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Based on geometric singular perturbation theory we prove the
existence of classical Liénard equations of degree 6 having 4 limit
cycles. It implies the existence of classical Liénard equations of
degree n � 6, having at least [ n−1

2 ]+2 limit cycles. This contradicts
the conjecture from Lins, de Melo and Pugh formulated in 1976,
where an upperbound of [ n−1

2 ] limit cycles was predicted. This
paper improves the counterexample from Dumortier, Panazzolo
and Roussarie (2007) by supplying one additional limit cycle from
degree 7 on, and by finding a counterexample of degree 6. We
also give a precise system of degree 6 for which we provide strong
numerical evidence that it has at least 3 limit cycles.
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1. Introduction

The so-called Hilbert–Smale problem [1, 13th problem] asks for the maximum number of limit
cycles that classical Liénard equations can have, depending on the degree. A scalar second-order dif-
ferential equation

ẍ + f (x)ẋ + x = 0
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can be studied in a phase plane as a system

{
ẋ = y,

ẏ = −x − f (x)y,
(1)

or in the so-called Liénard plane as

{
ẋ = y − F (x),
ẏ = −x,

(2)

where F (x) = ∫ x
0 f (s)ds. The systems (1) and (2) are analytically conjugate and are both called classical

Liénard equations. The degree of the Liénard equation is given by the degree of F . The number of limit
cycles of such Liénard equations can be studied in either form (1) or (2).

In 1976 (see [2]), A. Lins, W. de Melo and C. Pugh conjectured that the maximum number of limit
cycles for a classical Liénard equation of degree n would be equal to [n−1

2 ] (the largest integer less
than or equal to n−1

2 ), inducing the occurrence of at most 2 limit cycles in degree 6 and 3 limit
cycles in degree 7. It was not too hard to understand that the conjecture seemed very reasonable. Up
to affine changes in (x, y, t), including a time reversal if necessary, one can write the function F in
system (2) as

F (x) = x2� +
2�−1∑
i=1

aix
i, (3)

in case n = 2�, or

F (x) = x2�+1 +
2�∑

i=1

aix
i, (4)

in case n = 2� + 1. Systems (2) with a function F as in (3) represent (time-reversible) centers when
all ai , with i odd, are zero. Let us write these ai as (a1,a3, . . . ,a2�−1). There are � such parameters
and they represent “rotational parameters” (see e.g. [3]), in the sense that if one only changes one of
them, for example a2 j+1, in expression (3), then the determinant

∣∣∣∣∣∣∣∣
y −

(
x2� +

2�−1∑
i=1

i �=2 j−1

aix
i + ã2 j−1x2 j−1

)
y −

(
x2� +

2�−1∑
i=1

aix
i

)

−x −x

∣∣∣∣∣∣∣∣
is given by (ã2 j−1 −a2 j−1)x2 j , which has everywhere the same sign as ã2 j−1 −a2 j−1, except for x = 0.

In the presence of only one such parameter it clearly follows that system (2) has no limit cycles.
It could be expected that at most � − 1 limit cycles could be created under the influence of all
(a1, . . . ,a2�−1). Some people even claimed in the literature to have proven this conjecture based on
the “rotational properties” of these parameters. In any case it looked like a good strategy to try to
work along these lines, at least for n = 2�.
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Fig. 1. To the left: The dynamics of the layer equation and a FSTS cycle. To the right: the fast dynamics, combined with the slow
dynamics on the slow curve.

However, in [4] it has been proven the existence of classical Liénard equations of degree 7 with at
least 4 limit cycles. This easily implied the existence of classical Liénard equations of degree n, n � 7,
with [n−1

2 ] + 1 limit cycles. The counterexamples were proven to occur in systems

⎧⎪⎨
⎪⎩

ẋ = y −
(

x7 +
6∑

i=2

ci x
i

)
,

ẏ = ε(b − x)

(5)

for small ε > 0. By affine coordinate changes in (x, y, t), systems (5) can be written as (2), with F as
in (4), but for large values of ‖a‖ with a = (a1, . . . ,a2�). For more information, see [5] or [6].

System (5) represents a singular perturbation problem. In [4] the parameters (c1, . . . , c6) were
chosen in a way that the function x7 + ∑6

i=2 ci xi had 6 critical points, permitting to use the results
of [7]. The calculations were quite involved and, as far as we know, no one yet succeeded in finding
specific numerical examples exhibiting 4 limit cycles.

