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d Department of Fundamental Physics, University of Salamanca, Plza. de la Merced s/n, 37.008, Salamanca, Spain

Received 26 June 2013; revised 3 February 2014

Abstract

A Lie system is a system of differential equations admitting a superposition rule, i.e., a function describ-
ing its general solution in terms of any generic set of particular solutions and some constants. Following 
ideas going back to Dirac’s description of constrained systems, we introduce and analyze a particular class 
of Lie systems on Dirac manifolds, called Dirac–Lie systems, which are associated with ‘Dirac–Lie Hamil-
tonians’. Our results enable us to investigate constants of the motion, superposition rules, and other general 
properties of such systems in a more effective way. Several concepts of the theory of Lie systems are adapted 
to this ‘Dirac setting’ and new applications of Dirac geometry in differential equations are presented. As an 
application, we analyze solutions of several types of Schwarzian equations, but our methods can be applied 
also to other classes of differential equations important for Physics.
© 2014 Elsevier Inc. All rights reserved.

MSC: primary 34A26; secondary 17B81, 35Q53

Keywords: Dirac structure; Lie system; Poisson structure; Schwarzian equation; Superposition rule; Vessiot–Guldberg 
Lie algebra

1. Introduction

The study of Lie systems can be traced back to the end of the XIX century, when Königs-
berger [1], Vessiot [2,3], and Guldberg [4] pioneered the analysis of systems of first-order 
ordinary differential equations admitting a superposition rule [5,6]. In 1893 Lie succeeded in 
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applying his theory of Lie algebras [7] to characterize systems admitting a superposition rule [6, 
Theorem 44]. His result, known nowadays as Lie–Scheffers theorem [5,8], states that a system of 
first-order ordinary differential equations admits a superposition rule if and only if it describes 
the integral curves of a t -dependent vector field taking values in a finite-dimensional real Lie 
algebra of vector fields (Vessiot–Guldberg Lie algebra) [9].

During the XX century, Lie systems were almost forgotten until the 80s, when Winternitz re-
vived their study [10,11]. He analyzed the classification of Lie systems on R2 [12,13], employed 
superposition rules to study systems of first-order differential equations on supermanifolds [14,
15], and investigated Lie systems of relevance [16]. His achievements boosted the study of Lie 
systems, which were found to have many geometric properties and applications in physics, math-
ematics, and control theory. For instance, the work [9] details more than two hundred references 
on Lie systems and related topics.

It was recently noted that remarkable Lie systems admit a Vessiot–Guldberg Lie algebra of 
Hamiltonian vector fields with respect to symplectic and Poisson structures [17,18], e.g., cer-
tain coupled Riccati equations [19], Kummer–Schwarz and second-order Riccati equations in 
Hamiltonian form [18], and others [20,21]. This gave rise to the definition of the so-called Lie–
Hamilton systems [18] which enjoy a plethora of geometric features [9,18–24].

Algebraic and Poisson geometric techniques have been employed to study Lie–Hamilton sys-
tems [18,23,24]. For instance, the superposition rule for Riccati equations can be obtained in an 
algebraic way from a Casimir element of a certain Lie algebra [23]. Co-algebra techniques can 
also be applied to obtain superposition rules and constants of the motion for these systems [23]. 
Additionally, other results concerning the integrability of these systems have been found directly 
or indirectly from the geometric structures associated to Lie–Hamilton systems [18,20,21].

Of course, not all Lie systems are Lie–Hamilton systems. We here devise a simple and useful 
condition ensuring that a Lie system is not a Lie–Hamilton system, and we use it to show that 
Lie systems related to third-order Kummer–Schwarz equations [25] and diffusion PDEs [26] are 
not Lie–Hamilton systems. Meanwhile, we prove that these systems admit a Vessiot–Guldberg 
Lie algebra of Hamiltonian vector fields, but this time with respect to a presymplectic form [27]. 
The appearance of this new structure in several important Lie systems and the fact that such 
systems cannot be investigated by the methods of the theory of Lie–Hamilton systems motivate 
the present study.

We introduce a class of Lie systems covering all the aforementioned Lie systems as particular 
instances: Dirac–Lie systems. Roughly speaking, a Dirac–Lie system is a Lie system possess-
ing a Vessiot–Guldberg Lie algebra of Hamiltonian vector fields of a special and very general 
type. Most properties of standard Hamiltonian vector fields with respect to symplectic structures 
can naturally be extended to these ‘generalized’ Hamiltonian vector fields. For example, these 
generalized Hamiltonian vector fields can be related to ‘generalized’ Hamiltonian functions, the 
so-called admissible functions, which can be employed to study them and, as a byproduct, Dirac–
Lie systems. In doing this, the standard techniques in Hamiltonian dynamics and Lie–Hamilton 
systems can be adapted to investigate Dirac–Lie systems, which are much more general than 
Lie–Hamilton ones.

More precisely, a Dirac–Lie system is a triple (N, L, X) consisting of a Lie system X on a 
manifold N which admits a Vessiot–Guldberg Lie algebra of Hamiltonian vector fields with re-
spect to a Dirac structure L on N [28–30]. The latter is a maximally isotropic subbundle L of 
the Pontryagin bundle T ∗N ⊕N T N satisfying an integrability condition. Note that Dirac struc-
tures provide a geometric setting for Dirac’s theory of constrained mechanical systems which 
generalizes simultaneously Poisson and presymplectic structures.
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Using that Poisson and presymplectic manifolds can be described as particular cases of Dirac 
structures, we show that Lie–Hamilton systems, based upon Poisson manifolds, are a particular 
type of Dirac–Lie systems and we recover their properties as particular instances of our theory.

Dirac–Lie systems can be studied through Dirac geometric techniques. This is more general 
and commonly easier than using techniques for Lie–Hamilton systems. We prove that every 
Dirac–Lie system (N, L, X) can be described by a t -dependent Hamiltonian h : (t, x) ∈ R ×
N �→ ht (x) ∈ R whose functions {ht }t∈R span a finite-dimensional real Lie algebra relative to 
the Poisson bracket of admissible functions induced by L [28,31]. This suggests us to define a 
type of t -dependent Hamiltonians, called Dirac–Lie Hamiltonians, that generalize the notion of 
Lie–Hamiltonians used for studying Lie–Hamilton systems [18]. Subsequently, we show that a 
Dirac–Lie system (N, L, X) is equivalent to a curve in a finite-dimensional real Lie algebra of 
sections of the Lie algebroid bracket induced on L (see [32,33] for an account of Lie algebroids).

We study diagonal prolongations of Dirac structures and Dirac–Lie systems which play a 
central rôle in determining superposition rules [8]. These notions are exploited to analyze and to 
derive in an algebraic way t -independent constants of the motion, Lie symmetries, and superpo-
sition rules for Dirac–Lie systems. In order to illustrate our procedures, we obtain a superposition 
rule for Schwarzian equations [34–36], i.e. differential equations related to the Schwarzian 
derivative [37] and also known as Schwarz equations [38]. Our method is simpler than previ-
ous approaches based upon integrating systems of PDEs and/or ODEs [11,25].

Further, we develop methods of generating new Dirac–Lie systems out of an initial one. 
This results in the definition of the so-called bi-Dirac–Lie systems, i.e., Lie systems admitting a 
Vessiot–Guldberg Lie algebra of Hamiltonian vector fields with respect to two Dirac structures. 
This enables us to investigate X through our previous results in two, generally non-equivalent, 
manners: by using L and L′. We devise a new procedure to produce bi-Dirac–Lie systems, based 
upon the use of t -independent Lie symmetries of X, that generalizes a previous result employed 
to study autonomous Hamiltonian systems [39]. This is further generalized by using the so-called 
gauge transformations of Dirac structures [40].

