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Abstract

In this paper, we consider the Cauchy problem for a weakly coupled system of semilinear damped wave
equations. We prove the global existence of solutions for small data in the supercritical case for any space
dimension. We also give estimates of the weighted energy of solutions and in a special case, we prove
an almost optimal estimate. Moreover, in the subcritical case, we give an almost optimal estimate of the
lifespan from both above and below.
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1. Introduction

In this paper, we consider the Cauchy problem for a weakly coupled system of semilinear
damped wave equations

(2 = A+ )u=F@), t>0, x eRY,
u(0, x) =8u0(x), 9u(0,x) =cul(x), xeRV.

(1.1
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Here u = u(t,x) = "(uy,us, ..., ux) : [0,00) x RV — R* is a real-valued unknown function.
The nonlinear term is denoted by F (u), which is defined by

Fu) =" (lugl”', [P, ..., lug—117*) (1.2)

with p; > 1 5{1 <j<kh. Tltle initial data u® ="@%,u9, ..., ud), u' ="l ,ul,...  u}) belong
to [H LRN )] X [L2(RN )] . The parameter ¢ > 0 denotes the amplitude of the initial data.

It is known that there exists the critical exponent for the system (1.1). First, we describe the
meaning of the critical exponent. We define the matrix P as

0 0 Pi
pm 0 o 0

P=| . . ) . (1.3)
0 -« p 0

and consider P — I, where [ is the identity matrix. Then, it is clear that

k k
P =1=D D =G0 [T e -0

j=1 j=1

Therefore, it follows that | P — I| # 0 and hence, the inverse of P — I exists. Thus, we can define
a="(ar,...,aqp):=(P-=D""-"A,.... 1. (1.4)

We also put amax := maxi <<k a;. For the system (1.1), it is expected that the critical exponent
is given by

N

7 (1.5)

Omax =
that is, if amax < N /2 (supercritical case), then there exists a unique global solution for small
data; if omax > N /2 (subcritical or critical case), then the local-in-time solution blows up in finite
time.

We note that the exponent « appears in the scaling property of the corresponding parabolic
system

(0 — AMv=F(v),

1.6
v(0, x) = ev%(x). (10)
Indeed, if v ="(vy, ..., vg) is a solution of the above system, then
vhi="), o)), v?(t, x) = A2% v; (A%t ax)

is also a solution for any A > 0, and the L!-norm of the initial data
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A 2aj—N,,0
||Uj(0,x)||Ll:)\a] ||Uj||L1

is invariant in the critical case o; = N /2.

The asymptotic behavior of solutions and the critical exponent problem for semilinear damped
wave equations have been widely investigated after a pioneering work by Matsumura [21]. In
particular, it is well known that the asymptotic profile of the solution of the linear damped wave
equation

(32— A+8)u=0
is given by a solution of the corresponding heat equation
@ —Av=0

with suitable data. This is called the diffusion phenomenon and investigated by many mathe-
maticians (see [2,8,11,13,16,20,23,26,37]). From the viewpoint of the diffusion phenomenon, the
semilinear damped wave equation was also studied for a long time (see [7,12,14,15,17-19,35,38]).
In particular, for the semilinear damped wave equation

(02 — A+ 3)u=1ul”,

(1.7)
(u, 3;u)(0, x) = &(uo, u1)(x),

where (ug,u1) € H (RN ) X L2(RN ) have compact support, it is well known that the critical

exponent of (1.7) is given by p = pr(N) =1+ 2/N, thatis, if p > pr(N), then there exists a

unique global solution for small data; if p < pr(N), then the local-in-time solution blows up in

finite time. This exponent pr (N) is a so-called Fujita’s critical exponent and well known as the

critical exponent of the corresponding semilinear heat equation

0 — AMv=1vl?

(see [6]).

Turning back to our problem (1.1), we can expect that the structure of the system (1.1) is sim-
ilar to the corresponding parabolic system (1.6). Escobedo and Herrero [4] determined that when
k = 2, the critical exponent of (1.6) is given by (1.5). This result has been extended for several
direction and we refer the reader to [1,9,22,32,36] and a survey paper by Deng and Levine [3].
In particular, Umeda [36] showed that (1.5) is critical for any k > 1 and N > 1.

For our problem (1.1), Sun and Wang [33], Narazaki [24] proved that (1.5) is critical for k = 2
and N < 3. After that, the first author [28] studied the asymptotic behavior of solutions, including
optimal estimates and asymptotic profile. Recently, the authors [29] extended the result of [24,
33]toany N > 1 and gave the almost optimal estimates of solutions.

For the case k > 3, Takeda [34] proved that the critical exponent of the system (1.1) is given
by (1.5) for N < 3. He also obtained a blow-up result in the case amax > N/2 for any N > 1.

Then Ogawa and Takeda [30,31] considered more general nonlinearities like

k k
Fu)="(Fi@), ..., Fe@), Fa=[]luj/" (pij=1orp;=0,> pij>1)
j=1 j=1
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and proved that small data global existence holds if N <3 and omax < N/2, where amax =
max| <<k @; and & is defined by the same as (1.4) with P = (p;;)1<;, j<k- Narazaki [25] further
extended these results to N > 4 by using weighted Sobolev spaces. He proved that if opax < N/2
and the initial data e (1, u') satisfies (1 4 |x|2)" @°, u') € (L' N H?) x (L' N H") with suitable
integer m, then there exists a unique global solution for sufficiently small ¢ and the solution
satisfies some decay estimates. He also obtained global existence results for slowly decaying
data not belonging to L! by using modulation spaces.

However, the precise asymptotic behavior of global solutions in the supercritical case and the
estimate of the lifespan of solutions in the critical or subcritical case remain open. In this paper
we shall give the global existence result in the supercritical case for any N > 1. Our approach
is based on a weighted energy method and we treat initial data belonging to weighted H' x L2
spaces. Also, we prove better estimates of global solutions and in the special case

2
Pl»P2,~.-,pk—1§1+ﬁ<pk,

we give an almost optimal estimate. Moreover, we shall give an almost optimal estimate of the
lifespan of solutions from both above and below in the subcritical case.