In [8], among other results, one can find a study of systems

⎧⎪⎨
⎪⎩

ẋ = y −
(

x2� +
2�−1∑
i=2

cix
i

)
,

ẏ = ε(b − x)

(6)

in which the ci are such that the function x2� + ∑2�−1
i=2 ci xi has only one critical point, let us say a

minimum. This leads to the simplest possible degenerate limit periodic sets, from which it is known
how to perturb a lot of limit cycles. A degenerate lps (limit periodic set) for a “layer equation”, as
represented by (6) with ε = 0, is a closed curve consisting of fast orbits and parts of the slow curve
{y = x2� + ∑2�−1

i=2 ci xi}; we also call them slow–fast cycles.
In this paper, we will restrict to the type of slow–fast cycles as represented in Fig. 1, that we call a

FSTS-cycle (fast–slow–turning point–slow). Also [8] dealt with such FSTS-cycles, although represented
in the phase plane as in (1) instead of in the Liénard plane as in (2), as we will do here. The slow
curves that we will encounter in this paper can and will have inflection points, but no extra critical
points besides the one at the origin.

Limit cycles of system (6) that are Hausdorff close to a FSTS-cycle as in Fig. 1 are relaxation
oscillations, in the sense that the speed close to the fast orbit is of order O (1), while the speed near
the slow curves is of order O (ε). The relaxation oscillation itself is of size O (1).

In [8] we succeeded in finding such relaxation oscillations of high multiplicity, together with a
complete unfolding. We did however not obtain new counter examples to the [2]-conjecture, but
could only check the predicted maximum. The construction was based on the use of the “slow diver-
gence integral”, whose definition we will recall now.
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Consider a slow–fast family of vector fields

{
ẋ = y − H(x, c),
ẏ = ε(b − x)

(7)

with H(x, c) = x2� + ∑2�−1
i=2 ci xi , under the condition that the slow curve {y = H(x, c)} is like in

Fig. 1: we more precisely require that h(x, c)/x > 0 (both for x �= 0 and for x = 0), where h(x, c) =
∂ H
∂x (x, c). For some c ∼ c0 and x ∈ [x′

0, x0] with x′
0 < 0 < x0, we can e.g. parameterize the FSTS-

cycles by the value Y at which the fast orbits cut the y-axis. This fast orbit has a specific ω-limit
(ωc(Y ), Hc(ωc(Y ))) and α-limit (αc(Y ), Hc(αc(Y ))) on the slow curve {y = Hc(x) := H(x, c)}. The
FSTS-cycle Γ c

Y is defined, for a value c, by the fast orbit through (0, Y ) together with the parts of the
slow curve in between x = ωc(Y ) and x = αc(Y ).

Away from the slow curve (i.e. the singular points of (7) for ε = 0), the ε-perturbation in (7) does
not play an important role, and the dynamics in (7) can be studied by examining the fast system
(e.g. the unperturbed system for ε = 0). Close to the slow curve however, the ε-perturbation becomes
more relevant. Writing y = H(x, c) + O (ε), and imposing a dynamics along this graph in (7) yields
(h(x, c) + O (ε))x′ = ε(b − x). The slow dynamics is defined as the leading-order approximation of this
dynamical system. For (7), the “slow dynamics” on the slow part of Γ c

Y is hence given by

x′ = − x

h(x, c)

and is strictly negative under the assumptions we imposed. This shows that for ε > 0 small, orbits
of (7) are first attracted to the right branch of Γ c

Y (following the fast dynamics), and then slowly drift
to the left along the slow curve (following the slow dynamics).

In the forthcoming analysis, the divergence integral along closed orbits of (7) reveals to be impor-
tant, as it gives information on the nature of the closed orbit with respect to its repelling or attracting
properties. In a slow–fast context, orbits spend much more time close to the slow curve than away
from the slow curve, and one can show that the leading-order approximation of the divergence inte-
gral, after multiplication by ε , is given by the so-called slow divergence integral. One obtains the slow
divergence integral by computing the divergence of the vector field along the slow curve, and inte-
grating this divergence w.r.t. the 1-form induced by the slow dynamics. The slow divergence integral
of Γ c

Y is given by

I(Y , c) =
αc(Y )∫

ωc(Y )

h(x, c)2

x
dx. (8)

In [8] we worked at values c0 and cycles Γ
Y0

c0 for which

∂ I

∂c2 j+1
(Y0, c0) �= 0, (9)

and this for every c2 j+1 present in the expression of H(x, c).
Condition (9) is almost always satisfied for systems (6) and leads in [8] to the proofs of the pro-

posed results on classical Liénard equations. This condition (9) is like a natural condition to express
that the parameter c2 j+1 remains “rotational” in a uniform way when ε → 0 (or in other words, when
‖a‖ with a = (a1, . . . ,a2�−1) as in (3) tends to infinity).