All our previous techniques are applied to derive a mixed superposition rule for studying 
Schwarzian equations. The standard methods for deriving a mixed superposition rule demands 
finding certain t -independent constants of the motion of a Lie system or integrating a system of 
ODEs [25,41]. In both cases, it is necessary to integrate systems of PDEs/ODEs. In our case, 
since we aim at obtaining a mixed superposition rule for a Dirac–Lie system, the associated 
Dirac structure allows us to use purely algebraic–geometrical techniques to avoid integrating 
complicated systems of differential equations and to simplify the whole procedure.

We find out that our techniques can be applied to Schwarzian Korteweg–de Vries (SKdV) 
equations [42,43]. This provides a new approach to the study of these equations. We derive 
soliton-type solutions for Schwarzian–KdV equations, namely shape-preserving traveling wave 
solutions. Moreover, we show how Lie systems and our methods can be applied to provide Bäck-
lund transformations for certain solutions of these equations. This can be considered as the first 
application of Dirac structures in studying PDEs of physical and mathematical interest from the 
point of view of the theory of Lie systems.

The structure of the paper is as follows. Sections 2, 3, and 4 concern the notions used through-
out our paper. In Section 5, the analysis of several remarkable Lie systems that cannot be 
considered as Lie–Hamilton systems leads us to introduce the concept of Dirac–Lie systems 
which encompasses such systems as particular cases. Subsequently, the Dirac–Lie Hamiltonians 
are introduced and analyzed in Section 6. Next, we investigate several geometric properties of 
Dirac–Lie systems in Section 7. Section 8 concerns the study of constants of the motion and 
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superposition rules of Dirac–Lie systems. Next, Section 9 is devoted to bi-Dirac–Lie systems. In 
Section 10, we illustrate the usefulness of all our methods to derive a mixed superposition rule 
[41] to study Schwarzian equations. In Section 11 we devise an application of our techniques in 
SKdV equations. Finally, we summarize our main results and present an outlook of our future 
research in Section 12.

2. Dirac manifolds

The concept of Dirac structure, proposed by Dorfman [29] in the Hamiltonian framework 
of integrable evolution equations and defined in [28] as a subbundle of the Whitney sum 
T N ⊕N T ∗N (called the extended tangent or Pontryagin bundle) satisfying certain conditions, 
was thought-out as a common generalization of Poisson and presymplectic structures. It was 
designed also to deal with constrained systems, including constraints induced by degenerate La-
grangians, as was investigated by Dirac [44], which is the reason for the name. In this section, we 
present a brief survey on all the necessary notions and facts (see for instance [28,30,31,45–48]
for details).

We hereafter assume all mathematical objects to be real, smooth, and globally defined. Man-
ifolds are considered to be connected. This permits us to omit several minor technical details 
while highlighting the main aspects of our theory. We hereafter call Γ (E) the space of smooth 
sections of a bundle (E, B, π : E → B).

A symplectic manifold is a pair (N, ω), where N stands for a manifold and ω is a non-
degenerate closed two-form on N . We say that a vector field X on N is Hamiltonian with respect 
to (N, ω) if there exists a function f ∈ C∞(N) such that

ιXω = −df. (2.1)

In this case, we say that f is a Hamiltonian function for X. Conversely, given a function f , there 
exists a unique vector field Xf on N , the so-called Hamiltonian vector field of f , satisfying (2.1). 
This allows us to define a bracket {·,·} : C∞(N) × C∞(N) → C∞(N) given by

{f,g} = ω(Xf ,Xg) = Xf (g). (2.2)

This bracket turns C∞(N) into a Poisson algebra (C∞(N), � , {·,·}), i.e., {·,·} is a Lie bracket 
on C∞(N) which additionally holds the Leibniz rule with respect to the standard product ‘ �’ of 
functions:

{f,g �h} = {f,g} �h + g �{f,h}, ∀f,g,h ∈ C∞(N).

For simplicity, we just hereafter write fg for f �g. The Leibniz rule can be rephrased by saying 
that {f, ·} is a derivation of the associative algebra (C∞(N), �) for each f ∈ C∞(N). Actually, 
this derivation is represented by the Hamiltonian vector field Xf . The bracket {·,·} is called the 
Poisson bracket of (C∞(N), � , {·,·}). Note that if (N, ω) is a symplectic manifold, the non-
degeneracy condition for ω implies that N is even dimensional [49].

The above observations lead to the concept of a Poisson manifold which is a natural gener-
alization of the symplectic one. A Poisson manifold is a pair (N, {·,·}), where {·,·} : C∞(N) ×
C∞(N) → C∞(N) is the Poisson bracket of (C∞(N), � , {·,·}) which is also referred to as a 
Poisson structure on N . In view of this and (2.2), every symplectic manifold is a particular 
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type of Poisson manifold. Moreover, by noting that {f, ·} is a derivation on (C∞(N), �) for ev-
ery f ∈ C∞(N), we can associate with every function f a single vector field Xf , called the 
Hamiltonian vector field of f , such that {f, g} = Xf g for all g ∈ C∞(N), like in the symplectic 
case.

As the Poisson structure is a derivation in each entry, it gives rise to a bivector field Λ, i.e., 
an element of Γ (

∧2
T N), the referred to as Poisson bivector, such that {f, g} = Λ(df, dg). 

It is known that the Jacobi identity for {·,·} amounts to [Λ, Λ]SN = 0, with [·,·]SN being the 
Schouten–Nihenjuis bracket [45]. Conversely, a bivector Λ satisfying [Λ, Λ]SN = 0 gives rise 
to a Poisson bracket on C∞(N) by setting {f, g} = Λ(df, dg). Hence, a Poisson manifold can 
be considered, equivalently, as (N, {·,·}) or (N, Λ). It is remarkable that Λ induces a bundle 
morphism Λ̂ : αx ∈ T ∗N → Λ̂(αx) ∈ T N , where ᾱx(Λ̂(αx)) = Λx(αx, ᾱx) for all ᾱx ∈ T ∗

x N , 
which enables us to write Xf = Λ̂(df ) for every f ∈ C∞(N).

Another way of generalizing a symplectic structure is to consider a two-form ω which is 
merely closed (not necessarily of constant rank), forgetting the non-degeneracy assumption. In 
this case, ω is said to be a presymplectic form and the pair (N, ω) is called a presymplectic mani-
fold [27]. Like in the symplectic case, we call a vector field X on N Hamiltonian if there exists a 
function f ∈ C∞(N), a Hamiltonian function for X, such that (2.1) holds for the presymplectic 
form ω.

The possible degeneracy of ω introduces several differences with respect to the symplec-
tic setting. For example, given an f ∈ C∞(N), we cannot ensure neither the existence nor the 
uniqueness of a vector field Xf satisfying ιXf

ω = −df . If it exists, we say that f is an admissible 
function with respect to (N, ω). Since the linear combinations and multiplications of admissible 
functions are also admissible functions, the space Adm(N, ω) of admissible functions of (N, ω)

is a real associative algebra. It is canonically also a Poisson algebra. Indeed, observe that every 
f ∈ Adm(N, ω) is associated to a family of Hamiltonian vector fields of the form Xf +Z, with Z

being a vector field taking values in kerω. Hence, (2.2) does not depend on the representatives 
Xf and Xg and becomes a Poisson bracket on the space Adm(N, ω), making the latter into a 
Poisson algebra. It is also remarkable that

ι[Xf ,Xg]ω = LXf
ιXgω − ιXgLXf

ω = −LXf
dg = −d{f,g}.

