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Abstract

We develop Harnack inequalities for two different types of equations. First we consider a fully nonlinear 
uniformly elliptic equation related to the Pucci’s maximal and the minimal operators. Next we consider 
a quasilinear equation related to the p-Laplacian. In both cases we consider lower order terms of Keller–
Osserman type. Although the equations considered are quite different, we employ a unified method to 
approach both problems and the results we find are similar.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

In a recent paper [10], Martin Dindoš studied the Harnack inequality for non-negative classical 
solutions of �u = f (u) in domains in Rn. In [10], Dindoš used a strict convexity condition and 
the Keller–Osserman condition on the nonlinear term f to obtain a global L∞ estimate of all 
non-negative solutions to the aforementioned equation. The estimate was achieved by comparing 
nonnegative solutions to boundary blow-up solutions, the existence of which is assured by the 
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Keller–Osserman condition. As an important ingredient Dindoš introduced a growth condition 
on f at infinity which, in conjunction with the global estimate, led to Harnack inequality for 
nonnegative solutions. The results in [10] extend the work of Finn and McOwen in [11].

A weakened version of the conditions used in [10] have been used in [16] to establish Har-
nack inequality for general second order uniformly elliptic equations in non-divergence form. 
In this paper we wish to extend Dindoš’ work by not only replacing the principal operator with 
more general elliptic operators of two types, but also by significantly weakening some of the 
other conditions used in Dindoš’ work. We use these conditions to develop Harnack inequal-
ity for non-negative viscosity solutions of fully nonlinear equations. The generalized Dindoš’ 
condition with p > 1 allows to extend further the result to operators with different homogene-
ity degree in the gradient such as the p-Laplace operator. More specifically we first investi-
gate the Harnack inequality for non-negative (viscosity) solutions of a fully nonlinear equation 
H(x, u, Du, D2u) = g(x, u), where H(x, t, ξ, X) satisfies appropriate structural condition re-
lated to the Pucci extremal operators. Assuming that g(x, t) satisfies f (t) ≤ g(x, t) ≤ Tf (t) for 
some constant T ≥ 1, and some non-negative function f that satisfies Dindoš’ condition, we 
shall prove a Harnack inequality for non-negative viscosity solutions of the equations described 
above. For basic results on fully nonlinear equations we refer the reader to [3,7] and the refer-
ences therein.

The second part of our investigation will focus on developing the Harnack inequality for 
non-negative weak solutions of the quasilinear equation div(|Du|p−2Du) +b(x)up−1 = g(x, u), 
where p > 1, and g(x, t) satisfies the same condition as before but with f now satisfying a 
generalized Dindoš’ condition (depending on p > 1). As pointed out earlier, the existence of 
weak boundary blow-up solutions of div(|Du|p−2Du) = f (u) plays an important role in our 
approach. This infinite boundary value problem for such equations has been investigated by 
many authors. For the case p = 2 see [2,12,15] and references therein. For general p > 1 we 
refer to [9,13].

In recent years there has been considerable interest in absorption equations with nonlinear 
principal parts. The reader is referred to the interesting papers [4,5,8,14] and the references 
therein.

The paper is organized as follows. In Section 2, after introducing some basic facts on fully 
nonlinear uniformly elliptic equations, we derive Harnack inequality for non-negative viscos-
ity solutions of differential inequalities involving the Pucci extremal operators with lower order 
terms. This, which is of independent interest in itself, would serve as the basic tool for proving 
our main Harnack inequality. We then establish the existence of viscosity supersolutions to Pucci 
maximal operators with lower order terms with nonlinear terms satisfying the Keller–Osserman 
condition. These supersolutions are used to develop a uniform global L∞ estimate for all non-
negative solutions to such equations. The Dindoš’ condition, together with the above mentioned 
results, provide the necessary tools to derive the desired Harnack Inequality, Theorem 2.8.

In Section 3, we look at a class of quasilinear equations and recall some basic results about 
them that will aid in our study of the Harnack inequality. Next, we introduce a general version of 
the Dindoš’ condition that is suited to the study of Harnack inequality of quasilinear equations. 
This section follows the same general approach of Section 2 to develop the Harnack inequality, 
Theorem 3.8, for non-negative weak solutions of the quasilinear equations under consideration.

In both Sections 2 and 3, we employ a useful estimate involving the nonlinear term f to 
derive the Harnack inequality. This estimate is proved in Appendix A as a consequence of the 
generalized Dindoš condition.
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2. The fully nonlinear case in the viscosity setting

Let � be a bounded domain in Rn and Sn be the space of n × n real symmetric matrices with 
the partial ordering X ≤ Y , which stands for Y − X positive semi-definite.

A mapping H : � ×R ×R
n × Sn → R is said to be uniformly elliptic in � if

λTr(Y − X) ≤ H(x, t, ξ, Y ) − H(x, t, ξ,X) ≤ �Tr(Y − X),

for all (x, t, ξ, X, Y) ∈ � ×R ×R
n × Sn × Sn, Y ≥ X, where Tr denotes the trace and λ, � are 

positive real numbers such that λ ≤ �.
If u ∈ C2(�) we denote by Du and D2u the gradient and the Hessian matrix of u. The 

operator H [ · ] acting on u ∈ C2(�) as

H [u](x) = H(x,u(x),Du(x),D2u(x))

will be called in turn uniformly elliptic (with ellipticity constants λ and �).
Special uniformly elliptic operators are the extremal Pucci operators, the maximal and the 

minimal one, respectively defined by

M+
λ,�(X) = sup

λIn≤A≤�In

Tr(AX)

M−
λ,�(X) = inf

λIn≤A≤�In

Tr(AX),

In being the n × n identity matrix. These operators satisfy the following properties for all 
X, Y ∈ Sn:

(i) M−
λ,�(X) = −M+

λ,�(−X);

(ii) M−
λ,�(X) +M−

λ,�(Y ) ≤ M−
λ,�(X + Y) ≤ M+

λ,�(X + Y) ≤ M+
λ,�(X) +M+

λ,�(Y ).

