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Abstract

Given a centre of a planar differential system, we extend the use of the Lie bracket to the

determination of the monotonicity character of the period function. As far as we know, there

are no general methods to study this function, and the use of commutators and Lie bracket

was restricted to prove isochronicity. We give several examples and a special method which

simplifies the computations when a first integral is known.
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1. Introduction

In the latest years, there have been many developments concerning the problem of
centres for systems of ordinary differential equations on the plane. By one side,
improvements have been done in the direction of solving the centre-focus problem
(see [14] or [24] for instance, and the references therein); however, the problem is far
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to be solved. By the other side, questions about either the kind of period annulus or
the shape of the period function of a centre have also been tackled (the period
annulus, P from now on, is the greatest neighbourhood of the centre filled of
periodic orbits; given a transversal section of the period annulus, the time function
defined on it is called the period function).

A first question is to decide whether the centre is isochronous or not. A recent
survey on this problem is given in [5]. We would like to remark that in the works of
Sabatini and Villarini (see [27,29]) they settled the strong relationship between Lie
brackets and isochronicity. This idea has been used fruitfully by many authors. In
the recent paper [17] we have also found a full description of the link between
commutators and isochronicity.

A second question is that of controlling the number of critical points of the
period function. This question has been treated for special families of vector
fields by several authors (Chicone–Dumortier [9,10], for some polynomial
systems; Chow and Wang [11], and Gavrilov [19] for potential systems;
Coppel and Gavrilov [15], Collins [13], and Gasull et al. [18], for Hamiltonian
centres with homogeneous non-linearities; Rothe [26], for some Hamiltonian
families; Freire et al. [16], for perturbation of isochronous centres, etc.) They
mainly focus on seeking for conditions of monotonicity of the period function
and seldom examples of more than one critical period are found. Maybe one of the
most relevant approach to give general tools for proving the monotonicity of the
period function is due to Chicone (see [7]) who gave an expression for the first
derivative of the period function as a dynamical interpretation of a result of
Diliberto.

In the present paper, inspired in the geometrical ideas involved in the Lie bracket,
we give a method to prove that some centres have either an increasing or a
decreasing period function. This method is based on a formula for computing the
derivative of the period function, which is obtained from the knowledge of the set of
normalizers of the centre. See the definitions and more detailed comments after the
statement of the following theorem, which is the key point of our paper. It will be
proved in Section 2.

Theorem 1. Consider a C1 vector field X having a centre at a point p with period

annulus P: The following statements hold:

1. Let U be a vector field, UAC1ðPÞ; transversal to X in P\fpg; and such that ½X ;U 	 ¼
mX on P; for some C1 function m :PCR2-R: Denote by c ¼ cðsÞ a trajectory of U

such that cðs0ÞAP: Then,

T 0ðs0Þ ¼
Z Tðs0Þ

0

mðxðtÞ; yðtÞÞ dt; ð1Þ

where ðxðtÞ; yðtÞÞ is the orbit of X such that ðxð0Þ; yð0ÞÞ ¼ cðs0Þ and TðsÞ the period

of the orbit of X passing through cðsÞ:
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2. Assume that

(a) the vector field X ¼ ðP;QÞ admits an integrating factor Vðx; yÞ�1
in P; that is,

there exist Vðx; yÞ and Hðx; yÞ such that X ¼ ðP;QÞ ¼ Vð�Hy;HxÞ in P;
(b) there exist scalar functions R and S such that RHx þ SHy ¼ fðHÞ; for some

smooth scalar function f:

Then, by taking the vector field U ¼ ðR;SÞ; it satisfies ½X ;U 	 ¼ mX ; with

mðx; yÞ ¼ div U �rV � U

V
� f0ðHÞ: ð2Þ

As we have already explained, the aim of Theorem 1 is to give a tool to study the
shape of the period function, that is, features like its monotonicity, its number of
critical periods or knowing when it is constant (isochronicity problem). To be useful
we need to be able to compute m; and control its integral. The existence of U and m
satisfying ½X ;U 	 ¼ mX ; for sufficiently regular vector fields X with a non-degenerate
centre at p is already known, see for instance [1]. Note also that our expression of T 0

given in (1), and based on the knowledge of U ; is simpler that the one obtained in [7].
Part 2 of Theorem 1 tries to give a procedure to compute m and U when an

integrating factor for X is known. It can be seen as a reciprocal of the following well
known result of S. Lie: Assume that a vector field U ¼ ðR;SÞ such that ½X ;U 	 ¼ mX

is known. If c is a first integral of X or a constant—usually c is taken to be 1—then
a solution f of the system

fxP þ fyQ ¼ 0;

fxR þ fyS ¼ c;

�
ð3Þ

exists and it is also a first integral of X ; (see [2, p. 108]). Our result is an extension of
a previous one of S. Lie, see Theorem 2.48 in [23] or Proposition 1.1 in [31], which
just covers the case f0 ¼ 0:

Observe that another interpretation of part 2 of Theorem 1 is the following: if for a

given Hamiltonian vector field rH> ¼ ð�Hy;HxÞ we are able to find an U such that

½rH>;U 	 ¼ mHrH> then if we consider m ¼ mH � ðrV � UÞ=V it is satisfied that

½X ;U 	 ¼ mX ; where X ¼ VrH>:
We also want to comment that it is very easy to find a formal solution U ¼ ðR;SÞ

of RHx þ SHy ¼ H; when div Xa0: It suffices to take U ¼ ðR;SÞ ¼
ð�Vy;VxÞ=div X : Nevertheless, in most cases U is a not well defined vector field

in a neighbourhood of p and it is not useful for our purposes. The freedom to choose
f is a key point of the method proposed to obtain a well-defined U in P:

The first part of this paper is devoted to prove Theorem 1. In the second part we
apply it to prove the monotonicity of the period function for several families of
planar systems. Hence, once an U and a m are obtained we are interested to prove
that integral (1) has constant sign. In the systems that we study it sometimes happens
that the m that we have makes difficult these computations. A second step of our way
of approach is try to get a more suitable m: We detail this idea in the sequel.
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From a geometrical point of view, the vector field U is the infinitesimal generator
of the Lie group of symmetries of X : As usual in Lie theory, we call the set of
infinitesimal generators the normalizer of X ; while the set of commuting vector fields
is called the centralizer, see [30] for more details. Accordingly, our work can be seen
as giving the same dynamical interpretation for normalizers than Sabatini’s and
Villarini’s results do for centralizers. Moreover, the set of normalizers of a given
vector field X has the nice structure that we show in the following proposition.

