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1. Introduction

Penalization methods of various types play a significant role in theoretical studies as well as nu-
merical analysis of flows around solid obstacles that are allowed to change in time. The Brinkman
penalization method was proposed for both incompressible and compressible fluids, where the mo-
mentum equation is penalized by an extra term modeling solid obstacles as porous media, with
porosity and viscous permeability approaching zero, see Angot, Bruneau and Fabrie [2], Liu and Vasi-
lyev [13], among others. The main advantages of the method are minimal requirements on regularity
of the boundary of the fluid domain, and the efficient implementation for moving solid boundaries.
In this paper, we show convergence of the Brinkman penalization applied to the Navier–Stokes system
governing the motion of a barotropic, viscous, compressible fluid. In particular, we prove existence
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of global-in-time solutions for the limit problem describing the motion of a compressible fluid in a
domain varying in time.

The time evolution of the mass density � = �(t, x) and the velocity field u = u(t, x) of a viscous
compressible fluid is governed by the Navier–Stokes system of equations:

∂t� + divx(�u) = 0, (1.1)

∂t(�u) + divx(�u ⊗ u) + ∇x p(�) = divx S + �f, (1.2)

where p = p(�) is the pressure, f = f(t, x) is an external driving force, and the symbol S denotes the
viscous stress tensor given through Newton’s rheological law

S = μ

(
∇xu + (∇xu)t − 2

3
divx uI

)
+ η divx uI, (1.3)

with the shear viscosity coefficient μ > 0, and the bulk viscosity coefficient η � 0.
Our aim is to study system (1.1)–(1.3) in a spatial domain, with a boundary varying in time. To

this end, we introduce a vector field vs = vs(t, x) and set

Ωt = {
x ∈ R

3
∣∣ x = X(t, x0) for a certain x0 ∈ Ω0

}
, (1.4)

where Ω0 ⊂ R
3 is a given domain occupied by the fluid at the initial instant t = 0, and the vector

field X solves the initial value problem

∂tX(t, x0) = vs
(
t,X(t, x0)

)
, X(0, x0) = x0. (1.5)

Accordingly, we consider system (1.1)–(1.3) in a space–time domain

Q f = {
(t, x)

∣∣ t ∈ (0, T ), x ∈ Ωt
}
.

In addition, we impose the no-slip boundary conditions on the solid wall, meaning,

u(t, ·)|∂Ωt = vs(t, ·)|∂Ωt for t ∈ (0, T ). (1.6)

The associated penalized problem is defined as follows. Similarly to Angot et al. [2], we fix a
reference spatial domain D ⊂ R

3 containing Ω0 and such that

vs|∂ D = 0.

Accordingly, it is enough to assume that the vector field vs is defined on the set [0, T ] × D .
System (1.1)–(1.3) is replaced by a penalized problem

∂t� + divx(�u) = 0, (1.7)

∂t(�u) + divx(�u ⊗ u) + ∇x p(�) = divx S + �f − 1

ε
χ(u − vs) (1.8)

considered in the cylinder (0, T ) × D , where

χ(t, x) =
{

0 if t ∈ (0, T ), x ∈ Ωt

1 otherwise

}
. (1.9)
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Accordingly, the function χ represents a weak solution to the transport equation

∂tχ + vs · ∇xχ = 0

satisfying the initial condition

χ(0, ·) = 1D − 1Ω0 .

Problem (1.7)–(1.8) is supplemented with the no-slip boundary condition

u|∂ D = 0, (1.10)

and the initial conditions

�(0, ·) = �0,ε � 0, (�u)(0, ·) = (�u)0,ε. (1.11)

For any fixed ε > 0, problem (1.7)–(1.11) possesses a weak solution on an arbitrary time interval
(0, T ) and for any choice of initial data of finite energy, at least if p(�) depends on � in a certain way
(for more details see Section 2). This result was proved by Lions [12], and later extended to a larger
class of physically relevant pressure-density state equations in [5,6]. Our main goal is to identify the
asymptotic limit of solutions �ε , uε of problem (1.7)–(1.11) for ε → 0. More specifically, we show that

�ε → � in Lq((0, T ) × D
)

for a certain q > 1, (1.12)

uε → u weakly in L2(0, T ; W 1,2
0

(
D;R

3)), (1.13)

where �, u solve (1.1)–(1.3) in Q f . In addition,

u = vs in Q s,

where we have set

Q s = (
(0, T ) × D

) \ Q f .