All linear uniformly elliptic operators with ellipticity constants λ and �

Lu =
n∑

i,j=1

aij (x)Diju +
n∑

i=1

bi(x)Diu + c(x)u

are uniformly elliptic in the sense introduced above with the same ellipticity constants. In this 
case H [u] = Lu with

H(x, t, ξ,X) = Tr(A(x)X) + BT (x)ξ + c(x)t,

where A(x) = [aij (x)] ∈ Sn and B(x) = (bi(x)) ∈ R
n. The extremal Pucci operators are fully 

nonlinear elliptic operators with ellipticity constants λ and �.
Moreover, for all pure second order uniformly elliptic operators H we have

M−
λ,�(D2u) ≤ H [u] ≤ M+

λ,�(D2u).

In particular, �u = Tr(D2u) = M± (D2u).
1,1
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For computational purposes, we recall the following alternative description of the Pucci oper-
ators:

M+
λ,�(X) = �Tr(X+) − λTr(X−) = �

∑
ei>0

|ei(X)| − λ
∑
ei<0

|ei(X)|,

M−
λ,�(X) = λTr(X+) − �Tr(X−) = λ

∑
ei>0

|ei(X)| − �
∑
ei<0

|ei(X)|,

where X± are the positive and negative parts of X such that X± ≥ 0, X = X+ − X−, 
X+X− = 0 = X−X+, while ei(X) are the eigenvalues of X.

If w(x) = ϕ(|x|) is a radial function, then the Hessian matrix D2w(x) has eigenvalues ϕ′′(|x|)
(which is simple) and ϕ

′(|x|)
|x| (with multiplicity n − 1).

Therefore, if ϕ is a convex non-decreasing function, we have

M+
λ,�(D2w(x)) = �ϕ′′(|x|) + �(n − 1)

ϕ′(|x|)
|x| = ��w,

M−
λ,�(D2w(x)) = λϕ′′(|x|) + λ(n − 1)

ϕ′(|x|)
|x| = λ�w.

In terms of Pucci operators the uniform ellipticity of H can be equivalently stated as

M−
λ,�(Y − X) ≤ H(x, t, ξ, Y ) − H(x, t, ξ,X)

≤ M+
λ,�(Y − X), ∀X,Y ∈ Sn, Y ≥ X.

We will also consider a Lipschitz-continuous dependence on the gradient variable:

M−
λ,�(Y − X) − β|η − ξ | ≤ H(x, t, η,Y ) − H(x, t, ξ,X)

≤M+
λ,�(Y − X) + β|η − ξ |, ∀X,Y ∈ Sn, Y ≥ X,

for a constant β ≥ 0. In passing we point out that both of the above inequalities are equivalent to 
the corresponding inequalities without the requirement Y ≥ X.

Now, we briefly report on viscosity solutions of fully nonlinear elliptic equations. We say 
that a function u ∈ USC(�) (upper semi-continuous in �) is a viscosity subsolution of equation 
H [u] = g, equivalently a solution of H [u] ≥ g(x), if for every point x ∈ � and every test function 
ϕ ∈ C2(�) such that u − ϕ has a maximum at x, we have

H(x,ϕ(x),Dϕ(x),D2ϕ(x)) ≥ g(x) .

Analogously, a function u ∈ LSC(�) (lower semi-continuous in �) is a viscosity supersolution 
of equation H [u] = g, equivalently a solution of H [u] ≤ g(x), if for every point x ∈ � and every 
test function ϕ ∈ C2(�) such that u − ϕ has a minimum at x, we have

H(x,ϕ(x),Dϕ(x),D2ϕ(x)) ≤ g(x) .



JID:YJDEQ AID:8928 /FLA [m1+; v1.268; Prn:14/08/2017; 10:56] P.5 (1-23)

A. Mohammed et al. / J. Differential Equations ••• (••••) •••–••• 5
A continuous function u which is both a subsolution and a supersolution will be called a viscosity 
solution of equation H [u] = g in �.

The above definition provides a generalization of the concept of solution in the sense that 
a classical solution u ∈ C2(�) is a fortiori a viscosity solution whereas conversely a viscosity 
solution u ∈ C2(�) is in turn a classical solution.

A comparison principle for sub and supersolutions is provided by [7, Theorem 3.3].
Here below we also state the Harnack inequality for viscosity solutions of fully nonlinear 

uniformly elliptic equations. Denote with B(z, R) the ball with center at z and radius R.

Theorem 2.1. Suppose u ∈ C(B(z, R)) is a non-negative viscosity solution of differential in-
equalities

M+
λ,�(D2u) + β|Du| + αu ≥ 0

M−
λ,�(D2u) − β|Du| − (α + c(x))u ≤ 0

in B(z, R), where α and β are non-negative numbers and c(x) is a non-negative continuous 
function in B(z, R). Then

sup
B(z,R/3)

u(x) ≤ C inf
B(z,R/3)

u(x)

where C is a positive constant depending only on

n,
�

λ
,

β

λ
R,

α

λ
R2,

R2

λ
sup

B(z,2R/3)

c(x)

and independent of u.

Proof. From [1] we know that Theorem 2.1 holds true with α + c(x) ≡ 0. This relies on the 
following interior estimates for subsolutions and supersolutions, known respectively as the local 
maximum principle (LMP) and the weak Harnack inequality (WHI). Let k ∈ Ln(B(z, 2R/3)).

