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1. Introduction

Consider the one-dimensional compressible Navier-Stokes equations in Lagrangian coordinates:

vt—ux:0,
()
tTDPx=HM v x7 (11)

e+ + (= (k2 4 M
2 ), pu)x = v MV .
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where x € R! = (—o00, 0), t > 0, v(x,t) > 0, u(x,t), e(x,t) > 0, 6(x,t) > 0 and p(x,t) are the specific
volume, the velocity, the internal energy, the temperature and the pressure of the gas respectively,
while 1 > 0 and « > 0 denote the viscosity and the heat conductivity respectively. Here we study the
ideal polytropic gas so that the pressure p, the internal energy e and the entropy s are given by

RO R R
p=—, e=——7:0, s= In6 +RlInv,
v y —1 y —1

where R > 0 is the gas constant and y > 1 is the adiabatic exponent. We are concerned with the
Cauchy problem to the system (1.1) supplemented with the following initial data and far field condi-
tions:
(v.1,0)(x, 0) = (vo, tig, o) (¥), (12)
(v,u,0)(F00,t) = (Vi, us, 01), ’

where v1 > 0, ux and 64 > 0 are given constants, and we impose (v, Ug, 6p)(£00) = (V4, us,64) as
compatibility condition.

In this paper, we are interested in the large-time behavior of solutions to the Cauchy problem
(1.1), (1.2) for one-dimensional compressible Navier-Stokes equations. It is known that the asymp-
totic behavior is well characterized by the solutions to the corresponding Riemann problem for the
hyperbolic part of (1.1) (that is, Euler system):

vi—uy =0,

uf+pX:O7
2

u (1.3)
<€+—> + (pw)x =0,
2/

which is one of the most important examples for systems of hyperbolic conservation laws of the form
Zt+ f(Z)x=0, Z=(z1,...,2p) €R". (1.4)

It is well known that (see [26]) the system (1.4) has three basic wave patterns: two nonlinear waves
(shock and rarefaction wave) and a linearly degenerate wave (contact discontinuity). These dilation
invariant solutions and their superpositions in the increasing order of characteristic speed which are
called Riemann solutions, govern both the local and large time asymptotic behavior of general solu-
tions to the system of hyperbolic conservation laws (1.4) (see [16]). Since the inviscid system (1.4) is
an idealization when the dissipative effects are neglected, thus it is of great importance to study the
large time asymptotic behavior of solutions to the corresponding viscous systems in the form of

Ze+ f(Dx=(B(D)Zy),. Z=(z1.....2) €R", (1.5)

toward the viscous versions of these basic waves. In particular, such an asymptotic behavior will be
important for the compressible Navier-Stokes system (1.1) which is basically the system governing
viscous fluid flows when the effects of both viscosity and heat conductivity are taken into account.

Indeed, there have been intensive studies for the stability toward basic wave patterns of the system
(1.5) of viscous conservation laws which is started with studies on the stability of nonlinear waves to
the Cauchy problems for scalar conservation laws by II'in and Oleinik [12] in 1960s.

In the case where the Riemann solution of the system (1.4) consists of only shock waves, the vis-
cous versions of shock waves corresponding to the system (1.5) are the so-called viscous shock waves
satisfying a system of ordinary differential equations with two given end-states. In different settings,
the local stability of viscous shock waves has been established. We refer to [22,18,14,8] for the com-
pressible Navier-Stokes equations (1.1) and in [17,5,27,19] for the system of viscous conservation laws
with artificial viscosity, respectively.
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In the case where the Riemann solution of the compressible Euler equations (1.3) consists of only
rarefaction waves, the local and global stability results of rarefaction waves were obtained in [23,15,
20,24,28,25,3] for different settings. Moreover, Nishihara, Yang and Zhao [25] and Duan, Liu and Zhao
[3] showed the H'-global stability results in the case of general gases and also L.o-global stability
was established for the perfect fluids provided that the adiabatic exponent y is close to 1 or for the
isentropic perfect fluids. Here, the H'- (or L.o-) global stability means that H'- (or Ls,-) norms of
initial perturbations are large. Since it does not require the strength of the rarefaction waves to be
small, these results show the nonlinear stability of strong rarefaction waves for the one-dimensional
compressible Navier-Stokes equations. For the local stability toward rarefaction waves of the system
of viscous conservation laws, we refer to [29,28,2].

However, compared to the works on the stability of nonlinear waves (shock and rarefaction waves),
the stability of contact discontinuities is more subtle and began to be studied since the middle of
1990s. The local stability of a weak contact discontinuity for the compressible Euler equations with
uniform viscosity was first studied by Xin [30]. This was later generalized by Liu and Xin [21] to
show the local stability of the contact discontinuities for the system (1.5) of viscous conservation laws
with artificial viscosity. Recently, the local stability of the superposition of contact discontinuities and
shock waves for the system (1.5) of viscous conservation laws with artificial viscosity was proved by
Zeng [31]. But these methods do not apply to the compressible Navier-Stokes system because the
viscosity matrix in (1.1) is only semi-positive definite. The more satisfactory answers were obtained
in [9,10,7]. It is shown by Huang, Matsumura and Xin [9] that a smooth viscous contact wave for
the compressible Navier-Stokes system which approximates the given contact discontinuity for the
compressible Euler equations on any finite time interval is locally stable provided that the integral
of initial perturbations is zero. Here, the stability is in sup-norm and a convergence rate is also ob-
tained. Later, this result was improved by Huang, Xin and Yang [10] in which the assumption that the
integral of initial perturbation is zero is removed. The elementary energy method different from the
anti-derivative method in [9,10] was recently proposed by Huang, Li and Matsumura [7]. In [7], the
local stability of the superposition of contact discontinuity and rarefaction waves was proved without
introducing the anti-derivative variables by a new estimates on the heat kernel.