Thus, under certain technical restrictions imposed on the specific form of the pressure, we estab-
lish

• convergence of the Brinkman penalization method for the compressible Navier–Stokes system,
• existence of weak solutions for the compressible Navier–Stokes system on time-varying domains.

The paper is organized as follows. A brief review of the existence theory for system (1.7)–(1.11)
is given in Section 2. The main results of the paper, along with an outline of the strategy of the
proof, are presented in Section 3. In Section 4, we establish uniform estimates independent of the
parameter ε → 0 and show convergence toward the limit problem claimed in (1.12), (1.13). Note that
similar functional-analytic methods were used by Gallouët et al. [9,10] for proving convergence of
certain numerical schemes.
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2. Finite energy weak solutions for the compressible Navier–Stokes system

We say that �, u represent a finite energy weak solution to problem (1.7)–(1.11) in (0, T ) × D if

� � 0, � ∈ L∞(
0, T ; Lγ (D)

)
for a certain γ > 1, (2.1)

u ∈ L2(0, T ; W 1,2
0

(
D;R

3)), (2.2)

and the following integral identities hold:

T∫
0

∫
D

(
b(�)∂tϕ + b(�)u · ∇xϕ + (

b(�) − b′(�)�
)

divx uϕ
)

dx dt

= −
∫
D

b(�0,ε)ϕ(0, ·)dx (2.3)

for any test function ϕ ∈ C∞
c ([0, T ) × D), and for b(�) = � or b′ ∈ C∞

c [0,∞), b(0) = 0;

T∫
0

∫
D

(
�u · ∂tϕ + �(u ⊗ u) : ∇xϕ + p divx ϕ

)
dx dt

=
T∫

0

∫
D

(
S : ∇xϕ − �f · ϕ + χ

ε
(u − vs) · ϕ

)
dx dt −

∫
D

(�u)0,ε · ϕ(0, ·)dx (2.4)

for any ϕ ∈ C∞
c ([0, T ) × D;R

3);

∫
D

(
1

2
�|u|2 + P (�)

)
(τ , ·)dx +

τ∫
0

∫
D

S : ∇xu dx dt

�
τ∫

0

∫
D

(
�f · u − χ

ε
(u − vs) · u

)
dx dt +

∫
D

(
1

2�0,ε

∣∣(�u)0,ε

∣∣2 + P (�0,ε)

)
dx (2.5)

for a.a. τ > 0, where we have set

P (�) = �

�∫
1

p(z)

z2
dz.

It is an implicit part of the definition that all quantities are at least integrable in (0, T ) × D . This is
true, in particular, under the hypotheses of Theorem 3.1 below.

Note that (2.3) is nothing other than a weak formulation of the renormalized equation of continu-
ity

∂tb(�) + divx
(
b(�)u

) + (
b′(�)� − b(�)

)
divx u = 0
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introduced by DiPerna and Lions [4], while (2.5) is the energy inequality, where we have assumed a
natural compatibility condition

(�u)0,ε = |(�u)0,ε|2
�0,ε

= 0 whenever �0,ε = 0. (2.6)

As already mentioned above, the existence of finite energy weak solutions for system (1.7)–(1.11)
for any initial data with finite energy

∫
D

(
1

2�0,ε

∣∣(�u)0,ε

∣∣2 + P (�0,ε)

)
dx < ∞

was established in the pioneering work of Lions [12] on condition that the pressure behaves like
p(�) ≈ �γ , with γ � 9/5, for large values of �. This result was extended to γ > 3/2 in [5,6].

