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Abstract

This work is focused on the study of the nonlinear elliptic higher order equation

(−�)m u = Sk[−u] + λf, x ∈RN,

where the k-Hessian Sk[u] is the kth elementary symmetric polynomial of eigenvalues of the Hessian matrix 
of the solution and the datum f belongs to a suitable functional space. This problem is posed in RN and we 
prove the existence of at least one solution by means of topological fixed point methods for suitable values 
of m ∈N. Questions related to the regularity of the solutions and extensions of these results to the nonlocal 
setting are also addressed. On the way to construct these proofs, some technical results such as a fixed point 
theorem and a refinement of the critical Sobolev embedding, which could be of independent interest, are 
introduced.
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1. Introduction

The goal of this work is to develop an analytical framework for the study of the family of 
higher order equations

(−�)m u = Sk[−u] + λf, x ∈ RN, (1)

where m, N, k ∈ N, λ ∈ R and the datum f : RN −→ R belongs to a suitable functional space, 
to be made precise in the following. The nonlinearity in this equation is the k-Hessian Sk[u] =
σk(�), where

σk(�) =
∑

i1<···<ik

�i1 · · ·�ik ,

is the kth elementary symmetric polynomial and � = (�1, · · · , �n) are the eigenvalues of the 
Hessian matrix of the solution (D2u). Analogously Sk[u] can be defined as the sum of the kth
principal minors of the Hessian matrix or, using the language of exterior algebra, as the trace of 
the kth exterior power of (D2u). For k = 1 the k-Hessian Sk[u] becomes the trace of the Hessian 
matrix, that is, the Laplacian. Since our focus is put on nonlinear equations we will skip this case 
and always consider 2 ≤ k ≤ N .

To describe our motivation consider for a moment equation (1) free of the polyharmonic 
operator. Such an equation would not only generalize the Poisson equation for k = 1, it would 
also generalize the Monge–Ampère equation [10,11]

det(D2u) = f,

for k = N . In fact, such an equation

Sk[u] = f,

is denominated the k-Hessian equation, and it, together with related problems, has been inten-
sively studied during the last years [12,13,34,38,50,54–65]. It is interesting to note that the ana-
lytical approach to this problem has required the assumption of a series of geometric constraints 
in order to preserve the ellipticity of the nonlinear k-Hessian operator [65]. Such constraints are 
not needed in the case of full equation (1) [20], what makes this sort of problem an alternative 
viewpoint to the interesting nonlinear k-Hessian operator.

A second source of motivation is the rise of studies focused on polyharmonic problems in 
recent times [1,3,16,18,19,27–29,39]. While boundary value problems for polyharmonic opera-
tors have already been considered with different types of interesting nonlinearities in these and 
different works, the history of polyharmonic k-Hessian equations is still short [20–26]. At this 
point, it is important to stress the natural character of this sort of nonlinearity in the polyharmonic 
framework. Indeed, the k-Hessians, 1 ≤ k ≤ N , form a basis of the vector space of polynomial 
invariants of the Hessian matrix under the orthogonal group O(N) of degree lower or equal to 
N , at least for regular enough u [47]. So on one hand these nonlinearities give rise to genuinely 
polyharmonic semilinear equations with no possible harmonic analogue, what makes them an 
excellent candidate to push forward the theory of polyharmonic boundary value problems. While 
on the other hand, these higher order equations are some of the simplest ones compatible with the 
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ideas of invariance with respect to rotations and reflections widespread in the realm of physical 
modeling.

Yet another interesting property that motivates us to study equation (1) is its intriguing de-
pendence on the boundary conditions, as already noted in [25]. We studied in [20] this family 
of equations on bounded domains subject to Dirichlet boundary conditions. In this work we are 
interested on the “boundary value problem”

(−�)m u = Sk[−u] + λf, x ∈RN, (2a)

u(x) → 0, when |x| → ∞. (2b)

First of all we have to state what do we mean by this “boundary condition”; in fact, this constitutes 
a very important remark: we say that a solution “vanishes at infinity” if it belongs to some 
Lp(RN), 1 ≤ p < ∞, although we cannot give any reasonable pointwise meaning to such an 
affirmation. Note that this is the only way in which an existence theory à la Calderón–Zygmund 
can be pushed forward. Of course, if a function pointwise vanishes at infinity, we will also say that 
it “vanishes at infinity”. Note also that the nonlinearity is Sk[−u] rather than Sk[u]; that is, the 
nonlinearity is exactly the coefficient of the monomial of degree N − k within the characteristic 
polynomial of the Hessian matrix. We have considered such a form to be in complete agreement 
with the structure of the equation in [20]. However, this assumption was needed in this reference 
in order to construct the variational approach to the existence of solutions employed there. Our 
present approach relies on a topological fixed point argument and would work exactly in the same 
way if we substituted the current nonlinearity by Sk[u]. This, among other things, highlights the 
fact that the present existence proofs are genuinely different from previously used arguments.

We now present our main result:

Theorem 1.1. Problem (2a)–(2b) has at least one weak solution in the following cases:

(a) f ∈ Lp(RN), 1 < p < N
2k

, m = 1 + N(k − 1)/(2pk) ∈ N, N > 2k,
(b) f ∈ L1(RN), m = 1 + N(k − 1)/(2k) ∈ N, N > 2k,
(c) f ∈H1(RN), m = 1 + N(k − 1)/(2k) ∈ N, N > 2k,
(d) f ∈H1(RN), m = 1 + N(k − 1)/(2k) ∈ N, N = 2k,

provided |λ| is small enough. Then, respectively

(a) u ∈ Ẇ 2m−ε,Np/(N−εp)(RN) ∀ 0 ≤ ε ≤ 2m,
(b) u ∈ Ẇ 2m−ε,N/(N−ε)(RN) ∀ 0 < ε ≤ 2m,
(c) u ∈ Ẇ 2m−ε,N/(N−ε)(RN) ∀ 0 ≤ ε ≤ 2m,
(d) u ∈ Ẇ 2m−ε,N/(N−ε)(RN) ∀ 0 ≤ ε ≤ 2m.

Moreover, in case (b), D2mu ∈ L1,∞(RN), in case (c), D2mu ∈ H1(RN) and, in case (d), D2mu ∈
H1(RN) and u ∈ C0(R

N). Also, for a smaller enough |λ|, the solution is locally unique in cases 
(a), (b) and (c).

Proof. The statement follows as a consequence of Theorems 6.6, 6.7, 6.9, 7.2, 7.3 and Corol-
lary 9.4. �
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Remark 1.2. Note that, in case (d), m = k always, so problem (2a)–(2b) reduces to

(−�)k u = Sk[−u] + λf, x ∈R2k,

u(x) → 0, when |x| → ∞,

for any k ≥ 2.

Remark 1.3. It is important to note that our methods are applicable to more general families 
of nonlinearities. Denote by Rj

k (·) the j -th principal minor of order k. The present results hold 

as well if we substituted Sk(−u) by Rj
k (−u) in equation (2a) for any j . In fact, the nonlinear-

ities Sk(−u) are just a particular linear combination of these Rj
k (−u); and our theory could be 

constructed actually for any linear combination of them. This comes from the fact that we need 
two main ingredients in our proofs: weak continuity of the maps Sk and the fact that they also 
preserve the Lp and Hardy spaces the datum f belongs to. The same holds, for example, for the 
maps Rj

k , see [14,31], and for any linear combination of them by linearity. Our main attention 
lies, however, in the operators Sk described before due to their simple geometric meaning which 
is at least not as evident for the operators Rj

k or their arbitrary linear combinations.

Now we describe the remainder of the article. In section 2 we introduce the functional frame-
work we need in our proofs and some notation. In section 3 we developed the theory that 
corresponds to the linear counterpart of problem (2a)–(2b). In section 4 we state and prove a 
topological fixed point theorem that will be the main abstract tool for proving existence of so-
lutions to our differential problem. In section 5 we prove a refinement of the classical critical 
Sobolev embedding that will be subsequently needed in the following section. These last two 
sections could be of independent interest and, as such, they have been written in a self-contained 
fashion. Our main existence results come in section 6, and the local uniqueness results in sec-
tion 7. A nonlocal extension of Theorem 1.1 is proven in section 8 and, finally, some further 
results regarding the weak continuity of the branch of solutions and some extra regularity for the 
critical case (d) are described in section 9.

2. Functional framework and notation

In order to build the existence theory for our partial differential equation we need to introduce 
the Hardy space H1 in RN [52] and its dual, the space of functions of bounded mean oscillation.

Definition 2.1. Let � ∈ S(RN), where S(RN) denotes the Schwartz space, be a function such 
that 

∫
RN � dx = 1. Define �s := s−N�(x/s) for s > 0. A locally integrable function f is said 

to be in H1(RN) if the maximal function

Mf (x) := sup
s>0

|�s ∗ f (x)|

belongs to L1(RN). We define the norm ‖f ‖H1(RN) = ‖Mf ‖1.

Remark 2.2. There are several equivalent definitions of this space, see [51].
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Now we introduce the space of functions of bounded mean oscillation [51].

Definition 2.3. A locally integrable function f is said to be in BMO(RN) if the seminorm (or 
norm in the quotient space of locally integrable functions modulo additive constants)

‖f ‖BMO(RN) := sup
Q

1

|Q|
∫
Q

|f (x) − fQ|dx,

where |Q| is the Lebesgue measure of Q, fQ = 1
|Q|

∫
Q

f (x) dx and the supremum is taken over 

the set of all cubes Q ⊂RN , is finite.

We also need the pre-dual of the Hardy space H1(RN).

Definition 2.4. We define VMO(RN) as the closure of C0(R
N) in BMO(RN), with

‖f ‖VMO(RN) = ‖f ‖BMO(RN) ∀ f ∈ VMO(RN).

The following functional spaces will also be useful in the construction of the existence theory.

