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1. INTRODUCTION AND RESULTS

Let D be a bounded domain of Euclidean space RN, N�2, with smooth
boundary �D; its closure D� =D _ �D is an N-dimensional, compact
smooth manifold with boundary. We let

Au(x)=& :
N

i=1

�
�xi \ :

N

j=1

aij (x)
�u
�xj

(x)++c(x) u(x)

be a second-order, elliptic differential operator with real smooth coefficients
on D� such that

(1) aij (x)=aji (x), 1�i, j�N, and there exists a constant a0>0 such
that

:
N

i, j=1

aij (x) !i!j�a0 |!| 2, x # D� , ! # RN,

(2) c(x)>0 in D.
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In this paper we consider the following semilinear elliptic boundary
value problem stimulated by a problem of chemical reactor theory (cf.
[BGW], [Co], [CL], [LW2], [Pa]):

{Au=* exp _ u
1+=u& in D,

(V)*

Bu=a
�u
�&

+(1&a)u=0 on �D.

Here:

(1) * and = are positive parameters.

(2) a # C�(�D) and 0�a(x$)�1 on �D.

(3) ���& is the conormal derivative associated with the operator A,

�
�&

= :
N

i, j=1

aijnj
�

�xi
,

where n=(n1 , n2 , ..., nN) is the unit exterior normal to the boundary �D.

The nonlinear term

f (t)=exp _ t
1+=t&

describes the temperature dependence of reaction rate for exothermic reac-
tions obeying the simple Arrhenius rate law in circumstances in which heat
flow is purely conductive. In this context the parameter = is a dimensionless
ambient temperature and the parameter * is a dimensionless heat evolution
rate. The equation

Au=*f (u)=* exp _ u
1+=u&

represents heat balance with reactant consumption ignored, where u is a
dimensionless temperature excess.

On the other hand, the boundary condition

Bu=a
�u
�&

+(1&a)u=0

represents the exchange of heat at the surface of the reactant by Newtonian
cooling. Moreover the boundary condition Bu=0 is called the isothermal
condition (or Dirichlet condition) if a#0 on �D, and is called the
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adiabatic condition (or Neumann condition) if a#1 on �D. We remark
that problem (V)* becomes a degenerate boundary value problem from an
analytical point of view. This is due to the fact that the so-called
Shapiro�Lopatinskii complementary condition is violated at the points
where a(x)=0. In the non-degenerate case or one-dimensional case,
problem (V)* has been studied by many authors (see [CL], [Co], [Pa],
[LW2], [BIS]).

A function u # C2(D� ) is called a solution of problem (V)* if it satisfies the
equation Au&*f (V)=0 and the boundary condition Bu=0. A solution u
is said to be positive if it is positive everywhere in D.

This paper is devoted to the study of the existence of positive solutions
of problem (V)* . Our starting point is the following existence theorem for
problem (V)* (see [TU2, Theorem 1]):

Theorem 0. For each *>0, problem (V)* has at least one positive solu-
tion. Furthermore, problem (V)* has a unique positive solution if =�1�4.

In other words, if the activation energy is so low that the parameter =
exceeds the value 1�4, then only a smooth progression of reaction rate with
imposed ambient temperature can occur; such a reaction may be very rapid
but it is only accelerating and lacks the discontinuous change associated
with criticality and ignition. The situation may be represented schemati-
cally by Fig. 1 (cf. [BGW, Figure 6]).

The purpose of the present paper is to study the case where 0<=<1�4.
First, in order to state our multiplicity theorem for problem (V)* , we define
a function

&(t)=
t

f (t)
=

t
exp [t�(1+=t)]

, t�0.

It is easy to see that if 0<=<1�4, then the function &(t) has a unique local
maximum at t=t1(=),

t1(=)=
1&2=&- 1&4=

2=2 ,

and has a unique local minimum at t=t2(=):

t2(=)=
1&2=+- 1&4=

2=2 .
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Figure 1

On the other hand, we let , # C�(D� ) be the unique positive solution of
the linear boundary value problem

{Au=1
Bu=0

in D,
on �D,

(1.1)

and let

&,&�=max
D�

,(x).