2.1. A modified energy inequality for the penalized problem

Assuming that vs is continuously differentiable, we can take ϕ = ψn(t)vs , ψn ∈ C∞
c [0, T ), ψn ↗

1[0,τ ) , as a test function in (2.4). Adding the resulting expression to (2.5), we deduce a modified energy
inequality in the form:

∫
D

(
1

2
�|u|2 + P (�)

)
(τ , ·)dx +

τ∫
0

∫
D

S : ∇xu dx dt + 1

ε

τ∫
0

∫
D

χ |u − vs|2 dx dt

�
∫
D

(
1

2�0,ε

∣∣(�u)0,ε

∣∣2 + P (�0,ε) − (�u)0,ε · vs(0, ·) + (�u · vs)(τ , ·)
)

dx

+
τ∫

0

∫
D

(
�f · (u − vs) + S : ∇xvs − �u · ∂tvs − �(u ⊗ u) : ∇xvs − p divx vs

)
dx dt (2.7)

for a.a. τ ∈ (0, T ). Relation (2.7) yields uniform bounds on the sequence of solutions to the penalized
problem independent of ε → 0 provided the vector field vs is sufficiently smooth.

3. Main result

For the sake of simplicity, we assume that the pressure is given by an isentropic equation of state

p(�) = a�γ , a > 0, γ > 1; (3.1)

whence the function P appearing in the energy inequality (2.7) can be taken in the form

P (�) = a

γ − 1
�γ . (3.2)

Note that, in accordance with the boundary condition (1.10), the total mass

Mε =
∫
D

�(t, ·)dx =
∫
D

�0,ε dx (3.3)

is a constant of motion even in the class of weak solutions satisfying (2.3).
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Our main result reads as follows.

Theorem 3.1. Let Ω0 ⊂ Ω0 ⊂ D ⊂ R
3 be bounded domains, with boundaries of class C2+ν , ν > 0. Assume

that the pressure p is given by (3.1), with γ > 3/2, and that f belongs to L∞((0, T )× D;R
3). Let vs be a given

vector field belonging to C2+ν([0, T ] × D;R
3),

vs|∂ D = 0.

Finally, we suppose that the initial data satisfy (2.6) and

�0,ε → �0 in Lγ (D), �0|Ω0 � 0, �0|D\Ω0 = 0, (3.4)

(�u)0,ε → (�u)0 in L1(D;R
3), (�u)0|D\Ω0 = 0, (3.5)∫

D

|(�u)0,ε|2
�0,ε

dx < c, (3.6)

where c is independent of ε → 0.
Then any sequence {�ε,uε}ε>0 of finite energy weak solutions of problem (2.1)–(2.5) contains a subse-

quence such that

�ε → � in Cweak
([0, T ]; Lγ (D)

) ∩ Lγ
(

Q f ), (3.7)

uε → u in L2(0, T ; W 1,2
0

(
D;R

3)), u = vs in Q s, (3.8)

where the limit functions �, u are distributional solutions of the equation of continuity (1.1) in (0, T ) × D and
of the momentum equation (1.2) in Q f .

Remark 3.1. Here the symbol Cweak(0, T ; X) denotes the space of functions ranging in a Banach space
X continuous for t ∈ [0, T ] with respect to the weak topology on X .

The rest of the paper is devoted to the proof of Theorem 3.1. It is worth noting that we assume
the initial density �0 to vanish outside Ω0. As the limit velocity u coincides with vs in Q s , we
have � = 0 in Q s . Finally, since the densities �ε are non-negative, this in turn implies pointwise
(a.a.) convergence �ε → � in Q s , see Section 4 below. This property is indispensable in the proof of
pointwise convergence of the densities in the whole set (0, T ) × D .

The hypotheses concerning regularity of ∂Ω0 and vs are quite strong and could be relaxed. How-
ever, the uniform bounds on the pressure in the set Q f require certain minimal regularity of the
boundary, both in space and time.