Definition 2.5. We define the homogeneous Sobolev space Ẇ j,p(RN) as the space of all mea-
surable functions u that are j times weakly derivable and whose weak derivatives of j -th order 
obey

‖Dju‖p < ∞,

where ‖ · ‖p denotes the norm of Lp(RN), 1 ≤ p ≤ ∞, j ∈ N.

In our derivations we will need the following operators.

Definition 2.6. We define the Riesz transforms in RN :

Rxj
(f )(x) = �

(
n+1

2

)
π(n+1)/2

P. V.
∫
RN

xj − yj

|x − y|n+1 f (y)dy.

Remark 2.7. The normalization of the Riesz transforms is chosen in such a way that

F[Rxj
(f )](ξ) = πi

ξj

|ξ | F(f )(ξ).

Finally, we introduce two definitions relating to real numbers and their relationships.

Definition 2.8. Let xα, yα ∈R (α ∈ A, A some set). We write x � y (x = {xα}α∈A, y = {yα}α∈A) 
whenever there exists a positive constant c such that xα ≤ cyα for every α ∈ A.

Definition 2.9. We denote R+ := {x ∈ R|x ≥ 0}.
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3. Linear theory

This section is devoted to the study of the linear problem

(−�)m u = λf, x ∈ RN, (4)

where m ∈N and we consider the “boundary condition” u → 0 when |x| → ∞.

Proposition 3.1. Equation (4) has a unique solution in the following cases:

(a) f ∈ Lp(RN), 1 < p < N
2m

, m < N/2,
(b) f ∈ L1(RN), m < N/2,
(c) f ∈H1(RN), m < N/2,
(d) f ∈H1(RN), m = N/2.

Then, respectively

(a) u ∈ Lq(RN) ∩ Ẇ 2m,p(RN),
(b) u ∈ Ẇ 2m−ε,N/(N−ε)(RN) ∀ 0 < ε ≤ 2m,
(c) u ∈ Lq ′

(RN) ∩ Ẇ 2m,1(RN),
(d) u ∈ L∞(RN) ∩ Ẇ 2m,1(RN),

where q = Np/(N − 2mp) and q ′ = N/(N − 2m). Moreover, in case (b), D2mu ∈ L1,∞(RN), 
and, in all cases, the map f �→ u is continuous.

Proof. The proof focuses on the range m ≥ 2 since the case m = 1 is classical.
STEP 1.
We start considering the auxiliary problem

(−�)m G = δ0, x ∈RN, (5)

where δ0 is the unit Dirac mass centered at the origin. The explicit solution to this equation is 
well known [29]:

G(x) =
⎧⎨
⎩

− log |x|
NVN 4m−1�(N/2)(m−1)! if N = 2m,

2�(N/2−m)
NVN 4m�(N/2)(m−1)!

1
|x|N−2m in other case,

(6)

where VN = πN/2/�(1 + N/2) is the volume of the N -dimensional unit ball, and always under 
the assumption N ≥ 2m.

The unique solution to equation (4) is given by the convolution

u = λG ∗ f. (7)

Now we justify that this is a well defined function in a suitable functional space.
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STEP 2.
For N > 2m we have G ∝ |x|2m−N , therefore G defines a Newtonian potential

I2m(f ) =
∫
RN

G(x − y)f (y) dy,

and, as such, ‖I2m(f )‖q � ‖f ‖p , see [32], and therefore

‖u‖q � |λ| ‖f ‖p,

where q = Np/(N − 2mp), in case (a). Cases (b) and (c) follow analogously.
For N = 2m we have G ∝ log |x| and since in this case f ∈ H1(RN), and log |x| ∈

BMO(RN), it follows that

‖u‖∞ � |λ| ‖f ‖H1(RN).

STEP 3.
For the regularity of u it suffices to show that D2mG defines a singular integral operator [32]. 

Note that

�|x|−α = (α + 2 − N)α

|x|α+2 ∀α > 0.

If we denote Cα,N := α(α + 2 − N) and KN,m := G(x)|x|N−2m whenever N > 2m, we have

(−�)m−1 G(x) = (−1)mKN,mCN−2m,NCN−2(m−1),N · · ·CN−4,N |x|2−N.

On the other hand, it is easy to check that

∂2
xj xk

|x|2−N = (2 − N)
|x|2δjk − Nxjxk

|x|N+2 .

Note also the average of the numerator over the unit sphere

Ijk =
∫

SN−1

(|x|2δjk − Nxjxk)dw = δjk|SN−1| − N

∫
SN−1

wjwkdw = 0.

We denote ∂2
jk := ∂2

xj xk
and define the operator

Tj,k(f ) := ∂2
jk(−�)m−1u,

which is clearly a singular integral operator in RN . Consider now a multi-index α, |α| = 2m, and 
so

∂αu = Rj Rk · · ·Rj Rk Tj,k(f ),
1 1 m−1 m−1
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where Rjn is the Riesz transform with respect to the jn-th coordinate, 1 ≤ jn, n ≤ N . This op-
erator is a product of singular integral operators and therefore a singular integral operator itself. 
This completes the proof in the case N > 2m.

In the case N = 2m it is enough to consider G(x) = CN log |x| and

�G(x) = CN

N − 2

|x|2 ,

and to apply the same reasoning as before. �
Corollary 3.2. The unique solution found in Proposition 3.1 fulfills:

• u ∈ Ẇ 2m−ε,Np/(N−εp)(RN) ∀ 0 ≤ ε ≤ 2m in case (a).
• u ∈ Ẇ 2m−ε,N/(N−ε)(RN) ∀ 0 ≤ ε ≤ 2m in case (c).
• u ∈ ẆN−ε,N/(N−ε)(RN) ∀ 0 ≤ ε ≤ N in case (d).
• D2mu ∈ H1(RN) in cases (c) and (d).

Remark 3.3. The strict inequality p < N/(2m) in case (a) of Proposition 3.1 is sharp, see [32].

Remark 3.4. Note that for an odd N < 2m the formula for G is still given by the second line 
of (6). For an even N < 2m we have

G(x) = (−1)m−N/2−1

NVN 4m−1�(N/2)(m − N/2)!(m − 1)!
log |x|

|x|N−2m
.

In particular, note that G never decays to zero when |x| → ∞ whenever N ≤ 2m.

Remark 3.5. Following the previous remark, note that G is not unique since its property (5) is 
invariant with respect to the addition of a m-polyharmonic function. However, if we consider the 
condition G → 0 when |x| → ∞, then the above formulas become the unique solution whenever 
N > 2m, and the set of solutions becomes empty if N ≤ 2m. Moreover, it is not clear how to fix 
uniqueness in this latter case [29]. In consequence, it is clear that formula (7) gives the unique 
solution to problem (4) for N > 2m. For N = 2m we take this formula as the definition of unique 
solution, but see Remark 3.8 below.

Lemma 3.6. Let v be a m-harmonic function in RN . If v ∈ BMO(RN), then v is constant.

Proof. By definition, v being m-harmonic means (−�)m v = 0. Transforming Fourier this equa-
tion yields

|k|2mv̂(k) = 0,

and since v ∈ BMO(RN) then v̂(k) ∈ S∗(RN), where S∗(RN) denotes the space of Schwartz 
distributions. This equation implies the support of v̂

supp(v̂) ⊂ {0},
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and therefore

v̂ =
∑
|α|≤�

Cα∂αδ0,

for some � ∈ N, Cα ∈ R, and where α denotes a N -dimensional multi-index. Consequently v is 
polynomial of degree � or lower. We conclude invoking the John–Nirenberg theorem, that implies 
that functions showing a super-logarithmic growth do not belong to BMO(RN), see [32]. �
Remark 3.7. The proof of Lemma 3.6 actually implies that any m-harmonic function in RN

showing a sub-linear growth when |x| → ∞ is constant.

Remark 3.8. Following Remark 3.5, we note that a way to fix the uniqueness of the fundamental 
solution in the critical case N = 2m is to impose an at most logarithmic growth when |x| → ∞. 
According to Lemma 3.6 this fixes the fundamental solution except for the presence of an additive 
constant. Of course, as we are looking for solutions in BMO(RN), and the seminorm of this space 
is invariant with respect to the addition of a constant, this fixes uniqueness in the corresponding 
quotient space in which this seminorm becomes a norm. In other words, the solution to (4), u =
λ G ∗ f , is unique even if we considered G as a one-parameter family of fundamental solutions 
indexed by an additive constant, given that functions in the Hardy space H1(RN) have zero mean. 
Note also that our definition of solution does not guarantee a priori that the solution will obey 
the “boundary condition” in any reasonable sense. However, it obeys it in the pointwise sense, 
which is the strongest possible sense. This is justified by Theorem 9.3 and Corollary 9.4 below.

4. A topological fixed point theorem

We now state the fixed point theorem that will allow us to construct the existence theory for 
our partial differential equation. This result can be regarded as a corollary of the more general 
Schauder–Tychonoff theorem [4]. For the reader convenience we include a proof of the result, 
which is independent of the proof present in [4].

Theorem 4.1. Let Y be a real dual Banach space with separable predual and let ϒ ⊂ Y be 
non-empty, convex and weakly-∗ sequentially compact. If there exist a weakly-∗ sequentially 
continuous map Z : ϒ −→ ϒ then Z has at least one fixed point.

Proof. By our hypothesis, every convex, bounded and weakly-∗ sequentially closed set in Y
is compact (by the Theorem of Banach–Alaoglu),1 and moreover, the trace over that set of the 
weak-∗ topology is metrizable. As a result, such a set can be considered a compact metrizable 
space with respect to that topology; notice in particular that compactness is equivalent to sequen-
tial compactness for such ϒ.