This paper is organized as follows. In the next section, we will state our global existence
result in the supercritical case and estimates of global solutions (Theorems 2.2 and 2.3), and the
estimate of the lifespan of solutions in the subcritical case (Propositions 2.4 and 2.5). In Section 3,
we give proofs of our theorems. The outline of the proof is similar to our previous paper [29].
However, it seems to be difficult to apply directly the same approach as in [29]. The crucial point
is the estimate of the nonlinear term. To do this, we appropriately determine the decay rate of the
weighted energy by solving a certain linear equation. This part is new and different from [29]
(Section 3.2). Finally, in Section 4, we give the proof of Propositions 2.4 and 2.5.

We finish up this section by introducing some notations. Throughout this paper, the letter C
indicates the generic constant, which may change from line to line. We use the index j =1, ...,k
and note that the index j — 1 is interpreted as k if j = 1. The symbol L? denotes the usual
Lebesgue space equipped with the norm

1/p

I fllLr = /If(X)I”dx (I<p<o0).

RN

Moreover, H*(R") is the usual Sobolev space. For an interval I and a Banach space X, we
define C"(I; X) as the space of r-times continuously differentiable mapping from 7/ to X with
respect to the topology in X (if / is a semi-open or closed interval, the differential at the endpoint
is interpreted as the one-sided derivative).

2. Main results

In order to describe our results, we define the weak solution of (1.1). Let 7 > 0 and let us
define

X(T):=C ([o, T); Hl(RN)) nc' ([0, T); LZ(RN)) .
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We say that a function u = "(uy,...,u;) € [X(T)]* is a weak solution of the Cauchy prob-
lem (1.1) on the interval [0, T') if it holds that

/ ut,x) (a,2¢(t, X) = A (t, x) — (¢, x)) dxdi

[0,T) xRN
— / {0 +uf ()60, ) = ()36 0,2 | dx
RN
+ / luj_11P7 ¢ (t, x)dxdt

[0,T) xRN

for any ¢ € C(‘)’O([O, T) x RN) and j =1,...,k, where we use the notation j — 1 = k when
j=1
Next, we define

x|

V=YD= e na

2.1)

where A > 0 is a constant, which is associated with the loss of decay of the global solution and
is determined later. We also put

2 2 2
Ij(uo,ul) = / 2V 0.%) (‘u(}(x)‘ + ‘Vu(j)-(x)‘ + ‘u}-(x)‘ )dx,
RN
1= [ @ (luja0 + 0,00 + a0 ) s
RN
and

k k

Io=Y L@’ u"), Itu:=>Y Ijtu). (2.2)
j=1 j=1

First, we describe a local existence result.

Proposition 2.1. Let A > O and let p; (j =1, ..., k) satisfy

N
l<pj<oo(N=1,2), 1<pj§N 2(N23), (2.3)
and assume that (1, u') € [H'RV)]* x [LZRM) satisfies Iy < 4+o0. Then, ~there exist Te €
(0,~oo] and a unique weak solution u =" (uy, ..., uy) of (1.1) satisfying u € [X(TE)]k. Moreover,
if T, < 400, then we have

lim [ (¢; u) = 4o00.
17e

The above proposition can be proven by a standard argument (see for example, [15]).
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Our main result is the following:
Theorem 2.2. We assume that p; (j =1, ..., k) satisfy (2.3) and the supercritical condition

N
Cnax < - (2.4)

Then, for any § > 0, there exists a constant A > 0 (see (2.1)) such that the following holds: If the
initial data (uo, u) e [Hl(RN)]k X [LZ(RN)]k satisfies Iy < 400, then, there exists a constant
g0 > 0 such that for any ¢ € (0, &), the Cauchy problem (1.1) admits a unique global weak
solution u ="(uy, ..., uy) satisfying u € [X (00)1¥ and the estimates

/e”“”Oawaﬁn?vaamnﬁdxscﬁma+n*W”%“W”””, (2.5)

RN

/ V0w (1, x)2dx < CePIo(1 4 1)~ N omat N2 (2.6)
RN
where C = C(N, 8, p1, ..., px) > 0is a constant.
Remark 2.1. The explicit form of the nonlinearity (1.2) is not essential. Indeed, our result is avail-
able for the nonlinear term F(u) =" (Fy(uy), F>(u1), ..., Fi(ux_1)) satisfying Fje c! (R;R),
F;j(0)=0and

|Fj(a) — Fj(b)| < C(la] + |b)?~a — b],

b)Pi72la—bl, p;>2,
F@— Ry <c | 0+ 1807 la=bl. by >
la —b|Pi~ l<p;<2

forl <j<k.

The estimates (2.5) and (2.6) are not optimal in general. Indeed, in the special case

2
PI»P2»~~~»Pk—1§1+N<Pka 2.7
then we have the following estimate:

Theorem 2.3. In addition to the assumption of Theorem 2.2, we further assume the condi-
tion (2.7). Then, the global solution u satisfies

/ VO (10,0, ) + Va6, 0 ) dx = Cel(1+ 07071, 2.8)
RN
/ VD y (1, x)2dx < C2Ip(1 4+ 1) 713, (2.9)
RN
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where the decay rates lj (j =1,...,k) are given by

11=N(P1—£—1>—31,
N 2
2 2 1
12=N(P2(P1—N>—N—E)—32,
13=N<173(P2<P1—3>—£>—£—1)—33,
N N N 2

oo 2) 2 ) D)

I = (2.10)

2 9
81,...,8k—1 > 0 are arbitrary small numbers and C = C(N, 8,81, ...,0k—1, P1s---, Pk) > 0 is
a constant.