The proof of Theorem 3.1 is based on uniform bounds on the sequence {�ε,uε}ε>0 that may be
deduced directly from the energy inequality (2.7). Uniform bounds on the pressure p(�ε) = a�γ

ε in
Q f represent a more delicate issue. Indeed in order to pass to the limit in the momentum equation
(2.4) we have to establish:

• equi-integrability of the sequence {p(�ε)}ε>0 in L1(Q f );
• pointwise (a.a.) convergence �ε → � implying p(�ε) → p(�).

Since the underlying spatial domain changes in time, a straightforward application of the so-called
Bogovskii operator that would yield the desired pressure estimates (cf. [7]) is not obvious. Instead
we use a combination of local estimates obtained in the same way as in [12], with a suitably cho-
sen test functions that control integrability of the pressure at the spatial boundary of Q f , see also
Kukučka [11].



602 E. Feireisl et al. / J. Differential Equations 250 (2011) 596–606
Finally, the pointwise convergence �ε → � in the domain Q f is shown by means of the concept
of oscillations defect measure introduced in [5].

4. Uniform bounds and convergence

In the remaining part of the paper, we set f = 0 as the principal steps of the proof require only
minor and entirely obvious modifications to accommodate the presence of a bounded driving force. As
already observed in (3.3), the total mass of the fluid is a constant of motion. Consequently, it follows
from hypothesis (3.4) that

{�ε}ε>0 is bounded in L∞(
0, T ; L1(D)

)
. (4.1)

Since ∂t vs , ∇xvs are bounded, a short examination of the energy inequality (2.7) gives rise to the
uniform bounds

{�ε}ε>0 bounded in L∞(
0, T ; Lγ (D)

)
, (4.2)

{√�εuε}ε>0 bounded in L∞(
0, T ; L2(D;R

3)), (4.3){
∇xuε + (∇xuε)

t − 2

3
divx uεI

}
ε>0

bounded in L2(0, T ; L2(D;R
3×3)), (4.4)

where (4.4), combined with (1.10) and Korn’s inequality, yields

{uε}ε>0 bounded in L2(0, T ; W 1,2
0

(
D;R

3)). (4.5)

Finally,

T∫
0

∫
D

χ |uε − vs|2 dx dt =
∫
Q s

|uε − vs|2 � εc, (4.6)

with c independent of ε.
Combining (4.2), (4.5) with Eq. (2.3) we may infer that

�ε → � in Cweak
([0, T ]; Lγ (D)

)
, (4.7)

uε → u weakly in L2(0, T ; W 1,2
0

(
D;R

3)), (4.8)

passing to subsequences if necessary. Moreover, as a consequence of (4.6),

u = vs in Q s. (4.9)

4.1. Pressure estimates

The pressure plays a crucial role in the analysis of the limit for ε → 0. Obviously, we cannot
control the pressure in the set Q s , where the momentum equation contains a singular term. On the
other hand, local pressure estimates in Q f can be obtained in the same way as in the monograph of
Lions [12], namely by taking the quantities

ϕ(t, x) = ψ(t, x)∇x

−1
x

[
1D�ν

ε

]
,
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where ν > 0 is a small positive number, ψ is a smooth function, supp[ψ] ⊂ Q f , and the symbol 
x

denotes the Laplace operator considered on the whole Euclidean space R
3. Since γ > 3/2 and the

estimates (4.1)–(4.5) hold, we get, after a bit tedious but straightforward computation,

a

∫
K

�
γ +ν
ε dx dt =

∫
K

p(�ε)�
ν
ε dx dt � c(K ) for any compact K ⊂ Q f . (4.10)

The pressure estimates can be extended “up to the boundary” provided we are able to construct
suitable test functions in the momentum equation (2.4). More specifically, we need ϕ = ϕ(t, x) such
that