Proposition 2. Consider the set of normalizers of X ;

NðXÞ ¼ fU : ½X ;U 	 ¼ mX for some mg;

and take UANðXÞ that satisfies ½X ;U 	 ¼ mX : Then, if U�ANðX Þ; it can be written as

U� ¼ cU þ gX ; where c is either a first integral of X or a non-zero constant and g is

any C1 function. Moreover, ½X ;U�	 ¼ m�X ; with m� ¼ ðcmþrgt � XÞ:

Proposition 2 gives a practical tool. For proving monotonicity one has to figure

out in each case whether it is better to compute the value of
R
m; as Theorem 1

suggests, or to find a new element of the normalizer whose corresponding m� is more

suitable. Note that, in general,
R
ma

R
m� on the same periodic orbit of the period

annulus because of the different parameterization given by the first integral c:
However, the sign is preserved and so are the deductions on the qualitative
behaviour of the period function.

We can summarize our approach to study the monotonicity of the period function
in a method which, as far as we know, is a new one:

A method in three steps for proving the monotonicity of the period function:

(i) Try to compute U and m defined in all the period annulus of p and satisfying
½X ;U 	 ¼ mX : If X admits an integrating factor, use part 2 of Theorem 1.

(ii) Try to control the sign of the integral of m which appears in (1). If you do not
succeed then pass to the next steep.

(iii) Use Proposition 2 to get a more suitable m: Go again to step (ii).

The last two sections of the paper contain the most interesting examples to which
we have been able to apply our method. Some of the results that we get were already
known but, even in these cases, we want to stress how our method enables to shorten
the proofs.

In particular, in Section 3, we study Hamiltonian systems of type Hðx; yÞ ¼
FðxÞ þ GðyÞ and give some applications to physical problems. In the last section, we
go through a miscellanea of examples: Lotka–Volterra centre, quadratic systems,
Liénard systems and polynomial Hamiltonian systems with homogeneous non-
linearities. Maybe the clearest application of our method is given in Proposition 19
of Section 4, where we prove that the period function of a family of quadratic
systems is decreasing.
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We end this introduction by noticing that from part 1 of Theorem 1 it can be
deduced the following result on isochronicity:

Corollary 3. Consider a C1 vector field X having a centre at a point p and period

annulus PCR2: Let U be a vector field UAC1ðPÞ; transversal to X in P\fpg; and such

that ½X ;U 	 ¼ mX for some smooth scalar function m :P-R: Let g ¼
fðxðtÞ; yðtÞÞ; tA½0;Tg	g be any periodic orbit of X in P:

Then, if there is a neighbourhood of p such that for any g contained in it,

Z Tg

0

mðxðtÞ; yðtÞÞ dt ¼ 0;

the centre is isochronous.

In [17] the converse of the above corollary is also proved and some applications of
it are given.

2. Proofs and comments on Theorem 1

2.1. Proof of Theorem 1 and Proposition 2

Proof of Theorem 1. Part 1: Let gðtÞ be a periodic orbit of period T of X ; and
p ¼ gð0Þ ¼ gðTÞ: Take a transversal section S given by

g : ð�e; eÞ-S;

being gðsÞ a solution of x0 ¼ UðxÞ such that gð0Þ ¼ p; that is, g0ðsÞ ¼ UðgðsÞÞ:
Consider as well the return map of X defined on S:

p : S0CS-S:

If we call jðt; xÞ the flow defined by X ; then

pðgðsÞÞ ¼ jðT þ tðsÞ; gðsÞÞ:

Moreover, observe that in case that gðtÞ is a closed orbit of the interior of a period
annulus, T þ tðsÞ is the period of the closed orbit passing through gðsÞ:

In this notation, it is easy to see that the monodromy matrix of the variational
equation of the return map in the basis fXðpÞ;UðpÞg is

1 �t0ð0Þ
0 1

� �
:
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A key point of our proof is to note that the hypothesis ½X ;U 	 ¼ mX implies that

Y ðtÞ :¼ UðgðtÞÞ �
Z t

0

mðgðuÞÞ du

� �
XðgðtÞÞ;

is a solution of the variational equation, since

d

dt
Y ðtÞ ¼DUðgðtÞÞXðgðtÞÞ � mðgðtÞÞX ðgðtÞÞ �

Z t

0

mðgðuÞÞ du DX ðgðtÞÞX ðgðtÞÞ

¼DX ðgðtÞÞUðgðtÞÞ þ mðgðtÞÞX ðgðtÞÞ � mðgðtÞÞXðgðtÞÞ

�
Z t

0

mðgðuÞÞ du DX ðgðtÞÞX ðgðtÞÞ ¼ DX ðgðtÞÞY ðtÞ:

Finally, by observing that Yð0Þ ¼ UðpÞ and YðTÞ ¼ UðpÞ �
R T

0 mðgðtÞÞ dtX ðpÞ we

get that

R T

0 �mðgðtÞÞ dt

1

 !
¼

1 �t0ð0Þ
0 1

� �
0

1

� �

and so,

t0ð0Þ ¼
Z T

0

mðgðtÞÞ dt;

as we wanted to prove.

Part 2: Let V�1 be an integrating factor of X ; that is, X ¼ Vð�Hy;HxÞ for some

Hamiltonian function H: Let us take the vector field U ¼ ðR;SÞ satisfying HxR þ
HyS ¼ fðHÞ: Then, straightforward computations give

½X ;U 	 ¼
Rx Ry

Sx Sy

� � �VHy

þVHx

� �
� V

�Hyx �Hyy

Hxx Hxy

� �
R

S

� �

�
�VxHy �VyHy

VxHx VyHx

� �
R

S

� �

¼
�ðRx þ SyÞVHy þ ðRVx þ SVyÞHy þ VðRyHx þ RHyx þ SHyy þ SyHyÞ
ðRx þ SyÞVHx � ðRVx þ SVyÞHx � VðRxHx þ RHxx þ SHxy þ SxHyÞ

� �

¼
�divðUÞVHy þ ðrV � UÞHy þ V @

@y
fðHÞ

divðUÞVHx � ðrV � UÞHx � V @
@x
fðHÞ

 !

