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Abstract

There are few examples of non-autonomous vector fields exhibiting complex dynamics that may be 
proven analytically. We analyse a family of periodic perturbations of a weakly attracting robust heteroclinic 
network defined on the two-sphere. We derive the first return map near the heteroclinic cycle for small 
amplitude of the perturbing term, and we reduce the analysis of the non-autonomous system to that of a 
two-dimensional map on a cylinder.

Interesting dynamical features arise from a discrete-time Bogdanov-Takens bifurcation. When the pertur-
bation strength is small the first return map has an attracting invariant closed curve that is not contractible 
on the cylinder. Near the centre of frequency locking there are parameter values with bistability: the in-
variant curve coexists with an attracting fixed point. Increasing the perturbation strength there are periodic 
solutions that bifurcate into a closed contractible invariant curve and into a region where the dynamics is 
conjugate to a full shift on two symbols.
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1. Introduction

Archetypal examples of robust heroclinic cycles have been studied by Guckenheimer and 
Holmes [13], and May and Leonard [18], using a system of Lotka-Volterra equations. The authors 
found saddle-equilibria on the axes and attracting heteroclinic cycles and networks.

A heteroclinic cycle in an autonomous dynamical system consists of a connected union of 
saddle-type invariant sets and heteroclinic trajectories connecting them. A heteroclinic network 
is a connected union of heteroclinic cycles. In equivariant systems the existence of invariant 
subspaces may force the existence of connecting trajectories between flow-invariant sets; hete-
roclinic cycles become robust in the sense that the connections persist under small symmetry-
preserving perturbations. In generic dynamical systems without symmetry or other constraints, 
such configurations are structurally unstable.

In classical mechanics, dissipative non-autonomous systems received only limited attention, 
in part because it was believed that, in these systems, all trajectories tend toward Lyapunov stable 
sets (fixed points or periodic solutions). Evidence that second order equations with a periodic 
forcing term can have interesting behaviour first appeared in the study of van der Pol’s equation, 
which describes an oscillator with nonlinear damping. Results of [8] pointed out an attracting set 
more complicated than a fixed point or an invariant curve. Levinson obtained detailed information 
for a simplified model [17].

Examples from the dissipative category include the equations of Lorenz, Duffing equation and 
Lorentz gases acted on by external forces [10]. The articles [9,29] deal with heteroclinic tangles 
in time-periodic perturbations in the dissipative context and show, for a set of parameters with 
positive Lebesgue measure, the existence of an attracting torus, of infinitely many horseshoes 
and of strange attractors with SRB measures.

While some progress has been made, both numerically and analytically, the number of differ-
ential equations with periodic forcing whose flows exhibit attracting heteroclinic networks, for 
which a rigorous global description of the dynamics is available, has remained small. To date 
there has been very little systematic investigation of the effects of perturbations that are time-
periodic, despite being natural for the modelling of many biological effects, see Rabinovich et 
al. [22].

2. The object of study and main results

For γ, ω ∈ R+
0 , the focus of this paper is on the following set of the ordinary differential 

equations with a periodic forcing:

⎧⎨⎩
ẋ = x(1 − r2) − αxz + βxz2 + γ (1 − x) sin(2ωt)

ẏ = y(1 − r2) + αyz + βyz2

ż = z(1 − r2) − α(y2 − x2) − βz(x2 + y2)

(2.1)

where

r2 = x2 + y2 + z2, β < 0 < α, |β| < α ⇒ β2 < 8α2.
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Fig. 1. Sketch of the heteroclinic connections when γ = 0 and α > 0. When α < 0, the arrows reverse orientation.

The amplitude of the perturbing term is governed by γ > 0. We have chosen the perturbing term

γ (1 − x) sin(2ωt).

It appears only in the first coordinate for two reasons: first, it simplifies the computations. Sec-
ondly, it allows comparison with previous work by other authors [3,5,12,22,28]. We denote the 
vector field associated to (2.1) by Fγ .

Remark 1. The perturbation term sin(2ωt) may be replaced by f (2ωt) where f is any 
2π -periodic and continuously differentiable function. In some places we use the property 
f ′′(t) = −f (t).

2.1. The unperturbed system (γ = 0)

The dynamics associated to this equation has been systematically studied in [5,23]. For the 
sake of completeness, we recall its main properties. The vector field F0 has two symmetries of 
order 2:

κ1(x, y, z) = (−x, y, z) and κ2(x, y, z) = (x,−y, z)

forming a symmetry group isomorphic to Z2 ⊕ Z2. The symmetry κ2 remains after the pertur-
bation governed by γ . The unit sphere S2 is flow-invariant and globally attracting. The points 
v = (0, 0, 1) and w = (0, 0, −1) are equilibria. From the symmetries Z2 ⊕ Z2, it follows that the 
planes x = 0 and y = 0 are flow-invariant, and hence they meet S2 in two flow-invariant circles 
connecting the equilibria (0, 0, ±1) – see Fig. 1. Since β < 0 < α and β2 < 8α2, then these 
two equilibria are saddles, and there are heteroclinic trajectories going from each equilibrium to 
the other one. More precisely, the expanding and contracting eigenvalues Ep and −Cp of the 
derivative of the vector field F0 at p ∈ {v, w} are:

Ev = Ew = α + β > 0 and Cv = Cw = α − β > 0,

with ̂δ = Cv

Ev
= Cw

Ew
= α − β

α + β
> 0. The origin is a repellor.

Considering the system restricted to S2, equivariance forces the invariant manifolds in S2 of v
and w to be in a very special position: they coincide. In S2, the invariant manifolds of v and w are 
one-dimensional and contained in the invariant circles Fix(Z2(κj )) ∩ S2, j = 1, 2, giving rise to 
a heteroclinic network 	0. In the restriction to each of the invariant planes Fix(κj ), j = 1, 2 the 
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equilibria v, w have a saddle-sink connection, so this network is persistent under perturbations 
that preserve the symmetry, and in this sense it is robust.

For all non-equilibrium points p ∈ Fix(κ1) ∩ S2, we have ω(p) = {w}, whereas for 
p ∈ Fix(κ2) ∩ S2, we have ω(p) = {v}, as in Fig. 1.

The heteroclinic network 	0 is asymptotically stable by the Krupa and Melbourne criterion 
[15,16]. Note that:

δ = (̂δ)2 = Cv

Ev

Cw

Ew
= (α − β)2

(α + β)2 > 1.

The constant δ measures the strength of attraction of the cycle in the absence of perturbations. 
There are no periodic solutions near 	0 because δ > 1. Typical trajectories near the heteroclinic 
network 	0 spend increasing amounts of time near each saddle point on each occasion they 
return close to it. In some places we assume that we are in the weakly attracting case δ � 1, we 
make the assumption explicitly when it is used. The case δ = 1, γ = 0 corresponds to a resonant 
bifurcation of the robust heteroclinic cycle – this case has been explored by Postlethwaite and 
Dawes in [20,21].

2.2. A pull-back attractor for small γ

Kloeden and Rasmussen [14] have results connecting attractors for autonomous systems and 
their perturbations, that may be applied here. We have that 	0 is a global attractor of the au-
tonomous flow (γ = 0), the vector field F0 is uniformly Lipschitz and the periodic perturbation 
term sin(2ωt) is bounded. Then Section 11 of [14] allows us to conclude that the non-autonomous 
system (2.1) generates a process which has a pullback attractor 	γ such that

∀t ∈ R, lim
γ→0

dist(	γ
t ,	0) = 0,

where dist is the euclidean distance on R3. Moreover, for a given γ > 0, the sets 	γ
t have the 

same Haussdorf dimension for all t ∈ R. This suggests that solutions of the perturbed system 
(2.1) should make excursions around the ghost of 	0. In this article we explore the resulting 
dynamics.

Dawes and T.-L. Tsai [12,27,28] presented preliminary results on the perturbation of the ex-
ample studied in [13]. They identified three distinct dynamical regimes depending on whether 
δ > 1 is or not close to 1, we discuss these in Section 7 below. Here we deal with the case δ > 1
in general. Our results provide insight into the dynamics of a non-autonomous periodic forcing 
of an autonomous equation with a compact attractor.

Our purpose in writing this paper is not only to point out the range of phenomena that can 
occur when simple non-linear equations are periodically forced, but to bring to the foreground 
the techniques that have allowed us to reach these conclusions in a relatively straightforward 
manner. These techniques are clearly not limited to the systems considered here. It is our hope 
that they will find applications in other dynamical systems, particularly those that arise naturally 
from mechanics or physics.
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2.3. Main results and structure of the paper

We now describe briefly the main results and the contents of this paper. Since there is a large 
number of constants and parameters used in the article, we have included a list of notation as an 
appendix.

Expressions for the Poincaré first return map to a section transverse to the connection [w → v]
are obtained in Section 3 for the case γ = 0 and in Section 4 for the general case.

We linearise the autonomous equations around the equilibria in § 3.1 to construct a first return 
map. In Section 4, we begin by presenting a systematic calculation of the first return map for the 
robust heteroclinic cycle subjected to the periodic forcing function f (2ωt) = sin(2ωt) at the first 
component of the vector field. The return map for the non-autonomous Fγ depends also on the 
initial time s. Since the forcing term is periodic in time, the natural phase-space may be regarded 
as S1 ×R3. By including the time-dependent terms through all steps in the calculation, we obtain 
a first return map to the set

In(v) = {(x, y, z), x = ε, |y| < ε, z = 1 + w, |w| < ε}

where ε > 0 is small. Comparison with the Poincaré map for the dynamics of the differential 
equations associated to F0 show that the new return map associated to Fγ captures the dynamics 
well – see Remarks 3, 4 and 6. The Poincaré map for (2.1), described in Theorem 1, yields a 
description of the dynamics in terms of a two-dimensional map for the y-coordinate and the 
return time s at which trajectories reach the cross-section, as in the following result:

Theorem 1. In the weakly attracting case δ � 1, for sufficiently small ε > 0 the rectangle In(v)

is a cross-section to the flow of (2.1), with γ = 0.
For small γ > 0, if (α −β)2 < 4α and β −α 
= −2 then a solution of (2.1) that starts in In(v)

at time s returns to In(v) with the dynamics, dominated by the coordinate y, defining a map G
on the cylinder

C = {(s, y) : 0 < y < ε, s ∈ R (mod π/ω)}, (2.2)

that is approximately given by

G(s, y) = (
s − K lny, yδ + γ (1 + k1 sin(2ωs))

) = (g1(s, y), g2(s, y)), (2.3)

where K = 2α

(α + β)2 > 0 and the value of k1 > 0 is given in Appendix A.