However, in [8], we also encountered combinations (Y0, c0) at which the condition (9) gets vi-
olated for all c2 j+1 present in H(x, c). This is a quite exceptional situation that already occurs for
n = 6. Investigating such a situation we saw that it is possible for n = 6 to encounter values c0 for
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which 4 limit cycles can be perturbed from the union of FSTS-cycles Γ Y
c0

that are present in the layer
equation. We more precisely can prove the following theorem:

Theorem 1. Given the (ε, δ,b)-family of polynomial Liénard equations of degree 6

⎧⎨
⎩ ẋ = y −

(
1

2
x2 + 5δx3 − 35

46
x4 − 12δx5 + 21

46
x6

)
,

ẏ = ε(b − x),

(10)

and given k ∈ {1,2,3,4}, there exists a smooth curve

b = εBk(ε, δ),

defined for ε ∈ [0, ε0] and δ ∈ [−δ0, δ0] ( for some sufficiently small ε0 > 0 and δ0 > 0), along which the
vector field (10) has exactly k limit cycles when δ �= 0 and ε ∈ ]0, ε1(δ)] for some ε1 : [−δ0, δ0] → R with
ε1(δ) > 0 for δ �= 0. All these limit cycles are hyperbolic and surround a hyperbolic focus that is attracting
when δ < 0 and repelling when δ > 0.

The proof of Theorem 1 will be given in Section 2. For δ ∼ 0, δ �= 0, the limit cycles obtained
in Theorem 1 are relaxation oscillations that tend towards specific slow–fast cycles ΓYi , i = 1, . . . ,k,
when δ → 0. We will show that the heights Yi of these slow–fast cycles are located inside a compact
interval [Ymin, Ymax] that does not depend on (ε, δ) and that is bounded away from 0. Hence, the
canard cycles are relaxation oscillations of size O (1).

As usual in that kind of construction we can take ε1 to be a smooth function on [−δ0, δ0] with
ε1(0) = 0. We can also remark that the functions Bk are in no way unique. In fact, for every k ∈
{1,2,3,4}, there is an infinity of such curves. More precise information can be found in Section 2.2.

Let (ε, δ,b) = (ε0,−ν0,b0) be fixed and let

{
ẋ = y − H(x, ν0),

ẏ = ε0(b0 − x),
(11)

with H(x, ν0) = 1
2 x2 −5ν0x3 − 35

46 x4 +12ν0x5 + 21
46 x6, represent a system with 4 hyperbolic limit cycles,

of which the largest one is attracting (hence with ν0 > 0). If we change H(x, ν0) in (11) by H(x, ν0)+
ν1x7, for ν1 sufficiently small, then the four limit cycles persist. Moreover, by taking ν1 < 0, the circle
at infinity will be attracting (see e.g. [9]) and the new system of degree 7 will have at least 5 limit
cycles of odd multiplicity. Fixing such ν1 < 0, ν1 ∼ 0, and considering H(x, ν0) + ν1x7 + ν2x8 with ν2
sufficiently small, will give a system of degree 8 with at least 5 limit cycles of odd multiplicity.
Continuing this way by adding ν j x j , for j � 9, with ν j decreasing sufficiently fast, and taking care of
alternating the signs of the ν j with j odd, one easily obtains the following result:

Theorem 2. Let n � 6. There exist polynomial vector fields of degree n of the form (2) with at least [n−1
2 ] + 2

hyperbolic limit cycles.

Typically, the canard cycles obtained in Theorem 1 are very hard to find numerically, even in the
very specific setting of Theorem 1. The reason is the singular nature of slow–fast systems like (10):
all orbits through {x = 0}, and with a y-coordinate between [Ymin, Ymax], with 0 < Ymin < Ymax, will
follow a fast–slow trajectory in forward time, until they intersect {x = 0} again somewhere close to
the turning point. Similarly, these orbits will follow a fast–slow trajectory in negative time, until they
intersect {x = 0}. In other words, one can define a “forward map” and a “backward map”, and the
periodic orbits are then identified as the zeros of the difference between the forward and backward
map. In a singular perturbation context, the image of the interval [Ymin, Ymax] under the forward map
is an interval of exponentially small size (O (exp(−κ/ε)) for some κ > 0). The image of the backward
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map is an interval of a similar size. This implies that in order to distinguish periodic orbits from orbits
that are not periodic, one needs an accuracy of the order O (exp(−κ/ε)).

The constant κ in the exponential expression can be determined and is related to the one-sided
slow divergence integral (the slow divergence integral as in (8), but taken between the ω-limit and
the turning point at x = 0 instead of between ω and α), since this measures the amount of attraction
the forward orbit undergoes. This immediately implies that the bigger the canard-cycle is, the more
difficult it is to find it numerically. Of course, taking the singular parameter ε larger, the exponential
estimates become more tractable and this would increase the hope to find bigger canards. However,
the larger ε , the less guarantee one has that the limit cycles appear as claimed in Theorem 1.

After the publication of [4] different people expressed their interest in seeing a numerical example
of a Liénard equation with more limit cycles than conjectured in [2]. In Appendix A, we come up with
an example, close to the example predicted by Theorem 1. We find 3 limit cycles fixing ε at 0.005.
The example with 3 limit cycles is already a numerical counterexample to the conjecture of [2] for
degree 6.