Remark 2.2. The above decay rates [; (j =1, ..., k) are better than those of (2.5) and (2.6).
We can expect the above decay rates are almost optimal under the condition (2.7). This means
that if we can take § = 81 = - - - = §—1 = 0, then the estimates (2.8) and (2.9) become optimal in
view of the decay rates (see [28] for the case k = 2). However, in general cases, it remains open
whether we can find the optimal decay rate of solutions.

Next, we give an estimate of the lifespan of solutions in subcritical cases. The lifespan of the
local solution is defined by

T; :==sup {T € (0, 00)| There exists a unique weak solutionu € [X(T)]k for (1.1)} .

For the estimate of T, from above, we have the following.

Proposition 2.4. Let p; (j =1, ..., k) satisfy the condition (1.3) and we assume the subcritical
condition
N
Omax > 3

Moreover, we assume that the initial data satisfy u°, u') € [H'(RM)]F x [LZRM) ¥ and

liminf / @) +ul)dx >0 (j=1,....k. 2.11)
R—o0
|x|<R

Then there exists a constant C > 0 such that the lifespan of the solution is estimated as

T, < Ce /¥
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with
N
K = max — > (2.12)

For the estimate of T, from below, we have the following.

Proposition 2.5. Let p; (j =1, ..., k) satisfy (2.3) and assume the subcritical or critical con-
dition amax > N /2. Let the initial data (u°, u") be in [H'(RV) ¥ x [L2RY)|F and Iy < +o0.
Then for any § > 0, there exists a constant C > 0 such that the lifespan of the solution of the
system (1.1) is estimated as

Ce~etd <, (2.13)
for any ¢ € (0, 1], where k is given by (2.12).

Remark 2.3. From the above two propositions, we have an almost optimal estimate of T
from both above and below in the subcritical case amax > N /2. However, in the critical case
Omax = N /2, the estimate (2.13) seems to be far from the optimal estimate. Moreover, we do not
have any estimate of 7, from above.

3. Proof of Theorems 2.2 and 2.3

In order to prove Theorem 2.2, by Proposition 2.1, it suffices to prove that 7(¢; u) defined
by (2.2) of the local solution u does not diverge in a finite time, provided that ¢ is sufficiently
small. To prove this, we employ a weighted energy method, which is originally developed by
Todorova and Yordanov [35] and refined by several mathematicians (see [15,27]). We define the
weighted energy of u; (j=1,...,k) as

W;(t) :=(1+t)lf+1_5/e2w(|3tuj|2+IVuj|2)dx+(1+t)l/'_5/ezw|uj|2dx

RN RN
with the function v defined by (2.1), where [; € R, § > 0 are determined later. We also define

k
M(t) := sup ZW]'(S)

O<s<t =1

Then we can prove the following a priori estimate:

Proposition3.1.If p; (j =1, ..., k) satisfy (2.3) and the supercritical condition (2.4) holds, then
there exist ] ='(I1, ..., I;) € R and 8¢ > 0 such that for any § € (0, 8o], there is . = A(N,8) > 0
such that for any local solution u ="(uy, ...,ux) of (1.1) as in Proposition 2.1, we have

k
M(t) < C8210 —+ CZ (M(I)Pj + M(t)(pj+l)/2>
j=1

with some constant C > 0.
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If we obtain the above estimate, we can immediately prove

M) < Ce’ly (3.1)
for sufficiently small ¢ and this guarantees the existence of the global solution.

Remark 3.1. As we will see in the proof of the above proposition, [ = (I1,...,I) is deter-
mined by (3.41) and §9 = 8o(N, p1, ..., pr) > 0 is taken sufficiently small so that the numbers
Vi1, vj2 (j =1,...,k) defined by (3.36) satisfy y;; < —1. The number A depends on § € (0, §o]
and is given by

86

A=, 3.2
3N —4$ (3-2)

We decompose the proof of Proposition 3.1 into two parts. The first part is the estimate of the
linear part and the second one is the estimate of the nonlinear part.

3.1. Estimates for the linear part

Now we assume that
I[;<N/2 (j=1,...,k). (3.3)
Under this condition, we can apply the weighted energy method and obtain an estimate of W;(z):
W;(t) < Ce’lp+ CN; (1), (3.4)
where N (t) is the nonlinear term

t

N () :=/ (1+s)lf+1—5fez'/f|u,,1|21’fdx+(1+s)’f—5/ez'/f|u,,1|f’j|uj|dx ds.

0 RV RV
(3.5)
More precisely, we prove the following lemma.
Lemma 3.2. We assume the condition (3.3). Then it follows that
W;(t) +L;(t) < Ce*lo+ CN; (1), (3.6)

where L (t) is given by
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t

Ly = [ [a+9017 [ (104 oo+ 19, ) dx

0 RN
+<1+s>lf—5fe2¢<1+<—wt))<|alu,»|2+|W,»|2)dx
RN
1
+(1 +s)lj*5/e2¢ <|v¢|2+r> |uj|?dx | ds. (3.7)
S
RN

Proof. First, by the definition of ¥ (see (2.1)), it is easy to see that

=Y (t,x) = —|x|2 (3.8)
T4+ A+ '
X
Vi (t, x) = T ESETS (3.9)
AY(t, x) = N -\ L. (3.10)
4 141

Hereafter, A; (i =1,2,...) denote positive numbers depending on A such that lim,_,oXx; = 0.
From (3.8) and (3.9), we can also easily have

—Yi(t,x) = 2+ VIV, x) % (3.11)

Multiplying the j-th equation in (1.1) by e?¥ 9,u j» we have

1
S0 [ez‘/’(|a,uj|2 n |Vuj|2)] _v. (ez‘/fatu,-w,-)

VY2 eV 2
+ eV (l—i-(—w[)— v |a,uj|2+—|1p,Vuj—3,ujVIﬁ|
- —V¥i
=ez‘p|uj_1|p18,uj. (3-12)

Noting (3.11), we have

(3.13)
The Schwarz inequality implies

4 5
2|(=¥)du;Vu; - V| < §<—w,>2|wj|2 + Z|atu,-|2|w|2

and hence,
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2y 1 1
e 2
= | Vu; — du;Vy|” > e (5(—wt>|w1|2 - Z|a,uj|2

|VW>
(—¥1)