(LMP) Let w be a continuous solution in B(z, R) of the differential inequality

M+
λ,�(D2w) + β|Dw| ≥ −k−.

Then for all p > 0

sup
B(z,R/3)

w ≤ C

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎝ −

ˆ

B(z,2R/3)

(w+)p dx

⎞
⎟⎠

1
p

+ R

λ
‖k−‖Ln(B(z,3R/4))

⎫⎪⎪⎬
⎪⎪⎭

where C is a positive constant depending only on n, �
λ

, βR
λ

and p.
(WHI) Let v ≥ 0 be a continuous solution in B(z, R) of the differential inequality

M− (D2v) − β|Dv| ≤ k+.
λ,�
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Then there exists p0 > 0 such that

⎛
⎜⎝ −

ˆ

B(z,2R/3)

vp0 dx

⎞
⎟⎠

1
p0

≤ C0

(
inf

B(z,R/3)
u + R

λ
‖k+‖Ln(B(z,3R/4))

)
,

where p0 and C0 are positive constants depending only on n, �
λ

and βR
λ

.
To show Theorem 2.1 in the general case α + c(x) ≥ 0, we shall use (LMP) and (WHI) with 

k = 0. We divide the proof into 6 steps.

1. Let u ≥ 0 be a solution in B(z, R) of the differential inequalities

M+
λ,�(D2u) + β|Du| + γ u ≥ 0,

M−
λ,�(D2u) − β|Du| − γ u ≤ 0,

(1)

where γ is a positive upper bound for α + c(x) in B(z, 2R/3).

2. Setting u = ψw = ϕv for positive smooth functions ψ and ϕ, from (1) we get

M+
λ,�

(
D2w + Dψ

ψ
⊗ Dw + Dw ⊗ Dψ

ψ

)
+ β|Dw|

+ (
M+

λ,�(D2ψ) + β|Dψ | + γψ
)w

ψ
≥ 0,

M−
λ,�

(
D2v + Dϕ

ϕ
⊗ Dv + Dv ⊗ Dϕ

ϕ

)
− β|Dv|

+ (
M−

λ,�(D2ϕ) − β|Dϕ| − γ ϕ
) v

ϕ
≤ 0.

We are proceeding as v and w would be smooth functions, but this is allowed in the viscosity 
sense since ψ and ϕ are smooth (see Lemma 1 of [6]).

Moreover, we have used here the sub-additivity of M+
λ,� and the super-additivity of M−

λ,�. 
Using these properties again and noticing that

T r

(
A

(
Dψ

ψ
⊗ Dw + Dw ⊗ Dψ

ψ

))
≤ 2

ψ
|ADψ | |Dw|

T r

(
A

(
Dϕ

ϕ
⊗ Dv + Dv ⊗ Dϕ

ϕ

))
≥ − 2

ϕ
|ADϕ| |Dv|,

taking sup and inf over λIn ≤ A ≤ �In, we get

M+
λ,�(D2w) +

(
2�

|Dψ |
ψ

+ β
)

|Dw| +
(
M+

λ,�(D2ψ) + β|Dψ | + γψ
) w

ψ
≥ 0,

M−
λ,�(D2v) −

(
2�

|Dϕ|
ϕ

+ β
)

|Dv| +
(
M−

λ,�(D2ϕ) − β|Dϕ| − γ ϕ
) v

ϕ
≤ 0.
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3. We choose as ϕ a positive and convex smooth function such that

M−
λ,�(D2ϕ) − β|Dϕ| − γ ϕ ≥ 0.

To do this, we set ϕ(x) = h(x1) = eax1 with

a = β

λ
+

√
γ

λ
(2)

in order to have

(M−
λ,�(D2ϕ) − β|Dϕ| − γ ϕ) = (

λh′′ − βh′ − γ h
)

= eax1
(
λa2 − βa − γ

) ≥ 0.

4. Concerning ψ , we need a positive and concave smooth function such that

M+
λ,�(D2ψ) + β|Dψ | + γψ ≤ 0

in a suitable slab S = {x ∈ R
n : 0 < x1 < d}.

To do this we take ψ(x) = 2 − h(x1) = 2 − eax1 with a as in (2). Using the previous compu-
tation we have

M+
λ,�(D2ψ) + β|Dψ | + γψ = −λh′′ + βh′ + γ (2 − h)

= −(λh′′ − βh′ − γ h) + 2γ (1 − h)

≤ 2γ (1 − eax1) ≤ 0.

In order to have ψ > 0 we choose d = δ
a

with a positive number δ < log 2 so that ψ(x) ≥
2 − eδ > 0.

5. From the above, we deduce that if B(z, r) is a ball of radius r ≤ d/2, which we may suppose 
contained in the slab S = {x ∈R

n : 0 < x1 < d}, then in B(z, r) we have

M+
λ,�(D2w) +

(
2�

|Dψ |
ψ

+ β
)

|Dw| ≥ 0,

M−
λ,�(D2v) −

(
2�

|Dϕ|
ϕ

+ β
)

|Dv| ≤ 0.