Now we can state our multiplicity theorem for problem (V)* :

Theorem 1. We can find a constant ;>0, independent of =, such that if
0<=<1�4 is so small that

&(t2(=))
;

<
&(t1(=))
&,&�

, (1.2)

then there exist at least three distinct positive solutions of problem (V)* for
all * satisfying the condition

&(t2(=))
;

<*<
&(t1(=))
&,&�

. (1.3)
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Theorem 1 is a generalization of [Wi, Theorem 4.3] to the degenerate
case (see also [Pa], [LW2], [BIS]). We remark that, as = a 0,

&(t2(=))
;

t
1
=2 exp _ &1

=+=2& , (1.4a)

&(t1(=))
&,&�

texp _ &1
1+=& , (1.4b)

so that condition (1.2) makes sense.
Secondly we state two existence and uniqueness theorems for problem

(V)* . Let *1 be the first eigenvalue of the linear eigenvalue problem

{Au=*u
Bu=0

in D,
on �D.

The next two theorems assert that problem (V)* is uniquely solvable for
* sufficiently small and sufficiently large if 0<=<1�4:

Theorem 2. Let 0<=<1�4. If the parameter * is so small that

0<*<
*1 exp _2=&1

= &
4=2 , (1.5)

then problem (V)* has a unique positive solution.

Theorem 3. Let 0<=<1�4. One can find a constant 4>0, independent
of =, such that if the parameter * is so large that *>4, then problem (V)*

has a unique positive solution.

Theorems 2 and 3 are generalizations of [Wi, Theorems 2.9 and 2.6] to
the degenerate case, respectively, although we only treat the nonlinear term
f (t)=exp[t�(1+=t)]. Here it is worth while to point out (see condition
(1.4)) that we have, as = a 0,

&(t2(=))
;

t

*1 exp _2=&1
= &

4=2 ,

&(t1(=))
&,&�

t4.
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By virtue of Theorems 1, 2 and 3, we can define two positive numbers
+I and +E by the formulas

+I=inf[+>0 : problem(V)* is uniquely solvable for each +<*],

+E=sup[+>0 : problem(V)* is uniquely solvable for each 0<*<+].

Then it is easy to see that an ignition phenomenon occurs at *=+I and an
extinction phenomenon occurs at *=+E , respectively. In other words, a
small increase in * causes a large jump in the stable steady temperature
profile at *=+I and *=+E . More precisely the minimal positive solution
u
�
(*) is continuous in *>+I but is not continuous at *=+I , while the maxi-

mal positive solution u� (*) is continuous in 0<*<+E but is not continuous
at *=+E . The situation may be represented schematically by Figs. 2 and 3
(cf. [BGW, Fig. 6]).

By the maximum principle and the boundary point lemma, we can easily
see from formula (3.2) below that the first eigenvalue *1(a) satisfies the
inequalities

*1(1)<*1(a)<*1(0),

and that the unique solution ,=,(a) of problem (1.1) satisfies the
inequalities

,(0)<,(a)<, (1) in D,

so that,

1
&,(1)&�

<
1

&,(a)&�
<

1
&, (0)&�

.

Moreover it follows from formula (2.8) below that the critical value
;=;(a) in Theorem 1 satisfies the inequalities

1
;(1)

�
1

;(a)
�

1
;(0)

,

and further from formula (4.14) below that the critical value 4=4(a) in
Theorem 3 depends essentially on the first eigenvalue *1=*1(a).