Theorem 1 is proved in Section 4. Although this result is valid for the weakly attracting case, 
we may study the dynamics of G for all δ > 1. The expression of G coincides with that obtained 
by Tsai and Dawes [28] for a different system, here we clarify and extend their results, that are 
also discussed in Sections 6 and 7.

Section 5 is concerned with bifurcation and stability of periodic solutions of (2.1). For this, we 
first introduce an auxiliary parameter T and look for fixed points of GT (s, y) = G(s, y) − (T , 0). 
A first step is the following:
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Fig. 2. Bifurcation diagram on (k1, γ )-plane for the fixed points of GT (s, y): the solid line is γ = M/(1 −k1), the dashed 
line is γ = M/(1 + k1). Numbering corresponds to the cases in Theorem 2.

Theorem 2. Consider the problem of finding fixed points of GT (s, y) with T ≥ 0, k1 > 0, γ > 0. 

The curves k1 = 1 and γ (1 − k1) = M and γ (1 + k1) = M with M = δ
1

1−δ − δ
δ

1−δ separate the 
first quadrant of the (k1, γ )-plane into five regions (see Fig. 2) corresponding to the following 
behaviour:

(1) k1 ∈ (0, 1) and M < γ (1 − k1) — there are no fixed points;
(2) k1 ∈ (0, 1) and γ (1 − k1) < M < γ (1 + k1) — there are fixed points for each T ∈ [T1, T2];
(3) k1 ∈ (0, 1) and γ (1 + k1) < M — there are fixed points for each T ∈ [T1, T2] ∪ [T3, T4];
(4) k1 > 1 and M < γ (1 + k1) — there are fixed points for each T ∈ R+;
(5) k1 > 1 and γ (1 + k1) < M — there are fixed points for each T ∈ (0, T1] ∪ [T2, ∞);

where 0 < T1 < T2 < T3 < T4 are real numbers. Moreover, when fixed points exist for T in an 
interval, then there are two fixed points for each T in the interior of the interval and only one for 
T in the boundary. These qualitative features occur for every ω > 0 and only the initial time s
depends on ω.

In Section 5, after the fixed points of GT (s, y) have been found, we discuss their stability and 
bifurcations between the different regions of the parameter space (T , k1, γ ).

Corollary 3. For k1 > 0, γ > 0, γ = M/(1 ± k1), fixed points of GT (s, y) undergo saddle-node 
bifurcations on the surfaces in the three dimensional parameter space (T , k1, γ ) given by

e−KTj − e−δKTj = γ (1 + k1) ∀k1 and if k1 > 1 then also e−KTj − e−δKTj = γ (1 − k1).

In this context, we find in § 5.3 an organising centre for the dynamics of GT as follows:

Theorem 4. There are curves in the three dimensional parameter space (T , k1, γ ) where fixed 
points of GT (s, y) undergo a discrete-time Bogdanov-Takens bifurcation, a single curve for 
k1 > 1, two curves for 0 < k1 < 1. The points in the curves occur at values of T = TN , 

N = 1, . . .4 in Theorem 2 such that TN = TM = ln δ

K(δ − 1)
.
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In particular, we conclude that there are contractible closed GT -invariant curves on the cylin-
der C arising at Hopf bifurcations and there exist small regions in parameter space where GT

has chaotic and non-hyperbolic dynamics. This is a consequence of the discrete-time Bogdanov-
Takens bifurcation studied by Broer et al. [7] and Yagasaki [30, § 3]. The stability of bifurcating 
solutions is studied in § 5.4.

A fixed point of GT (s, y) determines a fixed point of G(s, y) in the cylinder C if and only if 
T = nπ/ω for some integer n. These fixed points correspond to periodic solutions of (2.1) whose 
period is an integer multiple of the period of the forcing term — frequency locked solutions. In 
§ 5.5 the results of §5.1–5.4 are used to find such solutions. The findings agree well with numerics 
presented in [27,28]. We show their existence for different values of ω, as well as the existence 
of invariant tori and chaotic regions. We also show that there is no gain in looking for different 
multiples nπ/ω, n ∈ N of the period, because we obtain essentially the same solution for all n. 
This is summarised as follows:

Theorem 5. If γ (1 − k1) < M , then there are two frequency locked solutions of (2.1) with period 
nπ/ω, n ∈ N, for the following values of ω, according to the regions in Theorem 2:

(2) ω ∈ (nπ/T2, nπ/T1);
(3) ω ∈ (nπ/T2, nπ/T1) and ω ∈ (nπ/T4, nπ/T3);
(5) ω < nπ/T2 and ω > nπ/T1;
(4) all ω > 0;

where the Tj for j = 1, . . . , 4 have the values of Theorem 2.
There are values of (k1, γ ) and values ωH1 < ωH2 and ωh1 < ωh2 such that, for each n ∈ N:

• for ω ∈ (nωH1, nωH2) there is a G-invariant curve on the cylinder C that corresponds to a 
frequency locked invariant torus for (2.1);

• for ω ∈ (nωh1, nωh2) there is a G-invariant set with dynamics conjugate to a shift on a finite 
number of symbols, and hence there is a frequency locked suspended horseshoe for (2.1).

Moreover, (s1, y) is a fixed point of G in the cylinder, corresponding to a periodic solution of 
(2.1) with period π/ω if and only if 

(
s1
n
, y

)
is a fixed point of G in the cylinder, corresponding to 

a periodic solution of (2.1) with period π/nω for arbitrary n ∈ N.

The Bogdanov-Takens bifurcation of Theorem 4 only occurs for solutions of the differential 

equation (2.1) for values ω = nπ

TM

= nπK(δ − 1)

ln δ
with n ∈ N. However, the dynamical structures 

bifurcating from it are still present for nearby values of ω. Thus the values ω = nπ/TM act as 
organising centres for the dynamics — they explain the onset of chaos and of quasiperiodic 
behaviour associated to invariant tori.

Dynamics similar to what we have described is expected to occur generically near periodically 
forced robust weakly attracting heteroclinic cycles. This is why the result of our computations 
may be applied to other similar cases. Previous results by Afraimovich et al. [4] and by Tsai 
and Dawes [27,28] deal with similar but not identical systems. A summary of their results when 
applied to our case is given in Section 6.

We finish the article with a discussion in Section 7 of the consequences of our findings, both 
for the map G(s, y) and for the equation (2.1), and their relation to results by other authors.
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3. Time-independent first return

We will define four cross-sections transverse to all trajectories in a neighbourhood of 	0. 
Repeated intersections with a fixed cross-section define a return map from the section to it-
self; studying the dynamics of this map enables us to understand the dynamics of trajectories 
near 	0.

We construct the return map as the composition of two types of map: local maps within 
neighbourhoods of the saddle-type equilibrium points where the dynamics can be well approx-
imated by the flow of the linearised equations, and transition maps from one neighbourhood to 
another (also called global maps). Near the equilibrium v, the cross-sections are denoted In(v)

and Out(v), with a similar notation around w.

3.1. Linearisation

By Samovol’s Theorem [24], around the saddles v and w, the vector field F0 is C1–conjugate 
to its linear part, since there are no resonances of order 1 (recall that we are taking β − α 
= −2). 
In local coordinates (x, y, w) the linearisation of (2.1) with γ = 0, at v and w takes the form⎧⎨⎩

ẋ = (β − α)x

ẏ = (α + β)y

ẇ = −2w

(3.1)

where w = z−1 near v and w = z+1 near w. At the points v and w, the direction w corresponds 
to the radius of the attracting sphere S2, we will call this direction radial (see Fig. 3).

3.2. The cross-sections

Consider cubic neighbourhoods V and W in R3 of v and w, respectively, given in the coordi-
nates of (3.1) by (see Fig. 3):

{(x, y,w), |x| < ε, |y| < ε, |w| < ε}
for ε > 0 small. The boundary of V contains two squares, the top and the bottom of the cube 
parametrised by w = ±ε, where the flow enters V in the radial direction. We are concerned with 
the following subsets of the other faces of the cube:

• A set of points where the vector field points inwards to V given by

In(v) = {(ε, y1,w1 + 1), 0 < y1 < ε, 0 < w1 < ε}, parametrised by (y1,w1).

• A set of points where the vector field points outwards of V given by

Out(v) = {(x̂1, ε, ŵ1 + 1), 0 < x̂1 < ε, 0 < ŵ1 < ε}, parametrised by (x̂1, ŵ1).

Similarly, the boundary of W contains two squares, the top and the bottom of the cube 
parametrised by w = ±ε, where the flow enters W in the radial direction. The following sub-
sets of the other faces of the cube are of interest here:
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Fig. 3. Trajectories not on Ws(v) reach the cross-section In(v), go transversely through it, then pass near v and again go 
transversely through the cross-section Out(v). After this they continue to a neighbourhood of w, moving transversely 
through the cross-sections In(w) and Out(w) and finally returning to In(v). Double arrows indicate the radial direction.

• A set of points where the vector field points inwards to W , given by

In(w) = {(x2, ε,w2 − 1), 0 < x2 < ε, 0 < w2 < ε}, parametrised by (x2,w2).

• A set of points where the vector field points outwards of W , given by

Out(w) = {(ε, ŷ2, ŵ2 − 1), 0 < ŷ2 < ε, 0 < ŵ2 < ε}, parametrised by (ŷ2, ŵ2).

