
+∞
j=1 .

Since ϕu(t,ϕ0) is the solution of (6.2) with the initial value ϕ0, we have from Lemma 6.5 the follow-
ing quasi-additivity property:

Ξ(�,u)+Ξ
(
m,ϑ�+(u)

)− 1 � Ξ(�+m,u) � Ξ(�,u)+Ξ
(
m,ϑ�+(u)

)+ 1.

In fact, for u = (λ j, t j)
+∞
j=1 and �,m � 1, we have

ϑ�+(u)=
(
λ′j, t′j
)+∞

j=1 = (λ j+�, t j+� − t�)
+∞
j=1

and

Ξ(�+ m,u)= ϕu(t�+m,0)= ϕϑ�+(u)
(
t�+m − t�,ϕu(t�,0)

)
= ϕu(t�,0)+ {ϕϑ�+(u)

(
t′m,ϕu(t�,0)

)− ϕu(t�,0)
};

in addition, note that

ϕϑ�+(u)
(
t′m,0
)− 1 � ϕϑ�+(u)

(
t′m,ϕu(t�,0)

)− ϕu(t�,0)� ϕϑ�+(u)
(
t′m,0
)+ 1

from Lemma 6.5, and Ξ(m, ϑ�+(u))= ϕϑ�+(u)(t
′
m,0); thus there holds the quasi-additivity.

Since Λ is compact, {Ξ(k, ·)}+∞
k=1 is a sequence of bounded functions on Λ. Now, applying our

quasi-additive ergodic theorem (Theorem 6.10 in Section 6.3 below) with X = Λ, T = ϑ+�Λ and
fn(·)=Ξ(n, ·), we can obtain that

lim
k→+∞

1

k
ϕu(tk,0)= α(P;A)

for P-a.s. u ∈Λ.
This ends the proof of Theorem 6.6. �
In the classical literature, [33,32] for example, the existence of α(P;A) is proven by considering

the induced skew-product dynamics

Θ : Z+ ×Λ× T1 →Λ× T1; (k, (u,ϕ0)
) �→ (ϑk+(u),ϕu(tk,ϕ0) mod 1

)
for u = (λ j, t j)

+∞
j=1 .
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In that way, we will have to construct a Θ-ergodic probability P∗ on Λ × T1, for which P is its
marginal measure. So, our approach presented here is more simpler and direct than that.

6.2.2. Proof of Theorem F
We first have a simple lemma.

Lemma 6.7. Let {a j}∞j=1 and {b j}∞j=1 be two real sequences in the unit interval [0,1]. If {b j} is dense in [0,1]
and lim j→∞ a j/b j = 1, then {a j} is also dense in [0,1].

Proof. The statement is obvious and we omit the details. �
Proof of Theorem F. From Theorem D, there is a nontrivial continuous splitting

R2 = Ec(u)⊕ Es(u) ∀u ∈Λ.

Let u′ = (λ′
j, t′j)

+∞
j=1 ∈Λ have the rotation number α(u′;A) that is irrational. Let x ∈ Es(u′) be arbitrar-

ily given with ‖x‖2 = 1 and x = (cos 2πϕ, sin 2πϕ)T where 0 � ϕ < 1. Put

b j = ϕu′(t j,ϕ) ∈ R ∀ j � 1,

where ϕu′ (·,ϕ) : R+ → R is the solution of (6.2) with initial value ϕ(0) = ϕ in the case u′ instead
of u. From Definition 6.4, it follows that lim j→∞ b j/ j → α(u′;A). Since { jα(u′;A) mod 1 | j � 1} is
dense in [0,1], from Lemma 6.7 there follows that {b j mod 1 | j � 1} is also dense in [0,1]. This
implies that the sequence {

x j := Φu′(t j) · x

‖Φu′(t j) · x‖2

∣∣ j � 1

}

is dense in the unit circle T1. Notice that x j ∈ Es(ϑ
j
+(u′)) for all j � 1 from the invariance of the

stable manifold bundle Es(Λ).
Now, consider any initial data y0 ∈ T1. One can find a subsequence x jk → y0. Since Λ is com-

pact, we might assume, without loss of generality, that ϑ
jk+ (u′)→ uy0 for some uy0 ∈Λ. So, it holds

that (ϑ
jk+ (u′),x jk ) → (uy0 , y0). Clearly, uy0 is stable for y0 from the uniform stability of Φ along

Es(Λ). Then from the classical Lyapunov theory (cf. Footnote 5 in Section 5), there follows easily that
y0 ∈ Es(uy0 ).