2. Proof of Theorem 1

The proof of Theorem 1 relies on several ingredients. We first show that there is a compact annulus
around the origin where the vector field (10) has k limit cycles, for 0 < ε � ε0, 0 < |δ| � δ0 and
k = 1,2,3,4. We then show that the result holds in any compact annulus around the origin. Next, we
show that we can extend the annulus towards infinity (using Poincaré–Lyapunov compactification),
and finally, we show that no additional limit cycles are found near the origin. Of course, to obtain
lower bounds for the number of limit cycles, only the first part of the proof is essential. The study
near the origin and near infinity is included to show that the techniques that we use permit to treat
the systems under consideration completely.

In the first part of the proof, we study the slow divergence integral, as defined in Section 1. A result
from [10] shows that a slow–fast system where the slow divergence integral has � simple zeros can
lead to � + 1 limit cycles. Because it is an essential ingredient in our proof, we will repeat this result
here, together with a well-known result on the entry–exit relation in slow–fast systems. This is done
in Section 2.1. In Section 2.2, we show that the slow divergence integral of (10) has exactly 3 zeros
when δ �= 0, δ ∼ 0. In Section 2.3, we finish the proof of Theorem 1 by combining the information
from previous subsections with information near the origin and near infinity.

2.1. Essential ingredients from geometric singular perturbation theory

We consider {
ẋ = y − H(x, c),
ẏ = ε(b − x)

(12)

where H(x, c) = ∫ x
0 h(s, c)ds and h(x, c)/x > 0 for all x. Given a height Y , we consider the slow–fast

cycle Γ c
Y as defined in the Introduction. Recall the x-coordinates αc(Y ), ωc(Y ) of the fast part of the

slow–fast cycle.

Proposition 1. (See [11].) There is a smooth surface b = εBY (ε, c), defined for ε ∈ [0, ε0], with ε0 > 0 suf-
ficiently small, along which (12) has an (ε, c)-family of periodic orbits intersecting the y-axis at height Y .
The periodic orbits tend towards Γ c

Y as ε → 0. When I(Y , c) �= 0, the family of periodic orbits are, for ε > 0,
hyperbolic limit cycles (attracting or repelling, depending on whether the sign of I(Y , c) is negative or positive).

This proposition can be used to fix one limit cycle of a prescribed size. We will restrict to choices
of a height Y where I(Y , c) �= 0. We then define the related entry–exit relation. To that end, we con-
sider a situation where we have a hyperbolic limit cycle along a given surface b = εBY (ε, c), as
specified in Proposition 1. We assume that I(Y , c) < 0; the other case can be reduced to this case
after applying (x, t) 	→ (−x,−t).
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We introduce the slow-relation function: A pair (Ya, Yr) satisfies the slow relation when

αc(Yr)∫
ωc(Ya)

h(x, c)2

x
dx = 0.

For each Ya > 0 there exists a unique Yr such that (Ya, Yr) satisfies the slow relation and vice versa.

Proposition 2 (Entry–exit relation). Fix (Y , c) for which I(Y , c) < 0, and fix a compact interval [Ymin, Ymax]
containing Y in its interior. Consider the vector field (12) along the parameter surface specified in Proposition 1.
Then, there is a 0 < Ỹmin < Ymin such that for ε > 0 small enough, the first return map

Pε,c : {0} × [Ymin, Ymax] → {0} × [Ỹmin, Ymax]

is well defined. The first return map is continuous as ε → 0, and tends towards a piecewise-analytic map P0,c

defined as follows:

1. P0,c(Y ′) ≡ Y for all Y ′ � Ya where Ya < Y is the unique height for which (Y , Ya) satisfies the slow
relation.

2. P0,c(Y ′) = Y ′
r for all Y ′ < Ya where Y ′

r is the unique height for which (Y ′
r, Y ′) satisfies the slow relation.

This proposition is a direct consequence of the results in [11], where a more elaborated entry–
exit relation is given. From this proposition, we can deduce that there will be no limit cycles with
height in ]Y , Ymax]. Furthermore, given a height Y ′ < Y for which I(Y , c) �= 0, then the result on
the Poincaré map at height Y shows that the orbit is either spiraling upwards (I < 0) or spiraling
downwards (I > 0). It indicates that additional limit cycles are only to be expected at heights where
the slow divergence integral is zero. This is essentially the topic of the next proposition:

Proposition 3. (See [10].) Consider system (12) along a parameter surface b = εBY (ε, c) as provided in Propo-
sition 1. If for some c = c∗ , the slow divergence integral I(Y , c∗) has a simple zero at y = Y∗ ∈ ]0, Y [, then
there exists a Hausdorff neighborhood V around Γ

c∗
Y∗ , such that for ε > 0 small enough and for c close enough

to c∗ , the vector field (12) with b = εBY (ε, c) has a unique limit cycle in V . If ∂ I
∂Y (Y∗, c∗) > 0 then the limit

cycle is hyperbolically attracting, if ∂ I
∂Y (Y∗, c∗) < 0, then the limit cycle is hyperbolically repelling.