3.3. Local map near v

The solution of the linearised system (3.1) near v with initial conditions y1, w1 in In(v) is:

⎧⎨⎩
x(t) = εe(β−α)t

y(t) = y1e
(α+β)t

w(t) = w1e
−2t

The time of flight T1 of a trajectory from In(v) to Out(v) is the solution of

y(T1) = ε ⇔ y1e
(α+β)T1 = ε ⇔ T1 = 1

α + β
ln

(
ε

y1

)
. (3.2)

Therefore, the transition map �v : In(v) → Out(v) in coordinates (y1, w1) ∈ In(v) and 
(x̂1, ŵ1) ∈ Out(v) is:

�v(y1,w1) =
(

ε
1+ β−α

α+β y

α−β
α+β

1 ,w1ε
− 2

α+β y
2

α+β

1

)
= (x̂1, ŵ1). (3.3)
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3.4. Local map near w

The solution of the linearised system (3.1) near w with initial conditions x2, w2 in In(w) is:

⎧⎨⎩
x(t) = x2e

(α+β)t

y(t) = εe(β−α)t

w(t) = w2e
−2t

The time of flight T2 from In(w) to Out(w) is the solution of x(T2) = ε:

x2e
(α+β)(T2) = ε ⇔ T2 = 1

α + β
ln

(
ε

x2

)
in coordinates (x2, w2) ∈ In(w) and (ŷ2, ŵ2) ∈ Out(w) is:

�w(x2,w2) =
(

ε
1+ β−α

α+β x

α−β
α+β

2 ,w2ε
− 2

α+β x
2

α+β

2

)
= (ŷ2, ŵ2). (3.4)

3.5. The global maps

In order to obtain the first return map we need the transition maps

�vw : Out(v) → In(w) and �wv : Out(w) → In(v).

An approximation to these maps is to take them as the identity. In coordinates we obtain

�vw : (x̂1, ŵ1) �→ (x2,w2) = (x̂1, ŵ1) and �wv : (ŷ2, ŵ2) �→ (y1,w1) = (ŷ2, ŵ2).

3.6. First return map for the unperturbed equation

The first return map G0 to In(v) is well defined at all points (y1, w1) ∈ In(v)\Ws
loc(v). After 

a linear rescaling of the variables, we may assume that ε = 1 and obtain

G0(y1,w1) =
(

yδ
1, w1y

4α

(α+β)2

1

)
. (3.5)

Either the first or the second coordinate dominates, depending on the relative size of the expo-
nents in y1, i.e. depending on the sign of (α − β)2 − 4α, see Fig. 4. The transition between the 
boundaries of V and W occurs in a flow-box, hence the transition time is bounded above and be-
low. We assume the transitions far from the equilibria are instantaneous, and then the time of the 

first return of the point (y1, w1) with y1 
= 0 is given by T1 + T2 = − 2α

(α + β)2 lny1. Taking into 

account the transition times out of V and W would approximately change the value of T1 + T2
by a constant.
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Fig. 4. In the grey region, (α − β)2 − 4α < 0 for −α < β < 0, the exponent of y in the first coordinate of G0(y, z1) is 
smaller than in the second coordinate.

4. Time-dependent first return — proof of Theorem 1

The aim of this section is to obtain the expression for the first return map to In(v) when 
γ 
= 0, that will be denoted by G. When γ = 0, the map G should coincide with G0 defined in 
(3.5).

The proof of Theorem 1 is done by composing local and transition maps. Because of the 
time-periodic perturbation, the local linearisation now includes time-dependent terms that are 
important in the accurate calculation of the local map. At each step, we calculate not only the 
point where a solution hits each cross-section but also the time the solution takes to move between 
cross-sections. As in § 3.6, the time spent close to the connections is not taken into account in the 
calculations, because it is small compared to the time spent near the equilibria, especially when 
γ > 0 is small. Note that the equilibria for the vector field F0 (associated to the equation (2.1)
when γ = 0) are no longer equilibria for Fγ , but the cross-sections remain transverse.

4.1. Linearization

The linearisation near v and w may be written as:⎧⎨⎩
ẋ = (β − α)x − γf (2ωt)

ẏ = (α + β)y

ẇ = −2w

(4.1)

and ⎧⎨⎩
ẋ = (α + β)x − γf (2ωt)

ẏ = (β − α)y

ẇ = −2w

(4.2)

respectively, with f (2ωt) = sin(2ωt).
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Each one of equations (4.1) or (4.2) corresponds to equation (2.1) rewritten in the form

Ẋ = AX + ρ(X) − γ (f (2ωt),0,0) for X = (x, y,w).

The eigenvalues of the constant matrix A have non-zero real part. The perturbation γ (f (2ωt),

0,0) is bounded and the non-linear part ρ(X) is bounded and uniformly Lipschitz in a compact 
neighbourhood of S2. Under these conditions, we may use Palmer’s Theorem [19, pp 754] to 
conclude that there is a small neighbourhood of v and w where the vector field is C1 conjugate 
to its linear part. As before, let us label the neighbourhoods by V and W , respectively. The 
terminology for the boundary sections in V and W will be the same as in § 3.2.

Remark 2. If k, γ ∈ R, according to the Lagrange method of variation of parameters – see [26, 
pp 842], the general solution of: {

ẋ = kx + γg(t)

x(s) = x1

is

x(t, s) = x1e
k(t−s)�(t, s) where �(t) = 1 + γ

x1

t∫
s

e−k(τ−s)g(τ )dτ.

4.2. Local map near v

By Remark 2, the solution of the linearised system (4.1) near v is:⎧⎪⎨⎪⎩
x(t, s) = εe(β−α)(t−s)

(
1 − γ

ε

∫ t

s
e−(β−α)(τ−s)f (2ωτ)dτ

)
y(t, s) = y1e

(α+β)(t−s)

w(t, s) = w1e
−2(t−s)

(4.3)

where y1, w1 are the initial conditions in In(v). The time of flight is the solution of y(T1) = ε:

y(T1) = ε ⇔ y1e
(α+β)(T1−s) = ε ⇔ ln

(
ε

y1

)
= (α + β)(T1 − s).

Therefore, the arrival time depends on s and it is given by:

T1 = s + ln

(
ε

y1

) 1
α+β = s + 1

α + β
ln

(
ε

y1

)
. (4.4)

In particular, we may write:

w(T1, s) = w1

(
ε

y1

) −2
α+β

Replacing t by T1 of (4.4) in the first equation of (4.3), we get:
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x(T1, s) = ε

(
ε

y1

)−δ̂
⎛⎝1 − γ

ε

T1∫
s

e−(β−α)(τ−s)f (2ωτ)dτ

⎞⎠
where ̂δ = Cv

Ev
= α−β

α+β
as defined in § 2.1. Therefore, we may write:

�v(s, y1,w1) =

⎛⎜⎜⎜⎝
s + 1

α+β
ln
(

ε
y1

)
ε1−δ̂yδ̂

1

(
1 − γ

ε

∫ T1
s

e−(β−α)(τ−s)f (2ωτ)dτ
)

w1

(
ε
y1

) −2
α+β

⎞⎟⎟⎟⎠ = (T1, x̂1, ŵ1).

Remark 3. Note that when ε = 1 and γ = 0, the first, second and third components coincide 
with formulas (3.2) and the second component of (3.3).

4.3. Local map near w

The treatment of (4.2) is similar to § 4.2. The solution of (4.2) is:⎧⎪⎨⎪⎩
x(t) = x2e

(α+β)(t−s)
(

1 − γ
x2

∫ t

s
e−(α+β)(τ−s)f (2ωτ)dτ

)
y(t) = εe(β−α)(t−s)

w(t) = w2e
−2(t−s)

The time of flight T2 from In(w) to Out(w) is the solution of x2(T2) = ε:

e(α+β)(T2−s)x2

⎛⎝1 − γ

x2

T2∫
s

e−(α+β)(τ−s)f (2ωτ)dτ

⎞⎠ = ε. (4.5)

This is difficult to solve, so we compute the Taylor expansion of T2 as function of γ . It is easy to 

see that T2(0) = s + ln

(
ε

x2

) 1
α+β

. Differentiating equation (4.5) with respect to γ , and evaluating 

at γ = 0, it yields:

dT2

dγ
(0)(α + β)e(α+β)(T2(0)−s)x2 − e(α+β)(T2(0)−s)

T2(0)∫
s

e−(α+β)(τ−s)f (2ωτ)dτ = 0 ,

implying that:

dT2

dγ
(0) = 1

x2(α + β)

T2(0)∫
s

e−(α+β)(τ−s)f (2ωτ)dτ.

Thus, truncating at second order in γ we obtain:
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T2(γ ) ≈ s + 1

α + β
ln

(
ε

x2

)
+ γ

⎡⎣ 1

x2(α + β)

T2(0)∫
s

e−(α+β)(τ−s)f (2ωτ)dτ

⎤⎦+ O(γ 2).

Since y(t) = εe(β−α)(t−s), setting ̂δ = Cw
Ew

= α−β
α+β

as in § 2.1, we get:

y(T2(0)) = εe
(β−α)

(
1

α+β
ln
(

ε
x2

))
= ε

(x2

ε

)δ̂

and then:

dy2

dγ
(0) = ε(β − α)e(β−α)(T2(0)−s)T ′

2(0)

= ε(β − α)

(
ε

x2

)−δ̂
⎡⎣ 1

x2(α + β)

T2(0)∫
s

e−(α+β)(τ−s)f (2ωτ)dτ

⎤⎦
= δ̂ε1−δ̂xδ̂−1

2

T2(0)∫
s

e−(α+β)(τ−s)f (2ωτ)dτ.

Adding up, we get:

y2(γ ) = (ε−δ̂+1xδ̂
2) + γ

⎡⎣δ̂ε1−δ̂xδ̂−1
2

T2(0)∫
s

e−(α+β)(τ−s)f (2ωτ)dτ

⎤⎦+ O(γ 2).

Concerning the coordinate w, we may write:

w(0) = w2e
−2(T2(0)−s) + 1 = w2

(
ε

x2

) −2
α+β

.

Setting

K1 =
T2(0)∫
s

e−(α+β)(τ−s)f (2ωτ)dτ,

and truncating the third component to order 0 in γ , we get:

�w(s, x2,w2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

s + 1

α + β
ln

(
ε

x2

)
+ γK1

x2(α + β)

ε1−δ̂xδ̂
2

(
1 + γK1δ̂

x2

)
1 + w2

(
ε
) −2

α+β

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ O(γ 2) = (T2, ŷ2, ŵ2).
x2
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Fig. 5. Graph of e−(α+β)τ f (2ωτ) as a function of τ .

Remark 4. When s = 0, ε = 1 and γ = 0, the last two components of the previous map coincide 
with the expression given in (3.4).