1 Note, however, that strongly closed, convex and bounded is not enough. To see this, consider Y = M(Rn) the space of 
finite Radon measures, which is the dual of (C0(Rn), ‖ · ‖∞). Now, consider the map T :Y �→ Y given by T (μ) = μ ∗μ. 
It is not difficult to show that this non-linear map is weak-∗ sequentially continuous, and maps the simplex S = {μ| μ ≥ 0,

‖μ‖Y = 1} into itself. This is a convex weak-∗ closed and bounded set, and T maps S into itself; the delta function is 
the unique fixed point of it, but T also maps into itself S′ = {μ| μ ≥ 0, ‖μ‖Y = 1, μ absolutely continuous w.r.t. dx} =
L1(R, dx) ∩ S, which is strongly closed, convex and bounded, but without fixed points.
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Let us recall how this metric is defined: if we denote by X ∗ ≡ Y our dual Banach space, and 
{yn}n≥1 is a denumerable dense subset of the closed unitary ball B of the predual X , we define 
another seminorm ‖ · ‖∗ in X ∗ as

‖x‖∗ =
∑
n≥1

2−n|〈x, yn〉|, x ∈ X ∗.

It is readily checked that the standard norm ‖ · ‖X ∗ dominates this seminorm, and because of 
the density of the set {yn}n≥1 over the unit ball of X and the fact that the weak-∗ topology is 
Hausdorff, it is indeed a norm, and it is not hard to prove that it induces the weak-∗ topology 
over strongly closed balls of X ∗, or, more generally, over strongly closed convex sets of X ∗
(which are known to be weak-∗ sequentially compact). Now, since ϒ is weakly-∗ compact then 
it is totally bounded in the metric which induces the weak-∗ topology and also bounded with 
respect to the strong or norm topology. Therefore for any δ > 0 we may choose a finite set 
{v1, · · · , vnδ |vi ∈ ϒ, 1 ≤ i ≤ nδ} such that

ϒ ⊂
⋃

1≤i≤nδ

Bvi
(δ),

where Bvi
(δ) is the open ball in Y (open with respect to the metric induced by ‖ · ‖∗) whose 

center is vi and whose radius is δ. Consider

ϒδ :=
{

nδ∑
i=1

civi

∣∣∣∣∣ ci ∈ R+ ∧
nδ∑
i=1

ci = 1

}
.

The convexity of ϒ guarantees ϒδ ⊂ ϒ. We introduce the projector Pδ : ϒ −→ ϒδ ,

Pδ[v] :=
∑nδ

i=1 λi(v)vi∑nδ

i=1 λi(v)
, λi(v) := d

(
v,ϒ \ Bvi

(δ)
)
,

where d(·, ·) is the distance induced by the norm ‖ · ‖∗. Any of the functions λi(v) is Lipschitz 
continuous and non-negative, and at least one of these functions is positive: indeed, if v ∈ Bvi

(δ), 
then, it is immediate that λi(v) ≥ δ.

Therefore the sum of all of them is positive, and we obtain as a result that this projection is 
well defined and continuous for v ∈ ϒ. Moreover, as a consequence of the triangle inequality, we 
have, for v ∈ ϒ,

‖Pδ[v] − v‖∗ ≤
∑nδ

i=1 λi(v)‖vi − v‖∗∑nδ

i=1 λi(v)
≤ δ, (8)

since, for a given 1 ≤ i ≤ nδ , either v ∈ Bvi
(δ), in whose case ‖v − vi‖∗ < δ or else v /∈ Bvi

(δ), 
in whose case λi(v) = 0 (meaning that Pδ[v] can be thought of as an small perturbation of the 
identity map over the set ϒ in the metric induced by ‖ · ‖∗); it is clear also that Pδ[v] maps the 
set ϒ to the finite-dimensional set ϒδ .

Now we define the map Zδ : ϒδ −→ ϒδ ,

Zδ(v) := Pδ[Z(v)],
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which is well defined whenever v ∈ ϒδ and continuous. Since ϒδ is the closed convex hull of the 
set {v1, · · · , vnδ } then it is homeomorphic to the closed unit ball in Rjδ for some jδ ≤ nδ . Now 
invoke the Brouwer fixed point theorem [46] to see there exists at least one fixed point, vδ ∈ ϒδ , 
of Zδ .

Taking a sequence 0 < δk → 0 and select for each k ≥ 1 a fixed point vk ∈ ϒδk
⊂ ϒ of Zδj

. 
By weak-∗ compactness of ϒ, there exists a subsequence vkj

, j ≥ 1 of the sequence vk, k ≥ 1
which is weak-∗ convergent to some v ∈ ϒ, or in other terms, ‖v − vkj

‖∗ → 0, j → ∞. Let us 
check that v is a fixed point of Z:

‖v − Z(v)‖∗ = ‖(v − vkj
) + (Pδkj

(Z(vkj
)) − Z(vkj

))) + (Z(vkj
) − Z(v))‖∗

[since vkj
= Zδkj

(vkj
) = Pδkj

(Z(vkj
))]

≤ ‖v − vkj
‖∗ + ‖Pδkj

(Z(vkj
)) − Z(vkj

)‖∗ + ‖Z(vkj
) − Z(v)‖∗

≤ ‖v − vkj
‖∗ + δkj

+ ‖Z(vkj
) − Z(v)‖∗

[by equation (8)]
→ 0 , j → ∞,

where, in the last step, we use the weak-∗ sequential continuity of the map Z. So, ‖v −Z(v)‖∗ =
0, which is equivalent to v = Z(v), as claimed. �
5. Refinement of the critical Sobolev embedding

In this section we introduce a series of preparatory results which are needed in our existence 
proofs. These constitute in fact a refinement of the classical Sobolev embedding at the critical 
dimensional index. Consequently, this section has an interest on its own, and therefore we have 
written it in a self-contained fashion.

Theorem 5.1. Consider the homogeneous Sobolev space X = Ẇ 1,N (RN) = {f ∈ S′(RN) :
|∇f | ∈ LN(RN)}, normed by ‖f ‖X = ‖|∇f |‖LN(RN). Then we have for all spatial dimensions 
N ≥ 1:

(1) There exists a finite constant C such that for all f ∈ X,

‖f ‖BMO(RN) ≤ C‖f ‖X.

(2) If, in addition, |∇f | ∈ HN(RN), we have f ∈ VMO(RN). In any event there exists some 
absolute and finite C, such that given a ball B = Br(x0), r > 0, x0 ∈RN ,

|f − fB |B ≤ C‖|∇f |‖LN(B); fB := 1

|B|
∫
B

f dx.

Remark 5.2. While Part (1) of this theorem is classical, we shall give a proof of it for the sake 
of completeness.
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Remark 5.3. As |∇f |Ndx can be regarded as a finite and absolutely continuous measure with 
respect to Lebesgue measure dx, for any ε > 0, ∃ δ > 0 such that if 0 < r ≤ δ, |f − fB |B ≤ ε, 
where r is the radius of B .

Remark 5.4. For any dimension N ≥ 2, HN(RN) = LN(RN). So, an immediate corollary of this 
theorem can be stated as follows: ∀ N ≥ 2, Ẇ 1,N (RN) ⊆ VMO(RN), with continuous inclusion.

Remark 5.5. Note on the other hand that H1(RN) � L1(RN). It is also easy to find functions 
f : R −→ R such that f ∈ Ẇ 1,1(R) and f /∈ VMO(R) (such as f (·) = arctan(·)). But however 
it holds that Ẇ 1,1(R) ⊂ AC(R) ∩ L∞(R).

Remark 5.6. The space VMO(RN) can be defined either intrinsically as the space of those 
BMO(RN) functions such that for any given ε > 0, there exists δ > 0 and R > 0 such that if 
a ball B = Br(x0) has radius smaller that δ or bigger than R, then |f − fB |B ≤ ε or extrinsically 
as the closure of the space C0(R

N) under the BMO(RN) norm; as Claim (2) of our theorem 
shows, any function in our space X is very close to be a VMO(RN) function and the averages 
of the mean oscillation over small balls are always small. This is an intrinsical estimate, but to 
close the proof of the claim we shall hinge on the extrinsical description of VMO(RN) instead.

Proof. The key ingredient in Part (1) of the above Theorem is Poincaré inequality: given a ball 
B and an exponent 1 ≤ p ≤ ∞, we have, for some finite C = C(p, B),

‖f − fB‖Lp(B) ≤ C(p,B)‖|∇f |‖Lp(B), f ∈ C1(B). (9)

The above inequality can be closed to all the (inhomogeneous) Sobolev spaces W 1,p(B) in the 
range 1 ≤ p < ∞ by an standard density argument; in the case p = N , it is easily checked 
that equation (9) is scale invariant, meaning that the constant CN(B) := C(N, B) indeed only 
depends on N , and not on the ball Br(x0) we are in. In other words, we have

‖f − fB‖LN(B) ≤ CN‖|∇f |‖LN(B), f ∈ X. (10)

From this, the continuous embedding in Claim (1) follows: fix f ∈ X and B a ball in RN . Then 
we have

|f − fB |B ≤ ‖f − fB‖LN(B)

≤ CN‖|∇f |‖LN(B)

≤ CN‖|∇f |‖LN(RN),

where the first inequality follows by Hölder inequality and the second by (10); so taking the 
supremum over all balls in RN we find Claim (1) of our theorem follows and moreover the same 
argument yields the sharper estimate |f − fB |B ≤ CN‖|∇f |‖LN(B).

Now we remind the definition of the (real) Hardy space Hp(RN), 0 < p < ∞; first fix a bump 
function ϕ ∈ C∞

c (RN) with total mass one, and consider the mollifiers ϕt := t−nϕ(t−1 ·), t > 0. 
Then we have the following:
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Definition 5.7. The Hardy space Hp(RN) is the space of those tempered distributions f ∈
S∗(RN) such that the maximal operator

M∗f = sup
t>0

|(ϕt ∗ f )| ∈ Lp(RN).

Remark 5.8. Notice that this definition in fact does not depend on the choice of ϕ.

Now we use the following Lemmata:

Lemma 5.9. For 0 < p < ∞, the space D of Schwartz functions such that f̂ is supported away 
from the origin is dense in Hp(RN).