¼ div U �rV � U

V
� f0ðHÞ

� �
X ;

and thus the desired result. &
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Proof of Proposition 2. First of all, we observe that

½X ;U�	 ¼ ½X ;cU þ gX 	 ¼ c½X ;U 	 þ ðrctXÞU þ g½X ;X 	 þ ðrgtXÞX

¼ðcmþrgtXÞX ; ð4Þ

where in the last step we use that ½X ;U 	 ¼ mX and that c is either a first integral of X

or a non-zero constant.
Last assertion tells us that any U� of the prescribed type is a normalizer of X ; and

also gives the formula for m�: The property that any normalizer can be written in this

way follows from the fact that U and X form a basis of R2 just because they are
transversal. Then, there exist f and g such that U� ¼ fU þ gX : Equality (4) with

c ¼ f and U�ANðX Þ forces rf tX ¼ 0; which implies that f is either a first integral
of X or a non-zero constant (if it was zero, U would not be transversal to X ), as we
wanted to prove. &

2.2. Connected issues

In this subsection we present some results and comments related with Theorem 1
and Proposition 2. The first one is about a method given in [4] to compute m and U

when the first integral of X is a polynomial.

Remark 4. Let X be a vector field having a polynomial first integral Hðx; yÞ
such that rH ¼ 0 has finitely many solutions in C2: Then, the hypothesis
(b) of part 2 of Theorem 1 on existence of R and S can be removed. Let us prove
this assertion.

Denote by ðxi; yiÞ; i ¼ 1;y;m; the set of zeroes of rH in C2: Following [4], we
can construct a new first integral just taking

GðHÞ ¼
Ym
i¼1

ðH � Hðxi; yiÞÞ:

Then, the Hilbert’s zeroes theorem implies that there exist polynomials Rðx; yÞ;
Sðx; yÞ and rAN such that

RHx þ SHy ¼ GðHÞr;

as we wanted to see. In [4] the authors also study the case of X having a rational first
integral.

The next remark shows that in P\fpg there exists always a normalizer of X

orthogonal to X : This remark is used in next section, see Remark 7(2).
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Remark 5. Consider a non-degenerate critical point p with period annulus P:
Remember that we denote the set of normalizers of X as

NðX Þ ¼ fU : ½X ;U 	 ¼ mX for some mg:

Once one element UANðX Þ is given it is possible to construct another one, defined

in P\fpg; U�ANðX Þ of the form U� ¼ hX>; where X> is the vector field orthogonal
to X and hðxÞ is a real function. It suffices to take U� ¼ U þ gX and by imposing
that /X ;U�S ¼ 0 we get that g ¼ �/X ;US=/X ;XS:

3. Hamiltonian systems of type FðxÞ þ GðyÞ

This section has three parts, the first one dealing with the general properties
(finding normalizers and adapting part 2 of Theorem 1 to the specific family), the
second one containing some examples and applications to physical problems and the
third one with the routine computations. This family has been also studied in
[12,26,28].

We start with some notation and the technicalities to look for normalizers of the
vector field induced by Hðx; yÞ ¼ FðxÞ þ GðyÞ:

Define the numbers xL ¼ maxfxo0 : F 0ðxÞ ¼ 0g; xR ¼ minfx40 : F 0ðxÞ ¼ 0g;
yL ¼ maxfyo0 : G0ðyÞ ¼ 0g; yR ¼ minfy40 : G0ðyÞ ¼ 0g: If some of these sets is
empty, then the corresponding number is 7N (� for L; þ for R). Denote also by R
the rectangle R ¼ ðxL;xRÞ � ðyL; yRÞCR2:

Lemma 6. Let F and G two real analytic functions at 0, such that Fð0Þ ¼ Gð0Þ ¼ 0
and they have a non-degenerate minimum at 0. Then,

1. Let X be the vector field given by

’x ¼ �G0ðyÞ;
’y ¼ F 0ðxÞ;

�
ð5Þ

and U the vector field

U ¼
’x ¼ FðxÞ

F 0ðxÞ;

’y ¼ GðyÞ
G0ðyÞ;

8>><
>>:
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then U is well-defined in R and satisfies ½X ;U 	 ¼ mX ; where

mðx; yÞ ¼ div U � 1 ¼ d

dx

FðxÞ
F 0ðxÞ

� �
þ d

dy

GðyÞ
G0ðyÞ

� �
� 1;

2. The origin of (5) is a centre, which period annulus is contained in R; and the

associated period function T satisfies:

T 0ðsÞ ¼
Z TðsÞ

0

mðxðtÞ; yðtÞÞ dt;

where s refers to the parameterization of the orbits of U :

Proof of Lemma 6. The vector field U is well-defined in R since F and G are
analytical with a non-degenerate minimum at 0. Furthermore, the non-degeneracy of
functions F and G guarantees the presence of a centre. Notice that the orbits of the
period annulus of the origin cannot intersect the lines that form the boundary of R:
Straightforward computations from part 2 of Theorem 1 with Vðx; yÞ � 1 and
fðxÞ ¼ x lead to the desired result. &

Remark 7. (1) If instead of system (5) we consider the vector field X̂ given by

’x ¼ �Vðx; yÞG0ðyÞ;
’y ¼ Vðx; yÞF 0ðxÞ;

�

with V analytic and Vð0; 0Þa0 it is easy to prove that taking the same U that in the

above lemma, ½X̂;U 	 ¼ #mX̂; with #m ¼ V div U
V
� 1:

(2) As suggested by Remark 5, a different U� orthogonal to X can be taken. In
particular, we get

U� ¼
’x ¼ kðx; yÞF 0ðxÞ;
’y ¼ kðx; yÞG0ðyÞ;

�
m�ðx; yÞ ¼ kðx; yÞðF 0ðxÞ2 � G0ðyÞ2ÞðG00ðyÞ � F 00ðxÞÞ;

where kðx; yÞ ¼ FðxÞþGðyÞ
ðF 0ðxÞ2þG0ðyÞ2Þ2

: However, in this case the function m� is not so easy to

handle because the two variables cannot be separated.