4.4. Discussion of the time dependence

We are assuming in (2.1) that α + β > 0, hence the term e−(α+β)τ f (2ωτ) that appears inside 
the integrals in �w tends to zero as τ goes to ∞ – see Fig. 5. For large values of τ we may take 
the contribution of this integral to be time independent.

On the other hand, the assumptions in (2.1) also include α > −β > 0 implying that the coef-
ficient −(β − α) > 0. Hence the exponent −(β − α)τ that appears in �v increases with τ and 
the integral cannot be ignored. In order to obtain estimates for the integral, let IA, for A 
= 0, be 
given by:

IA =
∫

e−A(τ−s)f (2ωτ)dτ.

Lemma 6. If f ′′(t) = −f (t), then:

IA = −A2

A2 + 4ω2 e−A(τ−s)

(
1

A
f (2ωτ) + 2ω

A2 f ′(2ωτ)

)
.

Proof. Integrating by parts twice, we obtain:

IA = −1

A
e−A(τ−s)f (2ωτ) − 2ω

A2 e−A(τ−s)f ′(2ωτ) − 4ω2

A2 IA.

Hence,

(
1 + 4ω2

A2

)
IA = −e−A(τ−s)

(
1

A
f (2ωτ) + 2ω

A2 f ′(2ωτ)

)

which is equivalent to the expression in the statement. �
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Lemma 7. If f ′′(t) = −f (t) and T1 = s + 1
α+β

ln
(

ε
y1

)
as in the expression of �v, we have

T1∫
s

e−(β−α)(τ−s)f (2ωτ)dτ

= −(β − α)2

(β − α)2 + 4ω2

[(
ε

y1

)δ̂ (
c1f (2ωT1) + c2f

′(2ωT1)
)− (

c1f (2ωs) + c2f
′(2ωs)

)]

where

c1 = 1

β − α
and c2 = 2ω

(β − α)2 .

Proof. First of all note that e−(β−α)(T1−s) =
(

ε
y1

)δ̂

. Evaluating the expression of Lemma 6 in T1

and in s, with A = β − α, and tidying up, we obtain the result. �
Remark 5. If f is an arbitrary periodic function, then Lemma 7 may be applied to each one of 
the terms of its Fourier expansion.

4.5. First return map

From now on we return to the assumption f (2ωs) = sin(2ωs). Hence f satisfies the hypoth-
esis of Lemma 7 and the expression of �v may be simplified. The second coordinate of �v (see 
§ 4.2 above) is

x̂1 = ε−δ̂+1yδ̂
1

⎛⎝1 − γ

ε

T1∫
s

e−(β−α)(τ−s) sin(2ωτ)dτ

⎞⎠ .

Using the expression in Lemma 7 yields x̂1 = ε−δ̂+1yδ̂
1 + r where:

r = γ

ε
ε−δ̂+1yδ̂

1
(α − β)2

(α − β)2 + 4ω2

[(
ε

y1

)δ̂ (
c1f (2ωT1) + c2f

′(2ωT1)
)

− (
c1f (2ωs) + c2f

′(2ωs)
)]

hence, for ε = 1,

r = γ (α − β)2

(α − β)2 + 4ω2

[(
c1f (2ωT1) + c2f

′(2ωT1)
)− yδ̂

1ε−δ̂
(
c1f (2ωs) + c2f

′(2ωs)
)]

.

For f (2ωs) = sin(2ωs), the expression c1f (X) + c2f
′(X) may be replaced by k̂ sin(X − θ̂ ), 

for some θ̂ . Using the expressions for c1, c2 form Lemma 7 we get



I.S. Labouriau, A.A.P. Rodrigues / J. Differential Equations 269 (2020) 4137–4174 4153
k̂ =
√

c2
1 + c2

2 = 1

(α − β)2

√
(α − β)2 + 4ω2.

From now on, let us set:

k̄ = (α − β)2k̂

(α − β)2 + 4ω2 = 1√
(α − β)2 + 4ω2

hence

r = k̄γf (2ωT1 − θ̂ ) − yδ̂
1ε−δ̂ k̄γf (2ωs − θ̂ ).

Finally the whole expression for r may be rewritten as an approximation of γ k̄ sin(2ωT1 − θ)

where the dependence of k̄ on y1 may be ignored for small y1 and γ . We shall ignore the phase 
shift term θ . Returning to the usage f (t) = sin t , we use from now on the simplified expression:

�v(s, y1,w1) =

⎛⎜⎜⎜⎜⎜⎜⎝
s + 1

α + β
ln

(
ε

y1

)
ε−δ̂+1yδ̂

1 + γ k̄ sin(2ωT1)

w1

(
ε

y1

) −2
α+β

⎞⎟⎟⎟⎟⎟⎟⎠ = (T1, x̂1, ŵ1).

For the calculation of the first return map we take the transitions between the neighbourhoods 
V and W to be the identity, with ε = 1. The second coordinate �w(�v)|2 of �w(�v) is:

�w(�v)|2 =
(
yδ̂

1 + γ k̄ sin(2ωT1)
)δ̂

(
1 + γK1δ̂

yδ̂
1 + γ k̄ sin(2ωT1)

)
.

Taking into account that 
∑∞

j=0 xj = 1
1−x

, we expand the factor on the right to get:

1 + γK1δ̂

yδ̂
1 + γ k̄ sin(2ωT1)

= 1 + γK1δ̂

yδ̂
1

⎡⎣1 − γ k̄ sin(2ωT1)

yδ̂
1

+
(

γ k̄ sin(2ωT1)

yδ̂
1

)2

−
(

γ k̄ sin(2ωT1)

yδ̂
1

)3

+ · · ·
⎤⎦ .

Using δ = (̂δ)2 the factor on the left is:

(
yδ̂

1 + γ k̄ sin(2ωT1)
)δ̂ = yδ

1 + γ
δ̂yδ

1

yδ̂
1

k̄ sin(2ωT1) + O(γ 2).
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Thus, truncating to order 1 in γ ,

�w(�v)|2 = yδ
1 + γ

δ̂yδ
1

yδ̂
1

k̄ sin(2ωT1) + γ
K1δ̂

yδ̂
1

yδ
1

= yδ
1 + γ δ̂

yδ
1

yδ̂
1

[
K1 + k̄ sin(2ωT1)

]+ . . .

and hence, taking yδ
1/y

δ̂
1 ≈ 1 and T1 ≈ s, and replacing y1, w1 by y, w to lighten notation, the 

simplified version becomes:

G̃(s, y,w) =
(

s + 2 ln ε

α + β
− (1 + δ̂) lny

α + β
,y

(α−β)2

(α+β)2 + γ (k2 + k1 sin(2ωs)) ,C2wy
4α

(α+β)2

)
= (s, y,w)

where s is computed (mod π/ω) and we may take the constant k2 = 1 by rescaling γ with 
k1 = k̄

K1
. From now on we assume 0 < k1 
= 1 (see discussion of K1 in the beginning of this 

section).

Remark 6. For s = γ = 0, ε = 1, is easy to check that the last two coordinates of G̃ coincide with 
G0(y, w) in (3.5) and that the first coordinate equals the estimated time of first return T1 + T2
given at the end of § 3.6.

4.6. Reduction

In the region (α − β)2 < 4α for α > 0, β < 0 (see Fig. 4) the exponent of y in the second co-
ordinate of G̃(s, y, w) is smaller than in the third coordinate. Moreover, the first two coordinates 
do not depend on z. Hence, for small y we can ignore the last coordinate of G̃ and analyse the 
map, given in coordinates (s, y) by:

Gγ (s, y) =
(

s + 2 ln ε

α + β
− 2α

(α + β)2 lny, yδ + γ (1 + k1 sin(2ωs))

)
= (g1(s, y), g2(s, y)). (4.6)

We have also ignored terms that are O(γ 2) or higher, hence, for γ sufficiently small we have 
proved that if γ > 0, ε = 1 and (α − β)2 < 4α, the first return map G to In(v) of the flow 
defined by (2.1) is approximated by the map:

G(s, y) =
(

s − 2α

(α + β)2 lny, yδ + γ (1 + k1 sin(2ωs))

)
= (g1(s, y), g2(s, y)).

Theorem 1 is proved for the cross-section In(v).
Although the map G only provides information about the flow of (2.1), if we take γ suffi-

ciently small, the dynamics of G is worth studying in all cases, so we lift this restriction in later 
sections. Recall that, as remarked in § 2.3 the natural phase space for G is the cylinder C defined 
in (2.2).
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Fig. 6. The graph of F(T ) = e−KT − e−δKT , that attains its maximum at TM = ln δ

K(δ − 1)
> 0.

Remark 7. From the expression of �w(�v)|2 given above, it is easy to see that if f ≡ 1 then 
k1 = 0. This corresponds to an autonomous perturbation and will be treated in §5.1.

5. Finding periodic solutions: stability and bifurcations

In this section, we study periodic solutions of (2.1) and their period. We also discuss their 
bifurcations when the parameters γ and k1 vary. We introduce an auxiliary parameter T , and in 
§ 5.2, § 5.3 and § 5.4 we analyse the bifurcations on this parameter for different values of γ > 0
and k1 > 0. The auxiliary parameter T is then removed in § 5.5 to yield solutions of the original 
problem.

We address the problem of solving the equation GT (s, y) = (s, y) where
GT (s, y) = G(s, y) − (T ,0). This means that we need to solve:

GT (s, y) =
(

s − lny

K
,yδ + γ (1 + k1 sin(2ωs))

)
− (T ,0) = (s, y) (5.1)

for T > 0, the fixed points of GT (s, y).

5.1. The time averaged case

In the special case where the perturbation is autonomous we have:

Lemma 8. Suppose k1 = 0. For γ > 0 small, there are two fixed points of GT (s, y), one stable 
and the other unstable, with the value of T tending to +∞ when γ tends to 0. When γ reaches 
a threshold value M , the two fixed points collapse at a saddle-node bifurcation and for γ > M

there are no fixed points of GT (s, y).

Proof. Solving the first component of (5.1) we get y = e−KT . For the second coordinate we get 
γ = y − yδ , replacing y by e−KT in this expression we obtain

F(T ) = e−KT − e−δKT . (5.2)

The result will follow directly from the properties of the graph of F(T ), shown in Fig. 6, that we 
state as a separate lemma for future use. �
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Fig. 7. Bifurcation diagrams of (5.1) in the (T , s)-plane for parameters in the open regions of Fig. 2. In region (1) there 
are no solutions. Numbering in the other four open regions also corresponds to Theorem 2. Recall that the variable s is 
periodic, so the solutions lie on the surface of a cylinder parametrised by s ∈ [0, 2π/ω] and that y = e−KT .