Proof. We begin with the case 1 < p < ∞. Then Hp(RN) = Lp(RN), as a Corollary of 
the Lp boundedness of the Hardy–Littlewood Maximal operator (which dominates pointwise 
the auxiliary M∗f maximal operator). If we define St(f ) := f ∗ ϕt , as it is the convolution 
of a Schwartz distribution and a Schwartz function, it is C∞ (see, e.g., Grafakos [32]); and 
St (f ) ∈ Lp(RN) ∩ C∞(RN) because |St (f )(x)| ≤ M∗f (x). Since St (f ) → f, t ↘ 0, both in 
Lp(RN) and pointwise almost everywhere (which is a corollary of the Lebesgue Differentia-
tion Theorem and the Dominated Convergence Theorem), it follows that Lp(RN) ∩ C∞(RN) is 
dense in Lp(RN). Fix now � ∈ C∞

c (RN) such that � = 1 if |x| ≤ 1/2 and � = 0 if |x| ≥ 1 and 
consider the operator

Rs(f )(x) = f (x)�(sx), s > 0.

It is immediate that Rs(f ) → f, s ↘ 0, again both in Lp and pointwise. Moreover, Rs(f ) → 0, 
s → ∞, in Lp and pointwise for x �= 0. For a given ε > 0, ∃ t > 0 such that ‖f −St (f )‖Lp(RN) ≤
ε/2. For such t > 0, ∃ s > 0 such that ‖St (f ) − Rs[St (f )]‖Lp(RN) ≤ ε/2 so that ‖f −
Rs[St (f )]‖Lp(RN) ≤ ε. As Rs[St (f )] ∈ C∞

c (RN) ⊂ S(RN), it follows that S(RN) is dense in 
Lp(RN), 1 < p < ∞.

Fix ε > 0. Then, ∃ g ∈ S(RN) with ‖f − g‖p ≤ ε/2. Consider the operators Ms(f ) given 
by [Ms(f )]∧ := f̂ − Rs(f̂ ) = [1 − �(s ·)]f̂ , so supp [Ms(f )]∧ ⊂ {ξ ∈ RN : |ξ | ≥ 1/(2s)}. By 
Fourier Inversion

Ms(f ) = f −
(
�̌s ∗ f

)
; �̌s(·) := s−N�̌(s−1 ·).

Since the Fourier transform preserves S(RN), it follows that Ms(f ) ∈ D, s > 0, if f ∈ S(RN). 
And since �̌t , t > 0, define, like the family ϕt , a standard approximation of identity, it follows 
that Ms(f ) → f in Lp as s → ∞. Picking s > 0 so that ‖h − Ms(h)‖p ≤ ε/2, we obtain ‖f −
Ms(h)‖p ≤ ε, which concludes the proof of the Lemma in the range 1 < p < ∞.

In the case 0 < p ≤ 1, the result follows as a corollary of the Littlewood–Paley square function 
characterization of the spaces Hp(RN); we refer to Grafakos [32], Chapter 6, for the details. �
Lemma 5.10. Let � = (−�)1/2 in the spectral sense (see also section 8). Then, for any N ≥ 1,

�−1 : HN(RN) −→ BMO(RN)

boundedly.
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Proof. Given f ∈ HN(RN) and a ball B in RN , for N ≥ 1, using the Hölder inequality and the 
Poincaré inequality for the exponent N ,

|�−1f − (�−1f )B |B ≤ CN

∥∥∥∣∣∣∇[�−1(f )]
∣∣∣∥∥∥

LN(B)

≤ CN

∥∥∥∥∥∥∥
⎛
⎝ N∑

j=1

|Rj (f )|2
⎞
⎠

1/2
∥∥∥∥∥∥∥

LN(RN)

≤ C′
N‖f ‖HN(RN),

where Rj is the j -th Riesz Transform. The last estimate follows since it is a classical result 

in Fourier Analysis that 

∥∥∥∥(∑N
j=1 |Rj (f )|2

)1/2
∥∥∥∥

Lp(RN)

is equivalent to the norm of the Hardy 

space Hp(RN) in any dimension N and for any exponent 1 ≤ p < ∞ (we refer again to 
Grafakos [32]). �

Now we can finish the proof of the main theorem of this section: given f ∈ X, there ex-
ists a sequence gj ∈ D such that gj → �f, j → ∞ in HN(RN) (by Lemma 5.9). Now be-
cause gj ∈ D, [�−1(gj )]∧(ξ) = cN |ξ |−1ĝj (ξ); ξ �= 0. Since for g ∈ D ⊂ Lp(RN), 1 ≤ p ≤ ∞, 
�−1f ∈ Lq(RN), q > N by the classical Sobolev Embedding Theorem, and this rules out the 
possibility of a singular support at ξ = 0 of (�−1g)∧. As a result, for g ∈ D, (�−1g)∧ is also 
in D; it follows that �−1g is a Schwartz function, and since the Fourier transform preserves 
this class, so it belongs too to S(RN) ⊂ C0(R

N). Since by Lemma 5.10, �−1 : HN(RN) →
BMO(RN) is continuous, given f ∈ X, f belongs to the closure of C0(R

N) in BMO(RN), 
which is VMO(RN). �
6. Existence results

Now we introduce the general theoretical framework in which our existence results follow. 
For the sake of clarity, we divide this section into three subsections corresponding each to the 
different type of data we are interested in. Our key theoretical tool will be the combination of 
the results we have proven in the previous sections with suitable weak continuity properties of 
the k-Hessian. We note that related properties were studied in the past by several authors, see for 
instance [2,5–9,15,17,30,33,35–37,40–45,49].

6.1. H1 data

We start this first subsection introducing a series of technical results which will be of use in 
the remainder of the section.

Lemma 6.1. If ψ ∈ Ẇ 2m−δ,N/(N−δ)(RN) ∀ 0 ≤ δ ≤ 2m − 2 for m = 1 +N(k − 1)/(2k) ∈ N then 
Sk[ψ] ∈ H1(RN).

Proof. It is clear that Sk[ψ] ∈ L1(RN) for ψ ∈ Ẇ 2m−δ,N/(N−δ)(RN) ∀ 0 ≤ δ ≤ 2m − 2 as a 
direct consequence of a suitable Sobolev embedding when necessary. The improved regularity in 
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the statement follows from the divergence form of the k-Hessian (see equation (13) below) and 
Theorem I in [31], see also [14,15]. �
Remark 6.2. We find admissible values of m whenever

• N is a multiple of 2k.
• N is odd, N is a multiple of k and k is odd.

For example, when N = 2k we always find the admissible value m = N/2. Note also that, as we 
are assuming N, k ≥ 2, then m ≥ 2, so we are always treating with polyharmonic, rather than 
harmonic, problems.

Proposition 6.3. Sk[·] is weakly-∗ sequentially continuous from Ẇ 2m,1(RN) to the Hardy space 
H1(RN), provided m = 1 + N(k − 1)/(2k) ∈ N. That is, if

ψn ⇀ ψ; weakly in Ẇ 2m,1(RN),

then

Sk[ψn] ∗
⇀ Sk[ψ]; weakly-∗ inH1(RN).

Proof. Since 
[
VMO(RN)

]∗ = H1(RN) the statement means that whenever ψn ⇀ ψ weakly in 
Ẇ 2m,1(RN) then ∫

RN

ϕ Sk[ψn]dx →
∫
RN

ϕ Sk[ψ]dx ∀ϕ ∈ VMO(RN).

Note that Sk[ψn], Sk[ψ] ∈ H1(RN) by Lemma 6.1. We start proving weak sequential continuity 
in the sense of distributions

ψn ⇀ ψ weakly in Ẇ 2m,1(RN) ⇒ Sk[ψn] → Sk[ψ] inD∗(RN). (11)

Fix φ ∈ C∞
c (RN) and compute

∫
RN

φ Sk[ψn]dx = −1

k

∑
i,j

∫
RN

φi(ψn)jS
ij
k [ψn]dx, (12)

where we have used integration by parts and the divergence form of the k-Hessian

Sk[ψ] = 1

k

∑
i,j

∂xi
(ψxj

S
ij
k [ψ]), (13)

see [65], where

S
ij
k (D2ψ) = ∂

∂aij

σk[�(A)]
∣∣∣∣

2
,

A=D ψ
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where �(A) are the eigenvalues of the N ×N matrix A which entries are aij , and we remind the 
definition of the k-Hessian Sk[ψ] = σk(�) where

σk(�) =
∑

i1<···<ik

�i1 · · ·�ik ,

is the kth elementary symmetric polynomial and � = (�1, · · · , �n) are the eigenvalues of the 
Hessian matrix (D2ψ). Now

lim
n→∞

∫
RN

φ Sk[ψn]dx = − lim
n→∞

1

k

∑
i,j

∫
RN

φi(ψn)jS
ij
k [ψn]dx,

= −1

k

∑
i,j

∫
RN

φi(ψ)jS
ij
k [ψ]dx,

=
∫
RN

φ Sk[ψ]dx,

where the first and third equalities follow from (12) and the second from the Rellich–Kondrachov 
theorem that states that weak convergence

ψn ⇀ ψ weakly in Ẇ 2m,1(RN)

implies

ψn → ψ strongly in Ẇ
2,(2N−k)k(k−1)/[(2N−k)k−2(N−k)]
loc (RN)

and

ψn → ψ strongly in Ẇ
1,(2N−k)k/(2N−2k)

loc (RN),

if k �= N . If k = N , then

ψn → ψ strongly in Ẇ
2,N−1/2
loc (RN)

and

ψn → ψ strongly in Ẇ
1,2N−1
loc (RN).

So (11) is proven.
Given that C∞

c (RN) is dense in VMO(RN) we may choose an approximating family ϕε ∈
C∞

c (RN) of ϕ ∈ VMO(RN) such that ‖ϕ − ϕε‖VMO(RN) ≤ ε for any ε > 0. So it follows that
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∫
RN

ϕ Sk[ψn]dx −
∫
RN

ϕ Sk[ψ]dx =
∫
RN

ϕε Sk[ψn]dx −
∫
RN

ϕε Sk[ψ]dx

+
∫
RN

(ϕ − ϕε)Sk[ψn]dx

−
∫
RN

(ϕ − ϕε)Sk[ψ]dx.