Choosing δ = log(3/2), it turns out that 1 ≤ ϕ ≤ 3/2, 1/2 ≤ ψ ≤ 1, ψ ≤ ϕ ≤ 3ψ and 
|Dϕ|/ϕ ≤ 3a, |Dψ |/ψ ≤ 3a where a is as in (2). Therefore we have

M+
λ,�(D2w) + (6�a + β) |Dw| ≥ 0,

M−
λ,�(D2v) − (6�a + β) |Dv| ≤ 0.
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Note that u ≤ w ≤ 3v ≤ 3u. Now we apply the local maximum principle (LMP) to w = u
ψ

with 
p = p0 and then the weak Harnack inequality (WHI) to v = u

ϕ
on B(z, r) obtaining

sup
B(z,r/3)

u ≤ sup
B(z,r/3)

w ≤ C

⎛
⎜⎝ −

ˆ

B(z,2r/3)

dx

⎞
⎟⎠

1
p0

≤ 3C

⎛
⎜⎝ −

ˆ

B(z,2r/3)

vp0 dx

⎞
⎟⎠

1
p0

≤ 3CC0 inf
B(z,r/3)

v

≤ 3CC0 inf
B(z,r/3)

u.

Note that C and C0 depend only on n, �
λ

, β
λ
r and �

λ
ar = �

λ

(
β
λ
r +

√
γ
λ
r
)

.

Resuming we have

sup
B(z,r/3)

u ≤ C inf
B(z,r/3)

u,

provided 0 < r ≤ d/2, with C = C(n, �
λ
, βr

λ
, γ r2

λ
).

6. Assume now that u satisfies the differential inequalities (1) in a ball B(z, R) with an arbi-
trary radius R > 0. Suppose also, as we may, that z = 0. Let us consider r = d/2 and set ρ = r

R
.

The re-scaled function uρ(y) = u(y/ρ), |y| ≤ r , satisfies the following differential inequali-
ties

M+
λ,�(D2uρ) + β

ρ
|Duρ | + γ

ρ2
uρ ≥ 0,

M−
λ,�(D2uρ) − β

ρ
|Duρ | − γ

ρ2
uρ ≤ 0

in B(0, r). Then we may apply the result obtained in the previous step with u = uρ to get

sup
B(0,r/3)

uρ ≤ C inf
B(0,r/3)

uρ.

Turning back to x = y/ρ, we get

sup
B(0,R/3)

u ≤ C inf
B(0,R/3)

u.

We conclude observing that the positive constant C, according to the coefficients of the differ-

ential inequalities satisfied by uρ , depends on n, �
λ

, βr/ρ
λ

= βR
λ

and γ r2/ρ2

λ
= γR2

λ
. This ends the 

proof. �
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In the sequel we will make use of the following assumptions:

f positive continuous increasing in (0,∞), (3)
∞̂

1

ds√
F(s)

< ∞, where F(s) =
sˆ

0

f (t)dt. (4)

The latter is usually called Keller–Osserman condition.

2.1. A boundary blow-up super-solution

Here we assume (3) and (4), and define (see Remark 2.3 of [16]) the non-increasing continu-
ous function

�(t) =
∞̂

t

ds√
F(s) − F(t)

.

We have �(t) → 0 as t → ∞, and the inverse �, the non-increasing continuous function such 
that

∞̂

�(r)

ds√
F(s) − F(�(r))

= r,

satisfies �(r) → ∞ as r → 0+.
For the convenience of the reader, we recall the following result from Lemma 2.5 (Keller, 

Osserman) of [16].

Lemma 2.2. Assume (3) and (4). Then for all κ > 0, z ∈R
n and R > 0, there exists a radial pos-

itive solution w ∈ C2(B(z, R)), radially increasing and strictly convex, of the boundary blow-up 
problem

{
�w = κf (w) in B(z,R)

w = ∞ on ∂B(z,R).
(5)

Moreover

�(
√

2κR) ≤ w(z) ≤ �

(√
2κ
n

R

)
(6)

and

|Dw(x)| ≤ κR

n
f (w(x)). (7)
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The above lemma will provide boundary blow-up supersolutions when the Laplace operator is 
replaced by the fully nonlinear maximal operator occurring in the right-hand side of the structure 
condition (19), defined later on. To show this, we notice the following simple consequence of 
assumptions (3) and (4).

Lemma 2.3. Assume (3) and (4). Then

lim
t→∞

f (t)

t
= ∞.

Proof. We refer to [13] (see the remark to Lemma 2.1 therein). �
Combining Lemma 2.2 and Lemma 2.3, we obtain the following existence result of boundary 

blow-up supersolutions.

Lemma 2.4. Assume (3) and (4) and let α, β ≥ 0. Then there exists R0 > 0 such that for each 
z ∈R

n and R ∈ (0, R0) there is a positive supersolution w ∈ C2(B(z, R)) of the boundary blow-
up problem

{
M+

λ,�(D2w) + β|Dw| + αw = f (w) in B(z,R)

w = ∞ on ∂B(z,R).
(8)

Moreover

�
( R√

2�

)
≤ w(z) ≤ �

(
R√
2�n

)
. (9)

Proof. The proof proceeds along the lines of Lemma 3.1 of [16]. R0 will be chosen in the sequel.
We solve the blow-up problem (5) as in Lemma 2.2 with κ = 1

4�
, noting that the solution w

is convex and hence M+
λ,�(D2w) = ��w. Taking also into account the gradient estimate (7), 

we get

M+
λ,�(D2w) + β|Dw| + αw = ��w + β|Dw| + αw

≤
(

1

4
+ βR

4�n
+ αw

f (w)

)
f (w).

(10)

By virtue of Lemma 2.3 there exists t∗ > 0 such that

αt

f (t)
≤ 1

2
as t ≥ t∗. (11)

Since �(r) → ∞ as r → 0+, we choose R0 small enough to have �
(

R0√
2�

)
≥ t∗. Using the 

radial monotonicity of w and recalling (6) with κ = 1/(4�) we find

w(x) ≥ w(z) ≥ �
( R√

)
≥ �

( R0√
)

≥ t∗ in B(z,R)

2� 2�
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for R < R0. Hence, by (11) we have

αw

f (w)
≤ 1

2
∀x ∈ B(z,R).