• ∂tϕ , ∇xϕ belong to Lq(Q f ) for a given (large) q � 1;
• ϕ(t, ·) ∈ W 1,q

0 (Ωt;R
3) for any t ∈ (0, T );

• ϕ(T ; ·) = 0;
•

divx ϕ(t, x) → ∞ for x → ∂Ωt uniformly for t in compact subsets of (0, T ). (4.11)

Indeed using such a ϕ as a test function in (2.4) would yield a uniform bound

∫
Q f ∩([0,τ ]×D)

p(�ε)divx ϕ dx dt � c(τ ) for any τ < T ,

which, together with (4.2), (4.10), and (4.11), implies the desired conclusion

{
p(�ε)

}
ε>0 equi-integrable in L1(Q f ). (4.12)

In order to construct the test function ϕ , we introduce the distance function

d(t, x) = dist[x, ∂Ωt] for t ∈ [0, T ], x ∈ Ωt,

where dist is understood in the 3D Euclidean space R
3. In accordance with the hypotheses of Theo-

rem 3.1, the lateral boundary of the set Q f is of class C2, therefore there exists an open neighborhood
U of ∂ Q f ∩ ((τ1, τ2) × D) such that

d ∈ C2(U ) for any 0 < τ1 < τ2 < T ,

see Foote [8] and Delfour and Zolésio [3].
Now, choose a function h such that

h(z) =
{

zα for z ∈ [0, δ/2),

non-negative and smooth in [δ/2, δ],
0 otherwise.

Finally, the functions ϕ can be taken in the form

ϕ(t, x) = ψ(t)h(d)∇xd, ψ ∈ C∞
c (0, T ), ψ � 0, ψ = 1 in [τ1, τ2].

For δ > 0, α = α(q) ∈ (0,1) small enough, the functions ϕ are bounded and their first derivatives
belong to Lq for a given q � 1. Moreover, as ∇xd(t, x) is a unit vector pointing to the nearest point to
x on ∂Ωt , (4.11) follows.



604 E. Feireisl et al. / J. Differential Equations 250 (2011) 596–606
4.2. Pointwise convergence of the density

Pointwise (a.a.) convergence �ε → � plays a central role in the existence theory for the compress-
ible Navier–Stokes system. Our approach is based on the property of weak sequential stability of the
effective viscous flux established by Lions [12], combined with the concept of oscillation defect measure
introduced in [5]. We proceed by several steps:

4.2.1. Convergence in the set Q s

In accordance with hypothesis (3.4), we have �0|D\Ω0 = 0. Moreover, by virtue of (4.7), (4.8), it is
easy to check that �, u solve the equation of continuity

∂t� + divx(�u) = 0 (4.13)

in the sense of distributions in the set (0, T ) × D . Moreover, as the limit velocity coincides with vs
in Q s , equation (4.13) is satisfied in the whole space (0, T ) × R3 provided u, � were extended to be
zero outside D . In other words, we may assume that

T∫
0

∫
R3

(�∂tϕ + �u · ∇xϕ)dx dt = −
∫
R3

�0ϕ(0, ·)dx (4.14)

for any ϕ ∈ C∞
c ([0, T ) × R

3).
Since the motion of ∂Ωt is governed by the velocity field vs and �0 = 0 outside Ω0, we conclude,

at least formally, that

�(t, x) = 0 for a.a. (t, x) ∈ Q s. (4.15)

This argument can be made rigorous, even in the class of weak solutions, by means of the regulariza-
tion procedure introduced by DiPerna and Lions [4].

Finally, as �ε are non-negative and (4.7) holds, relation (4.15) implies

�ε → � in Lq(Q s) for any 1 � q < γ . (4.16)

4.2.2. Effective viscous pressure
The next step is to revoke the result of Lions [12] on the effective viscous pressure. To this end,

we first introduce a family of cut-off functions

Tk(�) = min{�,k}, k � 0.