Therefore we find that the extinction phenomenon in the isothermal con-
dition case occurs at the largest critical value +E (0), while the extinction
phenomenon in the adiabatic condition case occurs at the smallest critical
value +E (1). Similarly we find that the ignition phenomenon in the
adiabatic condition case occurs at the smallest critical value +I (1), while
the ignition phenomenon in the isothermal condition case occurs at the
largest critical value +I (0).
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Figure 2

The rest of this paper is organized as follows. Section 2 is devoted to the
proof of Theorem 1. We reduce the study of problem (V)* to the study of
a nonlinear operator equation in an appropriate ordered Banach space as
in Taira and Umezu [TU1] and [TU2]. Our proof of Theorem 1 may be
carried out just as in the proof of [Wi, Theorem 4.3], by making use of the
theory of positive mappings in ordered Banach spaces due to Amann
[Am2]. In Section 3 we prove Theorem 2, by using a variant of variational
method. In Section 4 we prove Theorem 3. Our proof of Theorem 3 is
based on a method inspired by Wiebers [Wi, Theorems 2.9 and 2.6].

The authors are grateful to Kunimochi Sakamoto for fruitful conversa-
tions while working on this paper.

Figure 3
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2. PROOF OF THEOREM 1

This section is devoted to the proof of Theorem 1. First we transpose the
nonlinear problem (V)* into an equivalent fixed point equation for the
resolvent K in an appropriate ordered Banach space, just as in Taira and
Umezu ([TU1] and [TU2]).

(i) If 1<p<�, we define a closed linear subspace of the Sobolev
space W 2, p(D) by the formula

W 2, p
B (D)=[u # W2, p(D) : Bu=0 on �D].

By [TU1, Theorem 1.1], we can introduce a continuous linear operator

K : Lp(D) � W 2, p
B (D)

as follows: For any g # L p(D), the function u=Kg # W 2, p(D) is the unique
solution of the problem

{Au=g
Bu=0

in D,
on �D.

(2.1)

Then, by the Ascoli�Arzela� theorem we find that the operator K, con-
sidered as

K : C(D� ) � C1(D� ),

is compact. Indeed it follows from an application of Sobolev's imbedding
theorem that W2, p(D) is continuously imbedded into C2&N�p(D� ) for all
N<p<�.

For u, v # C(D� ), we write uPv if u(x)�v(x) in D� . Then the space C(D� )
is an ordered Banach space with the linear ordering P, and with the
positive cone

P=[u # C(D� ) : up0].

For u, v # C(D� ) the notation uOv means that v&u # P"[0]. Then it is
known (see [TU1, Lemma 2.1]) that K is strictly positive, that is, Kg is
positive everywhere in D if go0. Moreover it is easy to verify that a func-
tion u is a solution of problem (V)* if and only if it satisfies the equation

u=*K( f (u)) in C(D� ). (2.2)

(ii) The proof of Theorem 1 is based on the following result on mul-
tiple positive fixed points of nonlinear operators on ordered Banach spaces
essentially due to Legget and Williams [LW1] (see [Wi, Lemma 4.4]):
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Lemma 2.1. Let (X, Q, P) be an ordered Banach space such that the
positive cone Q has non-empty interior. Moreover let ' : Q � [0, �) be a
continuous and concave functional and let G be a compact mapping of
Q{ :=[w # Q : &w&�{] into Q for some constant {>0 such that

&G(w)&<{ for all w # Q{ satisfying &w&={. (2.3)

Assume that there exist constants 0<$<{ and _>0 such that the set

W=[w # Q1 { : '(w)>_] (2.4)

is non-empty, where A1 denotes the interior of a subset A of Q, and that

&G(w)&<$ for all w # Q$ satisfying &w&=$, (2.5)

'(w)<_ for all w # Q$, (2.6)

and

'(G(w))>_ for all w # Q{ satisfying '(w)=_. (2.7)

Then the mapping G has at least three distinct fixed points.

(iii) End of Proof of Theorem 1. The proof of Theorem 1 may be
carried out just as in the proof of [Wi, Theorem 4.3.]

Let B be the set of all subdomains 0 of D with smooth boundary such
that dist(0, �D)>0, and let

;= sup
0 # B

C0 , C0= inf
x # 0

(K/0)(x), (2.8)

where /A denotes the characteristic function of a set A. It is easy to see that
the constant ; is positive, since the resolvent K of problem (2.1) is strictly
positive.