Observe that for the function m given in Lemma 6, we can equally separate the
contribution of F and G in the expression and extract some useful sufficient
conditions for monotonicity avoiding integration of m: According to this goal, given
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a function F and following the previously quoted papers, we define

nF ðxÞ ¼F 0ðxÞ2 � 2FðxÞF 00ðxÞ;

jF ðxÞ ¼
FðxÞ

F 0ðxÞ2

 !
0
¼ nF ðxÞ=F 0ðxÞ3:

This notation suggests to consider the following subclasses of C2 real functions of
one variable:

Definition 8. Let JAC2ðO;RÞ for some ODR: We say that J is

* of class I if either nJX0 or jJ is increasing in O ðnJc0Þ;
* of class N if either nJ � 0 or jJ is constant in O;
* of class D if either nJp0 or jJ is decreasing in O ðnJc0Þ:

We also say that a pair of functions fl1; l2g form a L1–L2 pair if l1 is of class L1 and l2
is of class L2; where Lj stands for I ; N or D:

Since the initial value problem nF ðxÞ ¼ 0 with Fð0Þ ¼ F 0ð0Þ ¼ 0 has the only

solution FðxÞ ¼ kx2; kAR; class N becomes quite artificial. We keep it as a class
only for aesthetic purposes.

On the other hand, under the hypotheses of Lemma 6, the periodic orbits of the
period annulus of the origin are contained in R: Notice also that in R; the horizontal
and vertical isoclines are, respectively, the axes x ¼ 0 and y ¼ 0: This fact leads to
the following notation.

Definition 9. Let g be a periodic orbit of the period annulus of the origin of system
(5). We denote by ðxM ; 0Þ; ð0; yMÞ; ðxm; 0Þ and ð0; ymÞ the intersections of g with the
axes, see Fig. 1.
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Next proposition gives sense to these definitions and shows that the functions j
and n are suitable to find simpler ways to prove monotonicity.

Proposition 10 (see also [12] for the second part). Consider the Hamiltonian system

(5) generated by Hðx; yÞ ¼ FðxÞ þ GðyÞ; with F and G two real analytic functions at 0,
such that Fð0Þ ¼ Gð0Þ ¼ 0 and they have a non-degenerate minimum at 0. Then, the

following hold:

(1) The function m of Lemma 6 is defined in the rectangle R and can be written as

mðx; yÞ ¼ nF ðxÞ
1

2F 0ðxÞ2
þ nGðyÞ

1

2G0ðyÞ2
: ð6Þ

(2) By using the notation introduced in Definition 9 and in Fig. 1, the derivative of the

period function in the period annulus of the origin can be written asZ TðsÞ

0

mðxðtÞ; yðtÞÞ dt ¼ 1

2

Z yM

ym

½jF ðxþðyÞÞ � jF ðx�ðyÞÞ	 dy

þ 1

2

Z xM

xm

½jGðyþðxÞÞ � jGðy�ðxÞÞ	 dx: ð7Þ

(3) The centre at the origin

(a) is isochronous if fF ;Gg form a N –N pair.
(b) has an increasing period function if fF ;Gg form one of the following pairs:

I–I ; N –I ; I–N :
(c) has a decreasing period function if fF ;Gg form one of the following pairs:

D–D; N –D; D–N :

We remark that the possibilities I–D and D–I are not reflected in Proposition 10.
In principle, these situations could lead either to isochronous centres, or period-
increasing, or period-decreasing or even more complicated behaviours, see the I–D
family of systems explored in Fig. 2 (the fact that these systems are of type I–D is
proved in Proposition 11). Of course, it is also possible that the functions F and G

that define system (5), are not of any of the classes considered in Definition 8.

Proof of Proposition 10. Part 1 of the proposition follows from the equalities

mðx; yÞ ¼ FðxÞ
F 0ðxÞ

� �0
� 1

2
þ GðyÞ

G0ðyÞ

� �0
� 1

2
¼ 1

2
� FðxÞF 00ðxÞ

F 0ðxÞ2
þ 1

2
� GðyÞG00ðyÞ

G0ðyÞ2

¼ nF ðxÞ
1

2F 0ðxÞ2
þ nGðyÞ

1

2G0ðyÞ2
:

Note also that mðx; yÞ ¼ 1
2
ðjF ðxÞF 0ðxÞ þ jGðyÞG0ðyÞÞ:
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To prove part 2, take a periodic orbit g of (5), for some value h of the
Hamiltonian. Call xm; xM ; ym and yM the intersections of g with the axes, as shown
in Fig. 1. For each y; call x�ðyÞ and xþðyÞ its two pre-images and, similarly, define
y�ðxÞ and yþðxÞ: Then, using the hypotheses on F and G and the differential
equations themselves, we obtain,

Z TðsÞ

0

mðxðtÞ; yðtÞÞ dt ¼
Z TðsÞ

0

1

2
ðjF ðxÞF 0ðxÞ þ jGðyÞG0ðyÞÞ

� �
x¼xðtÞ;y¼yðtÞ

dt

¼
Z yM

ym

1

2
jF ðxÞ

� �
x¼xþðyÞ

dy �
Z yM

ym

1

2
jF ðxÞ

� �
x¼x�ðyÞ

dy

þ
Z xM

xm

1

2
jGðyÞ

� �
y¼yþðxÞ

dx �
Z xM

xm

1

2
jGðyÞ

� �
y¼y�ðxÞ

dx

¼ 1

2

Z yM

ym

½jF ðxþðyÞÞ � jF ðx�ðyÞÞ	 dy þ 1

2

Z xM

xm

½jGðyþðxÞÞ � jGðy�ðxÞÞ	 dx:

The statements of part 3 mainly follow from the fact that the two variables play
separate roles. Let us suppose, for instance, that FðxÞ is of class I ; both if nFX0 and

if jF is increasing, the term 1
2

R yM

ym
ðjF ðxþðyÞÞ � jF ðx�ðyÞÞÞ dy will be strictly positive.