In consequence, [Xf , Xg] is a Hamiltonian vector field with a Hamiltonian function {f, g}.
A natural question now arises: is there any geometric structure incorporating presymplectic 

and Poisson manifolds as particular cases? Courant [28,46] provided an affirmative answer to 
this question.

Recall that a Pontryagin bundle PN is a vector bundle T N ⊕N T ∗N on N .

Definition 2.1. An almost-Dirac manifold is a pair (N, L), where L is a maximally isotropic 
subbundle of PN with respect to the pairing

〈Xx + αx, X̄x + ᾱx〉+ ≡ 1

2

(
ᾱx(Xx) + αx(X̄x)

)
,

where Xx + αx, X̄x + ᾱx ∈ TxN ⊕ T ∗
x N = PxN . In other words, L is isotropic and has rank 

n = dimN .
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A Dirac manifold is an almost-Dirac manifold (N, L) whose subbundle L, its Dirac structure, 
is involutive relative to the Courant–Dorfman bracket [28–30,50], namely

[[X + α, X̄ + ᾱ]]C ≡ [X,X̄] +LXᾱ − ιX̄dα,

where X + α, X̄ + ᾱ ∈ Γ (T N ⊕N T ∗N).

Note that the Courant–Dorfman bracket satisfies the Jacobi identity in the form

[[[[e1, e2]]C, e3
]]

C
= [[

e1, [[e2, e3]]C
]]

C
− [[

e2, [[e1, e3]]C
]]

C
, ∀e1, e2, e3 ∈ Γ (PN),

(2.3)

but is not skew-symmetric. It is, however, skew-symmetric on sections of the Dirac subbundle L, 
defining a Lie algebroid structure (L, [[·,·]]C, ρ), where ρ : L 
 Xx + αx �→ Xx ∈ T N . This 
means that (Γ (L), [[·,·]]C) is a Lie algebra and the vector bundle morphism ρ : L → T N , the 
anchor, satisfies

[[e1, f e2]]C = (
ρ(e1)f

)
e2 + f [[e1, e2]]C (2.4)

for all e1, e2 ∈ Γ (L) and f ∈ C∞(N) [28]. One can prove that, automatically, ρ induces a Lie 
algebra morphism of (Γ (L), [[·,·]]C) into the Lie algebra of vector fields on N . The general-
ized distribution ρ(L), called the characteristic distribution of the Dirac structure, is therefore 
integrable in the sense of Stefan–Sussmann [51].

Definition 2.2. A vector field X on N is said to be an L-Hamiltonian vector field (or simply a 
Hamiltonian vector field if L is fixed) if there exists an f ∈ C∞(N) such that X + df ∈ Γ (L). 
In this case, f is an L-Hamiltonian function for X and an admissible function of (N, L). Let us 
denote by Ham(N, L) and Adm(N, L) the spaces of Hamiltonian vector fields and admissible 
functions of (N, L), respectively.

The space Adm(N, L) becomes a Poisson algebra (Adm(N, L), �, {·,·}L) relative to the stan-
dard product of functions and the Lie bracket given by

{f, f̄ }L = Xf̄ ,

where X is an L-Hamiltonian vector field for f . Since L is isotropic, {f, f̄ }L is well defined, 
i.e., its value is independent on the choice of the L-Hamiltonian vector field associated to f . 
The elements f ∈ Adm(N, L) possessing trivial Hamiltonian vector fields are called the Casimir 
functions of (N, L) [48]. We write Cas(N, L) for the set of Casimir functions of (N, L). We can 
also distinguish the space G(N, L) of L-Hamiltonian vector fields which admits zero (or, equiva-
lently, any constant) as an L-Hamiltonian function. We call them gauge vector fields of the Dirac 
structure.

Note that, if X and X̄ are L-Hamiltonian vector fields with Hamiltonian functions f and f̄ , 
then {f, f̄ }L is a Hamiltonian for [X, X̄]:

[[X + df, X̄ + df̄ ]]C = [X,X̄] +LXdf̄ − ι ¯ d2f = [X,X̄] + d{f, f̄ }L.
X
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This implies that (Ham(N, L), [·,·]) is a Lie algebra in which G(N, L) is a Lie ideal. Denote the 
quotient Lie algebra Ham(N, L)/G(N, L) by Ĥam(N, L).

Proposition 2.3. If (N, L) is a Dirac manifold, then {Cas(N, L), Adm(N, L)}L = 0, i.e., 
Cas(N, L) is an ideal of the Lie algebra (Adm(N, L), {·,·}L). Moreover, we have the follow-
ing exact sequence of Lie algebra homomorphisms

0 ↪→ Cas(N,L) ↪→ Adm(N,L)
BL−→ Ĥam(N,L) → 0, (2.5)

with BL(f ) = π(Xf ), where the vector field Xf is an L-Hamiltonian vector field of f , and π is 
the canonical projection π : Ham(N, L) → Ĥam(N, L).

For every Dirac manifold (N, L), we have a canonical linear map ΩL
x : ρ(L)x ⊂ TxN →

ρ(L)∗x ⊂ T ∗
x N given by

[
ΩL

x (Xx)
]
(X̄x) = −αx(X̄x), Xx, X̄x ∈ ρ(L), (2.6)

where αx ∈ T ∗
x N is such that Xx + αx ∈ L. Note that, as L is isotropic, ΩL

x is well defined, i.e., 
the value of

ΩL
x (Xx, X̄x) = [

ΩL
x (Xx)

]
(X̄x)

is independent of the particular αx and defines a skew-symmetric bilinear form ΩL on the 
(generalized) distribution ρ(L). Indeed, given Xx + ¯̄αx ∈ L, we have that αx − ¯̄αx ∈ L. 
Since L is isotropic, 〈αx − ¯̄αx, X̄x + ᾱx〉+ = (αx − ¯̄αx)X̄x/2 = 0 for all X̄x + ᾱx ∈ L. Then, 
[ΩL

x (Xx)](X̄x) = −¯̄αx(X̄x) = −αx(X̄x) for all X̄x ∈ ρ(L) and ΩL is well defined.
It is easy to see that gauge vector fields generate the gauge distribution kerΩL. Moreover, 

the involutivity of L ensures that ρ(L) is an integrable generalized distribution in the sense of 
Stefan–Sussmann [51]. Therefore, it induces a (generalized) foliation FL = {FL

x : x ∈ N} on N .
Since ρ(Lx) = TxF

L
x , if the elements Xx + αx and Xx + ᾱx , with Xx ∈ TxF

L
x , are in Lx ⊂

PxN = TxN ⊕ T ∗
x N , then αx − ᾱx is in the annihilator of TxF

L
x , so the image of αx under the 

canonical restriction σ : αx ∈ T ∗
x N �→ αx |TxF

L
x

∈ T ∗
x F

L
x is uniquely determined. One can verify 

that σ(αx) = −ΩL
x (Xx). The two-form ΩL restricted to FL

x turns out to be closed, so that FL
x

is canonically a presymplectic manifold, and the canonical restriction of L to FL
x is the graph of 

this form [28].
As particular instances, Poisson and presymplectic manifolds are particular cases of Dirac 

manifolds. On one hand, consider a presymplectic manifold (N, ω) and define Lω to be the 
graph of minus the fiber bundle morphism ω̂ : Xx ∈ T N �→ ωx(Xx, ·) ∈ T ∗N . The generalized 
distribution Lω is isotropic, as

〈
Xx − ω̂(Xx), X̄x − ω̂(X̄x)

〉
+ = −(

ωx(Xx, X̄x) + ωx(X̄x,Xx)
)
/2 = 0.