Eventually passing to a smaller R0, we can also make βR0
�n

≤ 1 so that we can conclude from (10)
that in B(z, R) we have

M+
λ,�(D2w) + β|Dw| + αw ≤ f (w).

Finally, (9) follows from (6) with κ = 1/(4�). �
2.2. Global estimate of solutions

Here we assume the following growth condition (stronger than (3))

f positive continuous and t → f (t)

t
is non-decreasing in (0,∞). (12)

Assumption (12) provides an estimate for non-negative subsolutions.

Theorem 2.5. Assume (4) and (12), and let α, β ≥ 0. Then there exists a non-increasing function 
η : (0, ∞) → (0, ∞) such that, if u is any non-negative subsolution of the equation

M+
λ,�(D2u) + β|Du| + αu = f (u)

in a (bounded) domain � of Rn, we have

u(z) ≤ η(d(z)) ∀ z ∈ �, (13)

where d(z) = dist (z, ∂�).

Proof. Let κ and R0 be the positive constants of Lemma 2.4. Following the proof of Theorem 3.3 
of [16], let z ∈ � and 0 < R < min(d(z), R0).

Comparing a subsolution u in � with the supersolution w of the boundary blow-up problem 
(8) (see Lemma 2.4), we will show later on that u ≤ w in B(z, R). Assuming this, since w ≥ t∗
by the choice of R0 (see the proof of Lemma 2.4), we may use the right hand side of (9) to find

u(z) ≤ w(z) ≤ �

(
R√
2�n

)
.

Finally, as R → min(d(z), R0) we obtain estimate (13) with

η(r) = �
(min(r,R0)√

)
. (14)
2�n



JID:YJDEQ AID:8928 /FLA [m1+; v1.268; Prn:14/08/2017; 10:56] P.12 (1-23)

12 A. Mohammed et al. / J. Differential Equations ••• (••••) •••–•••
We are left with showing that u ≤ w in B(z, R). To this end, suppose by contradiction Az = {x ∈
B(z, R) : u(x) > w(x)} �= ∅. Note that Az ⊂⊂ B(z, R), so u = w on ∂Az. Then by using (12) we 
find

M+
λ,�(D2u) + β|Du| +

(
α − f (w(x))

w(x)

)
u

≥
(

f (u(x))

u(x)
− f (w(x))

w(x)

)
u ≥ 0, x ∈ Az.

(15)

On the other hand, by Lemma 2.4 we have

M+
λ,�(D2w) + β|Dw| +

(
α − f (w(x))

w(x)

)
w ≤ 0. (16)

Observing again that w ≥ t∗, from (11) we get c(x) ≡ α − f (w(x))
w(x)

≤ 0 on Az. Therefore, by (15)
and (16) we obtain

M+
λ,�(D2u) −M+

λ,�(D2w) + β(|Du| − |Dw|)
≥ −c(x)(u − w) ≥ 0 ∀x ∈ Az.

Recalling that

M+
λ,�(X − Y) ≥ M+

λ,�(X) −M+
λ,�(Y )

for all X, Y ∈ Sn we conclude that the following holds in Az:

M+
λ,�(D2(u − w)) + β|D(u − w)|
≥ M+

λ,�(D2u) −M+
λ,�(D2w) + β(|Du| − |Dw|) ≥ 0.

This, together with the condition u = w on ∂Az allows us to invoke the maximum principle (see 
[1, Theorem 1.2] for instance) to conclude that u = w in Az. However, this is in contradiction 
with our earlier assumption that Az �= ∅. Therefore u ≤ w in B(z, R), as claimed. �
2.3. The Harnack inequality

We make the following assumption introduced by M. Dindoš in [10].

∃ θ > 1 such that lim inf
t→∞

f (θt)

θf (t)
> 1. (17)

As noted in [16], (17) implies (4). We also recall a result proved in [16].
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Lemma 2.6. If f satisfies (3) and (17) then

lim
r→0+

r2f (�(r))

�(r)
< ∞.

Proof. See Appendix A for p = 2 or Lemma 2.4 of [16]. �
As a consequence of Lemma 2.6 and Theorem 2.5 we have

Corollary 2.7. If η is the function defined in (14) then

r2f (η(r))

η(r)
≤ C, 0 < r < R1,

where C is a constant and R1 is the radius of the largest ball contained in �.

We are now in a position to establish the Harnack inequality for the equation

H(x,u,Du,D2u) = g(x,u), x ∈ �. (18)

On H(x, t, ξ, X) we assume the structural condition

M−
λ,�(X) − β|ξ | − αt ≤ H(x, t, ξ,X) ≤M+

λ,�(X) + β|ξ | + αt, (19)

where α and β are non-negative constants, t ≥ 0, ξ ∈R
n and X ∈ Sn.

On g(x, t) we suppose that there exists a real number T ≥ 1 such that for x ∈ � and t ≥ 0 we 
have

f (t) ≤ g(x, t) ≤ Tf (t). (20)

For example we may have g(x, t) = tq(2 + sin(xt)) with q > 1. Then one may take f (t) = tq

and T = 3.

Theorem 2.8 (Harnack inequality). Let � ⊂ R
n be a bounded domain. Assume that H satisfies 

the structural condition (19). Suppose g satisfies condition (20) with f satisfying conditions (12)
and (17). If u is a non-negative viscosity solution of the equation (18) then, if z ∈ � there is a 
positive constant C, independent of u and z, such that

sup
B(z,d(z)/3)

u ≤ C inf
B(z,d(z)/3)

u.