Similar reasonings apply for GðyÞ and for the other two different classes of functions,

N and D: &
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Fig. 2. Numerical computations of the period function associated to Hðx; yÞ ¼ kðx2=2þ x3=3Þ þ y2=2þ
y4=4; for different values of k; k ¼ 1; 1:17525; 1:5; 2; 5; 10 from above to below. While for k ¼ 1 the period

is increasing, from kE1:17525 to some value it presents a minimum (so inappreciable in the scale of the

figure that the centre seems to be isochronous) and it is decreasing for larger values of k like k ¼ 5; 10:
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Bearing in mind the definitions of classes I ; N and D; in the next result we group
all the functions that we will need from now on along the section so that the
remaining results will not need detailed proofs. The list does not pretend to be
exhaustive and tries to show the strength and clearness of the method.

Proposition 11. (1) The following functions are of class I in O:

(a) I1ðzÞ ¼ ez � z � 1; O ¼ R:

(b) I2ðzÞ ¼ z3=3þ z2=2; O ¼ ð�5=2;þNÞ:
(c) I3ðzÞ ¼ �z2 z2

4
þ a�1

3
z � a

2

� �
; with 0oao1 and O ¼ ð�a; 1Þ:

(d) I4ðzÞ ¼ z2 z2

4 þ aþ1
3 z þ a

2

� �
; with 0oap1 and O ¼ ð�a;þNÞ:

(e) I5ðzÞ ¼ z6

6
� z4

2
þ z2

2
; O ¼ R\f�1; 1g:

(f) I6ðzÞ ¼ 1� cos z; O ¼ R:
(g) I7ðzÞ ¼ ðp þ qzÞa � pa with p; q positive real numbers and ae½0; 1Þ; O ¼ R:

(h) I8ðzÞ ¼ z2

1þz2
; O ¼ R:

(i) I9ðzÞ ¼ z arctan z � 1
2
lnð1þ z2Þ; O ¼ R:

(2) The following functions are of class D in O:

(a) D1ðzÞ ¼ am
z2m

2m
þ an

z2n

2n
; with an40; amX0 and m4nX1; O ¼ R:

(b) D2ðzÞ ¼ ðp þ qzÞa � pa with p; q positive real numbers and aAð0; 1Þ; O ¼ R:

The proof of the last proposition is given in Section 3.2. As a consequence of it, we
can state:

Theorem 12. The 54 parametric families of Hamiltonian systems associated either to

Hðx; yÞ ¼ cIiðxÞ þ kIjðyÞ; for i ¼ 1;y; 9; ipjp9; or to Hðx; yÞ ¼ cIiðxÞ þ ky2; for

i ¼ 1;y; 9 and c40; k40; have increasing period function in the period annulus of the

origin.
The 5 parametric families of Hamiltonian systems associated either to Hðx; yÞ ¼

cDiðxÞ þ kDjðyÞ; for i ¼ 1;y; 2; ipjp2; or to Hðx; yÞ ¼ cDiðxÞ þ ky2; for i ¼
1;y; 2 and c40; k40; have decreasing period function in the period annulus of the

origin.

Proof of Theorem 12. The theorem follows directly from Propositions 10(3) and 11.
Only a nuance in the case of function D1 must be underlined: note that when n41
the centre is degenerate, which breaks the first condition of Lemma 6. However, both
the transversal vector field U ; and the function m are well-defined and the proofs and
conclusions are still valid. Observe that in this case—as in any degenerate centre—
the period function tends to infinity when the periodic orbits tend to the critical
point. &
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3.1. Distinguished examples from Theorem 12

The general family of Hamiltonian systems (5) treated in this section has
connections with many physical problems and other well-known examples. Among
the 59 cases presented in Theorem 12, we would like to stress how our method works
for the non-forced pendulum, some applications to celestial mechanics and to
relativistic mechanics, the Lotka–Volterra model and a number of potential systems.
First of all, using function I6; we get:

Example 13. The non-forced pendulum, the Hamiltonian system with

Hðx; yÞ ¼ y2

2
� cos x þ 1;

has increasing period.

A less trivial potential Hamiltonian arises when using function D1:

Example 14. The potential Hamiltonian systems with Hðx; yÞ ¼ y2

2
þ am

x2m

2m
þ an

x2n

2n
;

with amX0; an40 and m4nX1 have decreasing periods.

The features of I7ðzÞ ¼ D2ðzÞ ¼ ðp þ qzÞa � pa provide two interesting applica-
tions.

When a ¼ 1
2
; the resulting Hamiltonian is used in relativistic mechanics, where the

problem of finding constant period oscillators (isochronous centres) has some
interest, see [21] and the references therein. In that paper, the authors find numerical
approximations of a function V such that the Hamiltonian Hðx; yÞ ¼ VðxÞ þ KðyÞ;
where KðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ y2=c2

p
� m; is isochronous. We think also that a nice way to

find isochronous centres would be looking for V such that nV compensates nK : Here
we give an example of decreasance of the period function.

Example 15. The period function associated to the centre of the Hamiltonian system

given by Hðx; yÞ ¼ 1
2

x2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ y2=c2

p
� m is decreasing.

The function I7ðzÞ when a ¼ �1
2
leads to a Hamiltonian used in celestial mechanics

to study the Sitnikov motion problem, see [3].

Example 16. The period function associated to the centre of the Hamiltonian system

given by Hðx; yÞ ¼ 1
2
y2 � 1ffiffiffiffiffiffiffiffi

x2þ1
4

q þ 2 is increasing.

Remark 17. Theorem 12 covers many of the examples of a paper of Chow and
Wang, see [11], where they study, for potential Hamiltonian systems, not only the
first derivative of the period function but also give an expression for the second
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derivative. In the current context, potential Hamiltonian systems are equivalent to

GðyÞ ¼ y2=2: In particular, taking FðxÞ ¼ I1ðxÞ; I2ðxÞ; I3ðxÞ; I4ðxÞ and I5ðxÞ; we
obtain the increasing periods showed in [11] in Examples 1, 2, 3.a, 3.b and 5,
respectively; and taking FðxÞ ¼ D1ðxÞ with fam ¼ 0; n ¼ 2g and fm ¼ 4; n ¼ 2; am ¼
an ¼ 1g we obtain the decreasing periods given in [11] in Examples 3.d and 3.c
ðb ¼ 0Þ: These are all the examples in that paper where they succeed to prove
monotonicity.