Although considerable progress has been obtained for the stability of viscous contact waves, how-
ever most of these results are obtained for the case where the initial perturbations are small. Thus,
a natural question arises: can we show similar stability of viscous contact wave for large initial per-
turbation? In this paper, based on the new estimates on the heat kernel in [7], we give some positive
answers to this question for the Cauchy problem (1.1) and (1.2), see Theorems 2.1 and 2.2 below for
details.

The rest of the paper will be arranged as follows. In the next section, we state two main results
in this paper. In Section 3, we proved the first main theorem (Theorem 2.1) and the last section is
devoted to prove the second main result (Theorem 2.2).

Notation. Throughout the rest of this paper, O(1),c or C will be used to denote a generic positive
constant independent of t and x and c;(-,-) or Ci(-,-) (i € Z4+) stands for some generic constants
depending only on the quantities listed in the parentheses. As long as no confusion arises, denote the
usual Sobolev space with norm || - ||y« by H*:= H*(R') and | - lgo =l - || will be used to denote the
usual Lp-norm. Finally, | - ||z, and J -dx are used to denote || - L, and [p1 - dx, respectively.

2. Main results

We first recall the viscous contact wave of the system (1.1). The Riemann problem of system (1.3)
with initial data

v, u,0)(x,0) = (vi, us, 04), x>0
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admits a contact discontinuity

V.0.© _Jw_u_,60), x<0,t>0,
(V,U,O)(X,t)_{(V+7u_,_’9+), x>0, t>0, (21
provided that
RO_ RO
N 22
v_ vy

Without loss of generality, we can assume that u_ = uy =0 from now on. In the setting of com-
pressible Navier-Stokes system (1.1), the wave (V,U, ®) corresponding to the contact discontinuity
(V,U, ®) becomes smooth and behaves as a diffusion wave due to the dissipation effect. We call
this wave a “viscous contact wave”. The viscous contact wave (V,U, @) is constructed as follows.
Motivated by (2.2), we expect

R®
Vv

~py,  UPKI. (2.3)

Then the leading order of energy equation (1.1)3 is

R Gx
6 =«(=). 2.4
y_1t+p+ux K<V)x (2.4)

Using (2.4) and the mass equation (1.1)1, we get a nonlinear diffusion equation

® -1
@t=a<—"> . O(doo, ) =0y, a=%”2) -0, (2.5)
e/, ¥R
which has a unique self-similarity solution @ (x,t) = @ (&), & = ﬁ due to [1,4]. Furthermore, on

one hand, @ (&) is a monotone function, increasing if 64 > 6_ and decreasing if 6_ > 6 ; on the other
hand, ® satisfies

1
1104 — -1 < (y — 1D2|0:(0)| < 21604 — 0],

2 (2.6)
k— C.
v - 1T [3ke) <63|@g(0)|exp<—y4—s]>, as |§] — o0, k>1,
where ¢;, i=1,...,4, are positive constants depending only on 6. Once ® is determined, we define
V and U by

R kK(y—1)6

veRg k=D 2.7)
P+ YR ©

We are now in a position to state our first main results. Let
@.¥.0)=(v-V,u-U,0-0)
and for interval I C [0, c0), we define a function space X(I) as
X() ={(¢.v.0) e C(I HY) | ¢x € La(I; La), (Y, &) € La(I: HY) .

Then we have:
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Theorem 2.1. Let (V, U, @) be the viscous contact wave of compressible Navier-Stokes equations defined
in (2.7). Then, for any Mo > 0, there exist positive constants o and &g such that for any § = |04 —6_| < 8o, if

(¢, ¥, 0,00 e H',

2.8
@, . O 0 <eo,  ||(dx ¥xs &0, 0) | < Mo, (28)

then the Cauchy problem (1.1), (1.2) has a unique global solution (v,u,0)(x,t) satisfying (¢,¢,¢) €
X([0, o0)) and

m sup|(v—V,u—U,0 —O)(x,1)|=0. (2.9)

li
t—)OOX6R1

Remark 2.1. In Theorem 1 of [7], the authors assume that the H'-norm of initial perturbations is
small, but we require only that the Ly-norm of initial perturbations is small. Therefore, Theorem 2.1
is a generalization of Theorem 1 of [7]. Also, we proved in [6] the stability of viscous contact wave
for Cauchy problem (1.1), (1.2) in the case where L,-norm of initial perturbations is small and that of
their derivative and integral can be large. Notice that in this paper, we remove the condition on the
integral of initial perturbations. It is essentially based on the elementary inequality concerning the
heat kernel (see Proposition 3.1).

In Theorem 2.1, even though the H!-norm of the initial perturbation can be large, one can conclude
by employing Sobolev’s inequality that the L.,-norm of the initial perturbation is small. This implies
that the nonlinear stability result obtained in Theorem 2.1 is essentially a local stability one. Thus a
natural question is how to get the global stability for large perturbations in both the H!-norm and the
Loo-norm. The second theorem shows that such a stability result holds in the case when the adiabatic
exponent y is close to 1.

Theorem 2.2. Let |6, —60_| < mo(y — 1) for some constantmg, (V, U, @) be the viscous contact wave defined
in (2.7) and assume that there exist positive constants m,, my satisfying

@, ¥, 0)(,0) € H',
0<m;' <vo(x), V(xt
<

<my, (2.10)
T<(x), O t<m

)
0<my, ) 0
forall (t, x) € [0, 00) x (—00, 00). Then, there exists a positive constant 8o such that if y — 1 < &g, then the
Cauchy problem (1.1), (1.2) has a unique global solution (v, u, 6)(x, t) satisfying (¢, ¢, ¢) € X([0, c0)) and

lim sup |(v—V,u—U,0—-0)x1t)|=0. (211)

=00 ye(—00,00)

Remark 2.2. The difference |64 — 6_| is naturally bounded by y — 1 multiplying some constant mg
from the physical point of view.