As Lω is the graph of −ω̂, then dimLω
x = dimN and Lω is a maximally isotropic subbundle 

of PN . In addition, its integrability relative to the Courant–Dorfman bracket comes from the 
fact that dω = 0. Indeed, for arbitrary X, X′ ∈ Γ (T N), we have
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[[
X − ιXω,X′ − ιX′ω

]]
C

= [
X,X′] −LXιX′ω + ιX′dιXω = [

X,X′] − ι[X,X′]ω,

since

LXιX′ω − ιX′dιXω = LXιX′ω − ιX′LXω = ι[X,X′]ω.

In this case, ρ : Lω → T N is a bundle isomorphism. Conversely, given a Dirac manifold whose 
ρ : L → T N is a bundle isomorphism, its characteristic distribution satisfies ρ(L) = T N and it 
admits a unique integral leaf, namely N , on which ΩL is a closed two-form, i.e., (N, ΩL) is a 
presymplectic manifold.

On the other hand, every Poisson manifold (N, Λ) induces a subbundle LΛ given by the graph 
of Λ̂. It is isotropic,

〈
Λ̂(αx) + αx, Λ̂(ᾱx) + ᾱx

〉
+ = (

Λx(ᾱx,αx) + Λx(αx, ᾱx)
)
/2 = 0,

for all αx, ᾱx ∈ T ∗
x N and x ∈ N , and of rank dimN as the graph of Λ̂ is a map from T ∗N . 

Additionally, LΛ is integrable. Indeed, as Λ̂(d{f, g}) = [Λ̂(df ), Λ̂(dg)] for every f, g ∈ C∞(N)

[45], we have

[[
Λ̂(df ) + df, Λ̂(dg) + dg

]]
C

= [
Λ̂(df ), Λ̂(dg)

] +LΛ̂(df )dg − ιΛ̂(dg)d
2f

= Λ̂
(
d{f,g}) + d{f,g}

and the involutivity follows from the fact that the module of 1-forms is generated locally by exact 
1-forms.

Conversely, every Dirac manifold (N, L) such that ρ∗ : L → T ∗N is a bundle isomorphism 
is the graph of Λ̂ of a Poisson bivector.

Let us motivate our terminology. We call ρ(L) the characteristic distribution of (N, L), which 
follows the terminology of [48] instead of the original one by Courant [28]. This is done because 
when L comes from a Poisson manifold, ρ(L) coincides with the characteristic distribution of 
the Poisson structure [45]. Meanwhile, the vector fields taking values in kerΩL are called gauge 
vector fields. In this way, when L is the graph of a presymplectic structure, such vector fields are 
its gauge vector fields [52].

3. Actions, momentum maps, and invariants on Dirac manifolds

In the standard symplectic setting, momentum maps are associated with Hamiltonian actions 
of Lie groups. We will present an analogous concept for Hamiltonian actions on Dirac manifolds, 
however, limiting ourselves to infinitesimal actions which is sufficient for the theory and our 
purposes.

Definition 3.1. Let us assume that (N, L) is a Dirac manifold equipped with an infinitesimal 
L-Hamiltonian action of a finite-dimensional real Lie algebra g, i.e., a Lie algebra homomor-
phism φ : (g, [·,·]) → (Adm(N, L), {·,·}L). The momentum map associated with φ is the map 
Jφ : N → g∗ defined by

[
Jφ(x)

]
(v) = [

φ(v)
]
(x), ∀v ∈ g, ∀x ∈ N.
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Note that g∗ is canonically a Poisson manifold with respect to the Kirillov–Konstant–Souriau 
Poisson structure for which linear functions fv : θ ∈ g∗ �→ θ(v) ∈ R and fw : θ ∈ g∗ �→ θ(w) ∈ R

associated with v, w ∈ g commute as v, w in the Lie algebra g:

{fv,fw}g∗ = f[v,w], ∀v,w ∈ g. (3.1)

Proposition 3.2. The map

J ∗
φ : f ∈ C∞(

g∗) �→ f ◦ Jφ ∈ C∞(N) (3.2)

takes values in Adm(N, L) and establishes a morphism of Poisson algebras. In particular, if 
C ∈ C∞(g∗) is a Casimir function, i.e., a central element in (g∗, {·,·}), then C ◦ Jφ commutes 
with all elements of φ(g), thus it is an invariant, i.e., a first integral of all Hamiltonian vector 
fields Xh, with h ∈ φ(g).

Proof. If f : Rn → R is a smooth function and f1, . . . , fn ∈ Adm(N, L), then f = f (f1,

. . . , fn) ∈ Adm(N, L). Indeed, by defining the vector field

X =
n∑

i=1

∂f

∂xi
(f1, . . . , fn)Xfi

,

we see that

X + df =
n∑

i=1

∂f

∂xi
(f1, . . . , fn)Xfi

+
n∑

i=1

∂f

∂xi
(f1, . . . , fn)dfi

=
n∑

i=1

∂f

∂xi
(f1, . . . , fn)(Xfi

+ dfi).

Since L is a vector bundle and Xfi
+ dfi belong to Γ (L), then X + df ∈ Γ (L) and f becomes 

an L-Hamiltonian, i.e., admissible, function for X. The rest easily follows from the fact that the 
momentum map is Poisson, namely if v, w ∈ g, then

{
J ∗

φ fv, J
∗
φ fw

}
L

= {fv ◦ Jφ,fw ◦ Jφ}L = {
φ(v),φ(w)

}
L

= φ
([v,w]) = f[v,w] ◦ Jφ = J ∗

φ

({fv,fw}g∗
)
.

In particular,

Xφ(v)

(
J ∗

φ (C)
) = {

φ(v), J ∗
φ (C)

}
L

= J ∗
φ

({fv,C}g∗
) = 0. �
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4. Lie systems, Lie–Hamilton systems, and related notions

We denote a real Lie algebra by a pair (V , [·,·]), i.e. V stands for a real linear space endowed 
with a Lie bracket [·,·] : V × V → V . Given two subsets A, B ⊂ V , we write [A, B] for the 
real linear space spanned by the Lie brackets between elements of A and B, and we define 
Lie(B, V, [·,·]) to be the smallest Lie subalgebra of V containing B. When their meaning is 
clear, we use Lie(B) and V to represent Lie(B, V, [·,·]) and (V , [·,·]), respectively.

A t -dependent vector field on N is a map X : (t, x) ∈ R × N �→ X(t, x) ∈ T N such that 
τN ◦ X = π2, where π2 : (t, x) ∈ R × N �→ x ∈ N and τN : T N → N is the tangent bundle 
projection associated to N . This condition entails that X amounts to a family of vector fields 
{Xt }t∈R, with Xt : x ∈ N �→ X(t, x) ∈ T N for all t ∈ R and vice versa [9]. The minimal Lie 
algebra of X is the smallest real Lie algebra, V X , containing the vector fields {Xt}t∈R, namely 
V X = Lie({Xt }t∈R).

Any integral curve of X corresponds to an integral curve γ : R �→ R × N of the suspension
of X, i.e. the vector field ∂/∂t + X(t, x) on R × N [49]. Every integral curve γ of the form 
t �→ (t, x(t)) satisfies

d(π2 ◦ γ )

dt
(t) = (X ◦ γ )(t).