The case when FðxÞ ¼ I5ðxÞ ¼ z6

6
� z4

2
þ z2

2
and GðyÞ ¼ y2

2
deserves some attention.

The vector field has exactly three critical points: the centre at the origin and two
cusps at ð71; 0Þ: All the orbits of the vector field are closed, except for the two
heteroclinics that link the two cusps, see Fig. 3. We have proved that the period
function of the origin’s period annulus is increasing; moreover, it must go to infinity
as it approaches to those heteroclinics. Outside the heteroclinics, the normalizer U

(see Lemma 6) is no longer transversal to the vector field and so, we cannot deduce
that the period function is increasing. Indeed, there are strong numerical evidences
that it is decreasing as the orbits go to infinity.

The increasance of periods for the Lotka–Volterra predator–prey system is one of
the most known results related to periods in planar ODEs. It was first stated by Hsu
[20], but some gap was found in the proof. Afterwards, it has been proved by several
authors, see [25,28,32], sometimes being the main purpose of the paper.

Example 18. The centre of the classical Lotka–Volterra predator–prey system,

’x ¼ xða� byÞ;
’y ¼ yðgx � mÞ;

�
ð8Þ

has an increasing period function.
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Here, we give a short proof of such a fact. By means of a change of variables
u ¼ logððgxÞ=mÞ; v ¼ logððbyÞ=aÞ; the Lotka–Volterra system can be transformed
into a Hamiltonian system of type Hðu; vÞ ¼ FðuÞ þ GðvÞ; with FðuÞ ¼ aðeu � u � 1Þ
and GðvÞ ¼ mðev � v � 1Þ: Then, Theorem 12 with function I1 gives the result.
However, an advantage of our method is that we do not need to do any
transformation and we can apply it directly to the original system, see Section 4.2.

We devote the rest of this section to prove all the cases listed in Proposition 11.
The proof is quite technical and straightforward. So, the reader not interested in such
details can jump directly to Section 4.

3.2. Proof of Proposition 11

To avoid cumbersome notations, in the whole proof we drop the subscripts for j
and n:

1. Functions of class I :
(a) For I1ðzÞ ¼ ez � z � 1; d

dz
jðzÞ ¼ � ez

ðez�1Þ4
ð�e2z � 4ez þ 4zez þ 2z þ 5Þ:

The function �e2z � 4ez þ 4zez þ 2z þ 5 is always a negative function and
so j increasing.

(b) For I2ðzÞ ¼ z3=3þ z2=2; d
dz
jðzÞ ¼ 1

3
2zþ5

ðzþ1Þ4
:

(c) Consider I3ðzÞ ¼ �z2 z2

4
þ a�1

3
z � a

2

� �
; with 0oao1 and �aozo1: Elemen-

tary computations give:

d

dz
jðzÞ ¼ �1

6

Pðz; aÞ
ðz þ aÞ4ðz � 1Þ4

;

where Pðz; aÞ ¼ ð�10þ 4zÞa3 þ ð11� 42z þ 16z2Þa2 þ ð24z3 � 10� 68z2 þ
42zÞa � 4z � 24z3 þ 16z2 þ 9z4: The proof is finished in (d) together with
that of I4:

(d) For I4ðzÞ ¼ z2 z2

4
þ aþ1

3
z þ a

2

� �
; with 0oap1 and �aozoþN; we obtain in

a similar way:

d

dz
jðzÞ ¼ 1

6

Pð�z;�aÞ
ðz þ aÞ4ðz þ 1Þ4

;

so that to prove that both I3 and I4 are of class I ; we need
� Pðz; aÞp0 for all ðz; aÞAR1 :¼ ð�a; 1Þ � ð0; 1Þ;
� Pðz; aÞX0 for all ðz; aÞAR2 :¼ ð�N;�aÞ � ½�1; 0Þ:

From standard computations it is easy to see that:
(i) The restriction of Pðz; aÞ to @R1 is negative except at ðz; aÞ ¼ ð0; 0Þ and

ðz; aÞ ¼ ð�1; 1Þ; where it is zero.
(ii) The restriction of Pðz; aÞ to @R2 is positive except at ðz; aÞ ¼ ð0; 0Þ;

where it is zero.
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(iii) @
@a

Pðz; aÞ never vanishes in R1,R2:

Then, the result follows.

(e) For I5ðzÞ ¼ z6

6 � z4

2 þ z2

2 ;
d
dz
jðzÞ ¼ 1

3
10z6�39z4þ60z2þ9

ðz2�1Þ6
:

The polynomial 10w3 � 39w2 þ 60w þ 9 has two non-real roots and one

real negative, so 10z6 � 39z4 þ 60z2 þ 9 has no real roots and j0 turns out to
be positive everywhere it is defined.

(f) For I6ðzÞ ¼ 1� cos z; nðzÞ ¼ ð1� cos zÞ2X0:
(g) Since I7ðzÞ ¼ ðp þ qzÞa � pa and D2ðzÞ are the same function we are going to

give the proof together.
For the sake of simplicity, we write M instead of I7 or D2: We first

compute n ¼ nM :

nðzÞ ¼ M 0ðzÞ2 � 2MðzÞM 00ðzÞ ¼ 4a
p

q
p2awa�2hðwÞ;

where w ¼ ð1þ pz2=qÞX1 and

hðwÞ ¼ ða� 1Þwaþ1 þ ð2� aÞwa þ ð1� 2aÞw þ ð2a� 2Þ:

This expression tells us that all the cases behave as p ¼ q ¼ 1; that is, MðzÞ ¼
ð1þ z2Þa � 1; because it reduces the study of the sign of nM to that
of hðwÞ:

Some elementary calculus gives the following properties: hð1Þ ¼ h0ð1Þ ¼ 0

and h00ðwÞ ¼ wa�2ðaða2 � 1Þw þ aða� 1Þð2� aÞÞ: Then, if h00 does not change
sign, the function h also keeps the same sign. We can easily see that:
� when a41; h00ðwÞX03w4ða� 2Þ=ðaþ 1Þ;
� when 0oao1; h00ðwÞp03w4ða� 2Þ=ðaþ 1Þ;
� when ao0; h00ðwÞX03woða� 2Þ=ðaþ 1Þ:

For the function ða� 2Þ=ðaþ 1Þ; it is straightforward to see that the
last three inequalities on w are true and so, hðwÞX0 for all w if aeð0; 1Þ
and hðwÞp0 for all w if aAð0; 1Þ: The first and the third give the
statement referred to function I7 while the second one leads to that
of D2:

(h) For I8ðzÞ ¼ z2

1þz2
; nðzÞ ¼ 12 z4

ð1þz2Þ4
X0:

(i) For I9ðzÞ ¼ z arctan z � 1
2
lnð1þ z2Þ; nðzÞ ¼ arctan2ðzÞð1�zÞ2þlnð1þz2Þ

1þz2
X0:

2. Functions of class D:

(a) Consider D1ðzÞ ¼ am
z2m

2m
þ an

z2n

2n
; with ana0; am=anX0 and m4nX1:

Denoting w ¼ wðzÞ ¼ z2ðm�nÞ it turns out that

nðzÞ ¼ z4n�2ðAw2 þ Bw þ CÞ;

with A :¼ a2mð�1þ 1
m
Þ; B :¼ am an

mn
ðm � 2m2 þ n þ 2mn � 2n2Þ and C :¼

a2nð�1þ 1
n
Þ: For w ¼ 0 the value of the second degree polynomial is
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a2nð�1þ 1
n
Þp0: Now, if we prove that it does not have positive solutions, we

are done. So, we impose B
2A
X0 and ACX0: The last inequality always holds

since AC ¼ a2ma
2
nð�1þ 1

m
Þð�1þ 1

n
ÞX0: On the other hand,

B

2A
¼ am

2nð1� mÞan

ðm � 2m2 þ n þ 2mn � 2n2Þ:

Since m � 2m2 þ n þ 2mn � 2n2 ¼ mð1� nÞ þ nð1� mÞ � 2ðm � nÞ2o0;
B=ð2AÞX0 reduces then to am=anX0; which is true by hypothesis. Finally,
although it is not necessary for D1 being of class D; we need to assume that
an is positive so that the origin is a centre.

(b) For D2ðzÞ see the proof of I7ðzÞ: &

4. Other examples

4.1. A quadratic system with decreasing periods

This subsection is devoted to a new result about a family of quadratic systems
with a decreasing period function. A bigger family of quadratic systems including
the next one was treated in [4] as Example 2. Despite they obtain a general
expression for mðx; yÞ; it is too difficult to handle for our purposes. We
have considered the following case, which is also a Loud’s system, see [22] and
also [8, Ex. 5.21].

Proposition 19. The quadratic system

’x ¼ �y þ 2Dx2 � Dy2;

’y ¼ x þ Dxy;

�
ð9Þ

has a decreasing period function.

Proof of Proposition 19. First of all, notice that the change of variables
x̃ ¼ Dx; ỹ ¼ Dy eliminates the parameter D in (9) and so we can consider only the
case D ¼ 1:

’x ¼ �y þ 2x2 � y2;

’y ¼ x þ xy:

�
ð10Þ

A first integral for (10) is

Hðx; yÞ ¼ 1

2

x2

ð1þ yÞ4
� 1

6

ð1þ 3yÞ
ð1þ yÞ3

þ 1

6
;

which associated integrating factor is 1=V ; where V ¼ ð1þ yÞ5:
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It is not difficult to see that the periodic orbits gh corresponding to the period
annulus of the origin are included in the sets fH ¼ h; 0oho1=6g (they are one of the
two connected components of the level sets). When h-1=6; the periodic orbits

approach to the curve x2 ¼ y2 þ 4=3y þ 1=3:

Note that for H of the special form Hðx; yÞ ¼ AðyÞ þ BðyÞx2 it is easy to
prove that

U ¼ 1� AðyÞ
A0ðyÞ

B0ðyÞ
BðyÞ

� �
x

2
;

AðyÞ
A0ðyÞ

� �

is a normalizer of rH>; see also [17]. Arguing as in Remark 7 (1), we have that the

same U is also a normalizer for any system of the form Vðx; yÞrH>: By performing
these computations in our case we can take U ¼ ðR;SÞ where

Rðx; yÞ ¼ xð1
2
þ 1

3
yð3þ yÞÞ and Sðx; yÞ ¼ 1

6
yð3þ yÞð1þ yÞ:

Furthermore, RHx þ SHy ¼ H: By using part 2 of Theorem 1 we have that a m
associated to system (10) is

m ¼ ð1þ 7
3

y þ 5
6

y2Þ � ð5
6

yð3þ yÞÞ � 1 ¼ �1
6

y

and hence

T 0ðsÞ ¼
Z TðsÞ

0

mðxðtÞ; yðtÞÞ dt ¼ � 1

6

Z TðsÞ

0

yðtÞ dt:

Fixed y and s; the first integral H tells us that there exists only a pair of values of x;
�x�ðyÞ ¼ xþðyÞ40; such ðx; yÞAgs: For a fixed s; define ym and yM the two
intersection of gs with the y-axis, see also Fig. 1.

At this point the integration could be cumbersome and perhaps not possible. We
make use, now, of Proposition 2. It turns out that taking gðx; yÞ ¼ � x

6ð1þyÞ; and

defining

m�ðx; yÞ ¼ mðyÞ þ rgt � X ¼ �1

6

x2

1þ y
;

we can compute T 0 as

T 0ðwÞ ¼ � 1

6

Z yM

ym

xþðyÞ
ð1þ yÞ2

dy �
Z yM

ym

x�ðyÞ
ð1þ yÞ2

dy

 !
¼ � 1

3

Z yM

ym

xþðyÞ
ð1þ yÞ2

dy

 !
;

because of the symmetry on x: Clearly, the argument of the last integral is always
positive and so, we can assert that the period is decreasing. &

Remark 20. It is easy to see that the periods of the orbits of system (10) move in a
narrow range. As we have already seen, the period annulus is unbounded and not

ARTICLE IN PRESS
E. Freire et al. / J. Differential Equations 204 (2004) 139–162 157



global. The ‘‘finite’’ part of its boundary is given by the algebraic curve 3ðx2 �
y2Þ � 4y � 1 ¼ 0: An easy computation shows that the time to travel through this
curve is T� ¼ 6:

T� ¼
Z

N

�N

dx

�y þ 2x2 � y2
¼
Z

N

�N

9 dx

ð1þ 9x2Þ1=2 þ 1þ 9x2
¼ ð1þ 9x2Þ1=2 � 1

x

�����
N

�N

¼ 6:

Since we do not consider the time spent through infinity, we just can state that for all
the closed orbits of this centre, the period T satisfies 2p4T46: In fact, the period
function starts with the value 2p and decreases, tending to some value which is
greater or equal than 6.