Since Sk[ψn] and Sk[ψ] are uniformly bounded in H1(RN), we can estimate

∣∣∣∣∣∣∣
∫
RN

ϕ Sk[ψn]dx −
∫
RN

ϕ Sk[ψ]dx

∣∣∣∣∣∣∣
≤ {‖Sk[ψn]‖H1(RN) + ‖Sk[ψ]‖H1(RN)

}
×‖ϕ − ϕε‖VMO(RN)

+

∣∣∣∣∣∣∣
∫
RN

ϕε Sk[ψn]dx −
∫
RN

ϕε Sk[ψ]dx

∣∣∣∣∣∣∣ ,

and

lim sup
n→∞

∣∣∣∣∣∣∣
∫
RN

ϕ Sk[ψn]dx −
∫
RN

ϕ Sk[ψ]dx

∣∣∣∣∣∣∣ ≤ Cε + o(1).

The statement follows by the arbitrariness of ε. �
Corollary 6.4. Sk[·] is weakly-∗ continuous from the homogeneous Sobolev space
Ẇ 2m−δ,N/(N−δ)(RN) ∀ 0 ≤ δ < 2m − 2 to H1(RN), provided m = 1 + N(k − 1)/(2k) ∈ N.

Corollary 6.5. The k-Hessian Sk[·] is weakly-∗ continuous from the homogeneous Sobolev space 
Ẇ 2m−δ,N/(N−δ)(RN) ∀ 0 ≤ δ < 2m − 2 to M(RN), where M(RN) is the set of (signed) Radon 
measures, provided m = 1 + N(k − 1)/(2k) ∈ N. That is, if

ψn ⇀ ψ; weakly in Ẇ 2m−δ,N/(N−δ)(RN),

then

Sk[ψn] ∗
⇀ Sk[ψ]; weakly-∗ in M(RN).

Now we state the main result of this subsection:



3380 P. Balodis, C. Escudero / J. Differential Equations 265 (2018) 3363–3399
Theorem 6.6. Let m = 1 + N(k − 1)/(2k) ∈ N. Then problem (2a)–(2b) has at least one weak 
solution in Ẇ 2m,1(RN) for any N ≥ 4 and any N/2 ≥ k ≥ 2 (N, k ∈ N) provided |λ| is small 
enough and f ∈ H1(RN). Moreover any such solution u ∈ Ẇ 2m−ε,N/(N−ε)(RN) ∀ 0 ≤ ε ≤ 2m

and D2mu ∈ H1(RN).

Proof. Consider w ∈ Ẇ 2m,1(RN). Then Sk[−w] ∈H1(RN) by Lemma 6.1 and the equation

(−�)m u = Sk[−w] + λf, x ∈RN,

u → 0, when |x| → ∞,

has a unique solution u ∈ Ẇ 2m−ε,N/(N−ε)(RN) ∀ 0 ≤ ε ≤ 2m such that D2mu ∈ H1(RN) by 
Corollary 3.2. So the map

T :H1(RN) −→ H1(RN)

v �−→ v′ = Sk

[
(−�)−m (−v)

]+ λf,

is well defined and moreover

‖v′‖H1(RN) � ‖Sk

[
(−�)−m (−v)

]‖H1(RN) + |λ|‖f ‖H1(RN)

� ‖ (−�)−m (−v)‖k

Ẇ 2m,1(RN)
+ |λ|‖f ‖H1(RN)

� ‖v‖k
H1(RN)

+ |λ|‖f ‖H1(RN),

by the triangle inequality in the first step, Lemma 6.1 in the second, and Proposition 3.1 in 
the third. Now consider the particular case v = 0, i.e. v0 = λf , then obviously ‖v0‖H1(RN) =
|λ|‖f ‖H1(RN) and

v′ − v0 = Sk

[
(−�)−m (−v)

]
, x ∈ RN.

Therefore

‖v′ − v0‖H1(RN) = ‖Sk

[
(−�)−m (−v)

]‖H1(RN)

� ‖ (−�)−m (−v)‖k

Ẇ 2m,1(RN)

� ‖v‖k
H1(RN)

� [‖v − v0‖H1(RN) + ‖v0‖H1(RN)

]k
= [‖v − v0‖H1(RN) + |λ|‖f ‖H1(RN)

]k
.

Consequently it is clear that T will map the ball

B =
{
v ∈H1(RN) : ‖v − v0‖H1(RN) ≤ R

}
into itself provided we choose R and |λ| small enough.
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Now assume ψj
∗
⇀ ψ in H1(RN), therefore

〈
(−�)m φ, (−�)−m ψj

〉 −→ 〈
(−�)m φ, (−�)−m ψ

〉
for any fixed φ ∈ VMO(RN), or equivalently〈

φ̂, (−�)−m ψj

〉
−→

〈
φ̂, (−�)−m ψ

〉
,

for any fixed φ̂ ∈ I−2m(VMO)(RN), with the obvious definition of I−2m(VMO)(RN) (see for in-
stance [53]). By Corollary 3.2 (−�)−m ψj ∈ Ẇ 2m−1,N/(N−1)(RN), but we need (−�)−m ψj ⇀

(−�)−m ψ in Ẇ 2m−1,N/(N−1)(RN); note that the first mode of convergence does not, in prin-
ciple, trivially imply the second. On the other hand the two facts {Ẇ 2m−1,N/(N−1)(RN)}∗ =
Ẇ 1−2m,N(RN) and Remark 5.4 imply that, for N ≥ 2, the first mode of convergence indeed im-
plies the second. As a consequence of this and Corollary 6.4 the map T is weakly-∗ continuous, 
and consequently by Theorem 4.1 it has a fixed point. The existence of solution follows from 
u = (−�)−m v and Proposition 3.1. The regularity follows by Sobolev embeddings. �
6.2. Summable data

An analogous existence theorem can still be proven for data f ∈ L1(RN).

Theorem 6.7. Let m = 1 + N(k − 1)/(2k) ∈ N. Then problem (2a)–(2b) has at least one weak 
solution in Ẇ 2m−ε,N/(N−ε)(RN) ∀ 0 < ε ≤ 2m for any N ≥ 8 and any N/2 > k ≥ 2 (N, k ∈ N) 
provided |λ| is small enough and f ∈ L1(RN). Moreover any such solution fulfills D2mu ∈
L1,∞(RN).

Proof. Consider w ∈ Ẇ 2m−1,N/(N−1)(RN). Then Sk[−w] ∈ H1(RN) by Lemma 6.1 and Re-
mark 6.2, and the equation

(−�)m u = Sk[−w] + λf, x ∈RN,

u → 0, when |x| → ∞,

has a unique solution u ∈ Ẇ 2m−ε,N/(N−ε)(RN) ∀ 0 < ε ≤ 2m such that D2mu ∈ L1,∞(RN) by 
Proposition 3.1. So the map

T : Ẇ 2m−1,N/(N−1)(RN) −→ Ẇ 2m−1,N/(N−1)(RN)

w �−→ u = (−�)−m Sk [−w] + λ (−�)−m f,

is well defined and furthermore for g := (−�)−m f

‖u‖Ẇ 2m−1,N/(N−1)(RN) � ∥∥(−�)−m Sk [−w]
∥∥

Ẇ 2m−1,N/(N−1)(RN)

+|λ| ‖g‖Ẇ 2m−1,N/(N−1)(RN)

� ‖w‖k

Ẇ 2m−1,N/(N−1)(RN)

+|λ| ‖g‖ ˙ 2m−1,N/(N−1) N ,
W (R )
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by the triangle inequality and Proposition 3.1 in the first step, and Lemma 6.1 and Corollary 3.2
in the second. Now consider the particular case w = 0, i.e. u0 = λ (−�)−m f , then clearly 
‖u0‖Ẇ 2m−1,N/(N−1)(RN) = |λ| ‖g‖Ẇ 2m−1,N/(N−1)(RN) and

u − u0 = (−�)−m Sk [−w] , x ∈RN.

Therefore

‖u − u0‖Ẇ 2m−1,N/(N−1)(RN) = ∥∥(−�)−m Sk [−w]
∥∥

Ẇ 2m−1,N/(N−1)(RN)

� ‖w‖k

Ẇ 2m−1,N/(N−1)(RN)

�
[
‖w − u0‖Ẇ 2m−1,N/(N−1)(RN)

+‖u0‖Ẇ 2m−1,N/(N−1)(RN)

]k

=
[
‖w − u0‖Ẇ 2m−1,N/(N−1)(RN)

+|λ| ‖g‖Ẇ 2m−1,N/(N−1)(RN)

]k

.

Consequently it is clear that T maps the ball

B =
{
w ∈ Ẇ 2m−1,N/(N−1)(RN) : ‖w − u0‖Ẇ 2m−1,N/(N−1)(RN) ≤ R

}
into itself given that we choose R and |λ| small enough.

Corollary 6.4 implies the convergence property

〈φ,Sk[ψn]〉 −→ 〈φ,Sk[ψ]〉 , (14)

for any fixed φ ∈ VMO(RN) given that ψn ⇀ ψ in Ẇ 2m−1,N/(N−1)(RN). By equation (14) we 
get

〈
(−�)m φ, (−�)−m Sk[ψn]

〉 −→ 〈
(−�)m φ, (−�)−m Sk[ψ]〉 ,

for any fixed φ ∈ VMO(RN), or in other terms〈
φ̂, (−�)−m Sk[ψn]

〉
−→

〈
φ̂, (−�)−m Sk[ψ]

〉
,

for any fixed φ̂ ∈ I−2m(VMO)(RN), as in the previous subsection. This mode of conver-
gence is not, in principle, equivalent to the one we need: (−�)−m Sk[ψn] ⇀ (−�)−m Sk[ψ]
in Ẇ 2m−1,N/(N−1)(RN). However using {Ẇ 2m−1,N/(N−1)(RN)}∗ = Ẇ 1−2m,N(RN) and Re-
mark 5.4 we find for N ≥ 2 that the second mode of convergence follows as a consequence 
of the first.