Since limt � � &(t)=limt � � t�f (t)=�, one can find a constant t� 1(=)
such that

t� 1(=)=min[t>t2(=) : &(t)=&(t1(=))].

Then we remark that

t1(=)<t2(=)<t� 1(=),

and

&(t1(=))=&(t� 1(=))=
t� 1(=)

f (t� 1(=))
. (2.9)
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Now we shall apply Lemma 2.1 with

X :=C(D� ),

Q :=P=[u # C(D� ) : up0],

G( } ) :=*K( f ( } )),

$ :=t1(=), _ :=t2(=), { :=t� 1(=).

To do so, it suffices to verify that the conditions of Lemma 2.1 are fulfilled
for all * satisfying condition (1.3).

(iii-a) If t>0, we let

P(t)=[u # P : &u&��t].

If u # P(t� 1(=)) and &u&�=t� 1(=) and if ,=K1 is the unique solution of
problem (1.1), then it follows from condition (1.3) and formula (2.9) that

&*K( f (u))&�<
&(t1(=))

&,&�
&K( f (u))&�

�
&(t1(=))
&,&�

f (t� 1(=)) &K1&�

=&(t1(=)) f (t� 1(=))

=t� 1(=),

since f (t) is increasing. This proves that the mapping *K( f ( } )) satisfies
condition (2.3) with Q{ :=P(t� 1(=)).

Similarly one can verify that if u # P(t1(=)) and &u&�=t1(=), then we
have

&*K( f (u))&�<t1(=).

This proves that the mapping *K( f ( } )) satisfies condition (2.5) with
Q$ :=P(t1(=)).

(iii-b) If 0 # B, we let

'(u)= inf
x # 0

u(x).

Then it is easy to see that ' is a continuous and concave functional of P.
If u # P(t1(=)), then we have

'(u)�&u&��t1(=)<t2(=).

This verifies condition (2.6) for the functional '.
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(iii-c) If we let

W=[u # P1 (t� 1(=)) : '(u)>t2(=)],

then we find that

W#{u # P :
t� 1(=)

2
�u<t� 1(=) on D� , '(u)>t2(=)={<,

since t2(=)<t� 1(=). This verifies condition (2.4) for the functional '.

(iii-d) Now, since *>&(t2(=))�;, by formula (2.8) one can find a sub-
domain 0 # B such that

*>
&(t2(=))

C0
.

If u # P(t� 1(=)) and '(u)=t2(=), then we have

'(*K( f (u)))= inf
x # 0

*K( f (u))(x)

� inf
x # 0

*K( f (u)/0)(x)

>
&(t2(=))

C0
inf

x # 0
K( f (u)/0)(x). (2.10)

However, since inf0 u='(u)=t2(=) and f (t) is increasing, it follows that

&(t2(=))
C0

inf
x # 0

K( f (u)/0)(x)�
&(t2(=))

C0
inf

x # 0
K( f (t2(=))/0)(x)

=
&(t2(=))

C0
f (t2(=)) inf

x # 0
(K/0)(x)

=&(t2(=)) f (t2(=))

=t2(=). (2.11)

Therefore, combining inequalities (2.10) and (2.11) we obtain that

'(*K( f (u)))>t2(=).

This verifies condition (2.7) for the mapping *K( f ( } )).
The proof of Theorem 1 is now complete. K
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3. PROOF OF THEOREM 2

We let

f (t)=exp _ t
1+=t& , t�0.

If u1 and u2 are two positive solutions of problem (V)* , then we have, by
the mean value theorem,

|
D

A(u1&u2) } (u1&u2) dx=|
D

*( f (u1)& f (u2))(u1&u2) dx

=* |
D

G(x)(u1&u2)2 dx, (3.1)

where

G(x)=|
1

0
f $(u2(x)+%(u1(x)&u2(x))) d%.