In the next section, we focus on providing an example of a slow–fast vector field, having a slow
divergence integral with 3 zeros.

2.2. Slow divergence integrals with 3 zeros

We consider a family of vector fields

{
ẋ = y − F (x, c),
ẏ = ε(b0 − x),

where c = (a0,a1,b1,b2), ε � 0, and b0 is a parameter close to 0. We write

F (x) = F (x, c) =
x∫

0

f (s)ds,

f (x) = f (x, c) := x + b1x3 + b2x5 + a0x2 + a1x4.
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The parameters c = (a0,a1,b1,b2) will be chosen very specifically later, but we prefer to keep them
general for the moment; we however keep (a0,a1) ∼ (0,0). For (a0,a1) = (0,0), the family of vector
fields is symmetric w.r.t. (x, t) 	→ (−x,−t). Hence, (b1,b2) are parameters that preserve symmetry,
whereas the parameters (a0,a1) are symmetry-breaking. We will choose (b1,b2) so that

f (x,0,0,b1,b2)

x
> 0, ∀x,

and hence so that f (x,a0,a1,b1,b2)/x > 0 on the entire real line, when (a0,a1) is sufficiently close to
(0,0). This ensures that the shape of y = F (x, c) is like in Fig. 1, and on the other hand it also ensures
that the slow dynamics x′ = −x/ f (x) is regular. Recall that a slow–fast cycle Γ c

Y has a fast horizontal
orbit, with an ω-limit on the right branch of the curve y = F (x); its x-coordinate is denoted by ωc(Y ).
The x-coordinate of the α-limit will be denoted αc(Y ). Of course

αc(Y ) < 0 < ωc(Y ), F
(
αc(Y ), c

) = Y = F
(
ωc(Y ), c

)
.

Along this section, it will be convenient to parameterize the slow–fast cycles by the omega-limit
ωc(Y ), instead of by its height Y . We will hence define the slow–fast cycle Γ c

x , with some x > 0, as
the slow–fast cycle with height Y = F (x, c). The corresponding α-limit will be denoted αc(x) = α(x, c).
The relation x 	→ αc(x) is called the fast relation. The next proposition examines the asymptotics of
the (analytic) fast relation function for (a0,a1) near (0,0).

Lemma 1. The fast relation function is given by

αc(x) = −x + a0 R0(x,b1,b2) + a1 R1(x,b1,b2) + O
(∥∥(a0,a1)

∥∥)2
,

as (a0,a1) → (0,0), where

R0(x,b1,b2) = −2

3

x2

1 + b1x2 + b2x4
,

R1(x,b1,b2) = −2

5

x4

1 + b1x2 + b2x4
.

Proof. Due to the symmetry, we have α(x,0,0,b1,b2) ≡ −x, so it suffices to look at the partial deriva-
tives at (a0,a1) = (0,0). This is an elementary calculation based on implicit differentiation of the
equation

F
(
α(x,a0,a1,b1,b2),a0,a1,b1,b2

) = F (x,a0,a1,b1,b2)

with respect to ai , for i = 0,1. We find f (αc, c). ∂αc
∂ai

+ ∂ F
∂ai

(αc, c) = ∂ F
∂ai

(x, c), implying that

(
(−x) + b1(−x)3 + b2(−x)5).Ri(x,b1,b2) = 1

3 + 2i
x3+2i − 1

3 + 2i
(−x)3+2i .

This proves the lemma. �
Let us now compute the slow divergence integral

I(x, c) =
αc(x)∫
x

f (s, c)2

s
ds.
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Fig. 2. Graph of f (x,0,0,b∗
1,b∗

2).

Lemma 2. The slow divergence integral is given by

I(x,a0,a1,b1,b2) = a0 I0(x,b1,b2) + a1 I1(x,b1,b2) + O
(∥∥(a0,a1)

∥∥)2
,

as (a0,a1) → (0,0), where

I0(x,b1,b2) = −2

3
x3 − 2

15
b1x5 + 2

21
b2x7,

I1(x,b1,b2) = −2

5
x5 − 6

35
b1x7 − 2

45
b2x9.

Proof. Again, a symmetry argument is used to show that I(x,0,0,b1,b2) ≡ 0, so it suffices to look at
the partial derivatives w.r.t. ai . �

As explained in the Introduction, we look for parameter values (b1,b2) where at a given point, say
at x = 1, both I0 and I1 are zero. We find a unique solution

(
b∗

1,b∗
2

) =
(

−70

23
,

63

23

)
.

Observe that f (x,0,0,b∗
1,b∗

2) = x
23 (23 − 70x2 + 63x4) has no zeros, meaning that this choice of func-

tion satisfies the condition f (x)/x > 0 for all x, see also Fig. 2. Let us now, for this specific choice of
parameters (b∗

1,b∗
2), look at the linearization of I along the line

a1 = −4a0.