Remark 2.3. The same result as one in Theorem 2.2 was obtained by Huang and Zhao [11] for the
initial-boundary value problem of the compressible Navier-Stokes system with a free boundary con-
dition (see Theorem 1.2 of [11]). However, the approach cannot be applied here since the analysis
in [11] depends crucially on the availability of a Poincaré-type inequality, which cannot be true for
Cauchy problems.
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3. Preliminaries

We first state an elementary inequality derived in Lemma 1 of Huang, Li and Matsumura [7] which
will play an essential role later. Here, we state Lemma 1 of [7] by choosing special coefficient depend-
ing on ¥y — 1 which is important in our analysis.

Proposition 3.1. For 0 < T < o0, suppose that h(x, t) satisfies

heleo(,T;La),  hxelz0,T;Ly),  heely(0,T;HY).

Then
T . T T
//h2w2dxdt<4n||h(0)||2 +4nyT_/||hx(t)||2dt+8L1/(ht(t),hgz(t)>dt,
0 0 v 0
(3.1)
where for o > 0
X
xn=a+0} exof o’ | swo= [0 (32)
w(x,t) = eXpPy\————————— (- g, 1) = w(y,t)ay, .
¥y —-1DA+yp
—00
and (-,-) denotes the dual product between H~' and H'.
It is easy to check that
1 1
dage=(y —Dox, g0, =valy-D2a2. (33)

Next, we state the local existence of the solution to the Cauchy problem (1.1), (1.2) (see Lemma 3.1
in [3]).

Proposition 3.2. Assume that the initial data (vg, ug, 6y) satisfy

m, (¢, ¥, 0)(x,0)e H'(R). (34)

N | =

2m < vo(x), Op(x) <

Then, the Cauchy problem (1.1), (1.2) admits a unique solution (¢, ¥, ¢) € X([0, t1]) for some sufficiently
smallt; > 0 and (¢, ¥, £)(x, t) satisfies
m<v(x,t),0(x,t) <m,
|@.v. 9O <2| 4. v. )0
| @x ¥ 20 O < 2] (. V. 9 (0)

2

(3.5)
2

forall 0 <t < ty, where ¢ =s(v,0) —s(V, ®) and m, m are positive constants independent of x. Here tq
depends only on ||[(¢, ¥, £)(0) | 1.
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It is easy to check that the viscous contact wave defined in (2.7) satisfies the system

Vi—Uy=0,
e (), =u(7) +e
= e 1,
v/, V) (3.6)
R Ot + p(V, @)Uy = & + U3+R
)/—1 t p 3 X — V . l’l’v 2
where
Uy U2
Ri=U—pul—=), Ry=—-pu-=. 3.7
1 ‘“(v)x 2 H (3.7)

Let us consider two lemmas for the properties of the viscous contact wave (V, U, @) which will
be used in Sections 4 and 5, respectively.

Lemma 3.1. Assume that § = |64 — 0_| < 8o for a small positive constant 8y. Then the viscous contact wave
(V, U, ®) has the following properties:

CXZ
[V —vi|+10 — 04 < O0(1)de” 1+,
k k—1 kg koo
0KV | + [0k 1U| + k0| < 081+ Fe T, k>1. (38)
Therefore, we have
3 cx2 5 cx2
Ri=0(1)(1+¢t) 2e 1+, Ry=0(1)8(1 +1t)~2e T3, (39)

Lemma 3.2. Let |64 — 6_| < mo(y — 1) for a fixed positive constant mg and assume that y — 1 is small. Then
the viscous contact wave (V, U, @) has the following properties:

CX2
[V—vi|+]0 =01 <OD)(y — De &-DTH0,
k k 3k % o =S
V[ + O] <Oy —DZT A+ 2@ . k=1,
— kK cx?
kUl <oy — Djdko| <oy — 1T 1+ 2e i@, k>1.  (310)
Therefore, we have
1 3 _ o -
Ri=0()(y —1)I(1+t)"2e @000 Ry=0(1)(y — D?>(A+t)2e 7000, (311)
4. Proof of Theorem 2.1

Due to (3.6), we can rewrite the Cauchy problem (1.1), (1.2) as

¢ —¥x =0,
_ uy Uy R
Ye+ (P —px=H v ov),” 1,
Qx &x Ll)zc U% (4'1)
y_lft‘f‘PUx—pﬁ-Ux:K(V—7>X+M<7_7) — Rz,
(¢7 W7 g)(xv 0) = (¢07 WO, ;O)(X)s X € (_OO, OO)'
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To prove Theorem 2.1, a crucial step is to show the following a priori estimate by the combination
with the local existence of the solution in Proposition 3.2.

Proposition 4.1 (A priori estimate). For 0 < T < oo, let (¢, ¥, ¢) € X([0, T]) be the solution to the Cauchy
problem (1.1), (1.2) and assume that

l@. v.OC 0] <eo.  [(@x ¥ &I D] < Mo,

m<v(x0),0(x 0 <M (xeR', te[0,T]),

sup | (@, v, O 0| < My, (4.2)
ot<T

for some positive constants £9(< 1), Mo, m, m and M. Then there exist positive constants 8y, &1 and
¢ depending on m, m and M but independent of T, &9 and My such that if § = |0+ — 6_| < §p and
supo<i<t 1(P: ¥, O, Dl < €1, the following estimates hold

t
H<¢,w,;><-,t>||2+f!!<wx,cx)<-,s>}\2ds<c(a% +ed).
0

t
|| (¢X’ Iﬂx» ;X)(U t) H2 + / H (¢Xa 1//)()(5 ;XX)(U S)Hz ds < C(l + M%); (43)
0

forallt €0, T].