Proof. Thanks to the conditions (19) and (20), the function u satisfies

M+
λ,�(D2u) + β|Du| + αu ≥ f (u)

as well as

M− (D2u) − β|Du| − αu ≤ Tf (u).
λ,�
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The function uε = u + ε, with ε > 0, is in turn a positive solution of the differential inequalities

M+
λ,�(D2uε) + β|Duε| + αuε ≥ 0,

M−
λ,�(D2uε) − β|Duε| −

(
α + Tf (u(x))

uε(x)

)
uε ≤ 0.

Now we wish to invoke Theorem 2.1 with uε instead of u and

c(x) = Tf (u(x))

uε(x)

to obtain

sup
B(z,d(z)/3)

(u + ε) ≤ C inf
B(z,d(z)/3)

(u + ε), (21)

with C depending only on

n,
�

λ
,

β

λ
d(z),

α

λ
d2(z) and

T

λ
max

B(z,2d(z)/3)

f (u(x))

uε(x)
d2(z).

Since d(z) ≤ diam (�) < ∞, to finish the proof it suffices to show that

max
B(z,2d(z)/3)

f (u(x))

uε(x)
d2(z)

is uniformly bounded, independently of ε and z ∈ �. To this end, we shall use Theorem 2.5
and condition (12). We observe that condition (12) implies that the function t → f (t)/(t + ε) is 
increasing. Hence,

f (u(x))

uε(x)
≤ f (η(d(x)))

η(d(x)) + ε
≤ f (η(d(x)))

η(d(x))
in �.

Following [16] we note that if x ∈ B(z, 2d(z)/3) then d(x) ≥ d(z)/3. Therefore, for any x ∈
B(z, 2d(z)/3), since η is non-increasing, we find

f (u(x))

uε(x)
≤ f (η(d(z)/3))

η(d(z)/3)
in �.

Hence,

d2(z) max
B(z,2d(z)/3)

f (u(x))

uε(x)
≤ 9(d(z)/3)2 f (η(d(z)/3))

η(d(z)/3)
.

By Corollary 2.7 we conclude that

d2(z) max
B(z,2d(z)/3)

f (u(x))

uε(x)
≤ 9C

uniformly in ε and independently of z ∈ � and u.
Passing to the limit as ε tends to zero in (22) we get the desired result. �
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3. On a class of quasi-linear elliptic equations

Consider the quasi-linear elliptic operator

Qu := �pu +B(x,u), (22)

where 1 < p < ∞ and �pu = div(|Du|p−2Du). We assume that B(x, t) satisfies the following 
structural condition:

∃μ ≥ 0 such that |B(x, t)| ≤ μtp−1 ∀(x, t) ∈ � ×R
+. (23)

Remark 3.1. The lack of satisfactory comparison principle for quasilinear operators Q including 
a gradient term is the main reason for taking B in (22) to be independent of the gradient term.

We say u ∈ W
1,p
loc (�) is a solution (resp., subsolution or supersolution) of Qu = g(x, u) if and 

only if g(x, u(x)) ∈ L1
loc(�) and, for all τ ∈ C1

0(�), τ ≥ 0 we have

ˆ

�

|Du|p−2Du · Dτ −
ˆ

�

B(x,u)τ = (≤ , ≥) −
ˆ

�

g(x,u)τ.

We shall indicate this by writing Qu = ( ≥ , ≤ ) g(x, u), respectively.
We will make use of the following Harnack inequality which follows from [18].

Theorem 3.2. Let 1 < p < n, and suppose B(x, t) satisfies the structure condition (23). Let 
B(z, R) ⊂ �, and let u ∈ W

1,p
loc (�) be a non-negative weak solution of the inequalities

�pu + μup−1 ≥ 0

�pu − (μ + c(x))up−1 ≤ 0,

where μ is a non-negative constant and c(x) is a non-negative continuous function. Then

sup
B(z,R/3)

u(x) ≤ C inf
B(z,R/3)

u(x),

where C depends on n, p and Rp‖μ + c(x)‖L∞(B(z,2R/3)).

Proof. In [18, Theorem 7.2.1] the following inequality is proved:

sup
B(z,R/4)

u(x) ≤ C inf
B(z,R/4)

u(x),

where C depends on n, p and Rp‖μ + c(x)‖L∞(B(z,R)). Replacing R with 2R/3 we find

sup
B(z,R/6)

u(x) ≤ C inf
B(z,R/6)

u(x),

with C depending on n, p and Rp‖μ +c(x)‖L∞(B(z,2R/3)). If we apply twice the latter inequality 
in a ball with radius R/3 then we get
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sup
B(z,R/3)

u(x) ≤ C2 inf
B(z,R/3)

u(x),

that is, the inequality stated in our theorem with C2 in place of C. �
We wish to use the above theorem to derive a Harnack inequality for non-negative solutions 

of

Qu = g(x,u), (24)

where g satisfies (20) with f satisfying (3) as well as the following generalized Dindoš condi-
tion.

∃ θ > 1 such that lim inf
t→∞

f (θt)

θp−1f (t)
> 1. (25)

Remark 3.3. Condition (25) with p = 2 returns condition (17), which has already been used in 

Section 2 and goes back to Dindoš [10]. Also note that if f satisfies (25) then f
1

p−1 satisfies the 
standard Dindoš condition (17). Therefore, by Lemma 2.2 of [16] there are σ > 0, t∗ > 0 and 
ρ > 1 such that

f
1

p−1 (t) > σ tρ ∀t > t∗.