Next observe that the bounds (4.1)–(4.5), together with (4.10), allow us to pass to the limit in the
momentum equation (2.4) in the domain Q f to obtain

∂t(�u) + divx(�u ⊗ u) + ∇x p(�) = divx S in Q f (4.17)

in the sense of distributions, where p(�) denotes a weak limit of {p(�ε)}ε>0.
Now, Lions’ result asserts a remarkable identity

(4/3μ + η)
(
Tk(�)divx u − Tk(�) divx u

) = p(�)Tk(�) − p(�) Tk(�) in Q f . (4.18)

In particular, as the pressure p is an increasing function of the density, the expression on the left-hand
side of (4.18) is non-negative. Identity (4.18) holds locally and can be deduced, in a highly non-trivial
way, from the expressions resulting from (2.4) tested on ϕ∇x


−1
x [1D Tk(�)], and from (4.17) tested on

ϕ∇x

−1
x [1D Tk(�)], where ϕ is a smooth function compactly supported in Q f . An alternative proof of

(4.18) based on div–curl lemma can be found in [6].
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4.2.3. Oscillations defect measure
Following [5], we introduce the oscillations defect measure

oscq[�ε → �](O ) = sup
k�1

lim sup
ε→0

∫
O

∣∣Tk(�ε) − Tk(�)
∣∣q

dx dt (4.19)

for any subset O ⊂ Q f , and any weakly converging sequence �ε → �.
Rewriting conveniently the expression on the right-hand side of (4.18), we obtain

oscγ +1[�ε → �](O ) � c
(|O |) (4.20)

for any compact O ⊂ Q f , see [5]. However, as the constant c depends only on the Lebesgue measure
of O , we obtain that (4.20) holds on in the whole set Q f . Finally, by virtue of (4.16), we conclude
that

oscγ +1[�ε → �]((0, T ) × D
)
� c. (4.21)

As shown in [5, Proposition 7.1], relation (4.21), together with the uniform bounds (4.1)–(4.5),
imply that the limit �, u satisfy the renormalized equation (2.3) in (0, T ) × D .

4.2.4. Strong convergence of the density in Q f

Since the limit functions �, u satisfy the renormalized equation (2.3) in (0, T ) × D , we may infer
that

∫
D

(
Lk(�) − Lk(�)

)
(τ )dx +

τ∫
0

∫
D

(
Tk(�)divx u − Tk(�) divx u

)
dx dt

=
∫
D

(
Lk(�0) − Lk(�0)

)
dx +

τ∫
0

∫
D

(
Tk(�)divx u − Tk(�) divx u

)
dx dt (4.22)

for any τ ∈ (0, T ), where we have set

Lk(�) = �

�∫
1

Tk(z)

z2
dz.

Now observe, by virtue of (4.16), (4.18), that

Tk(�)divx u − Tk(�) divx u � 0,

while hypothesis (3.4) implies that ∫
D

(
Lk(�0) − Lk(�0)

)
dx = 0.

Finally, it follows from (4.21) that

τ∫ ∫ (
Tk(�)divx u − Tk(�) divx u

)
dx dt → 0 as k → ∞
0 D
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for any τ . Letting k → ∞ in (4.22), we conclude that∫
D

(
� log(�) − � log(�)

)
(τ )dx = 0 for any τ � 0, (4.23)

which implies strong convergence �ε − � in Lq((0, T ) × D) for any 1 � q < γ .
Theorem 3.1 has been proved.

5. Concluding remarks

As already mentioned in the introductory part, optimal regularity assumptions on the velocity
field vs were not an issue in the present paper. It is easy to check that the proof of convergence
remains basically the same provided vs is regular enough to keep valid the energy estimates resulting
from (2.7), and to ensure the existence of characteristics, in particular, divx vs ∈ L1(0, T ; L∞(D)). In
such a case, however, the pressure estimates deduced in Section 4.1 may not hold, in general, and
the convergence of the pressure can be therefore established only locally in Q f . For more recent
results on transport equations with irregular velocity fields see Ambrosio [1]. For related results on
the incompressible Navier–Stokes system see [14].
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