Lemma 9. The map F(T ) : R+ → [0, 1] has a global maximum M = δ
1

1−δ − δ
δ

1−δ at 

TM = ln δ

K(δ − 1)
> 0 and lim

T →0
F(T ) = lim

T →∞F(T ) = 0.

Proof. Differentiating F with respect to T , we get:

dF

dT
(T ) = −Ke−T K + δKe−δT K = −Ke−T K

(
1 − δe−(δ−1)T K

)
. (5.3)

From this it is immediate that dF
dT

(T ) = 0 precisely at T = TM , that dF
dT

(T ) > 0 for T < TM and 
dF
dT

(T ) < 0 for T > TM . Finally, we compute

M = F(TM) = δ
1

1−δ − δ
δ

1−δ > 0. (5.4)

The two limits are immediate from the expression for F(T ). Note that M < 1 because 
δ − δδ < 0 < δ1−δ , hence F(T ) < 1. Finally F(T ) > 0 because eKT < eδKT . �
5.2. Proof of Theorem 2

The key result in the analysis is the bifurcation diagram for GT (s, y), shown in Figs. 2 and 7. 
Note that, for k1 > 0, γ > 0, fixed points of GT (s, y), solutions of (5.1) with T > 0, satisfy

y(T ) = e−KT . (5.5)

Proof. Solving the first component of (5.1) we get y as a function of T ∈ R+ as in (5.5). The 
map y : R+ → R+ satisfies the following properties:
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Fig. 8. For each value of the frequency ω, the solution of F(T ) = φω(s) lies on the intersection of the graph of �ω with 
a horizontal line at height F(T ). As T increases the horizontal line moves up, until it reaches its maximum height M . 
After this the height decreases to zero. Here is illustrated the case 0 < k1 < 1 and γ < M/(1 + k1), for F(T ) increasing 
from (a) to (d).

• limT →0 y(T ) = 1
• limT →+∞ y(T ) = 0 and
• y decreases monotonically with T .

From the second coordinate of (5.1) we have that y must also satisfy yδ +γ (1 +k1 sin(2ωs)) = y, 
which is equivalent to:

y − yδ = γ (1 + k1 sin(2ωs)). (5.6)

The left hand side of (5.6) does not depend on s nor on ω. Replacing y by the expression (5.5)
yields the map F that was analysed in Lemma 9. In order to find the fixed points of GT (s, y), 
solutions of (5.1), we need to solve for s the expression F(T ) = φω(s) where

φω(s) = γ (1 + k1 sin(2ωs)).

This amounts to intersecting the graph of φω(s) with a horizontal line because F(T ) does not 
depend on s. The line moves first up and then down as T increases, as in Fig. 8. Since the range 
of φω is the interval 

[
γ (1 − k1), γ (1 + k1)

]
, and the range of F(T ) is the interval (0,M], the 

geometry of the solution set depends on the relative positions of these intervals. The persistent 
possibilities are shown in Fig. 9. The possibilities correspond to the diagrams of Fig. 7.

Case (1) is the simplest: if M < γ (1 − k1) then the maximum M of F(T ) never reaches the 
minimum value of φω, as in Fig. 8 (a). This implies that there are no fixed points of GT for any 
T . This is only possible if k1 ∈ (0, 1), since M > 0. For all other cases, there are intervals of 
T values where (5.1) has a solution (s, y(T )), with y(T ) = e−KT and s ∈ [0,π/ω], so the true 
representation of the solutions should be a T -parametrised curve on a cylinder.

Still with k1 ∈ (0, 1), for γ smaller than in case (1) we have cases (2) and (3). As T increases 
from 0, there is a threshold value T1 for which the horizontal line at height F(T ) first touches 
the graph of φω as in Fig. 8 (b). At these points we have sin(2ωs) = −1. As T increases further, 
each tangency point unfolds as two intersections of the graph with the horizontal line as in Fig. 8
(c). Thus, there is a saddle-node at the points

(sN , y(T1)) =
(

3π
,y(T1)

)
.

4ω
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Fig. 9. Persistent possibilities for the relative position of the graph of F(T ) and the (dashed) horizontal lines at heights 
γ (1 − k1) and γ (1 + k1) that bound the range of φω(s) = γ (1 + k1 sin(2ωs)). The numbering corresponds to the cases 
in Theorem 2.

In case (2) when the maximum M of F(T ) is attained, the horizontal line is still in the middle of 
the graph of φω as Fig. 8 (c), so the two solutions coalesce at a second saddle-node at

(sN , y(T2)) =
(

3π

4ω
,y(T2)

)
.

In case (3) the horizontal line may move further up as in Fig. 8 (d) and a pair of solutions come 
together at a second saddle-node at 

(
s1
N,y(T2)

) = (π/4ω,y(T2)) and reappear at a saddle-node 
at 

(
s2
N,y(T3)

) = (π/4ω,y(T3)) coming together finally at (sN , y(T4)) = (3π/4ω,y(T4)). We 
show below that at these points the derivative DGT (s, y) has an eigenvalue equal to 1.

Finally for cases (4) and (5), the minimum value of φω(s) is negative, hence for both small 
and very large values of T the horizontal line at height F(T ) always crosses the graph of φω(s). 
In case (4) this is all that happens and there are solutions for all values of T > 0. In case (5) the 
horizontal line moves above the graph of φω(s) and thus there is an interval (T1, T2) of periods 
for which there are no solutions, with end points at two saddle-nodes as above. �

Note that in Theorem 2 the values of y and T for which solutions of (5.1) exist do not depend 
on the frequency ω, and only the initial time s does. All the solutions satisfy y ∈ [0, 1] because 
this interval is the range of the map y(T ). This is compatible with the assumption made in § 3.2
that y ≤ ε, and the fact that in (2.3) we have set ε = 1.

5.3. Proof of Theorem 4

The organising centres for all the local dynamics are the most degenerate points on the bifur-
cation diagram of Theorem 2. They are points where solutions of (5.1) undergo a discrete-time 
Bogdanov-Takens bifurcation, that was studied in [7,30], see also [2, Ch 2 §2]. These points are 
characterised by the eigenvalues of the derivative of GT .

Proposition 10. For γ = M/(1 ± k1) and T = TM , the derivative DGT (s, y) at a solution of 
(5.1) has 1 as a double eigenvalue and is not the identity. Moreover, these are the only points 
where DGT (s, y) has a double eigenvalue 1.

Proof. We compute the derivative DGT (s, y) at the points (sN , y(TN)), N = 1, . . . , 4, where 
sin(2ωsN) = ±1 and get:

DGT (sN , y(TN)) =
⎛⎜⎝ 1 − 1

Ky

0 δyδ−1

⎞⎟⎠ .
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Fig. 10. Bifurcation diagram for the discrete-time Bogdanov-Takens bifurcation [7,30]. Conventions: saddle-nodes on the 
dotted line, Hopf bifurcation on the dashed line, homoclinic tangencies (shown on the right) on the solid lines. A closed 
invariant curve exists for parameters between the line of Hopf bifurcation and the line of homoclinic tangency. The 
position of the two solid lines in the figure is grossly exaggerated, the two curves have an infinite order tangency at the 
bifurcation point.

At (sN , y(TN)) the Jacobian matrix is triangular and so the two eigenvalues are μ1 = 1 and 
μ2 = δyδ−1 > 0. Using (5.5) this may be rewritten as μ2 = δe−(δ−1)TNK . Since TM was defined 
to be the value of T where the function F(T ) defined in (5.2) has a global maximum, then 
dF

dT
(TM) = 0. By (5.3) this means

1 = δe−(δ−1)TMK = δ (y(TM))δ−1 = μ2.

Hence the derivative of GT at these points has a double eigenvalue equal to 1, and is not 
the identity. The points in question are those where sin(2ωsN) = ±1 for (sN , y(TN)), hence 
F(TN) = γ (1 ± k1) and TN = TM implying F(TM) = M = γ (1 ± k1). Finally, DGT (s, y) has a 
double eigenvalue 1 if and only if the trace trDGT (s, y) = 2 and detDGT (s, y) = 1. Computing 
the Jacobian

DGT (s, y) =
⎛⎜⎝ 1 − 1

Ky

2ωγ k1 cos(2ωs) δyδ−1

⎞⎟⎠
then trDGT (s, y) = 2 implies that δyδ−1 = 1 and by (5.5) this means δe−(δ−1)T K = 1. Using 

(5.3) it follows that 
dF

dT
(T ) = 0 hence T = TM . On the other hand since δyδ−1 = 1, then

detDGT (s, y) = 1 + 2ωγ k1 cos(2ωs)/Ky.

Therefore, detDGT (s, y) = 1 implies cos(2ωs) = 0, hence sin(2ωs) = ±1 and T = TN , 
N = 1, . . . ,4. The coincidence TN = TM only happens if γ = M/(1 ± k1). �
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Fig. 11. Bifurcation diagram of fixed points of GT (s, y) on the cylinder (T , s), with s ∈ R (mod π/ω), in the transition 
from case (2) to case (3) of Theorem 2. When γ increases, saddle-node bifurcation points SN come together at a point 
BT of discrete-time Bogdanov-Takens bifurcation [7,30]. A line of Hopf bifurcation points also arises here, creating an 
invariant circle on the cylinder, and a region of chaotic dynamics appears further on.

The situation described in Proposition 10 occurs on the boundaries between the regions of 
Theorem 2. Geometrically what is happening is that two solution branches come together as 
in Fig. 11. This indicates a bifurcation of codimension 2 — corresponding to a curve in the 
3-dimensional parameter space (T , k1, γ ), where we expect to find a discrete-time Bogdanov-
Takens bifurcation, described in [7,30] (see Fig. 10). This bifurcation occurs at points where 1 
is a double eigenvalue, where the derivative is not the identity and where the map also satisfies 
some more complicated non degeneracy conditions on the nonlinear part. Instead of verifying 
these additional conditions, we check that the linear conditions for nearby local bifurcations arise 
in a form consistent with the versal unfolding of the discrete-time Bogdanov-Takens bifurcation. 
Around this bifurcation, by the results of [7,30], we expect to find the following codimension 
one bifurcations (see Fig. 12):

(a) a surface of saddle-node bifurcations;
(b) a surface of Hopf bifurcations;
(c) two surfaces of homoclinic tangencies.