This system is referred to as the associated system of X. Conversely, every system of first-
order differential equations in the normal form describes the integral curves (t, x(t)) of a unique 
t -dependent vector field. This establishes a bijection between t -dependent vector fields and sys-
tems of first-order differential equations in the normal form, which justifies the use of X to denote 
both: the t -dependent vector field and its associated system.

The associated distribution of a t -dependent vector field X on N is the generalized distribu-
tion DX on N spanned by the vector fields of V X , i.e.

DX
x = {

Yx

∣∣ Y ∈ V X
} ⊂ TxN.

Observe that rX : x ∈ N �→ dimDX
x ∈ N ∪ {0} needs not to be constant on N . We can only 

guarantee that rX(x) = k implies rX(x′) ≥ rX(x) for x′ in a neighborhood of x. It follows that rX

is a lower semicontinuous function which is constant on the connected components of an open 
and dense subset UX of N (cf. [45, p. 19]), where DX becomes a regular involutive distribution. 
The most relevant instance for us is when DX is determined by a finite-dimensional V X and 
hence DX is integrable (in the sense of Stefan–Sussmann) on N [53, p. 63].

Let us now turn to some fundamental notions appearing in the theory of Lie systems.

Definition 4.1. (See Vessiot, 1893 [2].) A Lie system is a system of first-order ordinary differ-
ential equations X on a manifold N such that Xt = ∑r

k=1 bk(t)Xk , for a certain collection of 
t -dependent functions b1, . . . , br and a family of t -independent vector fields X1, . . . , Xr on N
spanning an r-dimensional real Lie algebra of vector fields.

Following the terminology in [9,54], we call the real Lie algebra spanned by X1, . . . , Xr a 
Vessiot–Guldberg Lie algebra for X. Its importance is due to its use in devising various meth-
ods of integration of Lie systems [8,17,18,23,55], especially in the derivation of superposition 
rules [8], which allow us to reduce the integration of a Lie system to deriving finite families of 
particular solutions.
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Definition 4.2. A superposition rule depending on m particular solutions for a system X on N is 
a function Φ : Nm × N → N , x = Φ(x(1), . . . , x(m); λ), such that the general solution x(t) of X
can be brought into the form x(t) = Φ(x(1)(t), . . . , x(m)(t); λ), where x(1)(t), . . . , x(m)(t) is any 
generic family of particular solutions and λ is a point of N to be related to initial conditions.

The conditions ensuring that a system X possesses a superposition rule are stated in the Lie–
Scheffers theorem (see [5,6,8] for details).

Theorem 4.3 (Lie–Scheffers theorem). A system X admits a superposition rule if and only if 
X is a Lie system. Equivalently, X possesses a superposition rule if and only if V X is finite-
dimensional.

The simplest nonlinear example of a Lie system is the Riccati equation, i.e.

dx

dt
= a0(t) + a1(t)x + a2(t)x

2, (4.1)

where a0(t), a1(t) and a2(t) are arbitrary t -dependent functions [11]. This equation is related to 
the t -dependent vector field

Xt = (
a0(t) + a1(t)x + a2(t)x

2) ∂

∂x
,

which can be written as the linear combination Xt = a0(t)X1 + a1(t)X2 + a2(t)X3, with

X1 = ∂

∂x
, X2 = x

∂

∂x
, X3 = x2 ∂

∂x
,

which satisfy the commutation relations

[X1,X2] = X1, [X1,X3] = 2X2, [X2,X3] = X3,

and therefore spanning a finite-dimensional real Lie algebra of vector fields isomorphic to 
sl(2, R) [9,11]. A superposition rule for Riccati equations is given by the function Φ :R3 ×R →
R of the form [11]

Φ(u(1), u(2), u(3);λ) = u(1)(u(2) − u(3)) − λu(2)(u(3) − u(1))

(u(2) − u(3)) − λ(u(3) − u(1))
,

which allows us to recover the general solution, x(t), of any Riccati equation in terms of three 
different particular solutions, x(1)(t), x(2)(t), x(3)(t), and a real constant λ as follows:

x(t) = Φ
(
x(1)(t), x(2)(t), x(3)(t);λ

)
.

One can devise more powerful methods to study Lie systems admitting particular types of 
Vessiot–Guldberg Lie algebras [18], e.g., to consider Lie–Hamilton systems [18,20].

Definition 4.4. A Lie–Hamilton system X on N is a Lie system that possesses a Vessiot–Guldberg 
Lie algebra of Hamiltonian vector fields with respect to a Poisson bivector on N .
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As expected, imposing additional conditions on the Vessiot–Guldberg Lie algebras reduces 
substantially classes of Lie systems we can consider [19]. For instance, most Riccati equations 
are not Lie–Hamilton systems: they are defined on the real line and X = 0 is the unique Lie–
Hamilton system on the real line. More specifically, every Poisson bivector on R is null and, 
recalling that every Hamiltonian vector field can be written in the form X = Λ̂(df ) for a Hamil-
tonian function f , we see that every Vessiot–Guldberg Lie algebra of Hamiltonian vector fields 
on R is trivial. So, given a Lie–Hamilton system on the real line we have that V X = 0 and X = 0. 
Despite this, Lie–Hamilton systems can be applied to study relevant differential equations, e.g., 
second-order Riccati equations, second-order Kummer–Schwarz equations [18], and in a partic-
ular type of mechanical systems generated by Lie algebras of functions [56–58].

The main feature of a Lie–Hamilton system is the following property [18].

Theorem 4.5. Given a Lie–Hamilton system X admitting a Vessiot–Guldberg Lie algebra of 
Hamiltonian vector fields relative to a Poisson manifold (N, Λ), there exists a t -dependent 
Hamiltonian h : (t, x) ∈ R × N �→ ht (x) = h(t, x) ∈ R such that Xt = Λ̂(dht ), for every t ∈ R, 
and the functions {ht }t∈R span a finite-dimensional real Lie algebra with respect to the Poisson 
structure {·,·}Λ induced by (N, Λ).

In the latter case, we say that X admits a Lie–Hamiltonian structure (N, Λ, h). The follow-
ing observations are immediate consequences of the corresponding definitions (see [18,23] for 
details).

Proposition 4.6. Let us assume that X is a Lie–Hamilton system with a Lie–Hamiltonian 
(N, {·,·}, h). Then, f is a t -independent constant of the motion for X if and only if it Poisson 
commutes with the elements of Lie({ht }t∈R, {·,·}). The space IX of t -independent constants of 
the motion for X is a Poisson algebra (IX, � , {·,·}). If f is a t -independent constant of motion 
for X, then the Hamiltonian vector field associated to f is a t -independent Lie symmetry for X.

In order to illustrate the above notions, let us provide a simple example of mathematical and 
physical interest: the system of Riccati equations

dxi

dt
= a0(t) + a1(t)xi + a2(t)x

2
i , i = 1, . . . ,4, (4.2)

where a0(t), a1(t), a2(t) are arbitrary t -dependent functions and we assume that (x1 − x2) ×
(x2 − x3)(x3 − x4) �= 0. The determination of a common t -independent constant of the motion F
for all systems of this type leads to deriving a superposition rule for Riccati equations (cf. [8]). 
The standard methods to derive F require the integration of a system of PDEs [8] or ODEs [11]. 
Nevertheless, we next show that, since (4.2) is a Lie–Hamilton system, we can obtain F from 
algebraic manipulations without integrating any system of PDE or ODEs [23].