Proposition 4.1 is an easy consequence of Lemmas 4.1-4.4 below.

Using the local existence (see Proposition 3.2) and the above a priori estimate (see Proposition 4.1),
one can prove Theorem 2.1 by the continuum process. Note that the local existence in Proposition 3.2
holds for arbitrarily H' initial perturbation provided the initial volume and temperature functions are
lower and upper bounded. While in a priori estimate in Proposition 4.1, the L2-norm of the initial per-
turbation is sufficiently small. Thus we can prove Theorem 2.1 by the combination of Propositions 3.2
and 4.1. We omit the details for brevity.

We first estimate the Ly-norm of the perturbation (¢, v, ¢).

Lemma 4.1. Under the assumptions of Proposition 4.1, the following estimate holds

t

t
||<¢,¢,;><t>|!2+/H<1/fx,;x><s>||2ds<c(8+ H(¢,w,;)<0>||2)+c6[ﬂ¢x(s>||2ds,
0

0
forall0 <t < T,wherec=c(m,m, M) > 0.

Proof. Similar to [11], multiplying (4.1)1 by —RO(v-1 —V~1), (4.1); by ¥ and (4.1)3 by ¢6~1, then
adding the resulting equations together, we have

Liriroo( L)+ R0 (L)) + 49020 K92yt 0 =Ry — RS, (44)
2 v) s o)) e T ig s T =k 20
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where ®(c)=0 —1—1Ino, 0 >0 and

X 9)( @X
=(p—pov - u(”— E —)w— —(7 - 7>,

74 D+ e 1 1
=p.®|—|U — = U Uyl — — =
Q=p+ <v> X+)/—1 <9> x T Uy x(v V)

¢ K Oy KOOy
— —(p —p)Ux— WCQ - W‘P(x
KkO? U2 1 2
+ g - (V‘V) B s (45)

It is easy to check that @(1) = @’(1) =0, " (s) = s~2 > 0. This yields that

c1¢? < @(%) + (%) <o’ ai?< @(%) + @(%) <6¢?, (4.6)

for some positive constants c¢; = cj(m,m), i =1, 2. Using Lemma 3.1, (4.3) and (4.6), we get from (4.5)

Q] < wx +— cx +c(m, m)(¢* + ¢2) (1Ux| + ©2), (4.7)

4v9 4v6
R 1 1 1 1
/(umm + ‘%Ddxgc(m,m)(nmm +IR2 M) (I 2 11l 2 + 117 12x1 )
<@, m, MO8 (| W &0 |* + A +073). 48)

Integrating (4.4) with respect to x, t and using (4.7), (4.8) and (3.8), we have
t
l@.v. 0]+ f | W 60 )| > ds
0

t
<c(8+ @, v, OO) +cs f 1+ (¢? + zz)e*%i dxds, (4.9)
0

where ¢ =c(m,m, M) > 0 and ¢ is the positive constant in Lemma 3.1.
Lemma 4.1 follows directly from (4.9) and the following Lemma 4.2. 0O

Lemma 4.2. Under the assumptions of Proposition 4.1, the following estimate holds

t t
f/](¢,1/f,§)|2w2dxds <c+c/\|<¢x, Ve 0|2 ds. (4.10)
0 0

where w is the function in (3.2) by choosing o« = ﬁ and ¢ = c(m, m, M) > 0.
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Proof. After getting the following two estimates
t t
2 _ 2
[[ (ke + = vpgyoaxds <+ [[|0n vl Pds e
0 0

t
+c6+n) //(¢2 + ;“Z)w2 dxds, foranyn >0,
0

t

[[ (e = pro? + 9707 axas
0
t

t
<c+c/||(¢x,¢x, cx>||2ds+c6f/(¢2 +¢%)? dxds,
0 0

adding (4.11) and (4.12) yields (4.10).
We first prove (4.11). From (4.1)3 and (4.1)1, we get

R R¢ — x — QUi
(—{ +p+¢> :—ﬂ(l/fx+Ux)+K<M> +G,
y—1 ¢ v vV X

where G = v~ 1 (Uy 4 v)%. Taking h = R¢ + (Y — 1)p4$, we have from (4.13)
1 R¢ — R¢ —
ﬁ(h:,hg2>=—f %Mh%gde—/%Mhngzdx

4
_/w(hgz)xdwr/(?hgzdx:zﬁ’

vV ‘
i=1

where g is the function defined in (3.2).

3491

(411)

(412)

(413)

(4.14)

Now we estimate J; (i=1,...,4) term by term. Noticing that |Uy| < cw? and using (3.3) and

Lemma 3.1, we obtain
]2l <cs/(¢2+zz)w2dx,

sl <c / (15l + [6Oxhy] + 1cxhlew + [pOxhlw) dx

2
’

<@+ n)/(qﬁz + Y dx+c(1+n7")|(@#x ¢0||", forany >0,

| Jal <c/(|¢>| 120 (1l + 1Ux2) dx < cenllyl® + c8(1+ )72,

where ¢ =c(m, m) > 0.