1 1
2 2 2
=%V (g(—w,)wuﬂ - m|a,uj| ) (3.14)
Here we have used (3.11). On the other hand, the right-hand side of (3.12) is estimated as
) 1 .
eV uj 1P duj] < eV (§|atu,~|2 +2|ujl|21’-f) : (3.15)
Applying (3.13), (3.14) and (3.15) to (3.12), we obtain
1
S [e2¢(|a[u,|2 + |Vuj|2)] —v. (ewa,u,w,)
1 —
+e? <Z + (—wt)) |0,u ;1> +e2*”%|wj|2
<Ce®\uj_1|*i. (3.16)

Also, by multiplying the j-th equation in (1.1) by eV u j» it follows that

1
0y |:32‘// <Mj8tuj + 5u3)i| —-V. <g2‘/f <ujvuj + (VI//)M?))
+ e (=) =299+ AP)) ud +1(V + Vel
+ e (2= oy — o )
=V |uj_|Piu;. (3.17)
We note that (3.11) and (3.10) lead to

2V2A—AV2NA1 3.18
(=) = 2IVY " + (AY) = A V| +(Z_ 1>]—+t. (3.18)

The Schwarz inequality implies
(V4 VeV ui P = 2 |Vu +2u; (V)P = eV <A2|w,-|2 - x2|v¢|2u§) . (3.19)
1
2=y | < dau + = (—vlon (3.20)

Combining (3.17) with (3.18), (3.19), (3.20), we have
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1
0y |:e21// (Mjaluj + §M3>i| - V. (ezw (ujVuj + (VI//)M?))
N 1 —
24 2 2.2 oo -2 ! 2
+e {)»2|Vu1| + A3| V| uj+<4 M)l—i—tuj <A2 +1>|8,u1| }
<™ |uj_17ujl. (3.21)

Next, we adding the estimates (3.16) and (3.21). In order to control the bad term
—(=Y /22 + l)|8,14(,~|2 in (3.21), we multiply (3.21) by a small parameter v > 0 and add it
to (3.16). Then we obtain

1 1
0 |:e2'/’ <§(|8tuj|2 + [V 1*) + v (ujB,uj + Eui))]

V. (ew (Bfujwj v (”J'V"‘J' + (VV’)“;)))

1
() e

+eV <v)»2 + _I//t> V|

5
N 1
+ ve?V <x3|vw|2u§ + <Z —/\1> . +tu§)
< € (Juja P77 + 117 ) (3.22)

Therefore, taking the parameter v so small that
1/4—v>0 and 1—-v/A2>0 (3.23)

and integrating (3.22) over R, we can deduce that

d 1 1
o /62‘/’ (5(|a,u,~|2+|Vuj|2)+v<u,a,uj+5u§>>dx
RN

+eo / AV (14 () (B 2 + [V P)dx

RN
N 1
249 2.2 v 2
+v/e <A3|V1ﬁ| uj+<4 )\1> 1+tuj>dx
RN
SC/ez‘” (|u,-_1|21’f+|uj_1|1’f|uj|)dx (3.24)
RN

with some constant ¢ > 0.
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We further multiply (3.24) by (19 +1)%—% with a large parameter o > 1 depending on A, v and
have

d _ 1 1
o (to +t)l/ 4 / P <§(|atuj|2 + |Vuj|2) +v (Mjatuj + Eu?)) dx
RN

. 1 1
—(lj—a)(to+t)’f‘1‘5/e2‘” (E(|atuj|2+|V”j|2)+v<“j3tuj+Eu§))dx
RN

+co<ro+r>l-f—3/e2*"<1 (=) (3 P + [V Pdx

RN
+u(ro+z)’f*5/e2w A3V Pul + E—xl L 2)ax
7o\ 4 1+
RN
SC(zo+t)lf—5/e2‘/f (|uj_1|21’-f +|uj_1|p_f|uj|) dx. (3.25)
RN

We must control the second term in the left-hand side. Here we recall the assumption /; < N /2
(see (3.3)). As we will see in the next subsection, /; may take the negative value. Thus, we divide
the following proof into two parts depending on the sign of /.

Case I: I; > 0. In this case we must estimate the second term in (3.25). First, we remark that
lj — & > 0 for sufficiently small § > 0. We also note that

vV
v lujdpu | < vigud + m|a,u,-|2. (3.26)

Then the second term in (3.25) is estimated as

i 1 1
(1j—8)(to+ 1)~ S/ew (E(Iatujlz-}-IVujIz)—i-v(qu),uj—i-Eu?))dx

RN

1 1 v 1
<|; = &)t + 0! S/ez‘/’ <<5+4—M>|atu,-|2+z|wj|2>dx
RN

+ [ = 8yt + 11 / e (5 +vr) ) dx|. (3.27)
RN
Here we note that the first term in the right-hand side of (3.27) is controlled by the third term

of (3.25), provided that the parameter #; is sufficiently large. Indeed, if ¢ is sufficiently large
depending on ¢y, A, v, §, then it follows that
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colto +1)47° / V(1 + (=) (181> + |Vu1P)dx
RN

1 v 1
li—1-46 2 2 2
— |t = O+l /e*”((fm)wluﬂ + 51V, )dx
RN

> ci(tg + 1) 70 f V(L + (=¥ (81> + |Vu | Pdx (3.28)
RN

with some constant ¢; > 0. Moreover, the second term of the right-had side of (3.27) can be
controlled by the forth term of (3.25). In fact, for a given é§ > 0, we determine the parameter A so
that § = 3A1. Then, as in Remark 3.1, we see that

88
A= ——r
3N —46

and have

N 1
e [ ((30)

RN

—a; —5)(to+r)’f—1—5/e2‘” <(§+vk4) u?)dx

RN
N & 1
li—1-6 2 2
>v(to+1)" /6’w<<Z—§>—<§+)»4)(lj—5)>ujdx
RN
> co(tg 4 1) 7178 / eV uldx (3.29)
RN

with some constant ¢ > 0, provided that A4 is sufficiently small. Here we have used the assump-
tion /; < N/2 (see (3.3)). Consequently, from (3.26), (3.27), (3.28) and (3.29) we have

d _ 1 !
- (to + 1) B/ez"’ <§(|3t”j|2+|V”j|2)+v<ufafuj+§u§>>dx
RN

+eito+1)i~? / V(1 + (—v)) (81> + |Vuj|Pdx

RN
1
;-8 20 2 2
+c3(to+1)7 e v + — i
3(to+1) / <| v t0+t)u]
RN
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< Clto+070 [ (s PP+ a1 1) (3.30)
RN

with some constant ¢3 > 0.