This completes the proof of the statement (1) of Theorem F. The statement (2) of Theorem F can
be similarly proved.

So, the proof of Theorem F is completed. �
6.2.3. A further question

A nontrivial minimal subset of a dynamical system contains uncountably many orbits. So, it is a
hard work to select a stable switching signal for an initial data. In the proof of Theorem F, we have
suggested an approach of selection. We further ask the following question:

Question 6.8. Under the situation of Theorem F and let y0 ∈ R2 \{0} be arbitrarily given. Then, can one
find a Borel subset $y0 ⊂Λ with P($y0 ) > 0 or dimH($y0 ) > 0 such that every u ∈$y0 is switching
stable for y0, for some probability P supported on Λ?

Here dimH means the Hausdorff dimension in the sense of the metric d�(·,·) defined in Section 1.1.
An affirmative answer to this question is useful for the fundamental stabilization and optimization

problem of linear switched systems.
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6.3. The quasi-additive ergodic theorem

In this subsection, we will establish the quasi-additive ergodic theorem, which is a slight improve-
ment of the classical Birkhoff ergodic. This part is of interest independently.

First, we prove a lemma.

Lemma 6.9. Let {an}+∞
n=1 be a sequence of real numbers such that

an + am − δ � an+m � an + am + δ ∀n,m � 1,

where δ � 0 is a constant. Then,

lim
n→+∞

an

n
= a∗

for some a∗ ∈ R.

Proof. We first fix any N � 1. For n = mN + k where 0 � k < N , by

an = amN+k � amN + ak + δ � (maN + mδ)+ (ak + δ),

one has

lim sup
n→+∞

an

n
� aN

N
+ δ

N
.

So, there holds that

lim inf
n→+∞

an

n
� lim sup

n→+∞
an

n
� aK

K
+ δ

K
∀K � 1.

Let ε > 0 be arbitrary. Then there is a K̂ � 1 so large that δ/K̂ < ε. From

lim inf
n→+∞

an

n
� lim sup

n→+∞
an

n
�

aK̂+k

K̂ + k
+ ε ∀k � 1,

it follows that

lim inf
n→+∞

an

n
� lim sup

n→+∞
an

n
� inf

n�K̂

an

n
+ ε � lim inf

n→+∞
an

n
+ ε.

Letting ε↘ 0, one can find some a∗ <∞ satisfying

lim
n→+∞

an

n
= a∗.

Similarly, we can obtain that

lim inf
n→+∞

an

n
� aK

K
− δ

K
∀K � 1,

which implies a∗ >−∞.
This proves the lemma. �
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Now, based on Lemma 6.9 and the classical Birkhoff ergodic theorem [56], we can obtain the
following ergodic theorem.

Theorem 6.10 (Quasi-additive ergodic theorem). If T is an ergodic measure-preserving transformation of the
probability measure space (X,B,μ), and if { fn}+∞

n=1 is a sequence of L1(μ)-functions satisfying the quasi-
additivity condition:

fn(x)+ fm
(
T nx
)− δ � fm+n(x)� fn(x)+ fm

(
T nx
)+ δ ∀m,n � 1

for μ-a.e. x ∈ X where δ � 0 is a constant, then

1

n
fn(x)→ f ∗ := lim

n→+∞
1

n

∫
X

fn(x)dμ(x)

for μ-a.e. x ∈ X. Here f ∗ is a real number.

We notice that this theorem might be a consequence of the classical Kingman’s subadditive er-
godic theory [34] by letting Fn(x) = fn(x)+ δ and then Fm+n(x) � Fm(x)+ Fn(T m(x)). However, we
would like to present here an elementary proof without using the Kingman subadditive ergodic the-
orem.