The estimate of J; is more subtle. Noticing that Rt — p,¢ =h — Yy p.¢ and ¢ = ¢, we compute
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—2J1= 2/ v (h? — ypihe) g’ dx = /(ZV“hzgzdn —ypivig?(¢?),) dx
= ( / v 'hg?p(2h — Vp*‘b)d")t -2 / v hge(2h — y pi¢)grdx
+ / v2v,g?he 2h — y . ) dx — f V1% (ah — y py$)he dx,
and

2= ( f v hg?p(2h - yp+¢>dx> “2a 1) f v hgp(2h — y psdwydr

t

+ [ VU gheh — ypid) + (7 — D@h — v pid)RE — pio)]d
Vi~ 60y,

ety =) [ FEEEO g2 - y )]

— —1)/v—1g2¢(4h—yp+¢>cdx

4
- (/v*hg%p(zh - yp+¢)dx) +Y Ji (4.15)
i=1

t

By using (4.13) and (3.3), we estimate ]’i i=1,..., 4) term by term:
iH <c/|h||¢|(|h|+|¢|)|wx|dx<c(1 +r)*1/(|¢|3+|c|3)dx
1 5 1 5 1 _4 2
<cA+07 (Il Z Ngxllz + 1212 18lZ) <1+ 073 +cf (px. 20|
12| <c/(|ux| T 1l) (16 + 1) d
<c(Ip121eell + 12121 (Ul + 1) < c(1 4677 + ¢ (e ¥ 20|
13| <c/(|:x| +190x1) (0l (191° + 15 12) + (161 + 1¢1) (1x] + 1¢x1)) dx
<cf(|;x| F161A+072) (A +072 (16 + 1217) + (161 + 1¢1) (1] + 1)) dx
<cd+073 +¢f (o 20|
WE <c/|¢|(|¢|+|¢|)(|ux|2+|wx|2)dx<c<1+r>—% + cllyxll?,
where ¢ =c(m,m, M1) > 0,
‘ f v 1hg?(2h — y p4d) dx| < c(m. 7. My), (4.16)

Using estimates J; (i=1,..., 4) and (4.16), we obtain from (4.14)
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t

fht hg ds

<c(8+n)//¢ +§ w? dxds

+c+c( +n‘1)f||(¢x,wx,§x)||2ds, for any 7 > 0. (417)

Applying Proposition 3.1 with (4.17), we obtain (4.11).
Next, we prove (4.12). Denoting by f(x,t) = ffoo w?(y,t)dy, we have

|fC.0], <ca+n72 iG], <ca+n7E (418)

Rewriting (4.4), as
Ve + (W)X = u(%)){ +F, F=-U+nup(v'Uy),.
and multiplying it by (RZ — p4+é)vf, we have
5 [ (Re = puoiatax
= ke~ proyvran— [ v Re - piguasds
[ v(Re ~ propvg) dx— [ PR~ pro)vfds
- ( [ wire = piows d")t - [wiRe ~pronvrax— [wire = pryvesax
~ [wiRe —pronfidx— [ v (Re — puoPuafax

[ V(R — propvg) dx— [ FRe— prg)vfds

10
= ( f V(R — p)vf dx) +> i (419)
t =5

We estimate J;,i=5,..., 10, as follows: Using (4.13) and ¢; = ¥x, we have

R
Js=—(y - 1>/wvf(f¢ +p+¢) detyps [ s dx

O
(- 1)/wf(R§ P49 (Ux + ) dx + K (y — 1)/ V(V—f@wnxdx

— _1)fwvfcdx+ Vp*/ wZ)X=ng. (4.20)
i=1

It is easy to show that
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1 _1 1 1
|I5] + sl < e+ 0721w 12 1l 2 (1914 12 1) (10 + I19xll)
5 1 1 3 5
Sc(A+D7T Yl 2 + A+ 072 [yl 2) <cllypnll® +c(1+1)73,
1
|J§‘ gc/(|§x| +lol(1 +t)7j)|1/fxvf+‘/fvxf+1/"’fx|dx

<c(lgll + A+ 072 181) (el + 12 A + 077 + [yl A + 71
<)@ v 20|+ +6)73,

12| <c+0 21yl (Wl + A +072) <clignl® + ceo(1 + )2,

1= =125 [varan-2E [ rurocan— Y25 [ py2g.ax
<—’/zﬁ/vwzwzdx+c8fvw2w2dx+ca+t)*f||w||f||wx||%||¢x||
< ”ff/vw Y2dx+c| (e v | + (1 +0)72,
where ¢ = c(m, i, M;) > 0. On the other hand, we get
|J7|<C(1+t)’%/IWI(I¢I+ICI)dXSC(l+t)’%,
Jsl = ’ [viRe = prorenrdit [vikRe — bR dx
<8 [(#7+ ) dx ol e |+ et 4072,

ol < ¢ (e Yo 20| > +c(1+0)73,
1 J10l < llFllL, (14072 (Iellin, + 12l ) <8 +677 + ¢8| (. 20|

and
’ / W (RE — p1)vf dx| < c(m, 7, My). (4.21)

Integrating (4.19) over (0,t), together with all the estimates of J;, i =5,..., 10, and (4.21),
yields (4.12).
The proof of Lemma 4.2 is completed. O

Next, we estimate the Ly-norm of the perturbation (¢x, ¥y, Cx).

Lemma 4.3. Suppose (¢, ¥, ¢) € X([0, T]) satisfies (4.2). Then it holds for t € [0, T],

t
lx®]? +/U¢x<s) |2 ds < c(s + | (wo. ¢0)|* + Idol3),
0

where ¢ = c(m, m, M1) > 0.
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Proof. We rewrite (4.1), as

M<@) +p%:1ﬂt+%_wvx_ﬂ<%) + U, (4.22)
t t

v v v v2

where we used (%) = (%)t + (%)[ due to v; = uy.
Multiplying (4.19) by ¢x/v and using