System (4.2) determines integral curves of the t -dependent vector field

XR =
4∑

i=1

(
a0(t) + a1(t)xi + a2(t)x

2
i

) ∂

∂xi

= a0(t)X1 + a1(t)X2 + a2(t)X3, (4.3)

with
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X1 =
4∑

i=1

∂

∂xi

, X2 =
4∑

i=1

xi

∂

∂xi

, X3 =
4∑

i=1

x2
i

∂

∂xi

.

Using that X1, X2, and X3 span a finite-dimensional real Lie algebra of vector fields, we see that 
XR is a Lie system. Consider the two-form

ωR = dx1 ∧ dx2

(x1 − x2)2
+ dx3 ∧ dx4

(x3 − x4)2
. (4.4)

Note that ωR is a symplectic form on O = {(x1, x2, x3, x4)|(x1 −x2)(x2 −x3)(x3 −x4) �= 0} ⊂R4

and

ιX1ωR = d

(
1

x1 − x2
+ 1

x3 − x4

)
, ιX2ωR = 1

2
d

(
x1 + x2

x1 − x2
+ x3 + x4

x3 − x4

)
,

ιX3ωR = d

(
x1x2

x1 − x2
+ x3x4

x3 − x4

)
.

Hence, the vector fields X1, X2, and X3 are Hamiltonian with respect to (O, ωR) with the Hamil-
tonian functions

h1 = − 1

x1 − x2
− 1

x3 − x4
, h2 = −1

2

(
x1 + x2

x1 − x2
+ x3 + x4

x3 − x4

)
,

h3 = − x1x2

x1 − x2
− x3x4

x3 − x4
,

respectively. This shows that system (4.2) is a Lie–Hamilton system. Additionally,

{h1, h2} = h1, {h1, h3} = 2h2, {h2, h3} = h3,

where {·,·} stands for the natural Poisson bracket induced by the symplectic form ωR , and 
Lie({h1, h2, h3}, {·,·}) � sl(2, R). It is known that h1, h2, and h3 Poisson commute with 
h1h3 −h2

2, which can be considered, up to a constant factor, as a Casimir function of the Poisson 
manifold C∞(sl(2, R)∗) (see [56] for details). In other words,

C = h1h3 − h2
2 = (x2 − x3)(x1 − x4)

(x1 − x2)(x3 − x4)

Poisson commutes with h1, h2 and h3. Using that 0 = {hk, C} = XkC for k = 1, 2, 3, we see that 
C is a common first-integral for X1, X2, and X3. From this, it turns out that C is a t -independent 
constant of the motion for X. Observe that the above method can be applied to other Lie–
Hamilton systems mutatis mutandis. The works [18,20,23] include many other techniques that 
can be applied to these systems. We will see in this work that this kind of procedures can be 
applied to even more general types of systems.
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5. On the necessity of Dirac–Lie systems

Many systems have recently been found to be Lie–Hamilton systems [18,20,23]. This per-
mitted us to use several geometric and algebraic techniques to study their superposition rules, 
constants of the motion, and Lie symmetries. Despite the advantages of these methods, they are 
not applicable to all Lie systems, as some of them do not admit any Vessiot–Guldberg Lie algebra 
of Hamiltonian vector fields. Let us illustrate this through several examples.

Consider a third-order Kummer–Schwarz equation [41,59] of the form

d3x

dt3
= 3

2

(
dx

dt

)−1(
d2x

dt2

)2

− 2c0

(
dx

dt

)3

+ 2b1(t)
dx

dt
, (5.1)

where c0 is a real constant and b1 = b1(t) is any t -dependent function. This differential equation 
is known to be a HODE Lie system [60]. This means that the system of first-order differential 
equations obtained by adding the variables v ≡ dx/dt and a ≡ d2x/dt2, namely

dx

dt
= v,

dv

dt
= a,

da

dt
= 3

2

a2

v
− 2c0v

3 + 2b1(t)v, (5.2)

is a Lie system. Indeed, it is associated to the t -dependent vector field

X3KS
t = v

∂

∂x
+ a

∂

∂v
+

(
3

2

a2

v
− 2c0v

3 + 2b1(t)v

)
∂

∂a
= Y3 + b1(t)Y1, (5.3)

where the vector fields on O2 = {(x, v, a) ∈ T 2R | v �= 0} given by

Y1 = 2v
∂

∂a
, Y2 = v

∂

∂v
+ 2a

∂

∂a
, Y3 = v

∂

∂x
+ a

∂

∂v
+

(
3

2

a2

v
− 2c0v

3
)

∂

∂a
, (5.4)

satisfy the commutation relations

[Y1, Y3] = 2Y2, [Y1, Y2] = Y1, [Y2, Y3] = Y3. (5.5)

In consequence, Y1, Y2, and Y3 span a three-dimensional Lie algebra of vector fields V isomor-
phic to sl(2, R) and X3KS becomes a t -dependent vector field taking values in V , i.e. X3KS is a 
Lie system. However, X3KS is not a Lie–Hamilton system when b1(t) is not a constant. Indeed, 
in this case DX3KS

coincides with TO2 on O2. If X3KS were also a Lie–Hamilton system with 
respect to (N, Λ), then V X3KS

would consist of Hamiltonian vector fields and the characteristic 
distribution associated to Λ would have odd-dimensional rank on O2. This is impossible, as the 
local Hamiltonian vector fields of a Poisson manifold span a generalized distribution of even 
rank at each point. Our previous argument can easily be generalized to formulate the following 
‘no-go’ theorem.

Proposition 5.1. If X is a Lie system on an odd-dimensional manifold N satisfying that DX
x0

=
Tx N for a point x0 in N , then X is not a Lie–Hamilton system on N .
0
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Note that from the properties of rX it follows that, if DX
x0

= Tx0N for a point x0, then 
DX

x = TxN for x in an open neighborhood Ux0 
 x0. Hence, we can merely consider whether 
X is a Lie–Hamilton system on N\Ux0 .

Despite the previous negative results, system (5.2) admits another interesting property: we 

can endow the manifold O2 with a presymplectic form ω3KS in such a way that V X3KS
consists 

of Hamiltonian vector fields with respect to it. Indeed, by considering the equations LY1ω3KS =
LY2ω3KS = LY3ω3KS = 0 and dω3KS = 0, we can readily find the presymplectic form

ω3KS = dv ∧ da

v3

on O2. Additionally, we see that

ιY1ω3KS = d

(
2

v

)
, ιY2ω3KS = d

(
a

v2

)
, ιY3ω3KS = d

(
a2

2v3
+ 2c0v

)
. (5.6)

So, the system X3KS becomes a Lie system with a Vessiot–Guldberg Lie algebra of Hamiltonian 
vector fields with respect to ω3KS. As seen later on, systems of this type can be studied through 
appropriate generalizations of the methods employed to investigate Lie–Hamilton systems.

Another example of a Lie system which is not a Lie–Hamilton system but admits a Vessiot–
Guldberg Lie algebra of Hamiltonian vector fields with respect to a presymplectic form is the 
Riccati system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ds

dt
= −4a(t)us − 2d(t)s,

dx

dt
= (c(t) + 4a(t)u)x + f (t) − 2ug(t),

du

dt
= −b(t) + 2c(t)u + 4a(t)u2,

dy

dt
= (2a(t)x − g(t))v,

dv

dt
= (c(t) + 4a(t)u)v,

dz

dt
= a(t)x2 − g(t)x,

dw

dt
= a(t)v2,

(5.7)

where a(t), b(t), c(t), d(t), f (t) and g(t) are arbitrary t -dependent functions. The interest of 
this system is due to its use in solving diffusion-type equations, Burger’s equations, and other 
PDEs [26].