We find

I
(
x,a0,−4a0,b∗

1,b∗
2

) =
(

56

115
x9 − 42

23
x7 + 692

345
x5 − 2

3
x3

)
a0 + O

(
a2

0

)

=
(

2

345
x3(x2 − 1

)(
115 − 231x2 + 84x4))a0 + O

(
a2

0

)
.

The function 1
a0

I(x,a0,−4a0,b∗
1,b∗

2)|a0=0 has besides the zero x = 1, two additional zeros, respectively
around x ≈ 0.8 and x ≈ 1.4. These three zeros are simple and hence persist as zeros of the slow
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Fig. 3. Graph of 2
345 x3(1 − x2)(115 − 231x2 + 84x4), which is the first-order Taylor coefficient (w.r.t. a0) of −I(x, c) along

c = (a0,−4a0,b∗
1,b∗

2).

divergence integral for |a0| small, and taking |a0| small enough, these zeros lie inside the compact
interval [ 1

2 ,2]. Renaming a0 = 15δ, we find

f (x) = x + 15δx2 − 70

23
x3 − 60δx4 + 63

23
x5,

which leads to a vector field of the form (10) specified in the formulation of Theorem 1.
Let

1

2
� x1(δ) < x2(δ) < x3(δ) � 2

be the three zeros of 1
a0

I(x,a0,−4a0,b∗
1,b∗

2)|a0=15δ . Of course x1(0), x2(0) and x3(0) are exactly the

(positive) zeros of (x2 − 1)(115 − 231x2 + 84x4) (see also Fig. 3), and are hence distinct for δ ∼ 0. Let
Y1(δ), Y2(δ), Y3(δ) be the heights of the corresponding slow–fast cycles.

Now consider the heights Y (1) = 1
4 , Y (2) a height between Y1(0) and Y2(0), Y (3) a height between

Y2(0) and Y3(0), and Y (4) = 3. We then apply Proposition 1 at all these heights, and find different
surfaces b = εBk(ε, δ) in parameter space, k = 1,2,3,4. It is then a direct consequence of the entry–
exit relation stated in Proposition 2 and Proposition 3 that the family of vector fields (10) along
b = Bk(ε, δ), and for ε > 0 small enough and δ �= 0 close enough to 0, has exactly k limit cycles in
any compact annulus around the origin. Furthermore, from Proposition 3 clearly follows that all these
limit cycles are hyperbolic.

2.3. Dynamics near the turning point and near infinity

We continue the discussion from previous section, and use the same notations. When δ < 0, the
sign of I goes from + to −, from − to + and from + to − again. This implies that the smallest of
the obtained limit cycles along any of the four surfaces b = εBk(ε, δ) is always repelling. When δ > 0,
it is the other way around.

On the other hand, we know that the four surfaces b = εBk(ε, δ) all have the same Taylor develop-
ment w.r.t. ε (and are in fact exponentially close to each other). Using formal computations, together
with the known situation for δ = 0 and ε = 0, it is elementary to check that

b = −15δε
(
1 + O (ε)

)
.

This information can be used to see that for ε > 0 and δ �= 0 small enough, the unique singularity
of (10) near the origin is repelling when δ > 0 and attracting when δ < 0. Unfortunately, the hy-
perbolic attraction/repulsion at this point is not obtained uniformly in ε , and therefore we need an
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additional argument to show that in a uniform neighborhood of the origin, system (10) has no limit
cycles.

This additional argument is provided in [12] and [13]. We give more details in Section 2.3.1. The
behavior at infinity is studied in Section 2.3.2.

2.3.1. Dynamics near the turning point
We take any δ1 ∈ [−δ0, δ0] with δ1 �= 0. In terms of [12], Eq. (10), for δ ∼ δ1, represents a slow–fast

Hopf bifurcation of codimension one. The codimension is one because the coefficient in front of x3 ∂
∂x

is nonzero. In [12], it has been proven that in a uniform neighborhood of the origin in (x, y, ε)-space,
Eqs. (10) have at most two limit cycles. In Section 3.1.4 of [13], more precisely in the subsections
“Cyclicity of the origin (x, y) = (0,0)” and “Unicity of the limit cycle near Γ0”, it has been shown,
based on [12], that one can in fact have at most one limit cycle in a slow–fast Hopf bifurcation of
codimension 1, and it has to be simple.

Assume now δ1 < 0. We now restrict to b = εBk(ε, δ) as in the statement of Theorem 1, and
denote the limit cycles obtained in Section 2.2 by L1, . . . , Lk , in increasing order of size. From the
observations made above we know that there can be at most one extra limit cycle inside L1 and it
has to be simple. Since δ1 < 0, we have b > 0, and then we know from Section 2.2 that the focus is
attracting, while the limit cycle L1 is repelling. It is hence not possible to have an extra limit cycle
inside L1. A similar argument is possible when δ1 > 0.