We shall prove Theorem 2 by using a variant of variational method. To
do so, we introduce an unbounded linear operator A from the Hilbert
space L2(D) into itself as follows:

(a) The domain of definition D(A) of A is the space

D(A)=[u # W2, 2(D) : Bu=0].

(b) Au=Au, u # D(A).

Then it is known (see [Ta1, Theorems 7.3 and 7.4], [Um, Theorem 2])
that the operator A is a positive and self-adjoint operator in L2(D), and
has a compact resolvent. Hence we obtain that the first eigenvalue *1 of A
is characterized by the following formula:

*1=min {|D
Au(x) } u(x) dx : u # W 2, 2(D), |

D
|u(x)| 2 dx=1, Bu=0=.

(3.2)

Thus it follows from formulas (3.2) and (3.1) that

*1 |
D

(u1&u2)2 dx�|
D

A(u1&u2) } (u1&u2) dx

=* |
D

G(x)(u1&u2)2 dx

�* sup f $(t) |D (u1&u2)2 dx. (3.3)
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However it is easy to see that

sup f $(t)= f $ \1&2=
2=2 +=4=2 exp _1&2=

= & .

Hence, combining this fact with inequality (3.3) we obtain that

*1 |
D

(u1&u2)2 dx�4*=2 exp _1&2=
= & |

D
(u1&u2)2 dx.

Therefore we find that u1#u2 in D, if the parameter * is so small that con-
dition (1.5) is satisfied, that is, if we have

*1&4*=2 exp _1&2=
= &>0.

The proof of Theorem 2 is complete. K

4. PROOF OF THEOREM 3

This section is devoted to the proof of Theorem 3. Our proof of Theorem
3 is based on a method inspired by Wiebers [Wi, Theorems 2.9 and 2.6].

4.1. An a Priori Estimate

In this subsection we shall establish an a priori estimate for positive solu-
tions of problem (V)* which will play an important role in the proof of
Theorem 3.

First we introduce another ordered Banach subspace of C(D� ) for the
fixed point equation (2.2) which combines the good properties of the resol-
vent K of problem (2.1) with the good properties of the natural ordering
of C(D� ).

Let ,=K1 be the unique solution of problem (1.1). Then it follows from
an application of [TU1, Lemma 2.1] that the function , belongs to C�(D� )
and satisfies the conditions

,(x) {>0 if either x # D or a(x)>0,
=0 if a(x)=0,

and

�,
�&

(x)<0 if a(x)=0.
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By using the function ,, we can introduce a subspace of C(D� ) as follows:

C,(D� )=[u # C(D� ) : there exists a constant c>0 such that &c,PuPc,].

The space C,(D� ) is given a norm by the formula

&u&,=inf[c>0 : &c,PuPc,].

If we let

P,=C,(D� ) & P=[u # C,(D� ) : up0],

then it is easy to see that the space C,(D� ) is an ordered Banach space
having the positive cone P, with nonempty interior. For u, v # C,(D� ), the
notation u<<v means that v&u is an interior point of P, . We know (see
[TU1, Proposition 2.2]) that K maps C,(D� ) compactly into itself, and that
K is strongly positive, that is, Kg>>0 for all g # P,"[0].

It is easy to see that a function u is a solution of problem (V)* if and only
if it satisfies the equation

u=*K( f (u)) in C,(D� ). (4.1)

Recall (see [Ta3, Theorem 1]) that the first eigenvalue *1 of A is
positive and simple and that the corresponding eigenfunction .1 is positive
everywhere in D. Without loss of generality, one may assume that

max
D�

.1(x)=1.

We let

#=min {f (t1(=))
t1(=)

: 0<=�
1
4= . (4.2)

Here we remark that t1(=) � 1 as = a 0, so that the constant # is positive.
Then we have the following a priori estimate for all positive solutions u

of problem (V)* :

Proposition 4.1. One can find a constant 0<=0�1�4 such that if
*>*1�# and 0<=�=0 , then we have, for all positive solutions u of problem
(V)* ,

up*=&2.1 .
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Proof. (i) Let c be a parameter satisfying 0<c<1. Then we have

A(*c=&2.1)&*f (*c=&2.1)=*c=&2.1 \*1&*
f (*c=&2.1)

*c=&2.1 + in D.