Case II: I; < 0. In this case the second term of (3.25) is positive and so we can omit this term
(see (3.33) for the positivity of the integrand). Then we can immediately obtain the same estimate
as (3.30).

To reach the conclusion, we turn back to the inequality (3.16). Integrating (3.16) over RY and
multiplying it by (o + )5 +173, we have

1d 1
o (to + 1)l T! B/ezw(lazujlerIlez)dx
RN

1 A
—E(lj—l—l—5)(to+t)lf_‘3[ez‘”(|3,uj|2+|Vuj|2)dx

RN
L 1 —
+ (1o + )bt 5/621// ((Z+(—w,)>|atuj|2+ 5‘”’|w,~|2> dx
RN
5C(to+t)l-f+1_8/ez'/’|uj_1|2p-/dx. (3.31)
RN

To control the second term of the above inequality, we use the second term of (3.30). Calculating
(3.30) + o x (3.31) with a small parameter u > 0, we can deduce that

J) -
B o017 [ a4 19 Py
RN
d -5 [ 2y (] 2 2 L2
+ S (to+0) e E(|8[1,¢j| +|Vu;|?) +v ujatuj—i-—uj dx

dt 2
RN

+(a=50G+1-9)@w+n" / e (1 (=) (B I + [Vuj P)dx

RN
i 1 -
+ plto +1)lit! S/ew ((ZJF(—%))|a,uj|2+%|w,-|2> dx
RN
1
1;—8 20 2 2
+c3(tg+1)/ /e (|V1[/| +—t0+t>uj
RN

sc<t0+t)’f“—5/e2*”|u,~_1|2pfdx+c<ro+r)’f—5[ez*”|u,-_1|l’f|uj|dx.
RN RN
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Taking the parameter p > 0 so that ¢ — %(l j+1—248) >0, we can conclude that

wd 1
S (to + )lit! 8/62¢(|8tuj|2+|Vuj|2)dx

RN

d -~ 1 1
+E (to—i-t)l-’ 5/6,21# <§(|atuj|2+|Vuj|2)+v(ujatuj—i-iu%))dx

RN

+c4<ro+r)’-f+1—3fe2“’ (190 + w0 Qo2+ [Vay 1)) dx

RN
teatto+0 [ @ (14 (Y00 P+ 190,

RN

- 1
+ca(to+ 1)l 5/62*” <|v¢|2+—> |uj|Pdx
o+t
RN

5C(r0+r)l.f+‘*5fe2¢|u,-_1|2pfdx+C(z0+z)l-f*5/e2W|uj_1|Pj|uj|dx

RN RV

with some constant ¢4 > 0. Finally, integrating over [0, ¢], we obtain

2 R
B o+ 1)+ / AV (13 + 1V P)dx

RN
1 1
o+ 1)li? / P (5(|atuj|2 + V) +v <uj3zuj + 5“?)) dx
RN
+caLj(r)
<Ce’lp+CN; (1), 532

where L (¢) and N;(¢) are defined by (3.7) and (3.5), respectively. Noting that
Viu ] < —u? 4 v|du; 2
Jort®gl = 477 )
and recalling v < 1/4 (see (3.23)), we see that
29 1 2 2 1,
e §(|3[Mj| +1Vu;|?) +v u,-a,uj+5uj dx
RN

1 v
> few <Z(|atuj|2 +Vu; ) + Zu§> dx. (3.33)
RN
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By noting that (o +1¢) ~ (1 + 1), (3.32) and (3.33) imply
W;(t) + Lj(t) < Ce*Ip+ CN; (1),
which completes the proof of (3.6). O
3.2. Estimates for the nonlinear part

To prove Proposition 3.1, it suffices to control the nonlinear term N;(¢) defined by (3.5). In
order to estimate N;(z), we use the following lemma:

Lemma 3.3 (Gagliardo—Nirenberg inequality). (See [5].) If l < p<oo (N=1,2), 1 <p<
N/(N —2) (N = 3), then we have

p 1—o2p N(p_])
£l < CIV AN oy =02

__Np-D
TRk + D

’

Op+1 1—0o +1
Il <CUV LS NI "

From the above lemma, we obtain

fezwluj_1|2pfdx
RN

2p;(1=03p))

_ 2pjonp;
= C (0™ Pt ujolz + eV Vujill) 7 eV uil

and

2 .
/e Vj 117 |uj|dx

RN
_ Pjopi+1 pi(l—0p,.41)
=C(+07 et ujorl+ e Vupill) " e uylyy
_ Tpj+l l=0p 41
x (10721 ugl + eV Vali) " et

Indeed, we note that

2 2p; . 2p;
[ @i = e,

RN
2pj(l_o_ij)

. 2pjodp; .
< IV Pl e Piug

and (3.9) implies
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2\ 12
|VrleV/Pi =C(141)"1/2 <—1|)i t) Vi <c(1 40712V,