Given our assumption N ≥ 2 we get that the map T is weakly continuous in
Ẇ 2m−1,N/(N−1)(RN) (and thus it is weakly-∗ continuous), so by Theorem 4.1 it has a fixed 
point. The regularity follows from Proposition 3.1 and a classical bootstrap argument. �
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Remark 6.8. Note that the space Ẇ 2m−1,N/(N−1)(RN) is not a Banach space since
‖ · ‖Ẇ 2m−1,N/(N−1)(RN) is a seminorm rather than a norm. Note however that the null subspace 
of ‖ · ‖Ẇ 2m−1,N/(N−1)(RN) is composed by the polynomials of degree smaller or equal to 2m − 2. 
So we can consider Ẇ 2m−1,N/(N−1)(RN) as the quotient space which equivalence classes are 
closed with respect to the addition of one such polynomial. Since in Theorem 6.7 we are proving 
the existence of solutions that vanish at infinity, and the set of polynomials that vanish at infinity 
has a unique element that is identically zero, the use of norm ‖ · ‖Ẇ 2m−1,N/(N−1)(RN) in the proof 
of Theorem 6.7 is meaningful.

6.3. Lp data

We now state the complementary result that assumes our datum f ∈ Lp(RN).

Theorem 6.9. Let m = 1 + N(k − 1)/(2pk) ∈ N. Then problem (2a)–(2b) has at least one weak 
solution in Ẇ 2m−ε,Np/(N−εp)(RN) ∀ 0 ≤ ε ≤ 2m for any N ≥ 9 and any N/2 > k ≥ 2 (N, k ∈N) 
provided |λ| is small enough and f ∈ Lp(RN), 1 < p < N/(2k).

Proof. The proofs mimics that of Theorem 6.6 with the space Ẇ 2m,p(RN) playing the role of 
both Ẇ 2m−1,N/(N−1)(RN) and Ẇ 2m,1(RN), except for the proof of weak convergence. Therefore 
we will only include this part here.

In this case ψ ∈ Ẇ 2m,p(RN) ↪→ Ẇ 2,kp(RN), so we need to prove∫
RN

ϕ Sk[ψn]dx →
∫
RN

ϕ Sk[ψ]dx ∀ϕ ∈ Lq(RN),

where p−1 + q−1 = 1 (and so q > 1). We again start proving weak continuity in the sense of 
distributions

ψn ⇀ ψ weakly in Ẇ 2m,p(RN) ⇒ Sk[ψn] → Sk[ψ] inD∗(RN). (15)

We fix φ ∈ C∞
c (RN) and calculate

∫
RN

φ Sk[ψn]dx = −1

k

∑
i,j

∫
RN

φi(ψn)jS
ij
k [ψn]dx, (16)

where we have used integration by parts and the divergence form of the k-Hessian. Now we take 
the limit

lim
n→∞

∫
RN

φ Sk[ψn]dx = − lim
n→∞

1

k

∑
i,j

∫
RN

φi(ψn)jS
ij
k [ψn]dx,

= −1

k

∑
i,j

∫
RN

φi(ψ)jS
ij
k [ψ]dx,

=
∫
N

φ Sk[ψ]dx,
R
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where the first and third equalities follow from (16) and the second from the Rellich–Kondrachov 
theorem which for

ψn ⇀ ψ weakly in Ẇ 2m,p(RN)

implies

ψn → ψ strongly in Ẇ
2,(2N−pk)pk(k−1)/[(2N−pk)pk−2(N−pk)])
loc (RN)

and

ψn → ψ strongly in Ẇ
1,(2N−pk)pk/(2N−2pk)

loc (RN).

Thus (15) is proven.
Since C∞

c (RN) is dense in Lq(RN), p−1 + q−1 = 1, we select an approximating family 
ϕε ∈ C∞

c (RN) of ϕ ∈ Lq(RN) such that ‖ϕ − ϕε‖Lq(RN) ≤ ε for any ε > 0. So it holds that

∫
RN

ϕ Sk[ψn]dx −
∫
RN

ϕ Sk[ψ]dx =
∫
RN

ϕε Sk[ψn]dx −
∫
RN

ϕε Sk[ψ]dx

+
∫
RN

(ϕ − ϕε)Sk[ψn]dx

−
∫
RN

(ϕ − ϕε)Sk[ψ]dx.

Given that Sk[ψn] and Sk[ψ] are bounded in Lp(RN), we can establish the estimate

∣∣∣∣∣∣∣
∫
RN

ϕ Sk[ψn]dx −
∫
RN

ϕ Sk[ψ]dx

∣∣∣∣∣∣∣
≤ {‖Sk[ψn]‖Lp(RN) + ‖Sk[ψ]‖Lp(RN)

}
×‖ϕ − ϕε‖Lq(RN)

+

∣∣∣∣∣∣∣
∫
RN

ϕε Sk[ψn]dx −
∫
RN

ϕε Sk[ψ]dx

∣∣∣∣∣∣∣ ,

and

lim sup
n→∞

∣∣∣∣∣∣∣
∫
N

ϕ Sk[ψn]dx −
∫
N

ϕ Sk[ψ]dx

∣∣∣∣∣∣∣ ≤ Cε + o(1).
R R



P. Balodis, C. Escudero / J. Differential Equations 265 (2018) 3363–3399 3385
Therefore the arbitrariness of ε guarantees that, if

ψn ⇀ ψ; weakly in Ẇ 2m,p(RN),

then

Sk[ψn] ⇀ Sk[ψ]; weakly inLp(RN),

and so the statement follows. �
Remark 6.10. The lower bounds for the values of N in Theorems 6.6, 6.7 and 6.9 are easily 
proven using the inequalities in the statement of Proposition 3.1. Also, it is easy to find examples 
of m, N , k and p for which the statements of these theorems apply.

7. Local uniqueness

In this section we prove existence and local uniqueness of a solution under more restrictive 
conditions. We start concentrating on the case that corresponds to Theorem 6.7.

Definition 7.1. Let u be a weak solution to problem (2a)–(2b) and W a Banach space. If there 
exists a ρ > 0 such that this solution is unique in the ball

B̃ρ(u) = {v ∈W : ‖u − v‖W ≤ ρ} ,

then we say that u is locally unique in W .

Theorem 7.2. Let m = 1 + N(k − 1)/(2k) ∈ N. Then problem (2a)–(2b) has at least one weak 
solution in Ẇ 2m−ε,N/(N−ε)(RN) ∀ 0 < ε ≤ 2m for any N ≥ 8 and any N/2 > k ≥ 2 (N, k ∈ N) 
provided |λ| is small enough and f ∈ L1(RN). Moreover any such solution fulfills D2mu ∈
L1,∞(RN) and at least one is locally unique in Ẇ 2m−1,N/(N−1)(RN).

Proof. Consider w1, w2 ∈ Ẇ 2m−1,N/(N−1)(RN). Then Sk[−w1,2] ∈ H1(RN) by Lemma 6.1 and 
the equations

(−�)m u1,2 = Sk[−w1,2] + λf, x ∈RN,

u1,2 → 0, when |x| → ∞,

have a unique solution u1,2 ∈ Ẇ 2m−1,N/(N−1)(RN) by Proposition 3.1. Now we can subtract 
them

(−�)m (u1 − u2) = Sk[−w1] − Sk[−w2], x ∈ RN,

u1 − u2 → 0, when |x| → ∞,

and find a unique solution u1 − u2 ∈ Ẇ 2m−1,N/(N−1)(RN) such that

‖u1 − u2‖ ˙ 2m−1,N/(N−1) N � ‖Sk[−w1] − Sk[−w2]‖1,
W (R )
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by the same proposition. Now using

Sk[ψ] = 1

k

∑
i,j

∂xi
(ψxj

S
ij
k [ψ]) = 1

k

∑
i,j

ψxixj
S

ij
k [ψ],

since

∑
i

∂xi
S

ij
k [ψ] = 0 ∀ 1 ≤ j ≤ N,

for any smooth function ψ [40], yields

‖u1 − u2‖Ẇ 2m−1,N/(N−1)(RN)

�
∥∥∥∥∥∥

1

k

∑
i,j

(w1)xixj
S

ij
k [w1] − 1

k

∑
i,j

(w2)xixj
S

ij
k [w2]

∥∥∥∥∥∥
1

�
[
‖w1‖Ẇ 2m−1,N/(N−1)(RN) + ‖w2‖Ẇ 2m−1,N/(N−1)(RN)

]k−1

×‖w1 − w2‖Ẇ 2m−1,N/(N−1)(RN),

after arguing by approximation in the first step and using Sobolev and triangle inequalities, and 
a reasoning akin to that in the proof of Theorem 1 in [7], in the second. We know the map

T : Ẇ 2m−1,N/(N−1)(RN) −→ Ẇ 2m−1,N/(N−1)(RN)

w1,2 �−→ u1,2,

is well defined and also maps the ball

B =
{
w ∈ Ẇ 2m−1,N/(N−1)(RN) : ‖w − u0‖Ẇ 2m−1,N/(N−1)(RN) ≤ R

}
into itself provided we choose R and |λ| small enough by the proof of Theorem 6.6. Therefore

‖u1 − u2‖Ẇ 2m−1,N/(N−1)(RN) � [|λ|‖f ‖L1(RN) + R
]k−1

×‖w1 − w2‖Ẇ 2m−1,N/(N−1)(RN)

<
1

2
‖w1 − w2‖Ẇ 2m−1,N/(N−1)(RN),

where we have used the triangle inequality and Proposition 3.1 in the first step and have chosen 
sufficiently smaller R and |λ| in the second. Thus the existence and uniqueness of the solution 
follows by the application of the Banach fixed point theorem and the regularity by Proposition 3.1
and a classical bootstrap argument. �

We can now state the corresponding result for f ∈ Lp(RN).
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Theorem 7.3. Let m = 1 + N(k − 1)/(2pk) ∈ N. Then problem (2a)–(2b) has at least one weak 
solution in Ẇ 2m−ε,Np/(N−εp)(RN) ∀ 0 ≤ ε ≤ 2m for any N ≥ 9 and any N/2 > k ≥ 2 (N, k ∈N) 
provided |λ| is small enough and f ∈ Lp(RN), 1 < p < N/(2k). Moreover, at least one of these 
solutions is locally unique in Ẇ 2m,p(RN).