<g) _ U dutn + dxUs
t

v v v2 ’
we have
2 X 2 X 2 R X¥X XVX R -
(gd%_wg) +p¢%:_<w) +<g+ bt )_(WZ LK 3p*¢vx¢x>
2v v /. 14 v o/, v v v v
YoxUx Vi ox
(), )y
vy :
:_< . >X+i§1,~. (4.23)
We estimate I;, i=1,..., 3, as follows:
f|h|dx<n||¢x||2+c(1+n”)H<wx,;x)H2, for any 7 > 0,
fllzldX<C/(|1ﬂ1ﬂxVx| + (Ip] + 121) I Vagpx|) dx
<cs@n il +es [[(02+ 2 + PP
Vx
/I13IdX<Cf(I1/f¢xel+‘<7> - U |¢>x|> dx
t
<caf(<1 + 0720 + [l) el dx < ¢8| (@, Y0 | + 51 +)72.
Using estimates I;, i =1, ..., 3, we obtain from (4.23)

t
x| + / léx(s)] % ds
0

t t
<cu(wo,¢0x>||2+ca+c<||w(t>|!2+/\|(wx,;x>(s>|!2ds) +ca/f!(¢,w,¢>\2w2dxds.
0 0 (4.24)

Lemma 4.3 follows directly from (4.24), Lemmas 4.1 and 4.2. O

Remark 4.1. From Lemmas 4.1-4.3 and (2.8), we obtain (4.3).
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Lemma 4.4. Suppose (¢, ¥, ¢) € X([0, T]) satisfies (4.2). Then it holds for t € [0, T],

t
” (Y, &) () ”2 + f ” (Yxxs Exa) (S) ”2 ds < C(l + ” (¢0, Yo, o) H?)
0

Proof. Rewrite (4.4), as

1//{_#@:_<R§_p+¢> _wavarF. (4.25)

v v v2

Multiplying (4.23) by —¢xx and integrating the resulting system with respect to x, we have

1d v,
mnwmuzw/ﬂx

6
:/<M> Yx dX + [ %wxxdx—/wadeEZ/lidx; (4.26)
X i=4

v
wo[ Ve 2 2, ,.2y,2
[ i< [P e e ol +es (87 + ) dx

/IlsldX<C/|1/fx|(|¢x|+|Ux|)|wxxldx
1 3 2 -1 2
S cllgxlllxll 2 | ¥xxll 2 + cdllxxll” + ¢8(1 + )7 (|9l

2
<%f%“’““(l+t)‘1||wx||2+c||<1)x||“||wx||2,
w o v ) s
|15|dx<€ de+65||(¢x,§x)|| +c8(141t)74.

Due to the estimates I; (i =4,...,6), we have from (4.26)

1d

2 M 1/’)%9(
salwol+5 [ Sra

<)@ v 0O | +ca/(¢2 + ) dx+c8(1 + 077 + || g v |,

and integrating it with respect to t yields

t t
||wx<t)||2+/||wxx(r)||2dr <c||wx<0)||2+c/||(¢x,wx, £ (@) dr + ¢
0 0

t t
2 2 2 4 2
+c3/[(¢ +¢%)w dxdr+c02ta<xT||¢x(t)|| f||¢x(r)|| dr.
0 0 (4.27)
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Now, we estimate L-norm of ¢y. Rewriting (4.1)3 as

y —1

v ()
{t—fcgﬁ=—(pux—PUx)—KCX2X—K<¢ X) +G
v v vV /.,

and multiplying it by —¢xx, we have

R d 2 RO PR )
ey £ | TR o) ety

¢@ 10
+K/< VV") ;xxdx—/ngdeEZflidx; (4.28)
X i=7

2
/|17|dx< g/gvﬁdx—i-clll//xllz+c8/(¢2+;2)a)2dx,

1 3
/|Is|dx<c||¢x||||§x||f||;xx||f + 8l Zxxl? + 81+ gel?

2
K
< gf fvﬁderCa(] + 07 &l + cligell*lexl%

2
K
/|19|dx< gf%dxw[n@xxn%||@x||%w||¢x||2+||@x||%w(||¢x||2+||vx||2)]

K[ Vi P .
g5/7‘1"‘”‘3(“”) loxll® +c8(1+1)"2,

2
K
/IholdX< g/%d%l—a?(l+t)_l||¢x||2+65(1+t)_%'

Due to the estimates I; (i=7,..., 10), we have from (4.28)

t
Lo + / w7
0

t

<l +¢ [ 1n v, e dr +05

0

! t
2 .2\, 2 4 5
+c8 /f(¢ +%)w axdr+cog&xT||¢x(t)|| /H(wx,gx)(r)” dr. (4.29)
0 0

Lemma 4.4 follows from (4.27), (4.29), (4.3)1 and Lemmas 4.1-4.3. O

Remark 4.2. From Lemmas 4.1-4.4 and (2.8), we obtain (4.3); which will close the proof of Proposi-
tion 4.1 together with (4.3)1.



3498 H. Hong / ]. Differential Equations 252 (2012) 3482-3505

5. Proof of Theorem 2.2

Since we want to get Lo,-global stability result, the techniques in Section 4 do not apply any
longer. To overcome this difficulty, we introduce function Xg, y,(t1, t2; mg) by

1
Xam(tr, t25me) = {(qﬁ, v, ¢) € X([t1,t2]) ‘ 0< ngl <O(x,t) < 4my,

0<=m 1 <v(x,t)<2m, [tsutp]H(qb,w, AGIN <M} (5.1)
1,82

NI'—‘

for tq, t; (0<t1 <ty <oo)and m, M (0 <m~! < <00, 0 <M < o0), where
@ =5(v,0)—s(V,0).

By Proposition 3.2 and the assumptions listed in Theorem 2.2, we know that the Cauchy problem (1.1),
(1.2) admits a unique solution (¢, ¥, £)(t,X) € Xm, ,m(0, to; mp) for some sufficiently small positive
constant tp > 0 only depending on ||(¢, ¥, g)(0)||% with M =2|(¢, ¥, ¢)(0)|1.