The second inequality can be proven in the same way. These estimates give a bound for N;(¢) as

t

Ni@) = C/ [+ 977 M@yPs + (14 )72 M) P02 ds,

0

and hence, we have

k t
M(t) < Ce’ly+C Z / [+ M@P + A +sy72Mn P02 ds, (3.34)

where
1 1
vitr=1l+1-56+ 5 (—lj_l -1 +5) 2pj02pj + 3 (—lj_l +3) 2p;i(1— Uzpj),
1 1
viz=1l =8+ 5 (~ljm1 = 148) pjopa1 + 5 (<lim1 +8) pj(1 = 0p41)
(3.335)

1 1
+ ) (=1 —1+9) Opj+1+ B (=1 +8) (1 - Opj+1)-
Therefore, it suffices to show that both y;; and y > are strictly less than —1
To prove this, we note that
N(p—1)
2po2p=N(p—1, (p+Dop1=—7—
and calculate y;1, yj2 as
1
vin=1lj+1=pjlj-1=5-2pjosp; +(pj — 13
N
=1l —pjlj-1— ?(Pj -Di+1+(pj -1,
i pili-1 1 1
V2= > T T, —E'(Pj+1)0p_,~+l+§(17j_1)3
1 N 1
=3 lj—pjlj_l—?(pj—l) +§(pj—l)8. (3.36)
Therefore, if
(3.37)

N ,
{lj —pili-1 =5 (pj— 1)} <=2 (=L....k

holds, then taking ¢ sufficiently small, we can obtain yj; < —1 (j =1,...,k, i =1,2).

Please cite this article in press as: K. Nishihara, Y. Wakasugi, Global existence of solutions for a weakly coupled
system of semilinear damped wave equations, J. Differential Equations (2015),
http://dx.doi.org/10.1016/j.jde.2015.05.014




YJDEQ:7878

K. Nishihara, Y. Wakasugi / J. Differential Equations eee (eeee) eee—see 19

Now we prove that there exist some /1, ..., [ such that (3.37) holds under the supercritical
condition. Let n > 0 be a small number determined later. Instead of the inequality (3.37), we
consider the following linear equation of /;:

N .
{lj_lej1—?(1)]_1)}:_(2‘1‘77) G=1L....0). (3.38)
Using the vector notation [ ='(I1, ..., I;), we can rewrite the equation (3.38) as
1 1
N . .
~(P=Dl—=@P-n||=-2+n|:].
1 1

where P is defined by (1.3) and 7 is the identity matrix. Multiplying the both-side of the above
equation by (P — I)~!, we have

N .
l=Qtma— | (3.39)
1

(recall that « is defined by (1.4)). Finally, we choose the number 1 > 0 so that [ satisfies the
condition (3.3) to apply Lemma 3.2. To obtain better estimates, we have to take larger 1. Hence,
let us choose 7 so that

N N
2+ n)amax — E = 3,
that is,
N — 2am;
p =~ omax (3.40)
Omax

We note that the supercritical condition (2.4) guarantees that > 0. From this choice and (3.39),
we have

N o N
lj=(2+n)0lj—3=Namax—?. (341

It is obvious that the above [; (j =1, ..., k) satisfy the condition (3.3). Thus, we can apply the
weighted energy method (Lemma 3.2) and it holds from (3.38) that

vir=—Q+nm+1+(p;j —Dé=—-1—-n+(p; — 1)4,

n

1
—(p; — 1)8.
2+2(P/ )

1 1
vip=—7Q+m+5pj-Di=-1-

Thus, choosing § sufficiently small (it depends on p; and 7), we have y;1,yj2 < —1 (j =
1, ..., k) and this completes the proof of Proposition 3.1. Moreover, from (3.41) and (3.1), we can
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immediately obtain the estimates (2.5) and (2.6). Finally, we note that the parameters in the above
proof are determined in the following order:

n—>8—>XA—>v—>1yg— U

The number n defined by (3.40) depends only on N and p; (j =1,..., k) and so do the other
parameters.

3.3. Proof of Theorem 2.3

In the inequality (3.37), we first put [y = N /2. Then we have the condition for /1:

2 1
Ii1 <N ———=. 3.42
1< <P1 N 2) (3.42)
Therefore, we choose [1 = N <p1 — % — %) — &1 with sufficiently small §; > 0. Using (3.42)

and (3.37) again, we have

[ N 2 2 ! 1)
< R [ ———
2 P2\ P N N 2 P201

and hence, we choose

L= N 2 2 1 5
2= P2P1N N 2 2

with § = (p2 + 1)§1. By this procedure, we define /1, ..., [y—1 and in particular, /;_ is given by

2 2 2 2 1
lk-1=N <Pk—1 (Pk—z ( e <P2 (Pl - N) - N) . ) - N) N 5) —8k—1 (3.43)

with 81 = (pr—1 + 1)8k—2. We note that the assumption (2.7) implies the condition (3.3).
Therefore, it suffices to check

N
{lk — prle—1 — ?(Pk - 1)} < =2. (3.44)

In order to check the condition (3.44), we prove the following lemma:

Lemma 3.4. If (2.7) holds, then o < N /2 is equivalent with

1 2 2 2 2 2 345
+N<Pk(l7k—l <Pk—2<-~-<p2<p1—N)—ﬁ>--~>—ﬁ>—ﬁ). (3.45)
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Proof. By using the cofactor matrix, we can calculate « as

1
o= ———— X l+l_[p./+Hpj+"~+PkP1+P1 )

[j=1pj = 2 23
1
w=———V1+[]p+ [[ P+ +PiP2+ P2,
[Mapi=1 | a0 e
1
ap=————1+][]pi+ [[ P+ +P-1p+ 1
[Tj=1pj—1 A AL

From the above expression, we can rewrite the condition oy < N /2 as

2

k
1+%<H1’j_N [Tri+ IT pi+-+ pecipe+p
j=1

J#l J#1.2

We can compute the right-hand side as

k
HP./—% HP./+ l_[ pj+ -+ Pr—1Pk + Pk
j=1

J#1 J#1.2
2 2
= Pk Hl’j—ﬁ [Tri+ I1 Pt +pe N
| \y#k J#Lk JAL2k
2
= Pk | Pk—1 H Pi— N l_[ pj+ 1_[ pj+ -+ P2
L jk,k—1 j#1k k=1 J#£1,2.k k=1