The surfaces of saddle-node bifurcations in (a) have been described in Corollary 3. Numerical 
plots of these curves are shown in Fig. 13 as curves in (T , γ ) planes, for fixed values of k1. The 
stability of bifurcating solutions is discussed below in § 5.4.

The points (b) of Hopf bifurcation in Fig. 13 were determined numerically for fixed k1, as a 
curve in the (T , γ ) plane, using the conditions trDGT (s, y) ∈ (−2, 2) and detDGT (s, y) = 1. 
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Fig. 12. Schematic representation of the bifurcations of fixed points of GT (s, y) around the discrete-time Bogdanov-
Takens points, with k1 < 1: the surfaces (a) of saddle-nodes SN (white) and the grey (blue online) surface (b) of Hopf 
bifurcations H coming out of the lines γ = M/(1 −k1) and γ = M/(1 +k1) (red online) of Bogdanov-Takens bifurcation 
points BT.

Fig. 13. Numerical plot (using Maxima) of the dashed lines of Hopf (solid black online) and solid lines of saddle-node 
(red and blue online) bifurcation of fixed points of GT (s, y), for different values of k1. The lines of Hopf bifurcation 
terminate where they meet one of the lines of saddle-nodes, at a point of discrete-time Bogdanov-Takens bifurcation. 
Remaining parameters are K = 3, ω = 1 and δ = 1.1. Numbers inside circles near the γ axis indicate the region of 
Theorem 2 where (k1, γ ) lies.

For the first condition, we use trDGT (s, y) = δyδ−1 + 1 > 0 and since y = e−KT , we get 
trDGT (s, y) < 2 if and only if T > ln δ

K(δ−1)
. The second condition expands to

Ke−KT
(

1 − δe−K(δ−1)T
)

= 2ωγ k1 cos(2ωs)

or, equivalently,

−dF(T )

dt
= dφω

ds
and F(T ) = φω(s) = γ (1 + k1 sin(2ωs)).

Writing C = k1 cos(2ωs) = − dF(T )
dt

1
2ωγ

we obtain k1 sin(2ωs) =
√

k2
1 − C2 and hence

F(T )

γ
− 1 =

√
k2

1 − 1

4ω2γ 2

(
dF(T )

dT

)2

.

This shows that DGT (s, y) has non real eigenvalues on the unit circle if and only if
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T > TM and (F (T ) − γ )2 − k2
1γ 2 + 1

4ω2

(
dF(T )

dT

)2

= 0.

The two surfaces (c) correspond to bifurcations at which the stable and unstable manifolds of 
a saddle point are tangent. In the region between these surfaces there is a transverse intersection 
of the stable and the unstable manifolds of the saddle. In Fig. 10, for simplicity, we only show 
one intersection of the stable and the unstable manifolds of the saddle, but these intersections 
are repeated at an orbit that accumulates on the saddle in forward and backward times. Around 
the transverse intersection of the manifolds, horseshoe dynamics occurs. The distance between 
the two bifurcation curves is exponentially small with respect to 

√‖(k1, γ )‖ and the invariant 
manifolds intersect inside the parameter region between the curves and do not intersect outside 
it. This configuration implies that the dynamics of G is equivalent to Smale’s horseshoe.

5.4. Stability of solutions

A pair of fixed points of GT (s, y), solutions of (5.1), bifurcate at the saddle-nodes of Corol-
lary 3. We denote their first coordinate by s∗ < s♦. Taking s∗, s♦ ∈ [0, π/ω], this order com-
pletely identifies each solution.

Proposition 11. The solutions (s∗, y∗) and (s♦, y♦) with s∗ < s♦ ∈ [0, π/ω], of (5.1) created at 
the saddle-nodes of Corollary 3 bifurcate with the following stability assignments (see Fig. 14):

Region (2) (3) (5)
Branch\saddle-node T1 T2 T1 T2 T3 T4 T1 T2

s♦ source sink source saddle saddle sink source sink
s∗ saddle saddle saddle source sink saddle saddle saddle

Proof. The stability of solutions of (5.1) is obtained from the eigenvalues of the derivative 
DGT (s, y). They are easier to compute at the saddle-node points (sN , y(TN)), N = 1, . . . , 4, 
where they are μ1 = 1 and μ2 = δyδ−1 > 0, as in the beginning of the proof of Proposition 10.

In region (5) there are two saddle-node points at T1 < TM < T2. At T1 we have μ2 > 1, so 
the solutions that bifurcate from this point are unstable. The eigenvalue is μ2 < 1 at T2 and the 
stability of the bifurcating solutions is determined by the other eigenvalue, μ1. First note that the 
trace of the Jacobian trDGT (s, y) = 1 + δyδ−1 = μ1 +μ2 does not depend on s, hence it has the 
same value on the two bifurcating branches. This is not true of the determinant of the Jacobian, 
given by

detDGT (s, y) = δyδ−1 + (γ k1ω cos(2ωs))/Ky = μ1μ2.

On the other hand, the tangency of F(T2) to the graph of φω(s) occurs when sin(2ωs) = +1 and 
thus around this point cos(2ωs) decreases with s. Therefore detDGT (s, y) is smaller at (s♦, y♦)

and these points are sinks whereas the points (s∗, y∗) are saddles. A similar reasoning shows that 
for the solutions with T < TM , the points (s♦, y♦) are sources and (s∗, y∗) are saddles, as in 
Fig. 14.

Applying the reasoning above to region (2) shows that at T1 the saddle-node bifurcation yields 
sources at s♦ and saddles at s∗. At T2 one would get of sinks at s♦ and saddles at s∗. Since there 
is only one top branch, there must be some additional bifurcation along it.
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Fig. 14. Schematic stability of fixed points of GT (s, y), solutions of (5.1), in regions (2), (3), (4) and (5) of Theorem 2. 
Conventions: solid lines are sinks, dashed lines are saddles, dotted lines are sources. Recall that y is a decreasing function 
of T . In region (2) the upper branch must undergo a bifurcation, indicated by an X, probably the Hopf bifurcation of 
Fig. 13. Stability assignments for region (4) are obtained by continuing those of regions (2) and (5).

In region (3) there are four saddle-node points at T1 < T2 < TM < T3 < T4, see Fig. 14. The 
arguments used to discuss case (5) show that for T ∈ (T3, T4) there is a branch of sinks and a 
branch of saddles, whereas the branches with T ∈ (T1, T2) are of saddles and of sources. Note 
that branch of saddles (s♦, y♦) that bifurcates at T3 arrives at T4 as (s∗, y∗) by going around the 
cylinder (see Fig. 14). The same happens at the branch of saddles that bifurcate at T1 and T2. �

In region (2) we expect a Hopf bifurcation to occur on the branch s♦. The transition between 
regions (2) and (3) is a Bogdanov-Takens bifurcation where two saddle-node branches and Hopf 
bifurcation points come together at the same point.

In region (4) there are no saddle-nodes, so it is more difficult to assign stabilities, but it is 
reasonable to assume they are consistent with those of regions (2) and (5) as in Fig. 14. In 
particular, the transition from (2) to (4) consists of T1 → 0 and T2 → ∞, so we expect the Hopf 
bifurcation on the branch s♦ to remain. This would imply a Bogdanov-Takens bifurcation in the 
transition from (5) to (4).

5.5. Frequency locking — proof of Theorem 5

The fixed points of GT (s, y), solutions of (5.1), are fixed points of G in the cylinder whenever 
the point (s +T , y) coincides with (s, y) and this happens when T is an integer multiple of π/ω. 
These points correspond to periodic solutions of the periodically forced equation (2.1) whose 
period is locked to the external forcing.

Definition 1. A periodic solution of a periodically forced differential equation is said to be fre-
quency locked if its period is an integer multiple of the period of the external forcing.

We discuss here the frequency locked solutions of (5.1). Theorem 2 shows that if
γ (1 − k1) < M then for each forcing frequency ω > 0 there exist at least two branches of peri-
odic solutions to (5.1). These branches are curves in (s, y, T )-space, each point in a curve being 
an initial value giving rise to a solution with a different return time T . Looking for frequency 
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Fig. 15. Periods of frequency locked solutions to (5.1) in region (2) of Theorem 2. For each point in one of the curves 
there are two periodic solutions of this period.

locked solutions corresponds to picking on each branch the solution that has the required value 
of T , and ignoring the others, as shown in Fig. 15. This proves the first statement in Theorem 5.

A similar reasoning may be applied to invariant sets for the problem (5.1). When T is an 
integer multiple of the forcing period, a GT -invariant set corresponds to a G-invariant set on the 
cylinder, that may be lifted to a flow-invariant set for the periodically forced differential equation. 
We will also say that these sets and their lifts are frequency locked. The simplest example are the 
invariant closed curves arising either in Hopf bifurcations or in homoclinic tangencies, for the 
problem (5.1). These bifurcation values are denoted TH1 and TH2 in the first part of the next 
result. A more complicated example arises between two homoclinic tangencies, denoted Th1 and 
Th2 in the next corollary, where a transverse homoclinic connection creates chaotic dynamics 
nearby.

Proposition 12. For the values of (k1, γ ) and of T ∈ (
TH1, TH2

)
where there is a closed curve, 

invariant under the map GT (s, y), it follows that for ω ∈ (
nπ/TH2 , nπ/TH1

)
, n ∈ N, there is 

a G-invariant curve on the cylinder that corresponds to a frequency locked invariant torus for 
(2.1).

Similarly, when for T ∈ (
Th1 , Th2

)
the map GT (s, y) has an invariant set with dynamics con-

jugate to a shift on a finite number of symbols, then for ω ∈ (
nπ/Th2, nπ/Th1

)
, n ∈ N, there is a 

frequency locked suspended horseshoe for (2.1).