To prove Theorem 2.2, we need the following a priori estimate:

Proposition 5.1 (A priori estimate). Assume that the conditions of Theorem 2.2 hold. Then there exists a pos-
itive constant 8o such that if y <1+ 6o and (¢, v, ¢) € X (0, to; mg) is the solution of (3.2) for some
positive T > 0, then there exist positive constants c3(my, mg) and c4(m,, my) such that the following hold

0 < c3(my, mg) ™! < v(t, x) < c3(my, mp),
1 (5.2)
0< Em“) <O(t,x) <2my

and

t

|@. 0. 00| +/{}|<¢x,¢x)|yz+ 1612} d < catmy, mo)(1 + || (o, Yo, 90)[3).  (53)

0

Proposition 1 is proved by a series of lemmas. First, we have

Lemma 5.1. It follows that

2
(o (5)» %) H("’* F)of e
t
<c(mv,me){||<¢o,wo,~/5<po>||2+6%c(ﬁz,M)<1 +/||¢x(r)||2dr>], (5.4)
0

where§ =y — 1.
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Proof. We use (4.4) and (4.5). Noticing that

Vv

c1mg)c? < @ 9 +& © < cq1(mg)e?
1 6 X ) 9 X 1 0 s

c1(my)cq (M)g? < qb(l) + cb(%) < ca(my)ea (),

we get from (4.5)

2
2, & 2 (42 2
Qi< 4v9‘/”‘ +4v92§" e, m"’me)[llJX'(d) 3 >+Ox(¢ +¢ )]

From (3.11), we have

2§ . . : )

IR1v| + | —=| ) dx < cmo)(IIR1 I, + IR2ML,) (I 12 1¥xll2 + 1212 112x112)
ne 2 KO 2 . 4
S gy Vr 1 gygz & Hemmg, M) +16)73

Using Lemma 3.2, (5.5) and (5.6), we get from (4.5)

[(foEv ol f1 Sl o

< c(my, mg) || (b0, Yo, V90) |* + c(iin, mg, M)

. t a2, ¢ cx?
+c(m,mv,m9)8/ 14+1) (d) +?> exp(—m>dxdt,
0

2

where ¢ is the positive constant in Lemma 3.2. Notice that in (5.7), we used the fact that

k=0,1.

lZollk < c(my, mg)(y
Lemma 5.1 follows directly from (5.7) and the following Lemma 5.2. O

Lemma 5.2. The following estimate holds

t 5 t
//<¢2+1//2+%>w2dxdr <c3%(1 +/H(¢x,wx, ;x)szz>,
0 0

where w is the function in (2.3) by choosing o = ¢/2 and ¢ = c(fn, my, mg, M).

3499

(5.5)

(5.6)

(5.7)

(5.8)
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Proof. After getting the following two estimates

t
//(R; + (v = 1)pio) w?dxde
0

t 5 t
<c33//<¢2+%)a)2dxds+c5%(1+/H(¢x,¢x, ;X)szr), (5.9)
0 0

/ ((RE — p4)? + y2)w? dxdr

, t ;2 1 t ,
<c85//<¢2+?)a)2dxds+c8? 1+/H(¢x,¢x, oo||“dr ), (5.10)
0 0

adding two estimates and using

—

o

2 2+ (RO)? 2
(RC+(y —=1)p19)” + (RE —pr¢) >5< 5 +2(p+¢) )
yields (5.8), where ¢ = c(m, m,, mg, M).
We first prove (5.9). Noticing that
Uyl < cda?, h=R§+(V—1)P+¢=0(1)5%<¢+%>, (5.11)

we estimate the right terms J; (i=1,..., 4) of (4.14). Using Lemma 3.2, (3.3) and (5.11), we obtain
02 T SA Y
[J2] < c(m)d ¢ +? w? dx,

1l <c(rﬁ,mv)/(5(|;xhx|  19Oue]) + 83 (5] + 1$Oxh])) dx

~ 3 2 {2 2 A 1 2
<ctimst [ (9245 )0 dxctinm,)s? |6 ol

N ~ N _3
|Jal < c(h, M>6/(|¢>| +1¢1) (Ifrl® + [UxI?) dx < (i, M)S||yrxl|? + c(f, M)S(1 + )72,
To estimate J;, we use (4.15). Noticing that (3.3), (5.11) and |wx| <c(1 + t)‘18*%, we have

H <c<rh)a<1+t)*1/|h||¢|(|¢|+|h|)dx<c(m>a(1+t>*1/(|¢|3+|¢|3)dx

2

’

< e, S +073 +ciit, M)S| (dx. &)
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| 73] <c(ﬁz)6/(|ux| + 1) (1912 + 12 1P) dx

<cms (17l + 11712l (10l + 1)

< e, M3+ 077 + ciit, IS (dx, Y 20|,
3] <c(ﬁz,mv)8/(|cx| +1¢116x)| (v g%), (181> + 121%) dx
+c(ﬁz,mv>6/(|;x| +16116x1)|°]| (¢ 2h — ¥ p19)), | dx
<c(ﬁz,mv)a%f(|¢x|+|¢|<1+t>—%)(|¢x|+<l+t>—%)(|¢|2+|;|2)dx

+c(h,m,)87 /(|;X|+|¢>|(1 +072) (161 + 121) (Igal + 12x]) dx

<C(ﬁ1,mv,M)S%{Ilé“xll(llcbxll +lall+a+n"")+a +t)_](”¢x”% + IIExII%)}
n 3 1 3 3
+ ¢, my, M)82 (1 4+6)72 ([l 2 + [14x112)