Proof. For simplicity, for any n � 1 we let f ∗n = ∫X fn(x)dμ(x). Then from Lemma 6.9, it follows that

1

n
f ∗n → f ∗ as n →+∞

for some constant f ∗ ∈ R. Next, denote

f̄ (x)= lim sup
n→+∞

1

n
fn(x) and f (x)= lim inf

n→+∞
1

n
fn(x).

Observe that the T -invariance: f̄ (x)= f̄ (T x) and f (x)= f (T x) for all x ∈ X . Now

1

n

n−1∑
j=0

f1
(
T jx
)− δ � 1

n
fn(x)� 1

n

n−1∑
j=0

f1
(
T jx
)+ δ ∀n � 1

and thus by Birkhoff’s ergodic theorem [56] we obtain

f ∗1 − δ � f (x) � f̄ (x) � f ∗1 + δ for μ-a.e. x ∈ X

because of the T -ergodicity of μ.
Next, we have a similar, asymptotic, estimate with f N instead of f1 in the above inequality, as

follows.
Let f0(x)≡ 0 for all x ∈ X . Fix N � 2 and let n � N . For each i = 0,1, . . . ,N − 1, we write

n = i +mi N + ki with 0 � ki < N.

Then by the quasi-additivity, for μ-a.e. x ∈ X
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fn(x) � f i(x)+
mi−1∑
�=0

f N
(
T �N+i x

)− miδ + fki

(
T mi N+i x

)− 2δ

and

fn(x) � f i(x)+
mi−1∑
�=0

f N
(
T �N+i x

)+ miδ + fki

(
T mi N+i x

)+ 2δ

and summing over i we have

N fn(x) �
N−1∑
i=0

f i(x)+
n−1∑
j=0

f N
(
T jx
)− N−1∑

i=0

miδ +
N−1∑
i=0

fn−i−mi N
(
T mi N+i x

)− 2Nδ

and

N fn(x) �
N−1∑
i=0

f i(x)+
n−1∑
j=0

f N
(
T jx
)+ N−1∑

i=0

miδ +
N−1∑
i=0

fn−i−mi N
(
T mi N+i x

)+ 2Nδ.

Hence, for μ-a.e. x ∈ X

1

n
fn(x) � 1

nN

n−1∑
j=0

f N
(
T jx
)− 1

nN

N−1∑
i=0

miδ + 1

nN

N−1∑
i=0

{
f i(x)+ fn−i−mi N

(
T mi N+i x

)}− 2δ

n

and

1

n
fn(x) � 1

nN

n−1∑
j=0

f N
(
T jx
)+ 1

nN

N−1∑
i=0

miδ + 1

nN

N−1∑
i=0

{
f i(x)+ fn−i−mi N

(
T mi N+i x

)}+ 2δ

n
.

As n →+∞ the last two terms on the right-hand side converge to zero for μ-a.e. x ∈ X , mi
n → 1

N and,
by the Birkhoff ergodic theorem once again,

1

N
f ∗N − δ

N
� f (x) � f̄ (x) � 1

N
f ∗N + δ

N
for μ-a.e. x ∈ X

which implies

f ∗ � f (x)� f̄ (x)� f ∗

for μ-a.e. x ∈ X .
This proves the theorem. �
We notice that in the statement of Theorem 6.10, if δ = 0 then it is just the classical Birkhoff

ergodic theorem.
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7. Concluding remarks

There are several important new ingredients in the present paper.
First, we have introduced the dynamics concepts “weakly Birkhoff recurrent switching signal”

borrowed from Z. Zhou [60], “switching indicator” and “discretization” for continuous-time linear
switched dynamics and importantly applied them to the control theory to prove the alternative result
Theorem A that is the most important tool of this paper.

Second, we have employed a “semi hyperbolicity” theorem proved by X. Dai in [14] to the study
of “partial switching-stability” of continuous-time linear switched systems driven by a minimal dy-
namics.

Third, to counter the partially stable switched system, we have proved an approximation theorem
of stable manifolds using the Alexseev theorem that is an important tool for the hyperbolic theory of
differentiable dynamical systems.

And moreover, for a constrained partially switching stable switched system, we have introduced
the “rotation number” of a switching signal to choose a stable switching signal for any initial data
given previously.
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