In order to complete the proof of Theorem 5, we show that there is no gain in looking for 
different multiples nπ/ω, n ∈ N of the period, because we obtain essentially the same solution 
for all n. To do this, we want to solve:

G(s, y) = (
s − K lny, yδ + γ (1 + k1 sin(2ωs))

) =
(
s + nπ

ω
,y

)
(5.7)

Solving the first component we get y as a function of ω ∈ R+:

y(ω) = e
−K̂n

ω where K̂ = π(α + β)2

2α
> 0. (5.8)

Let

Fn(ω) = e
−K̂n

ω − e
−δK̂n

ω .
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In order to find the periodic solutions satisfying (5.1), we need to solve for (s, ω) the expression

Fn(ω) = φω(s) where φω(s) = γ (1 + k1 sin(2ωs)). (5.9)

This allows us to relate the frequency locked solutions of (2.1) for different frequencies π/nω.

Proposition 13. The pair (s1, ω1) is a solution of (5.9) for n =1 if and only if (sn,ωn)=
( s1

n
,nω1

)
is a solution of (5.9) for arbitrary n. This implies that the pair (s1, y) is a fixed point of G in the 
cylinder, corresponding to a periodic solution of (2.1) with period π/ω if and only if 

(
s1
n
, y

)
is a 

fixed point of G in the cylinder, corresponding to a periodic solution of (2.1) with period π/nω

for arbitrary n ∈ N.

Proof. That (s1, ω1) is a solution of (5.9) for n = 1 means

F1(ω1) = e
−K̂
ω1 − e

−δK̂
ω1 = φω1(s1) = γ (1 + k1 sin(2ω1s1)).

For ωn = nω1 we get

Fn(ωn) = e
−K̂n
nω1 − e

−δK̂n
nω1 = F1(ω1).

On the other hand, sn = s1/n yields

φωn(sn) = γ
(

1 + k1 sin
(

2nω1
s1

n

))
= φω1(s1)

establishing the claim. Finally, y(ωn) = e
−K̂n
nω1 = y(ω1). �

6. Application of results by other authors

In this section we compare our results to those obtained by Afraimovich et al. [4] and by Tsai 
and Dawes [27,28] for similar systems. A different system, that yields the same expression we 
obtained in Theorem 1, is analysed in [27,28]. Two results imply the existence of attractors in 
the cylinder C. The first is obtained by an application of the Annulus Principle [4] – see also [25, 
§ 4]. The second arises from the identification of the dynamics of G(s, y) with a discretisation 
of a forced pendulum with constant torque. We present the two results and discuss their relation 
to ours.

6.1. The annulus principle

In the weakly attracting case, if γ > 0 is small and k1 = 0, then the second coordinate 
g2(s, y) = yδ + γ =: g(y) map G only depends on y and not on s and it may be seen as a 
time averaged simplification of the original g2, analogous to the time averages of the Van der Pol 

method discussed in [1, Ch IX]. Let y∗ = δ
1

1−δ be the point where g′(y∗) = 1. In this situation, 
shown in Fig. 16, we have:
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Fig. 16. For k1 = 0 the second coordinate of the map G only depends on y and, under the conditions of Lemma 14, 
its graph has the shape of the curve above: it is convex near the origin and the point C where g′(y) = 1 lies below the 
diagonal z = y.

Lemma 14 (Tsai and Dawes [28]). If δ > 1 and 0 < γ < δ
1

1−δ − δ
δ

1−δ = M < 1, then, near y = 0
the map g(y) = yδ + γ has a pair of fixed points 0 < ŷ < ỹ, that are respectively stable and 

unstable, such that 0 < γ < ŷ < y∗ = δ
1

1−δ and 0 < ŷ <
γ δ

δ − 1
, also ỹ > γ + δ

δ
1−δ = g(y∗).

This lemma allows us to obtain an positively invariant annulus in the cylinder C defined as:

A = {
(s, y) : ŷ − Rγ ≤ y ≤ ŷ + Rγ and y > 0, s ∈ R (mod π/ω)

}
where R = 2k1

1 − δŷδ−1 > 0. The proof is completely analogous to that of Lemma 3.1 in [28].

Now consider the open set of parameters defined by:

• δ > 1
• 0 < γ < δ

1
1−δ − δ

δ
1−δ = M < 1

• �(y) =y
1
2 −δyδ− 1

2 satisfies �(ŷ−Rγ ) >Z and �(ŷ+Rγ ) >Z for Z= 4
√

ωαγ k1/(α + β).

Then the Annulus Principle [4] yields:

Theorem 15 ([4,28]). For the open set of parameters above, the maximal attractor for G in 
the annulus A is an invariant closed curve not contractible on the cylinder C, the graph of a 
π/ω-periodic, C1 function y = h(s).

The attracting closed curve for G gives rise to an attracting torus in the flow associated to Fγ .

6.2. Equivalence to a discretisation of a pendulum

In this section, we discuss some additional information on the dynamics of G(s, y) around 
a particular type of periodic solution found in Section 5. This consists of an analysis near the 
middle of the intervals in y where periodic solutions may be found. The dynamics around these 
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Fig. 17. Centres of frequency locking.

points is similar to the discretisation of a pendulum with friction and torque. A physical realisa-
tion of this equation is described in [11]. The results are adapted from [28], we provide explicit 
expressions, for the sake of comparison with our results.

Let sc be such that sin(2ωsc) = 0. If GT (sc, yc) = (sc, yc) for some yc, then it must satisfy 
F(T ) = γ (Fig. 17). Hence, a necessary condition for the existence of the solution is γ ≤ M . 
This situation arises in case (3) of Theorem 2 and could also arise in cases (2), (4) and (5). If 
γ < M then there are two values T∗ for which F(T∗) = γ and for each of these values there are 
two solutions. Let (sc, yc) denote any of these points, called here centres of frequency locking, 
where sc = nπ/2ω, n ∈ N as in Fig. 17. Without loss of generality we may take n ∈ {1, 2}, since 
we are considering coordinates s (mod π/ω). These solutions correspond to periodic solutions 
on the cylinder when T∗ = �π/ω, � ∈ N, as discussed in § 5.5 and illustrated in Fig. 15. Therefore 
the centre of frequency locking satisfies yc = e−KT∗ = e−K�π/ω , � ∈ N.

The discretisation is obtained in two steps, that we proceed to state:

Lemma 16 (Tsai and Dawes [28]). For each γ < M , δ � 1 and for (s, y) there is a centre of 
frequency locking at (sc, yc) =

(
nπ/2ω,e−K�π/ω

)
, � ∈ N, n ∈ {1, 2}, provided F(�π/ω) = γ . 

For (s, y) near (sc, yc) the orbit (sn+1, yn+1) = G(sn, yn) on the cylinder is approximated by the 
orbit of: ⎧⎪⎪⎨⎪⎪⎩

xn+1 − xn = γ

yc

(−xn + k1 sin(θn))

θn+1 − θn = 2ω

(
�π

ω
− xn

K

)
in coordinates x = (y/yc) − 1 and θ = 2ωs.

The proof is easily adapted from [28, Section 3.2]. It consists of expanding the expressions 
obtained from G(s, y), truncating to first order in xn and changing coordinates. From this, it 
follows:

Theorem 17 (Proposition 3.2 in Tsai and Dawes [28]). For γ < M , δ � 1 and for (s, y)

near a centre of frequency locking at (sc, yc) =
(
nπ/2ω,e−K�π/ω

)
, � ∈ N, n ∈ {1, 2}, with 

F(�π/ω) = γ , the dynamics of (2.3) is approximated by the Euler discretisation of the equa-
tion for a damped pendulum with constant torque

θ ′′ + Aθ ′ + sin θ = B θ ∈ R (mod 2π) (6.1)
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where θ ′ = dθ/dτ for τ = √
2γωk1/Kyc , with A =

√
γK

2ωk1yc

> 0 and B = K�π

ωk1
> 0.

The proof consists of taking τ̂ = γ /yc = 1 − yδ−1
c = 1 − e− K�π(δ−1)

ω and estimating the limits 
when τ̂ → 0 of

xn+1 − xn

τ̂
= −xn + k1 sin(θn) and

θn+1 − θn

τ̂
= 2�πyc

γ
− 2ωyc

γK
xn.

The limit is a system of ordinary differential equations with independent variable τ̂ . Rescaling 
the time as τ = τ̂

√
k1ξ the system is shown to be equivalent to the pendulum equation, with 

constants as indicated.
The statement of Theorem 17 includes our computations of the pendulum constants A and B

from the parameters in our problem. Note that from the expression of τ after rescaling, we get 
τ → 0 when either γ → 0 or ω → 0.

6.3. Analysis of pendulum equation (6.1)

The effects of time-periodic forcing on the damped pendulum with torque was extensively 
studied by Andronov et al. [1, Chapter VII]. We summarise here their description, as well as that 
of Coullet et al. [11], and we use their results to obtain information about our problem.

In the case A = B = 0, the equation reduces to that of a simple pendulum with no friction. 
There is a first integral where the potential is V (s) = − cos s. There are two equilibria, a centre at 
θs = 0 (mod 2π) and a saddle at θu = π (mod 2π). There is a pair of solutions connecting the 
saddle to its copy (see the left hand side of Fig. 18), forming two homoclinic cycles. The region 
delimited by these cycles contains the centre and is foliated by closed orbits with small period, 
small oscillations of the pendulum. Outside this region there are closed trajectories that go around 
the cylinder, corresponding to large rotations where the pendulum goes round indefinitely. The 
small closed orbits are curves homotopic to a point in the cylinder, whereas the large rotations 
cannot be contracted on the cylinder.

In the case A = 0 and B 
= 0, the potential is given by V (s) = −Bs + cos s, for a pendulum 
with torque and no friction. If B > 1 there are no equilibria. If B < 1, the two equilibria θs and 
θu (described above) move but still exist and retain their stability. Let θb be the value of θ 
= θu at 
which the potential has the value V (θu). The solution with initial condition (θ, θ ′) = (θb, 0) has 
α- and ω-limit {θu}, so it forms a homoclinic loop, delimiting a region containing θs and foliated 
by closed trajectories (see the right hand side of Fig. 18). Each one of the other branches of 
the stable and unstable manifolds of θu extend indefinitely, forming a helix around the cylinder. 
Solutions starting outside the homoclinic loop turn around the cylinder infinitely many times 
both in positive and in negative time.