However, since we have

f (t)
t

� 0 as t � �,

f (t)
t

� � as t � 0,

it follows that

f (*c=&2.1)
*c=&2.1

�min { f (t1(=))
t1(=)

,
f (*=&2)

*= &2 = . (4.3)

First we obtain from formula (4.2) that, for all *>*1 �# and 0<=<1�4,

*1&*
f (t1(=))

t1(=)
�*1&*#<0. (4.4)

Secondly we have, for all *>*1 �#,

*1&*
f (*=&2)

*=&2 =*1&=2 exp _ 1
=+=2�*&

�*1&=2 exp _ 1
=+=2#�*1& .

However one can find a constant =0 # (0, 1�4] such that, for all 0<=�=0 ,

*1&=2 exp _ 1
=+=2#�*1 &<0.

Hence it follows that, for all *>*1�# and 0<=�=0 ,

*1&*
f (*=&2)

*=&2 <0. (4.5)

Therefore, combining inequalities (4.3), (4.4) and (4.5) we obtain that,
for all *>*1 �# and 0<=�=0 ,
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A(*c=&2.1)&*f (*c=&2.1)=*c=&2.1 \*1&*
f (*c=&2.1)
*c=&2.1 +

�*c=&2.1 \*1&* min { f (t1(=))
t1(=)

,
f (*=&2)

*=&2 =+
<0 in D.

By applying the resolvent K to the both sides, we have, for all *>*1 �# and
0<=�=0 ,

*K( f (c*=&2.1))>>c*=&2.1 . (4.6)

(ii) Now we need the following lemma (see [Wi, Lemma 1.3]):

Lemma 4.2. If there exist a function u~ >>0 and a constant s0>0 such
that *K( f (su~ ))>>su~ for all 0�s<s0 , then we have, for each fixed point u
of the mapping *K( f (u)),

ups0u~ .

(iii) Since 0<<*K( f (0)) and estimate (4.6) holds for all 0<c<1, it
follows from an application of Lemma 4.2 with u~ :=*=&2.1 , s0 :=1 and
s :=c (and also equation (4.1)) that every positive solution u of problem
(V)* satisfies the estimate

up*=&2.1

for all *>*1 �# and 0<=�=0 .
The proof of Proposition 4.1 is complete. K

4.2. End of Proof of Theorem 3

(I) First we define a function

F(t)= f (t)& f $(t)t=
=2t2+(2=&1)t+1

(1+=t)2 exp _ t
1+=t& for t�0.

Then we have the following:

Lemma 4.3. Let 0<=<1�4. Then the function F(t) has the following
properties:

>0 if either 0�t<t1(=) or t>t2(=),

F(t) {=0 if t=t1(=) and t=t2(=),

<0 if t1(=)<t<t2(=).
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Moreover the function F(t) is decreasing in the interval (0, (1&2=)�2=2) and
is increasing in the interval ((1&2=)�2=2, �), and has a minimum at
t=(1&2=)�2=2.

(II) The next proposition is an essential step in the proof of
Theorem 3:

Proposition 4.4. Let 0<=<1�4. Then there exists a constant :>0,
independent of =, such that we have, for all up:=&2.1 ,

K(F(u))>>0. (4.7)

Proof. Our proof mimics that of [Am1, Lemma 7.8].
Since t2(=)<2=&2, we find from Lemma 4.3 that

F(t)�F(2=&2)>0, t�2=&2.

We define two functions

z&(u)(x)={&F(u(x))
0

if u(x)�2=&2,
if u(x)<2=&2,

and

z+(u)(x)=F(u(x))+z&(u)(x).