Taking into account that every particular solution (s(t), u(t), v(t), w(t), x(t), y(t), z(t))
of (5.7), with v(t0) = 0 (s(t0) = 0) for a certain t0 ∈ R, satisfies v(t) = 0 (s(t) = 0) 
for every t , we can restrict ourselves to analyzing system (5.7) on the submanifold M =
{(s, u, v, w, x, y, z) ∈ R7 | v �= 0, s �= 0}. This will simplify the application of our techniques 
without omitting any relevant detail.

System (5.7) describes integral curves of the t -dependent vector field

XRS
t = a(t)X1 − b(t)X2 + c(t)X3 − 2d(t)X4 + f (t)X5 + g(t)X6,

where
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X1 = −4us
∂

∂s
+ 4u2 ∂

∂u
+ 4uv

∂

∂v
+ v2 ∂

∂w
+ 4ux

∂

∂x
+ 2xv

∂

∂y
+ x2 ∂

∂z
,

X2 = ∂

∂u
, X3 = 2u

∂

∂u
+ v

∂

∂v
+ x

∂

∂x
, X4 = s

∂

∂s
, X5 = ∂

∂x
,

X6 = −2u
∂

∂x
− v

∂

∂y
− x

∂

∂z
, X7 = ∂

∂z
.

Their commutation relations are

[X1,X2] = 4(X4 − X3), [X1,X3] = −2X1, [X1,X5] = 2X6, [X1.X6] = 0,

[X2,X3] = 2X2, [X2,X5] = 0, [X2,X6] = −2X5,

[X3,X5] = −X5, [X3,X6] = X6,

[X5,X6] = −X7,

and X4 and X7 commute with all the vector fields. Hence, system (5.7) is a Lie system 
associated to a Vessiot–Guldberg Lie algebra V isomorphic to (sl(2, R) � h2) ⊕ R, where 
sl(2, R) � 〈X1, X2, X4 − X3〉, h2 � 〈X5, X6, X7〉 and R � 〈X4〉. It is worth noting that this new 
example of Lie system is one of the few Lie systems related to remarkable PDEs until now [8].

Observe that (5.7) is not a Lie–Hamilton system when V XRS = V . In this case DXRS

p = TpM

for any p ∈ M and, in view of Proposition 5.1 and the fact that dimTpM = 7, the system XRS is 
not a Lie–Hamilton system on M .

Nevertheless, we can look for a presymplectic form turning XRS into a Lie system with a 
Vessiot–Guldberg Lie algebra of Hamiltonian vector fields. Looking for a non-trivial solution 
of the system of equations LXk

ωRS = 0, with k = 1, . . . , 7, and dωRS = 0, one can find the 
presymplectic two-form

ωRS = −4wdu ∧ dw

v2
+ dv ∧ dw

v
+ 4w2du ∧ dv

v3
.

In addition, we can readily see that dωRS = 0 and X1, . . . , Xr are Hamiltonian vector fields:

ιX1ωRS = d

(
4uw − 8u2w2

v2
− v2

2

)
, ιX2ωRS = −d

(
2w2

v2

)
,

ιX3ωRS = d

(
w − 4w2u

v2

)
, (5.8)

and ιXk
ωRS = 0 for k = 4, . . . , 7.

Apart from the above examples, other non-Lie–Hamilton systems that admit a Vessiot–
Guldberg Lie algebra of Hamiltonian vector fields with respect to a presymplectic form can 
be found in the study of certain reduced Ermakov systems [61], Wei–Norman equations for dis-
sipative quantum oscillators [9], and sl(2, R)-Lie systems [62].

A straightforward generalization of the concept of a Lie–Hamilton system to Dirac manifolds 
would be a Lie system admitting a Vessiot–Guldberg Lie algebra V of vector fields for which 
there exists a Dirac structure L such that V consists of L-Hamiltonian vector fields. Nevertheless, 
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this definition does not make too much sense, as every Lie system is of this type. If X is a Lie 
system on N , the subbundle L ≡ T N ⊂ PN gives rise to a Dirac manifold (N, L), where all 
vector fields X ∈ Γ (L) are L-Hamiltonian with a zero L-Hamiltonian function. Additionally, 
examples like this do not provide any additional information about the Lie system. As in the case 
of Lie–Hamiltonian systems [18], we aim at using the Hamiltonian functions related to the vector 
fields of V to study the properties of Dirac–Lie systems. Unfortunately, these functions are zero 
in the previous trivial example.

In view of the above-mentioned reasons, it only makes nontrivial sense to consider Dirac–Lie 
systems as associated to a fixed Dirac structure. Particularly, the notion becomes useful only 
when the elements of V X admit a rich family of L-Hamiltonian functions. This leads to the 
following definition.

Definition 5.2. A Dirac–Lie system is a triple (N, L, X), where (N, L) stands for a Dirac man-
ifold and X is a Lie system admitting a Vessiot–Guldberg Lie algebra of L-Hamiltonian vector 
fields.

Recall that every presymplectic manifold (N, ω) gives rise to a Dirac manifold (N, Lω) whose 
distribution Lω is spanned by elements of Γ (T N ⊕N T ∗N) of the form X − ιXω with X ∈
Γ (T N). Obviously, this shows that the Hamiltonian vector fields for (N, ω) are L-Hamiltonian 
vector fields relative to (N, L). From here, it follows that (O2, Lω3KS , X3KS) and (M, LωRS , XRS)

are Dirac–Lie systems. Moreover, note that system (4.2), which was proved to be a Lie–Hamilton 
system, gives also rise to a Dirac–Lie system (O, LωR, XR).

6. Dirac–Lie Hamiltonians

In view of Theorem 4.5, every Lie–Hamilton system admits a Lie–Hamiltonian. Since Dirac–
Lie systems are generalizations of these systems, it is natural to investigate whether Dirac–Lie 
systems admit an analogous property.

As an example, consider again the third-order Kummer–Schwarz equation in first-order 
form (5.2). Remind that Y1, Y2, and Y3 are Hamiltonian vector fields with respect to the presym-
plectic manifold (O2, ω3KS). It follows from relations (5.6) that the vector fields Y1, Y2, and Y3
have Hamiltonian functions

h1 = −2

v
, h2 = − a

v2
, h3 = − a2

2v3
− 2c0v, (6.1)

respectively. Moreover,

{h1, h3} = 2h2, {h1, h2} = h1, {h2, h3} = h3,

where {·,·} is the Poisson bracket on Adm(O2, ω3KS) induced by ω3KS. In consequence, h1, h2, 
and h3 span a finite-dimensional real Lie algebra isomorphic to sl(2, R). Thus, every X3KS

t

is a Hamiltonian vector field with Hamiltonian function h3KS
t = h3 + b1(t)h1 and the space 

Lie({h3KS
t }t∈R, {·,·}) becomes a finite-dimensional real Lie algebra. This enables us to asso-

ciate X3KS to a curve in Lie({h3KS
t }t∈R, {·,·}). The similarity of (O2, ω3KS, h3KS) with Lie–

Hamiltonians are immediate.
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If we now turn to the Riccati system (5.7), we will see that we can obtain a similar result. 
More specifically, relations (5.8) imply that X1, . . . , X7 have Hamiltonian functions

h1 = (v2 − 4uw)2

2v2
, h2 = 2ω2

v2
, h3 = 4w2u

v2
− w,

and h4 = h5 = h6 = h7 = 0. Moreover, given the Poisson bracket on admissible functions in-
duced by ω3KS, we see that

{h1, h2} = −4h3, {h1, h3} = −2h1, {h2, h3} = 2h2.