If A 
= 0 and B < 1, weak forcing and damping exist. There is a curve in the parameter space 
(B, A), say A = β(B) (see Fig. 20) that separates two types of dynamics:

• If A > β(B), then the only stable solution is the equilibrium θs .
• If A < β(B), there is bistability: a stable equilibrium and an attracting periodic solution 

coexist (Fig. 19). Depending on the initial condition, the solution should converge either 
to θs or to a periodic solution in which the energy lost by damping during one period is 
balanced by gain in potential energy due to the torque. For negative values of θ ′ the two 
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Fig. 18. Phase portraits for the pendulum with no friction (6.1). Left: no torque, A = B = 0. Right: A = 0 and B 
= 0.

Fig. 19. Phase portrait for the pendulum with torque, in a region of bistability. Right: the same phase portrait on a chart 
covering the cylinder. Points in the grey region have the stable focus as ω-limit, trajectories of points in the white region 
go to the stable limit cycle and the two basins of attraction are intertwined.

basins of attraction are intertwined, delimited by two helices formed by one branch each of 
the stable and unstable manifolds of θu.

Finally, if A 
= 0 and B > 1 there are no equilibria and only one stable periodic solution, that is 
not homotopic to a point in the cylinder.

6.4. Consequences for the original equation

We complete our analysis describing the application of these results to the map G(s, y) of 
(2.3) and specially to the equation (2.1). The dynamical consequences obtained by different 
methods may coincide in some cases. We use the amplitude γ > 0 of the perturbation as a main 
bifurcation parameter.
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Fig. 20. Top: bifurcation diagram for the pendulum with torque, showing the curve η(B) that corresponds to the centre 
of frequency locking. The dotted line in the diagram, tangent at the origin to β(B), has slope π/4, according to [11]. 
Bottom: phase portraits for regions in the diagram. For parameters on the curve β(B) (red online) there is a homoclinic 
trajectory (phase portrait II) connecting two successive copies of the saddle. The thicker curve in regions III and IV is a 
closed trajectory on the cylinder.

For δ � 1 the map G(s, y) is a good approximation of the first return map for (2.1), while 
at the same time, near the centre of frequency locking it behaves like the time-one map for the 
damped pendulum with torque. We start the analysis by the interpretation of the consequences of 
the data on the pendulum.

Consider k1 and K fixed. For each γ < M and each � ∈ N there are two values of ω > 0 such 
that γ = F(�π/ω). These are the parameter values in Lemma 16 for the existence of the centre 
of frequency locking. For simplicity we restrict the discussion to the case � = 1, where the centre 
of frequency locking is a fixed point of G. Proposition 13 allows us to extend the results to other 
multiples of the perturbing frequency.

When γ decreases, the largest value of ω such that F(π/ω) = γ increases (see Fig. 8). Taking 
γ small enough ensures F(π/ω) = γ with ω > Kπ/k1 and this guarantees B < 1 in Theo-
rem 17. This is the case when the approximation by the pendulum equation is reasonable: if 
B > 1 there is no equilibrium solution for the pendulum, and hence, no frequency locked fixed 
point.

At a centre of frequency locking, the expressions for the pendulum constants in Theorem 17
may be rewritten in the form A = η(B) = C1

√
γBe−C2B for some positive constants C1 and C2, 

using the expression yc = e−K�π/ω . The graph of η(B) (see Fig. 20) has vertical tangent at B = 0
and η(B) > 0 for B > 0 with limB→∞ η(B) = 0. The constant B does not depend on γ and is 
small for large ω, while the expression for A is an increasing function of γ . This means that for 
a given value of γ > 0, we have η(B) > β(B) at B close to 0, since Coullet et al. [11] computed 
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Fig. 21. Values of T that may correspond to the invariant curve y = h(s) of Theorem 15, indicated as thick vertical 
lines for the regions of Theorem 2. Solid black (red online) lines are positions compatible with the stability assignments 
of Proposition 11, dashed grey (blue online) lines are not compatible with the coexistence of invariant curve and fixed 
points.

β ′(0) = π/4. The inequality is reversed as B increases (see Fig. 20). Reducing the value of γ
moves the point of intersection of η(B) with β(B) closer to B = 0.

The region of bistability occurs for A < β(B) and B < 1. Hence there is no bistability for 
large values of ω, only for small and intermediate values. Therefore for small enough γ > 0 and 
not very large values of ω, an attracting fixed point of G coexists with a closed invariant curve, 
the graph of a function y = H(s) on the cylinder. This is consistent with the numerical findings 
of [27].

The invariant curve y = H(s) may coincide with the curve y = h(s) obtained in Theorem 15. 
If this is the case, the attracting fixed point must lie outside the annulus |y − ŷ| < Rγ , which 
is not an unreasonable assumption if γ is small. For the equation (2.1) this means there exists 
an attracting invariant torus in the extended phase space R3 × S1 coexisting with an attracting 
frequency locked periodic solution. When γ increases in this regime, the periodic solution of the 
pendulum equation disappears at a homoclinic connection. Only the frequency locked periodic 
solution of (2.1) persists. This is compatible with the hypothesis of Theorem 15, that requires 
both γ < M and �(ŷ ± Rγ ) > Z.

The existence of the invariant curve y = h(s) of Theorem 15 was established for γ < M . 
This means it occurs in one of the regions (2)—(5) of Theorem 2 (see Fig. 2). The condition for 
existence corresponds to ω in an open interval, given by the third condition in Theorem 15. Each 
value of ω determines values of T = nπ/ω, so the curve may contain the fixed or periodic points 
of G found in Section 5. The fact that the invariant curve attracts the orbits of all points near it 
restricts the values of T for which it may occur, since fixed points on the curve must be either 
saddles or sinks (Fig. 21). When the curve does not contain fixed points, the dynamics of G on it 
is simple and similar to a rotation, yielding quasi-periodic solutions of the differential equation. 
When the curve contains a pair of fixed points, one of them is attracting inside the curve and the 
other repelling, the overall dynamics for the differential equation is that of an attracting periodic 
solution.
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7. Discussion

We compare our results with those found in previous works by other authors.
Afraimovich et al. [3] discuss the influence of periodic perturbations to a Lotka-Volterra sys-

tem. In the unperturbed case, the system has an asymptotically stable network associated to six 
equilibria. They analyse two bifurcation parameters, one of which measures the norm of the non-
autonomous perturbation. They find two curves that divide the parameter plane in three regions, 
one corresponding to the existence an attracting invariant torus, another to chaos, separated by 
a transition region. This is similar to our findings around the Bogdanov-Takens bifurcation. In 
our case the transition happens at heteroclinic tangencies of invariant manifolds that give rise to 
Newhouse phenomena.

Dawes and T.-L. Tsai [12,27,28] based their research in the Guckenheimer and Holmes’ exam-
ple [13] and have identified three distinct dynamical regimes according to the degree of attraction 
of the heteroclinic network. Regions I and II correspond to strong and intermediate attraction ly-
ing beyond the scope of this work. Our results, where δ � 1, are similar to their region III, where 
they find bistability. Under the same conditions on δ we also obtain “circle-map-like dynamics”, 
which they describe only for intermediate values of δ, in region II. We prove that the saddle-node 
bifurcations found in [12,27,28] may be seen as a surface, containing a curve of more complex 
bifurcation. This is one of the ways our results extend theirs. Other extensions arise from the 
Bogdanov-Takens bifurcation, which may be seen as an organising centre for a wide range of 
rich dynamics, like the existence of strange attractors.

In [12,27,28] the authors are often concerned with the dependence of the dynamics on the 
forcing frequency ω. They find dynamical structures that are repeated as ω varies. Theorem 5
and Proposition 13 provide good explanations of this repetitive behaviour.

The differential equation (2.1) may be rewritten in R4 by adding a coordinate θ with θ̇ = 2ω

and replacing f (t) by f (θ). Taking θ in R (mod 2π) the new equations are SO(2)-equivariant 
(have circular symmetry) besides the original Z2 ⊕ Z2 symmetry. For γ = 0, its flow has an at-
tracting heteroclinic cycle associated to two hyperbolic periodic solutions. For γ > 0, a normally 
hyperbolic attracting torus appears, which persists under small perturbations. This torus may 
contain higher order subharmonic or dense orbits. Increasing further the magnitude of the non-
autonomous perturbation, the torus will break at some point and all the bifurcations studied in the 
present paper may have a further interpretation in the context of Arnold tongues. For 0 ≤ k1 < 1, 
the lines γ = M/(1 ± k1) of Fig. 2 may be transformed, after a suitable change of coordinates, 
into a tongue and the graphs may be interpreted as an Arnold tongue. Theorems 1, 2 and 17 are 
consistent with previous results on Arnold tongues [6] which establish bifurcations associated to 
torus breakdown. Putting these pieces all together and relating them to other bifurcations in the 
literature is the natural continuation of the present work.

Acknowledgments

We would like to thank an anonymous referee, whose attentive reading and useful comments 
improved the final version of the article.



I.S. Labouriau, A.A.P. Rodrigues / J. Differential Equations 269 (2020) 4137–4174 4173
Appendix A. Notation

We list the main notation for constants and auxiliary functions used in this paper in order of 
appearance with the reference of the section containing a definition.

Notation Definition/meaning Subsection

δ̂
α−β
α+β § 2.1, § 4.2

δ
(̂
δ
)2 = (α−β)2

(α+β)2 § 2.1

K 2α

(α+β)2 § 2.3

M δ
1

1−δ − δ
δ

1−δ § 2.3, § 6.1

f (2ωτ) sin(2ωτ) § 4.1

T2(0) s + ln (ε/x2)
1

α+β § 4.3

K1
∫ T2(0)
s e−(α+β)(τ−s)f (2ωτ)dτ § 4.4

k̂

√
A2+4ω2

A2 (with A = α − β) § 4.4

k̄
(α−β)2 k̂

(α−β)2+4ω2 = 1√
(α−β)2+4ω2

§ 4.4

k1
k

K1
§ 4.4

F(T ) e−KT − e−δKT § 5.2

TM
ln δ

K(δ − 1)
§ 5.2

ŷ and ỹ Stable and unstable fixed points of g(y) = yδ + γ § 6.1

R
2k1

1 − δŷδ−1
> 0 § 6.1

(sc, yc)
(nπ

2ω
,e−K�π/ω

)
n ∈ {1,2}, � ∈ N § 6.2

τ

√
2γωk1

Kyc
§ 6.2
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