It follows that the generalized Dindoš condition (25) implies the following generalized Keller–
Osserman condition:

∞̂

1

dt

(F (t))1/p
< ∞, F (t) =

tˆ

0

f (s) ds, ∀ t > 0. (26)

We introduce the following function

�(t) =
∞̂

t

ds

(q(F (s) − F(t)))1/p
, t > 0, q = p

p − 1
.

It is well-known that � is a continuous and decreasing function such that

lim
t→∞�(t) = 0.

Let � be the inverse of � , that is

∞̂

�(t)

ds(
q
(
F(s) − F(�(t))

))1/p
= t, 0 < t < �(0+).

We observe that �(0+) = ∞.
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Remark 3.4. If f satisfies (3) and (26) then

lim
t→∞

f (t)

tp−1
= ∞.

For a proof, see [13] (remark to Lemma 2.1 therein).

Suppose f satisfies (3) and (26). Given R > 0, κ > 0 and a ball B := B(z, R) ⊂ R
n, n ≥ 2, it 

is well known that the following boundary blow-up problem

{
div(|Dw|p−2Dw) = κf (w) in B

w = ∞ on ∂B,

admits a radial solution w(x) = ϕ(|x − z|) that belongs to C1(B(z, R)). Moreover ϕ satisfies the 
following, in the sense of distributions:

{ (
rn−1|ϕ′(r)|p−2ϕ′(r)

)′ = rn−1κf (ϕ(r)), r ∈ (0,R),

ϕ(0) > 0, ϕ′(0) = 0, ϕ(R) = ∞.

Let us make note of the following observation (see [17, Theorem 2.1]):

�
(
κ1/pR

)
≤ ϕ(0) ≤ �

(
(κ/n)1/pR

)
.

We summarize the above discussion as follows.

Lemma 3.5. Let 1 < p < ∞, R > 0, κ > 0 and n ≥ 2. Suppose f satisfies (3) and (26). Given 
z ∈ R

n there is a radially increasing function w ∈ C1(B(z, R)) such that

{
�pw = κf (w) in B(z,R)

w = ∞ on ∂B(z,R).
(27)

Moreover we have

�
(
κ1/pR

)
≤ w(z) ≤ �

(
(κ/n)1/pR

)
.

Furthermore, since w is radially increasing we have

w(x) ≥ �
(
κ1/pR

)
∀x ∈ B(z,R).

Lemma 3.6. Let B(z, R) ⊂ � and let μ ≥ 0. Suppose f satisfies (3) and (26). Then there is 
R0 > 0 sufficiently small such that for each 0 < R < R0 the problem

{
�pw + μwp−1 = f (w) in B(z,R)

w = ∞ on ∂B(z,R)
(28)

admits a supersolution w ∈ C1(B(z, R)). Moreover,
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�
(
(1/2)

1
p R

) ≤ w(z) ≤ �
(
(1/(2n))

1
p R

)
.

Proof. By Remark 3.4, we fix t0 > 0 such that

f (t) ≥ 2μtp−1 ∀ t ≥ t0.

Since �(0+) = ∞, choose R0 > 0 such that

�
(

2−1/pR0

)
≥ t0.

Given 0 < R < R0 and z ∈ � such that B(z, R) ⊂ �, let w ∈ C1(B(z, R)) be the radial solution 
of (27) given in Lemma 3.5 with κ = 1/2. Let us recall that

w(x) ≥ �(2−1/pR) ≥ t0 ∀ x ∈ B(z,R).

Then for 0 < R < R0 we note that

−μwp−1 + f (w) = 1

2
f (w) +

(
f (w)

2wp−1
− μ

)
wp−1 ≥ 1

2
f (w).

It follows that, if τ ∈ C1
0(B(z, R)) with τ ≥ 0 then

ˆ

B(z,R)

|Dw|p−2Dw · Dτ −
ˆ

B(z,R)

μwp−1τ +
ˆ

B(z,R)

f (w)τ

≥
ˆ

B(z,R)

|Dw|p−2Dw · Dτ + 1

2

ˆ

B(z,R)

f (w)τ.

Since �pw = 1
2f (w) (in the sense of distributions) in B(z, R) we conclude that w is a superso-

lution of (28) in B(z, R), as claimed. �
To proceed further, we need the following additional condition on f :

f positive continuous and t → f (t)

tp−1
is non-decreasing in (0,∞). (29)

Theorem 3.7. Let � ⊂ R
n be a bounded domain and let B(z, R) ⊂ �. Suppose B(x, t) satis-

fies the structure condition (23) and that f satisfies conditions (26) and (29). Then there is a 
non-increasing function η : (0, ∞) → (0, ∞) such that for any non-negative subsolution u of 
Qu = f (u) we have

u(x) ≤ η(d(x)) for a.e x ∈ �.
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Proof. Since u ≥ 0, using the structural condition (23) on B we have

�pu + μup−1 ≥ Qu ≥ f (u),

that is

�pu +
(

μ − f (u)

up−1

)
up−1 ≥ 0. (30)

We recall from Lemma 3.6 above that

�pw +
(

μ − f (w)

wp−1

)
wp−1 ≤ 0. (31)

Let z ∈ �, and take 0 < R < min(d(z), R0) where R0 is as in Lemma 3.6. By the proof of 
Lemma 3.6 we note that

f (t) ≥ 2μtp−1 ∀ t ≥ t0

and that w ≥ t0 in B(z, R). In particular we have

μ − f (w)

wp−1
≤ 0 in B(z,R).