4.2. The Lotka–Volterra system (a second proof)

We give another proof of the monotonicity of the period function for the Lotka–
Volterra system

’x ¼ xða� byÞ ¼ �xyHyðx; yÞ;
’y ¼ yðgx � mÞ ¼ xyHxðx; yÞ;

�
ð11Þ

which works directly on (11), without changing variables. Here Hðx; yÞ ¼ FðxÞ þ
GðyÞ where

FðxÞ ¼ gx � m ln
gx

m

� �
þ 1

� �
and GðyÞ ¼ by � a ln

by

a

� �
þ 1

� �
:

By Remark 7(1), U ¼ ðFðxÞ
F 0ðxÞ;

GðyÞ
G0ðyÞÞ is a normalizer of (11) and m is

mðx; yÞ ¼ 1� gxFðxÞ
ðgx � mÞ2

� byGðyÞ
ðby � aÞ2

:

Now, we want to see that T 0ðsÞ40; where s is the parameter of some orbit of U ;
because this parameter increases forward from the critical point.

We perform the integration in the following way:

Z TðsÞ

0

mðxðtÞ; yðtÞÞ dt ¼
Z yM

ym

1

yðgx � mÞ
1

2
� gxFðxÞ
ðgx � mÞ2

 !" #xþðyÞ

x�ðyÞ

dy

þ
Z xM

xm

1

xða� byÞ
1

2
� byGðyÞ
ða� byÞ2

 !" #y�ðxÞ

yþðxÞ

dx:
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Then, making the change of variables u ¼ lnðgx=mÞ; v ¼ lnðby=aÞ in both integrals
we obtain

Z TðsÞ

0

mðxðtÞ; yðtÞÞ dt ¼ 1

m

Z vM

vm

1þ 2ueu � e2u

2ðeu � 1Þ3

" #uþðvÞ

u�ðvÞ

dv þ 1

a

Z uM

um

1þ 2vev � e2v

2ð1� evÞ3

" #v�ðuÞ

vþðuÞ

du:

If we denote

HðxÞ ¼ 1þ 2xex � e2x

2ðex � 1Þ3
;

it turns out that

H 0ðxÞ ¼ � 1

2

exð�4ex þ 5þ 4xex þ 2x� e2xÞ
ðex � 1Þ4

:

The function in parenthesis in the numerator is negative (it is the same function that
the one that appears in the proof of Proposition 11, function I1). Then, HðxÞ is an
increasing function. This fact and the preceding computations clearly imply the
result. &

4.3. A family of Liénard systems

In the next result we prove that a subfamily of Liénard systems—which includes

the quadratic one with AðxÞ ¼ x2=2 studied in [6]—has an increasing period function
in the period annulus of the origin.

Proposition 21. The family of Liénard equations

’x ¼ �y þ AðxÞ;
’y ¼ A0ðxÞ;

�
ð12Þ

with A an smooth function satisfying Að0Þ ¼ A0ð0Þ ¼ 0; has a centre at the origin.

Furthermore, if AðxÞ ¼ kIiðxÞ; for some i ¼ 1;y; 9 and k40 where Ii are the

functions which appear in Proposition 11 or AðxÞ ¼ kx2; then the period function of

(12) is increasing in the period annulus of the origin.

Proof of Proposition 21. By using the change of variables ðu; vÞ ¼ ðx; y � AðxÞÞ we
get the new system

’u ¼ �v;

’v ¼ A0ðuÞð1þ vÞ:

�
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Applying the new change ðz;wÞ ¼ ðu; logð1þ vÞÞ we arrive to

’z ¼ 1� ew;

’w ¼ A0ðzÞ;

�

which is of the form of the systems for which Theorem 12 applies. By applying it with

the Hamiltonians I1ðwÞ þ kIjðzÞ; with j ¼ 1;y; 9; or with the Hamiltonian I1ðwÞ þ
kz2 the result follows. &

4.4. Polynomial Hamiltonian with homogeneous non-linearities

To finish, we give an overview to one of the families where the period function is
better understood: that of Hamiltonian systems obtained from

Hðx; yÞ ¼ 1
2
ðx2 þ y2Þ þ Hnþ1ðx; yÞ;

where Hnþ1 is a homogeneous polynomial of degree n þ 1: It has been shown, see [18]
and the references therein, that the period function of the centre at the origin is
always increasing when n is even and has at most one critical period when n is odd.
Here, we will see how formula (9) for the derivative of the period function used in
[18] can be obtained using our method.

To achieve this goal it is convenient to express the system in polar coordinates. We
remark that the Lie bracket does not depend on the chosen variables. Therefore, the
vector field is

’r ¼ �rng0ðyÞ;
’y ¼ 1þ ðn þ 1Þrn�1gðyÞ;

�

while the Hamiltonian writes now as Hðr; yÞ ¼ 1
2

r2 þ rnþ1gðyÞ:
Aiming to use part 2 of Theorem 1, we search for R ¼ Rðr; yÞ and S ¼ Sðr; yÞ such

that RHx þ SHy ¼ H: We observe first that R1 ¼ r=2 and S1 ¼ ð1� n
2ÞgðyÞ=g0ðyÞ

satisfy R1Hr þ S1Hy ¼ H: Then, using that Hr ¼ Hx cos yþ Hy sin y and Hy ¼
�rHx sin yþ rHy cos y; it turns out that

R ¼R1 cos y� S1r sin y;

S ¼R1 sin yþ S1r cos y;

satisfy the required relation. Hence, from our main theorem, we know that

mðyÞ ¼ 1

2

g0ðyÞ2ð1� nÞ þ g00ðyÞgðyÞðn � 1Þ
g0ðyÞ2

¼ 1� n

2

d

dy
gðyÞ
g0ðyÞ

� �
:

Integrating by parts it becomes (except for a positive constant) the same formula
used in [8].
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