Moreover, we define two sets

M=[x # D� : .1(x)> 1
2],

and

L=[x # D� : u(x)�2=&2].

Then we have M/L for all up4=&2.1 , and so

z&(u)�&F(2=&2)/L�&F(2=&2)/M .

By using Friedrichs' mollifiers, we can construct a function v # C�(D� ) such
that vo0 and

z&(u)�&F(2=&2)v. (4.8)

On the other hand, by Lemma 4.3 we remark that

min[F(t) : 0�t�2=&2]=F \1&2=
2=2 +<0.
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Since z+(u)(x)=0 if x # L and z+(u)(x)=F(u(x)) if x � L, it follows that

z+(u)�F \1&2=
2=2 + /D� "L .

If : is a constant such that :>4, we define a set

M:={x # D� : .1(x)<
2
:= .

Then we have, for all up:=&2.1 ,

D� "L=[x # D� : u(x)<2=&2]/M: ,

and so

z+(u)�F \1&2=
2=2 + /M: . (4.9)

Hence, combining inequalities (4.8) and (4.9) we obtain that, for all
up:=&2.1 ,

K(F(u))=K(z+(u)&z&(u))�F \1&2=
2=2 + K(/M:)+F(2=&2) Kv. (4.10)

However, by [TU1, estimate (2.4)] it follows that there exists a constant
c>0 such that

Kvpc.1 . (4.11)

Furthermore, since /M: � 0 in Lp(D) as : � �, it follows that K(/M:) � 0
in C1(D� ) and so K(/M:) � 0 in C,(D� ). Hence, for any positive integer k
one can choose the constant : so large that

K(/M:)P
c
k

.1 . (4.12)

Thus, carrying inequalities (4.11) and (4.12) into the right-hand side of
inequality (4.10) we obtain that, for all up:=&2.1 ,

K(F(u))=K(z+(u)&z&(u))

�F \1&2=
2=2 + c

k
.1+F(2=&2) c.1

=F(2=&2) c.1 \1+
F((1&2=)�2=2)

F(2= &2)
1
k+ . (4.13)
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However we have, as = a 0,

F((1&2=)�2=2)
F(2= &2)

=
(4=&1)(=+2)2

=2+4=+2
exp _&2=&3

=+2 &� &2e&3�2.

Therefore inequality (4.7) follows from inequality (4.13) if we take the
positive integer k so large that

k>& min
0<=<1�4

F((1&2=)�2=2)
F(2=&2)

.

The proof of Proposition 4.4 is complete. K

Proposition 4.4 implies the following important property of the mapping
K( f ( } )) (see [Wi, Lemma 2.2]):

Proposition 4.5. Let 0<=<1�4 and let : be the same constant as in
Proposition 4.4. Then we have, for all up:=&2.1 and all s>1,

sK( f (u))>>K( f (su)).

(III) Now we let

4=max {*1

#
, := . (4.14)

If u1 and u2 are two positive solutions of (V)* with *>4 and 0<=�=0 ,
then combining Propositions 4.1 and 4.5 we find that, for all s>1,

sK( f (ui))>>K( f (sui)), i=1, 2,

so that

sui=s*K( f (ui))>>*K( f (sui)), i=1, 2.

Hence we obtain that u1=u2 , by applying the following lemma (see [Wi,
Lemma 1.3]):

Lemma 4.6. If there exists a function u~ >>0 such that su~ >>*K( f (su~ ))
for all s>1, then u~ pu for each fixed point u of the mapping *K( f (u)).

Finally it remains to consider the case where =0<=<1�4. If u is a
positive solution of problem (V)* , then we have

A \u&
*

*1

.1+=*f (u)&*.1�*(1&.1)�0 in D.
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By the strong maximum principle and the boundary point lemma (see
[PW]), it follows that

up
*
*1

.1 .

By combining this assertion with Proposition 4.5, we can prove that the
uniqueness result holds for all

*�
:*1

=2 ,

just as in the case 0<=�=0 .
The proof of Theorem 3 is now complete. K
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