Proof. Follows analogously to that of Theorem 7.2. �
Remark 7.4. The proof of Theorem 7.2 is not applicable to the case f ∈H1(RN) and k = N/2; 
for the existence theory under these hypotheses the reader is referred to Theorem 6.6. On the 
other hand assuming f ∈ H1(RN) and k < N/2 allows one to reproduce this proof identically 
with the slight improvement in regularity D2mu ∈ H1(RN).

8. Nonlocal problems

In this section we extend our results for problem (1) to

�nu = Sk[−u] + λf, x ∈ RN, (17)

where � is a pseudo-differential operator defined in the following way.

Definition 8.1. The pseudo-differential operator � := √−�, where the square root is interpreted 
in the sense of the Spectral Theorem.

Remark 8.2. The operator � is well defined since −� is essentially self-adjoint in C∞
c (RN) ⊂

L2(RN) [48].

Remark 8.3. The operator �n is a differential, and thus local, operator when n is even; in this 
case we actually have �n = (−�)n/2. If n is odd then �n is a nonlocal pseudo-differential 
operator.

Proposition 8.4. �f =F−1[2π |η|F(f )].

Proof. This is an immediate consequence of the spectral representation of the Laplacian in terms 
of the Fourier transform:

−�f =F−1[4π2|η|2F(f )]. �
Definition 8.5. We define Gn,N ∈ S∗(RN) in the following way:

• If 0 < n < N , it is the unique solution to �nGn,N = δ0 that obeys Gn,N(x) → 0 when 
|x| → ∞.

• If n = N , it is the unique solution to �nGn,N = δ0 in BMO(RN).

Proposition 8.6. The distribution Gn,N is given by the exact formulas:
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• If 0 < n < N ,

Gn,N(x) = Cn,N

|x|N−n
, Cn,N = 2−nπ−N/2 �

(
N−n

2

)
�
(

n
2

) .

• If n = N ,

GN,N(x) ≡ GN(x) = CN log |x|,

CN =
⎧⎨
⎩

(2 − N)(2π)N−2π2−N/2�
(

N
2 − 1

)
, N ≥ 3

−(2π)−1, N = 2
π−1, N = 1

.

Proof. We use

F(�nGn,N) =F(δ0) = 1,

to find

F(Gn,N )(ξ) = (2π |ξ |)−n ∀ ξ ∈RN \ {0}.

When 0 < n < N , F(Gn,N )(ξ) is well defined in L1(RN) +L∞(RN), and therefore it is well de-
fined as a Schwartz distribution. Now, an argument akin to that in the proof of Lemma 3.6 yields 
that indeed F(Gn,N)(ξ) = (2π |ξ |)−n in S∗(RN). The statement follows by Fourier inversion.

If n = N , then

F(GN)(ξ) = (2π |ξ |)−N ∀ ξ ∈ RN \ {0}.

Therefore in this case F(GN) /∈ L1
loc(R

N) and it does not even define a singular integral operator. 
Consequently our approach in this case will be different; lets start with R2, in this case

�2G(x) = δ0 ⇐⇒ −�G(x) = δ0,

and so

G(x) = −(2π)−1 log |x|.

Now focus in N ≥ 3 and compute

�n log |x| = �n−2(�2 log |x|)
= �n−2[(−�) log |x|]
= �n−2

(
2 − n

|x|2
)

.

By means of Fourier transform we find
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F(�n log |x|)(ξ) = (2π |ξ |)n−2F
(

2 − n

|x|2
)

(ξ)

= (2π |ξ |)n−2(2 − n)π2−n/2�(n/2 − 1)|ξ |−(n−2)

=: C−1
N ;

note that CN is always well defined for N ≥ 3. Therefore

F[�n(CN log |x|)](ξ) = 1 ⇐⇒ �n(CN log |x|) = δ0.

It only rests to show that �G(x) = δ0 in R. We remind the reader that G(x) ∝ log |x|, 
d log |x|/dx = x−1 and that x−1 defines a Schwartz distribution when interpreted as a princi-
pal value; in this case

F
[

P. V.

(
1

x

)]
(ξ) = iπ sgn(ξ).

Now compute

iπ sgn(ξ) = F
(

d log |x|
dx

)
(ξ),

= 2πi ξ F (log |x|) (ξ)

⇒ F (log |x|) (ξ) = 1

2|ξ | if ξ �= 0.

Clearly, |ξ |−1 /∈ S∗(R), and therefore F (log |x|) (ξ) has to be interpreted as a renormalization of 
(2|ξ |)−1. Now consider

F
(
�1/2 log |x|

)
(ξ) = (2π |ξ |)1/2F (log |x|) (ξ)

= (2π |ξ |)1/2(2|ξ |)−1

=
√

π

2
|ξ |−1/2,

if ξ �= 0. Regularizing the singularity of F(log |x|)(ξ) at the origin and letting the regularization 
parameter go to zero we find

F
(
�1/2 log |x|

)
(ξ) =

√
π

2
|ξ |−1/2 in S∗(R).

Finally

F (� log |x|) (ξ) = F
[
�1/2

(
�1/2 log |x|

)]
(ξ)

= (2π |ξ |)1/2

√
π

2
|ξ |−1/2

= π = F(πδ0),

in S∗(R). �
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Proposition 8.7. The distribution Gn,N(x) is well defined and, in particular:

• If G(x) solves �nG = δ0, 0 < n < N , and G(x) → 0 when |x| → ∞, then G = Gn,N .
• If G(x) solves �NG = δ0 and G(x) ∈ BMO(RN), then G − GN is constant, i.e. G ≡ GN in 

BMO(RN).

Proof. The existence of this distribution was proven in the previous Proposition and its unique-
ness follows analogously as in the proof of Lemma 3.6. �
Theorem 8.8. Let n ∈ Z, 0 < n ≤ N , and

�nu = f in RN.

Then ∂α
x u = An,NRα(f ) for some constant An,N , where |α| = n, the monomial ∂α

x = ∂xj1
· · ·∂xjn

, 
Rα = Rxj1

· · ·Rxjn
and Rx1, · · · , Rxn are the corresponding Riesz transforms in RN .

Proof. We start with the subcritical case 0 < n < N :

u(x) = (Gn,N ∗ f )(x) ≡ �−nf.

We can write

�n−1u = �−1f = CN

∫
RN

f (y)

|x − y|N−1 dy,

and thus

∂xj
�n−1u = CN(1 − N) P. V.

∫
RN

xj − yj

|x − y|N+1 f (y)dy

= DNRxj
(f ),

where DN �= 0 since N ≥ 2. Therefore,

∂α
x u = ∂xj1

(∂xj2
· · ·∂xj2

)�1−n(�n−1u)

= (∂xj2
· · ·∂xjn

)�1−n(∂xj1
�n−1u)

= DNRxj2
· · ·Rxjn

(Rxj1
f )

= DNRα(f ).

Now we move to the case n = N ≥ 3. We know u = GN ∗ f where GN = CN log |x|. Then

�N−1u = �N−3(−�u)

= �N−3[(−�GN) ∗ f ],
where −�GN = CN(2 − N)|x|−2. Therefore



P. Balodis, C. Escudero / J. Differential Equations 265 (2018) 3363–3399 3391
�N−1u = CN

∫
RN

f (y)

|x − y|N−1 dy,

where CN �= 0 and the rest of the proof follows as in the previous case.
When n = N = 2 we write u = −(2π)−1 log |x| ∗ f (x) and therefore

∂xj
u = − 1

2π

∫
R2

xj − yj

|x − y|2 f (y)dy

= − 1

2π

∫
R2

yj

|y|2 f (x − y)dy.

Finally we have

�∂xj
u(x) ∝ P. V.

∫
R2

yj

|y|3 f (x − y)dy

∝ Rxj
(f )(x),

and thus

∂xj
∂xk

u = (Rxk
�)∂xj

u ∝ Rxj
Rxk

u.

The case n = N = 1 comes from the fact that

u(x) = 1

π

∫
R

log |x − y|f (y)dy,

and the fact that

u′(x) = 1

π
P. V.

∫
R

xj − yj

|x − y|2 f (y)dy,

which is the Hilbert transform of f . �
Corollary 8.9. The linear equation

�nu = λf, x ∈RN,

has a unique solution in the following cases:

(a) f ∈ Lp(RN), 1 < p < N
n
, n < N ,

(b) f ∈ L1(RN), n < N ,
(c) f ∈H1(RN), n < N ,
(d) f ∈H1(RN), n = N .
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Then, respectively

(a) u ∈ Ẇn−ε,Np/(N−εp)(RN) ∀ 0 ≤ ε ≤ n,
(b) u ∈ Ẇn−ε,N/(N−ε)(RN) ∀ 0 < ε ≤ n,
(c) u ∈ Ẇ n−ε,N/(N−ε)(RN) ∀ 0 ≤ ε ≤ n,
(d) u ∈ ẆN−ε,N/(N−ε)(RN) ∀ 0 ≤ ε ≤ N .

Moreover, in case (b), Dnu ∈ L1,∞(RN) and, in cases (c) and (d), Dnu ∈ H1(RN).

Now we state the main result of this section. Of course, N, k ∈ N always and we also assume 
N > 2k.