-3

. 2 2 2 2
= Pk | Pk—1\ Pk-2 P2\ P1 N N N ~ )
This proves Lemma 3.4. 0O

Let us complete the proof of Theorem 2.3. By (3.43) and (3.45), we can deduce that
N
{1,- —Pilj-1= 5 (pj— 1)}

_N 2 2 NN s
=3 Pk | Pk—1 Pi= N 2 5 (Pk PkOk—1

Please cite this article in press as: K. Nishihara, Y. Wakasugi, Global existence of solutions for a weakly coupled
system of semilinear damped wave equations, J. Differential Equations (2015),
http://dx.doi.org/10.1016/j.jde.2015.05.014




YJDEQ:7878

22 K. Nishihara, Y. Wakasugi / J. Differential Equations eee (eeee) eee—eee

=N — Npi (Pk—l ("'(Pl_%>"'>—%>+Pk5k—l
<N—N(1+£)

N
=2,

provided that §;_1 is sufficiently small. Thus, the condition (3.44) is checked and this completes
the proof of Theorem 2.3.

4. Estimates of lifespan

In this section, we give a proof of Propositions 2.4 and 2.5.
4.1. Estimates of the lifespan from above

First, we prove Proposition 2.4. The proof is similar to that of our previous result [29] in which
we followed [10] and proved in the case k = 2. For our problem, we combine the argument in

[29] and that in [34].

Proof of Proposition 2.4. Let n(¢) be a test function defined by

1 0<r<1y2,
_ exp(—1/(1 —12))
0= o = Uy tep—/a 7y /2<t<l
0 t>1

and let ¢ (x) = n(|x|). Then we can easily see that n € C5°([0, 00)), ¢ € C3° (RM) and

d\
(E) n(®)

for p > 1. Indeed, putting u(t) = n(t)!/" with 1/p +2/r = 1, we have u(t) € C5°([0, 00)),
0 < u(t) <1 and hence,

J\2
<E> u(t)”

<Cu@®r<cn'Hr=cnin'r.

<Cn'VP, (i=1,2) |A¢x)| < Chx)/P (4.1)

In" ()] = rr = 1) (1 @) @) 2+ Oy

We can prove the other estimates of (4.1) in the same way. Let tp, Ro be constants depending only
on N, u®, u! determined later. First, we note that if T: < 19, then this yields that T, < toe’l/ K
for any 0 < ¢ < 1, k > 0. Therefore, hereafter we assume that 7, > to. Let u be a weak local
solution of the system (1.1) on [0, 7;). We also assume that opax > N /2. We note that without
loss of generality, we may assume that

Omax = Ok
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Let t € (19, T:) and R € [Ry, 00) be parameters and let

Ve, r(1, X) =0 (DPR(x) =1(t/T)P(x/R).

‘We note that

supp Yr.x =10, 71 x ¥ € RY||x| < R (42)

and
Ve r(t,x) =1on[0,7/2] x {x eRV x| < R/z} .
We also define
T
Upmre. R = [ [ a1 naxar
0 RN

and

Ji(R) = / () + ] () pr(x)dx.

RN

Then, by the definition of the weak solution, we have

T
Uj_1(t. R) +&J;(R) =ffu,- (B,Z—A—at> Ve rdxdt
0 RN
=: K1+ K> + Ks. 4.3)

Let us estimate K; (i = 1,2, 3). By (4.1), we deduce that

K1://ujt_zr]”(t/r)(j)R(x)dxdt
0 RN

T

<t7? / / lujn(t/T)"/Pitt pr(x)dxdt
0 RN

T

Sr”//|uj|¢f,R(t,x)‘/Pf+ldxdt.

0 RN

Here we have also used that 0 < ¢r(x) < 1. Applying the Holder inequality, we obtain
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. 1/pj+1 . 1/p 4
Ki<t7? / / |uj|Pi+1 4y, pdxdt / / dxdt
0 RN 0 |x|<R
_ /. /‘ .
< Co VP RNV y (o, RYVPI, (“4)

Here we note that the support of v, g is given by (4.2) and hereafter, p’ denotes the Holder
conjugate of p. In the same manner, we can deduce that

Ky < o /P TNy, R)V PRI, 4.5)
K3 < Co VP gV iy (1, R)VPin (4.6)
By (4.3), (4.4), (4.5), (4.6), we can conclude
Uj-1(t.R)+eJ;(R) <CD(py, . 7. RU;(x, R)'/Pi+, 47)
where D is defined by
D(CI, T, R) — _L,—2+l/qRN/q + Tl/qR—Q—i—N/q + _L_—l+1/qRN/q (48)
forg > 1, t € (19, T:), R € (Rp, 00).

Next, by the assumption (2.11), there exist constants Ry, co > 0 such that for any R > Ry, we
have

Ji(Ry=co (j=1,...,k). 4.9)
From this and (4.7), we can compute
Uk—1 + e Jk(R)

< CD(p}, 7, A)Ui(z, R)"/
<CD(p},t, R)D(py, T, VP U (z, R)/ P17

A

<CD(p}, 7. R)D(Py. . VP - D(pp, T, RV PP Uy (z, R P1opw),

By using (4.9) again, we can rewrite this inequality as

e <CD(p), 7, A)D(ps, T, )P - D(p}, v, )/ PPy (¢, R/ P10
— Ug-1(z, R).

Now we use an elementary inequality

ac® —¢ <({1- b)bb/(l_b)al/(]_b)
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fora > 0,0 <b <1, c > 0. We can immediately prove this by considering the maximal value of
the function f(c) = ac” — c. From this, we can conclude

(pr-pr)
8EC[D(PQ,T,R)D(p/Z,I,R)l/l’l...D(p]’c,l-’R)l/(m--ﬁk—l)] e

Now we put 79 = max{l, Ré} and R = t'/2. Then we have

(p1--p1)
] . (4.10)

e<C [D(P/l, T, 1’1/2)D(p/2, T, T/2p - D(p, T, /2 prpen)
Noting that
D(q,7,7'?) < Co~ ! TVHD/C0)

for T > 1, we use the following lemma, which was proven by Takeda [34, Lemma 14].