Let us show that u ≤ w in B(z, R). Suppose, by way of contradiction, the open set Az := {x ∈
B(z, R) : u(x) > w(x)} is non-empty. Note that Az ⊂⊂ � and so u = w on the boundary ∂Az. 
Then from (30) and condition (29) we see that

�pu +
(

μ − f (w)

wp−1

)
up−1 ≥ 0 in B(z,R). (32)

Hence, by (31), (32) and the comparison principle (see [9, Theorem 2.2] for instance) we get 
u ≤ w in Az, which is an obvious contradiction. Therefore u ≤ w in B(z, R) as claimed. In 
particular

u(z) ≤ w(z) ≤ �
(
(2n)−1/pR

)
.

Letting R → min(d(z), R0) we find that

u(z) ≤ η(d(z)), where η(t) := �
(
(2n)−1/p min(t,R0)

)
. �

Theorem 3.8 (Harnack inequality). Let � ⊂R
n be a bounded domain. Suppose B(x, t) satisfies 

the structure condition (23). Suppose g satisfies condition (20) with f satisfying conditions (25)
and (29). If 1 < p < n there is a positive constant C, independent of z ∈ � and any non-negative 
solution u ∈ W

1,p
loc (�) of equation (24) in �, such that

sup
B(z,d(z)/3)

u ≤ C inf
B(z,d(z)/3)

u.
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Proof. By (20) and (23), from (24) we have

{
�pu + μup−1 ≥ f (u),

�pu − μup−1 ≤ Tf (u).

With uε = u + ε we find

⎧⎨
⎩

�puε + μu
p−1
ε ≥ 0,

�puε −
(
μ + Tf (u)

u
p−1
ε

)
u

p−1
ε ≤ 0.

Now we wish to invoke Theorem 3.2 with uε instead of u and R = d(z) to obtain

sup
B(z,d(z)/3)

(u + ε) ≤ C inf
B(z,d(z)/3)

(u + ε), (33)

with C depending only on n, p and

dp(z)

∥∥∥μ + Tf (u)

u
p−1
ε

∥∥∥
L∞(B(z,2d(z)/3))

.

We have to show that

dp(z) sup
B(z,2d(z)/3)

f (u(x))

u
p−1
ε (x)

is bounded in � uniformly with respect to ε and z ∈ �. The proof is similar to the fully nonlinear 
equation case. Using condition (29) and Theorem 3.7 we find

f (u(x))

u
p−1
ε (x)

≤ f (η(d(x)))

(η(d(x)) + ε)p−1
≤ f (η(d(x)))

ηp−1(d(x))
in �.

On noting that if x ∈ B(z, 2d(z)/3) then d(x) ≥ d(z)/3, for any x ∈ B(z, 2d(z)/3) (since η is 
non-increasing), we find

f (u(x))

u
p−1
ε (x)

≤ f (η(d(z)/3))

ηp−1(d(z)/3)
in �.

Hence,

dp(z) sup
B(z,2d(z)/3)

f (u(x))

u
p−1
ε (x)

≤ 3p(d(z)/3)p
f (η(d(z)/3))

ηp−1(d(z)/3)
.

Recalling that

η(t) := �
(
(2n)−1/p min(t,R0)

)
,
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by Lemma A.1 (see Appendix A below) we conclude that

dp(z) sup
B(z,2d(z)/3)

f (u(x))

uε(x)
≤ 3pC

uniformly with respect to ε and z ∈ �.
Passing to the limit as ε tends to zero in (33) we get the desired result. �
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Appendix A

Lemma A.1. If f satisfies (3) and (25) then

lim sup
t→0+

tpf (�(t))

(�(t))p−1
< ∞.

Proof. By (25) we fix � such that

1 < � < lim inf
t→∞

f (θt)

θp−1f (t)
.

There is M� such that

f (θt) ≥ (�θp−1)f (t) ∀ t ≥ M�.

Iterating this, for any positive integer k we obtain

f (θkt) ≥ (�θp−1)kf (t) ∀ t ≥ M�.

Since F(2t) ≥ 2F(t) we note that for s ≥ 2t we have

(F (s) − F(t))1/p =
[
F(s)

(
1 − F(t)

F (s)

)]1/p

≥
(

F(s)

2

)1/p

.

Therefore

�(t) =
2tˆ

ds

(q(F (s) − F(t)))1/p
+

∞̂
ds

(q(F (s) − F(t)))1/p
t 2t
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≤ 1

q1/p

2tˆ

t

ds

(f (t)(s − t))1/p
+

(
2

q

)1/p
∞̂

2t

ds

(F (s))1/p

≤ q
1
q

(
tp−1

f (t)

)1/p

+
(

2

q

)1/p
∞̂

2t

ds

(F (s))1/p
.

Now we observe that

∞̂

2t

ds

(F (s))1/p
= 2

∞̂

t

ds

(F (2s))1/p
≤ 2

∞̂

t

ds

(sf (s))1/p

= 2
∞∑

k=0

θk+1tˆ

θkt

ds

(sf (s))1/p

= 2
∞∑

k=0

θk+1tˆ

θkt

ds

(sp(f (s)/sp−1))1/p
.

For t ≥ M� and θkt ≤ s ≤ θk+1t we find that

f (s)

sp−1
≥ f (θkt)

(θk+1t)p−1
≥ (�θp−1)kf (t)

(θk+1t)p−1
= �kf (t)

(θt)p−1
.

Therefore we have

θk+1tˆ

θkt

ds

(sp(f (s)/sp−1))1/p
≤

(
θp−1tp−1

�kf (t)

)1/p θk+1tˆ

θkt

ds

s

= θ(p−1)/p ln(θ)

(
1

�1/p

)k (
tp−1

f (t)

)1/p

.

Thus we find

�(t) ≤ C

(
tp−1

f (t)

)1/p

,

where C := C(θ, p, �) is a positive constant. The stated inequality follows from this. �
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