2.3.2. Dynamics near infinity
Remains to show that no limit cycles can appear near infinity. Since we only need to look in the

halfplane where Y > 0, the relevant coordinate change is given by

(x, y) =
(

X

u
,

1

u6

)
,

where u > 0 is small and X is kept in a large compact interval. The line {u = 0} represents the line at
infinity. The family of vector fields

⎧⎨
⎩ ẋ = y −

(
1

2
x2 + 1

3
a0x3 + 1

4
b1x4 + 1

5
a0x5 + 1

6
b2x6

)
,

ẏ = ε(b − x)

(of which (10) in Theorem 1 is an example) is written in the new coordinates near infinity, after
multiplication by u5, as

⎧⎪⎪⎨
⎪⎪⎩

Ẋ = 1 −
(

1

2
u4 X2 + 1

3
a0u3 X3 + 1

4
b1u2 X4 + 1

5
a1u X5 + 1

6
b2 X6

)
− 1

6
εu10 X(bu − X),

u̇ = −1

6
εu11(bu − X).

At the line at infinity {u = 0}, we find two semi-hyperbolic singularities {X = ±(6/b2)
1/6}, under

the assumption that b2 > 0 (and this is the case in the example (10)). Define X±
0 = ±(6/b2)

1/6 and
consider center manifolds

X = X±
0 + O (u)

at these singularities. It is not hard to find that

X = X±
0 − a1

u + O
(
u2),
5b2
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Fig. 4. Behavior at infinity, for ε = 0 and for ε > 0. The line at infinity is represented by {u = 0}.

at each of these points. This allows us the compute the dynamics inside the center manifold up to
leading order. We find, at both points,

u̇ = εu11
(

X±
0

6
+ O (u)

)
.

This behavior is compatible with the slow dynamics: pointing downwards (increasing u) on the right
branch of the slow curve, and pointing upwards on the left branch of the slow curve, see also Fig. 4.
The two singularities at infinity are hence semi-hyperbolic saddles, and hence have unique ε-families
of center manifolds.

We denote the unique ε-family of center manifolds by X = ψ±(u, ε). For u = u0 sufficiently small,
we consider a small segment

Σμ: {
(X, u): −μ � X − ψ+(u0, ε) � μ, u = u0

}
,

for some small μ > 0. Any limit cycle that comes near infinity will for sure cross this section (orbits
that do not cross this section can be studied in the (x, y)-plane inside a large compact set). From
the entry–exit relation in Proposition 2 it clearly follows that the orbit of the left end point of Σμ

will make a contour around the unique singularity near the turning point and will cross the section
{x = 0} again at a point with a height that is o(1)-close to the height of the biggest limit cycle Yk .
Now it is easy to see (with the more elaborate entry–exit relation in [11]) that also the right end
point of Σμ has this property. This means that all orbits through Σμ will end up near (0, Yk), for
ε > 0 small enough. It clearly follows that no limit cycles near infinity are present, and hence that all
limit cycles are the ones that were obtained in Section 2.2.

This concludes the proof of Theorem 1.

Appendix A. Finding three canard cycles numerically

As will be explained later in this section, a very high precision is needed to find canards, even
for moderately small values of the singular parameter ε . The numerical simulations described in this
section are based on a Runge–Kutta (order 7) ode-solver, with fixed step size h. Typically, h = 10−6

or smaller. The implementation is done in C++, and the tests ran on a regular desktop computer. Be-
cause of the very sensitive nature of the dynamics of slow–fast vector fields, some of the calculations
are done in quadruple precision. To that end, we use the “double–double” C++ library, implemented
by the authors of [14] and publicly available.

Instead of working with (10), it reveals better to work with a slight adaptation{
ẏ = y − F #(x),
ẋ = ε(b − x),

(13)

with

F #(x) = 1

2
x2 − 1

100
x3 −

(
35

46
+ 1

16

)
x4 + 23

1000
x5 + 21

46
x6. (14)

Let us explain why an adaptation is helpful, and at the same time explain why only 3 limit cycles are
searched instead of 4 limit cycles as predicted by Theorem 1.
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To understand this, we first consider the theoretical example (10) and notice that it is not possible
to choose ε very small while computing limit cycles, as the smaller ε is chosen, the more digits ac-
curacy are needed in order to distinguish the orbits from each other. Indeed: if one tracks two orbits,
starting respectively at (0, Y0) and at (0, Y1), with Y0 < Y1, then both orbits will intersect {x = 0}
again somewhere slightly below the fixed point at heights T (Y0), T (Y1). From singular perturbation
theory, it is clear that |T (Y0) − T (Y1)| = O (exp(I−(Y0)/ε)), where I− is the “one-sided slow diver-
gence integral”

I−(Y ) =
0∫

ω(Y )

f (x)2

x
dx < 0,

calculated along the relevant part of the attracting branch of the slow curve. This means that in order
to distinguish the orbit through (0, Y0) from the orbit through (0, Y1), one needs O (|I−(Y0)|/ε) digits
accuracy. Therefore, by choosing ε = O (10−4), it is unlikely that trustworthy results will be found
with numerical analysis.