Lemma4.1. Let p; > 1 (j=1,...,k) and letaj (j =1,...,k) be defined as (1.4). Then it is

true that
N+2 1 N+2 1 N+2
-1+ ; + — -1+ ; + — -1+ ;
P P1 12 pPip2 P3
1 N +2
+ -1+ ;
P1D2 " Pk—1 Py

P1P2"'Pk—1<N )
=—| = — |-
P1P2 " Dk 2

Using this lemma, we further estimate the right-hand side of (4.10) as
N/2—ay,

e<Crt

Noting ax > N /2, we conclude that

with k¥ = o — N /2. Since 7 is arbitrarily in [, T¢), we have

T, < Ce™ /¥,

which completes the proof. O
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4.2. Estimates of the lifespan from below
Next, we give a proof of Proposition 2.5.
Proof of Proposition 2.5. We use the same notation as in the previous section. Let ¢ € (0, 1].
First, we note that if 7, = +o00, then the estimate (2.13) is obvious. Therefore, we assume that

T, < 400 in the following argument. In the following, we assume that [ = (I1, ..., [;) satis-
fies (3.3) and

yi1+1>0, yp+1>0, 4.11)
where y;1, y;2 are defined by (3.35). Then, we can prove the same estimate as (3.34) and hence,
k

t
M) = Coe?+C Y [ [+ M©P + 1+ 7M@) P02 ] ds
j=1y

<Coe? +C [(1 + O TIM P+ (1+ z)Vf‘2+‘M(z)(1’j+‘>/2] (4.12)
j=1

with some constant Cy > 0, which depends on Iy. We note that the first inequality of (4.12)
implies

M (0) < Coe?Io.
Therefore, we can take TE’ > () as the smallest time such that
M(T)) =2Coe>Iy. (4.13)
Indeed, if such a time 7, does not exist, then it implies that M () < 2Coe? 1y for all ¢ > 0 and

hence, we have the existence of the global solution. Substituting (4.13) into (4.12), we deduce
that

k
2C0e? = Coe? + € Y [+ T CoeD) P + (14 Tyt 2Coe2) P2
J=1

We rewrite this as
k
Coe?<CY [(1 + T (2Ce*)Pi + (14 Té{)m+l(2C052)(p,-+1)/2] _
j=1

Next, we replace the right-hand side by the maximal term:

Coe? < 2kC max {(1 + T 2R, (1+ T;)Vﬂ“(zcogz)(f’f“)ﬂ} L (414)

=j=

Please cite this article in press as: K. Nishihara, Y. Wakasugi, Global existence of solutions for a weakly coupled
system of semilinear damped wave equations, J. Differential Equations (2015),
http://dx.doi.org/10.1016/j.jde.2015.05.014




YJDEQ:7878

K. Nishihara, Y. Wakasugi / J. Differential Equations eee (eeee) eee—see

We consider the case where the maximal term is given by
(1+ )71+ (2Coe?)Ps
with some j € {1,..., k}. Then, (4.14) implies
Coe? < C(14+T)) 1 (2Coe?)Pi
and hence, we conclude
g 2(pj=D/j1+D) < CTE/.
On the other hand, when the maximal term of (4.14) is given by
(1 + 1))V (2Coe?) Pith/2
with some j € {1, ..., k}, we obtain
Coe? < (1 + T2 (2Ce?) Pith/2
and hence, we have
=2 +D/2=D/ 24D < T
Combining the estimates (4.15) and (4.16) and consider the worst case, we can obtain
e~V <cry,

with

{ yj1+1 yj2+1 }
K1 = max , .
1<j<k | 2(pj — 1) 2((p; +1)/2—-1)

Let us calculate «1. Formally, we put § = 0. Then, from (3.36) we can see that
N
vir+1=1l; —pjlj—1 — E(Pj - D +2=2(yp+ 1),

which implies

yii+1 vi2+1
2pj =1 2((pj+1/2-1)

Therefore, «; is written as

vi1+1

K| = max ————.
1<j<k 2(p; — 1)

27

(4.15)

(4.16)

4.17)

(4.18)
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Now, we determine the decay rate of the energy /; such that

vi1+1 N

Ay 1y ey

forall j =1,..., k. This identity can be written as

{ti—pjli-n =5 -1} +2
2(pj— 1

=0Omax — &

This is also equivalent with

N N
{lj —pjlj—1— E(Pj - 1)} +2=2(p; -1 <0tmax - 3) .
Therefore, it suffices to determine the vector l =*(ly, ..., ;) as

1 1

N
_(P—I)l=<205max_?>(P_I) -2 .
1 1

Thus, we conclude

1

N
l=—<2amax—3) s+ 20, 4.19)
1

or, equivalently,

N
1= —2(emax — )+ -

This /; is obviously satisfies the condition (3.3) and hence, we can obtain the estimate (4.12) for
this choice of /;.
Turning back to the case § # 0, from the above choice of / j (4.19), we have

2

pj+1 N
J/j2+1=2<JT—1> (amax—5>+6j28

withsome cj1,cj2 >0(j=1,...,k). Thus, the condition (4.11) is valid and k1 defined by (4.18)
satisfies

N
yit+1=2(p; — 1) (amax - _) +cj1d,

K1 = OCmax — ? + ¢
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with some cg > 0. Therefore, the estimate (4.17) becomes
e~V <cr!
with

1_ 1 s
Kl_Olmax_]v/2 as

where c¢; > 0 is some constant. Finally (with appropriately modification of §) we have the desired
estimate

8—1/K+5 S CTg,
where « is defined by (2.12). O
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