Theorem 8.10. Equation (17) has at least one weak solution in the following cases:

(a) f ∈ Lp(RN), 1 < p < N
2k

, n = 2 + N(k − 1)/(pk) ∈ N,
(b) f ∈ L1(RN), n = 2 + N(k − 1)/k ∈ N,
(c) f ∈H1(RN), n = 2 + N(k − 1)/k ∈ N,

provided |λ| is small enough. Then, respectively

(a) u ∈ Ẇn−ε,Np/(N−εp)(RN) ∀ 0 ≤ ε ≤ n,
(b) u ∈ Ẇn−ε,N/(N−ε)(RN) ∀ 0 < ε ≤ n,
(c) u ∈ Ẇ n−ε,N/(N−ε)(RN) ∀ 0 ≤ ε ≤ n.

Moreover, in case (b), Dnu ∈ L1,∞(RN) and, in case (c), Dnu ∈ H1(RN). Also, for a smaller 
enough |λ|, the solution is locally unique in every case.

Proof. The proof follows as a consequence of Corollary 8.9 and going through the same argu-
ments as in Section 6 and 7. �
Remark 8.11. The case N = 2k was already examined in Theorem 6.6.

9. Further results

Our previous results imply the weak continuity of the branch of solutions that departs from 
u = 0 and λ = 0 under certain conditions.

Theorem 9.1. Let

� : D(�) ⊂ B −→ B

v �−→ u(v),

where u is the unique solution to

�nu = Sk[−u] + λf, x ∈RN,
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v = �−nf , B = Ẇn,p(RN), f ∈ Lp(RN) and the rest of hypotheses as in Theorem 8.10. Then 
� is weakly continuous, i.e. ∀ {vj }j ⊂ D(�) such that

vj ⇀ v weakly in B,

it holds that

�(vj ) ⇀ �(v) weakly in B.

Proof. Take D(�) to be the ball in B used in Theorem 7.3. Then we know � is well defined and 
moreover � : D(�) −→ D(�). We rewrite our equation

uj = �−n
(
Sk[−uj ]

)+ λvj ;

we know that for every vj ∈ D(�) there exist a unique solution uj ∈ D(�). Now take the 
limit j → ∞ and we conclude by weak continuity of Sk[·] in Lp(RN), see the proof of The-
orem 6.9. �

We also have a comparatively weaker result for summable data.

Theorem 9.2. Let

� : D(�) ⊂ B −→ B

v �−→ u(v),

where u is the unique solution to

�nu = Sk[−u] + λf, x ∈ RN,

v = �−nf , B = Ẇn−1,N/(N−1)(RN), f ∈ L1(RN) and the rest of assumptions as in Theo-
rem 8.10. Then � is weakly continuous, i.e. ∀ {vj }j ⊂ D(�) such that

vj ⇀ v weakly in B,

it holds that

�(vj ) ⇀ �(v) weakly in B.

Proof. The proof follows as the proof of Theorem 9.1 combined with the arguments regarding 
weak continuity in the proof of Theorem 6.7. �

In the following we will improve our regularity results from sections 3 and 8 and guarantee 
that the solution of the critical case obeys the boundary conditions.
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Theorem 9.3. Let f ∈H1(RN), then �−Nf ∈ C0(R
N) and

�−N : H1(RN) −→ C0(R
N)

is bounded.

Proof. We already know from Proposition 3.1 that ‖�−Nf ‖L∞(RN) � ‖f ‖H1(RN). Now let a
be a L∞-atom for H1(RN), i.e. a ∈H1(RN) and

• There exists a RN -cube Q ⊂ RN , that is Q = c(Q) + �(Q)Q0 with c(Q) ∈ RN , Q0 =
[−1/2, 1/2]N and �(Q) > 0, such that a is supported on Q,

• ‖a‖L∞(Q) ≤ |Q|−1,
• ∫

Q
a dx = 0.

We start proving that �−Na ∈ C0(R
N). Let x ∈ RN be such that |x − c(Q)| ≥ 2

√
N�. Then

�−Na(x) = CN

∫
Q

log |x − y|a(y)dy

= CN

∫
Q

[
log |x − y| − log |x − c(Q)|]a(y)dy,

after the use of the first and third defining properties of a in the first and second equalities 
respectively. If y ∈ Q, then

|x − y| = |[x − c(Q)] − [y − c(Q)]|
≥ |x − c(Q)| − |y − c(Q)|
≥ 3

4
|x − c(Q)| > 0,

where we have used

|y − c(Q)| ≤ 1

2

√
N� ≤ 1

4
|x − c(Q)|.

The same reasoning leads to conclude

3

4
≤ |x − y|

|x − c(Q)| ≤ 5

4
,

and then

|x − y|
|x − c(Q)| = 1 + t, |t | ≤ 1

4
.
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The triangle inequality again gives

| |x − y| − |x − c(Q)| | ≤ |y − c(Q)|,

which implies

|t | ≤ |y − c(Q)|
|x − c(Q)| ,

and then

∣∣∣∣log

[ |x − y|
|x − c(Q)|

]∣∣∣∣ ≤ C
|y − c(Q)|
|x − c(Q)| .

Therefore

∣∣∣�−Na(x)

∣∣∣ �
∫
Q

|y − c(Q)|
|x − c(Q)| |a(y)|dy

� 1

|x − c(Q)|
∫
Q

|y − c(Q)| |Q|−1dy

� �(Q)

|x − c(Q)| .

Since this last estimate holds for |x − c(Q)| ≥ 2
√

N� and

∣∣∣�−Na(x)

∣∣∣ � ‖a‖H1(RN) � 1,

it follows that

∣∣∣�−Na(x)

∣∣∣ � �(Q)

�(Q) + |x − c(Q)| ∀x ∈RN,

which proves the decay in the limit |x| → ∞.
To prove continuity of �−Na(x) choose x, h ∈RN to find

∣∣∣�−Na(x + h) − �−Na(x)

∣∣∣
= CN

∣∣∣∣∣∣∣
∫
Q

(log |x + h − y| − log |x − y|)a(y) dy

∣∣∣∣∣∣∣
� ‖a‖L∞

∫
| log |x + h − y| − log |x − y| |dy
Q
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=
∫
Q0

∣∣∣∣ log

∣∣∣∣x − c + h

�
− z

∣∣∣∣− log

∣∣∣∣x − c

�
− z

∣∣∣∣
∣∣∣∣dz

=: F
(

x − c

�
,
h

�

)
,

where we have used the change of variables y = �z + c in the previous to last step. It is enough 
to prove continuity of F and we may assume 0 < |h| ≤ 1

4 . Since Q0 ⊂ B√
N/2(0) =: B , we have

F(x,h) ≤
∫
B

| log |x + h − y| − log |x − y| |dy

= |h|N
∫

|h|−1B

∣∣ log |x′ + h′ − u| − log |x′ − u| ∣∣du,

after the change of variables y = |h|u, and where x′ = x/|h| and h′ = h/|h| ∈ SN−1. If |x| ≥ √
N

then |x′ − u| ≥ |x′| − |u| ≥ √
N/(2|h|) for u ∈ |h|−1B . Therefore

log |x′ + h′ − u| − log |x′ − u| = log

∣∣∣∣ x′ − u

|x′ − u| + h′

|x′ − u|
∣∣∣∣

= O

( |h′|
|x′ − u|

)
= O (|h|) .

Then

F(x,h) � |h|N
∫

|h|−1B

|h|du � |h|,

which proves continuity in this case.
If |x| ≤ √

N then B − x ⊂ B3
√

N/2(0) = 3B and

F(x,h) ≤ |h|N
∫

3B|h|−1

∣∣ log |z + h′| − log |z| ∣∣dz

= |h|N
∫

{3B|h|−1}∩{|z|≤2}

∣∣ log |z + h′| − log |z| ∣∣dz

+|h|N
∫

{3B|h|−1}∩{|z|≥2}

∣∣ log |z + h′| − log |z| ∣∣dz

=: I1 + I2,

after the change of variables y = x + |h|z in the first step. The first term can be estimated as 
follows
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I1 ≤ |h|N
∫

|z|≤2

∣∣ log |z + h′| − log |z| ∣∣dz � |h|N,

since the integral can be bounded by a constant independent of h′. For the second term we find

I2 = |h|N
∫

2≤|z|≤3
√

N/(2|h|)

∣∣∣∣ log

∣∣∣∣ z

|z| + h′

|z|
∣∣∣∣
∣∣∣∣dz

�
{

|h| log
(

1
|h|

)
, n = 1

|h| n > 1
,

because the integrand is O
(|z|−1

)
. Summing up:

∣∣∣�−Na(x + h) − �−Na(x)

∣∣∣
�

{
min

{
1, |h|

[
1 + log

(
1
|h|

)]}
, n = 1

min {1, |h|} , n > 1
∀x,h ∈ RN,

such that 0 < |h| ≤ 1/4.
Therefore

�−N :H1
at(R

N) −→ C0(R
N),

where H1
at(R

N) is the set of all finite linear combinations of L∞(RN)-atoms for H1(RN). Since 
H1

at(R
N) is dense in H1(RN) for f ∈ H1(RN) there exists fj ∈ H1

at(R
N) such that fj → f in 

H1(RN), and therefore �−Nfj → �−Nf in L∞(RN). Uniform convergence guarantees that 
�−Nf is not only bounded but also continuous.

Now we prove that �−Nf (x) → 0 when |x| → ∞. Uniform convergence of �−Nfj (x)

to �−Nf (x) implies that there exists a J ∈ N such that for j ≥ J it holds that |�−Nf (x) −
�−Nfj (x)| ≤ ε/2 ∀ x ∈RN . Now fix such a j ≥ J . Since �−Nfj (x) → 0 when |x| → ∞, then 
there exist 0 < R < ∞ such that for |x| ≥ R it holds that |�−Nfj (x)| ≤ ε/2. In consequence for 
|x| ≥ R,

|�−Nf (x)| = |�−Nf (x) − �−Nfj (x) + �−Nfj (x)|
≤ |�−Nf (x) − �−Nfj (x)| + |�−Nfj (x)|
≤ ε. �

Corollary 9.4. The solution whose existence was proven in Theorem 6.6 actually belongs to 
C0(R

N) in the critical case 2m = N = 2k.
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