The same argument shows that it is very difficult to find 4 limit cycles of (10), even with more
moderate choices of ε: recall the positions x1(δ), x2(δ), x3(δ) of the zeros of the slow divergence
integral from Section 2.2. Let Yi , i = 1,2,3, be the related heights of the slow–fast cycles, then for
δ = 0 we have

x1 ≈ 0.81, Y1 ≈ 0.13, I−(Y1) ≈ −0.072;
x2 ≈ 1.00, Y2 ≈ 0.20, I−(Y2) ≈ −0.101;
x3 ≈ 1.45, Y3 ≈ 1.91, I−(Y3) ≈ −7.140,

showing that for ε = 0.01,

exp
(−I−(Y1)/ε

) = O
(
10−4),

exp
(−I−(Y2)/ε

) = O
(
10−5),

exp
(−I−(Y3)/ε

) = O
(
10−310). (15)

This shows that the region in phase space where the third zero of the slow divergence inte-
gral becomes relevant in the analysis, is completely out of reach from a numerical point of view.
Even with moderate values of ε and δ, for example with ε = 0.1 and δ = 0.001, we find that
exp(I−(Y3)/ε) = O (10−31), which would require an accuracy far beyond the capabilities of standard
desktop computers.

In the remainder of this section, we will hence limit to finding 3 limit cycles, which involves dealing with
2 zeros of the slow divergence integral. But even finding 3 limit cycles for (10) proves to be very
difficult, despite of the reasonable required accuracy of the order shown in (15). The explanation
can be found in Fig. 5, where the computed divergence integral is drawn for several values of ε . Let
us first explain how we have computed these graphs: we consider orbits through (0, Y ), and follow
them numerically until they reach the section {x = 0} once more. We do this both in forward and in
backward time. In this computation, we take b = 0 (b is in fact O (εδ), so can be assumed small and
relatively irrelevant in this computation).

Fig. 5 shows that although the zeros of the slow divergence integral persist as zeros of the com-
puted integrals, both shift to the right as ε increases, the largest one even quite fast. Now it is
important to realize that while the x-coordinate of the zero increases, it becomes more and more
difficult to deal with limit cycles of that order, as explained before.

Because the zeros of the computed divergence integrals shift to the right too quickly, we consider
(13) instead of (10), precisely to keep the zeros of the computed divergence integral sufficiently close
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Fig. 5. Computed divergence integrals in (10), with δ = −0.01 and for specific choices of ε: ε = 0.001, ε = 0.005, ε = 0.01. The
thicker curve is δ times the graph in Fig. 3. As ε increases, the zeros of the divergence integral shift to the right. All curves
have an additional zero in {x > 1.2}, but this part of the graph has not been plotted.

to the theoretical values. The vector field (13) is found experimentally in the neighborhood of (10),
and has the property that the divergence integral I(Y ), for a fixed value of ε > 0, has two zeros that
have not shifted to the right too much, and where one hence may expect 3 numerically distinguish-
able limit cycles to appear.

We thus consider (13) for the specific value of b = 0.000063032171696. The numerical proof for
the existence of the 3 limit cycles is based on the presence of 4 sign changes in the numerical study
of the difference map (map in forward time from {x = 0} to {x = 0} versus map in backward time).
This computation is done with very high precision: we used a Runge–Kutta method of order 7, with
a step size h = 10−8. We find sign changes near heights Y1, Y2, Y3, where Y1 ≈ 0.25, Y2 ≈ 0.21, and
Y3 ≈ 0.02. This means that limit cycles of approximately these 3 heights are numerically found. The
limit cycles of heights Y1 and Y2 are related to the zeros of the slow divergence integral, as indicated
by Proposition 3, whereas the limit cycle of height Y3 is purely related to the specific choice of the
parameter b, as indicated by Proposition 1. In fact, we have computed b precisely to have a limit cycle
at this specific height.

The first limit cycle, i.e. the cycle near height Y1, is found with moderate accuracy, say with a step
size h = 10−6. The second and third limit cycle require a much smaller step size: the computation in
that region has been done with step size h = 10−8.

Remark. Slight adaptations of the parameter b, or lower accuracy computations will only show 0,
1 or 2 limit cycles. This is due to the fact that all curves b = εBY (ε), defined in Proposition 1, lie
exponentially close to each other. A slight change in b will most probably imply that this value of b
lies on a curve b = εBY (ε) with a height Y less than Y3. From the entry–exit relation described in
Proposition 2 it follows that no limit cycles are seen above height Y .
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