< e, my, M3 (| (b &0 |* + (1 +073),

A A _3 A
Wl <c<m>62/|¢|(|¢|+|;|)(|Ux|2+|wx|2)dx<c<m,M>62(1 + )72 + ()83 yxl®.
On the other hand, we have

<ciys [ hligI(n + lgl)dx < cGi . (512)

‘ / v hg?(2h — ypyd)dx

Using estimates J; (i=1,..., 4) and (5.12), we obtain from (4.14)
t t t
1 2 3 2 2\ 1 2
v (he, hg?)dT < c82 o + 5 ) dxds+c82 | |(¢x. ¥x. &0)||“ds +cs,  (513)
0 0 0

where ¢ = c(m, m,, M). Applying Proposition 3.1 to (5.13), we obtain (5.9).
Next, we prove (5.10). Denoting by f(x,t) = [*_ @?(y,t)dy, we have

Ife.0], <csta+072 0], <csTA+073 (5.14)

We estimate the right terms J;, i =5, ..., 10, of (4.19) as follows: Using Lemma 3.2 and (5.14), we
have from (4.20)

LY+ 16l <82A+ 0721w Z 11l 2 (191 + 121) (1 + 191

1 5
<cd2 (Il + A +073),
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|J2| < cam, mv)af(lm + lpl(1 +t)_%)|1//xvf + Y vaf + Yvfyldx

<es(| (@ v S| + A +072),

3 3 -1 2 -3 3 2 3 -2
3] <cd2 A+ 072 [l (Il + A +6)72) <cd2[|yxl|* +c82 (1 41) 72,

jgz_%/vwzw%x—%ffwzvde—%/fwzd)xdx

<=TE= [ vty ax+ i st (| @u p [P+ 1 +072),

where ¢ = c(m, my, M) > 0. On the other hand, we get

17l <c82(1+1)2 / Wi(1¢l+ I¢])dx < cs2(1+1)72,

|Jsl = ‘ f v (R — p1)?Oxfdx + f v I(RE — prop) xS dx

3 2 ¢? 2 1 2 1 -2
<cazf(¢ +?)w dx+c87 [ (¢x, 0| " +c82(1+ 072,

1 2 1 _3
[Jol €87 || (¢, ¥ )|~ + €821 +1)72,

1 _1 1 _3 1 2
|J10l <82 [IF Il (14077 (IxllLg + 12xll,,) <821 +677 +¢87 | (¢x, &) |

and
‘/wm—pm)vfdx <cst, (5.15)

where ¢ = c(m, m,, M) > 0.
Integrating (4.19) over (0,t), together with all the estimates of J;, i =5,...,10, and (5.15)
yields (5.10). The proof of Lemma 5.2 is completed. O

Lemma 5.3. There exists a small positive constant §o such that if § =y — 1 < o, then it follows that
0 < c3(my. mg) ™" < V(t. X) < c3(my., my) (5.16)

and

¢
(o

< catmy, me)(1+ | (b0, o, Vo00) 7). (5.17)

2 t
T e + [ @ v 20 (0[P dT
0
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Proof. We first prove

& (s)

vz

“as< c(my. mg) (1 + || (o. Yo. V390)[3). (5.18)

‘¢x

|

Estimate the right terms I;, i =1, ..., 3, of (4.23) as follows:

2
/|I1|dx<n % +c(my,mp)(1+n71) (%%) , foranyn >0,
2 2
/|12|dx<c(mv,m9)s% (f—g%) +c(m,mv,m9)5%/‘(¢,w, %) w? dx,

+c(my. mg)s2(1+1)772.

(&5
vi WV

Using estimates I;, i =1, ..., 3, we obtain from (4.23)

ol

t
< cmy.mg)(53 + ||<wo,¢>0x>}|2)+c(mv,me)<||w(t>||2+fH( Vx )(s)
0

NI4T
t
+c(m,mv,m0,1\/1)350//‘(¢,¢, %)

From (5.19) and Lemmas 5.1-5.2, we get (5.18). i
To use Y. Kanel's method (cf. [13]) to the proof of (5.16), we need to estimate ||%(t)||2 where
v =v/V. In fact since

/|13|dx<c<mv,m9,M)8%

x ﬁ(s)

V2

’

w?* dxds. (5.19)

we have

bx Px

< 2’ + c(i)c(my)s? . (5.20)

+ c(@)c(my)||Vyll? < 2‘

Therefore, by using (5.4), (5.18) and (5.20), we get

(oo 58 ol (52 ol

<c(my.my)(1+ | (¢o. ¥o. V5¢0) H1). (5.21)
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To prove (5.16), let

d/(\?):/ V) dn, ®(m)=n-—Inn-1. (5.22)
)

Since

lI/(\?)—>{_O° as v — 04, (5.23)
+oo as v — +o0,

and

v (T(x.0)| = /xaw(ﬁ(y 1) dy <1H( cb(K) ﬁ)(t) 2 (5.24)
’ dy ’ =2 V) v ’ '

(5.16) follows from (5.21)-(5.24). From (5.16) and (5.21), it is easy to get (5.17).
The proof of Lemma 5.3 is completed. O

Lemma 5.4. It follows that

t
| (W O] + / | s £00(@)|* dT < c5my, me) (1+ | (o, Yo, Vogo)[3)  (5.25)
0

and
1
0< Em" <O(t,x) <2my. (5.26)

Proof. The estimate (5.25) is given in the same way as Lemma 4.4 using Lemma 3.2 instead of
Lemma 3.1. So, we will omit. From (5.17) and (5.25), we have

1 1
e 0] <V2[c®]2 |2® |7 < 84camy.mg)(1+ | (bo. wo. Vo00) [7)- (5.27)
Since
0<my,' <Ot,x) <my (5.28)
and § is small, we get (5.26) from (5.27) and (5.28). O
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