Hence, h1, . . . , h7 span a real Lie algebra isomorphic to sl(2, R) and, as in the previous case, the 
t -dependent vector fields XRS

t possess Hamiltonian functions hRS
t = a(t)h1 − b(t)h2 + c(t)h3. 

Again, we can associate XRS to a curve t �→ hRS
t in the finite-dimensional real Lie algebra 

(Lie({hRS
t }t∈R), {·,·}).

The above examples suggest us the following definition.

Definition 6.1. A Dirac–Lie Hamiltonian structure is a triple (N, L, h), where (N, L) stands for 
a Dirac manifold and h represents a t -parametrized family of admissible functions ht : N → R

such that Lie({ht }t∈R, {·,·}L) is a finite-dimensional real Lie algebra. A t -dependent vector field 
X is said to admit, to have or to possess a Dirac–Lie Hamiltonian (N, L, h) if Xt + dht ∈ Γ (L)

for all t ∈ R.

Note 6.2. For simplicity, we hereafter call Dirac–Lie Hamiltonian structures Dirac–Lie Hamilto-
nians.

From the above definition, we see that system (5.2) related to the third-order Kummer–
Schwarz equations possesses a Dirac–Lie Hamiltonian (N, Lω3KS, h3KS) and system (5.7), used 
to analyze diffusion equations, admits a Dirac–Lie Hamiltonian (N, LωRS, hRS).

Let us analyze the properties of Dirac–Lie structures. Observe first that there may be several 
systems associated to the same Dirac–Lie Hamiltonian. For instance, the systems XRS and

XRS
2 = a(t)X1 − b(t)X2 + c(t)X3 − 2d(t)X4 + f (t)z3X5 + g(t)X6 + h(t)z2X7

admit the same Dirac–Lie Hamiltonian (N, LωRS, hRS). It is remarkable that XRS
2 is not even a 

Lie system in general. Indeed, in view of

[
z2X7, z

nX5
] = nzn+1X5, n = 3,4, . . . ,

we easily see that the successive Lie brackets of znX5 and z2X7 span an infinite set of vector 
fields which are linearly independent over R. So, in those cases in which X5 and X7 belong 
to V XRS

2 , this Lie algebra becomes infinite-dimensional.
In the case of a Dirac–Lie system, Proposition 2.3 shows easily the following.

Corollary 6.3. Let (N, L, X) be a Dirac–Lie system admitting a Dirac–Lie Hamiltonian 
(N, L, h). Then, we have the exact sequence of Lie algebras
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0 ↪→ Cas
({ht }t∈R, {·,·}L

)
↪→ Lie

({ht }t∈R, {·,·}L
) BL−→ π

(
V X

) → 0,

where Cas({ht }t∈R, {·,·}L) = Lie({ht }t∈R, {·,·}L) ∩ Cas(N, L). That is, Lie({ht }t∈R, {·,·}L) is a 
Lie algebra extension of π(V X) by Cas({ht }t∈R, {·,·}L).

Theorem 6.4. Each Dirac–Lie system (N, L, X) admits a Dirac–Lie Hamiltonian (N, L, h).

Proof. Since V X ⊂ Ham(N, L) is a finite-dimensional Lie algebra, we can define a linear map 
T : Xf ∈ V X �→ f ∈ C∞(N) associating each L-Hamiltonian vector field in V X with an associ-
ated L-Hamiltonian function, e.g., given a basis X1, . . . , Xr of V X we define T (Xi) = hi , with 
i = 1, . . . , r , and extend T to V X by linearity. Note that the functions h1, . . . , hr need not be 
linearly independent over R, as a function can be Hamiltonian for two different L-Hamiltonian 
vector fields X1 and X2 when X1 − X2 ∈ G(N, L). Given the system X, there exists a smooth 
curve ht = T (Xt ) in W0 ≡ ImT such that Xt + dht ∈ Γ (L). To ensure that ht gives rise to a 
Dirac–Lie Hamiltonian, we need to demonstrate that dimLie({ht }t∈R, {·,·}L) < ∞. This will be 
done by constructing a finite-dimensional Lie algebra of functions containing the curve ht .

Consider two elements Y1, Y2 ∈ V X . Note that the functions {T (Y1), T (Y2)}L and T ([Y1, Y2])
have the same L-Hamiltonian vector field. So, {T (Y1), T (Y2)}L − T ([Y1, Y2]) ∈ Cas(N, L) and, 
in view of Proposition 2.3, it Poisson commutes with all other admissible functions. Let us define 
Υ : V X × V X → C∞(N) of the form

Υ (X1,X2) = {
T (X1), T (X2)

}
L

− T [X1,X2]. (6.2)

The image of Υ is contained in a finite-dimensional real Abelian Lie subalgebra of Cas(N, L)

of the form

WC ≡ 〈
Υ (Xi,Xj )

〉
, i, j = 1, . . . , r,

where X1, . . . , Xr is a basis for V X . From here, it follows that

{WC,WC}L = 0, {WC,W0}L = 0, {W0,W0}L ⊂WC +W0.

Hence, (W ≡W0 +WC, {·,·}L) is a finite-dimensional real Lie algebra containing the curve ht , 
and X admits a Dirac–Lie Hamiltonian (N, L, T (Xt )). �

The following proposition is easy to check.

Proposition 6.5. Let (N, L, X) be a Dirac–Lie system. If (N, L, h) and (N, L, h̄) are two Dirac–
Lie Hamiltonians for (N, L, X), then

h = h̄ + f X,

where f X ∈ C∞(R × N) is a t -dependent function such that each f X
t : x ∈ N �→ f X(x, t) ∈ R

is a Casimir function that is constant on every integral manifold O of DX .
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Note that if we have a Dirac–Lie Hamiltonian (N, L, h) and we define a linear map T̂ : h ∈
Lie({ht }t∈R, {·,·}) �→ Xh ∈ Ham(N, L), the space T̂ (Lie({ht }t∈R, {·,·})) may span an infinite-
dimensional Lie algebra of vector fields. For instance, consider again the Lie–Hamiltonian 
(O2, ω3KS, h3KS

t = h3 + b1(t)h1) for the system (5.2). The functions h1, h2, and h3 are also 
Hamiltonian for the vector fields

Y1 = 2v
∂

∂a
+ ev2 ∂

∂x
, Y2 = v

∂

∂v
+ 2a

∂

∂a
, Y3 = a

∂

∂v
+

(
3

2

a2

v
− 2c0v

3
)

∂

∂a
,

which satisfy

j -times︷ ︸︸ ︷[
Y2,

[
. . . , [Y2, Y1] . . .

]] = fj (v)
∂

∂x
+ 2(−1)j v

∂

∂a
, fj (v) ≡

j -times︷ ︸︸ ︷
v

∂

∂v
. . . v

∂

∂v

(
ev2)

.

In consequence, Lie(T̂ (Lie({ht }t∈R, {·,·})), [·,·]) contains an infinite-dimensional Lie algebra of 
vector fields because the functions {fj }j∈R form an infinite family of linearly independent func-
tions over R. So, we need to impose additional conditions to ensure that the image of T̂ is 
finite-dimensional.

The following theorem yields an alternative definition of a Dirac–Lie system.

Theorem 6.6. Given a Dirac manifold (N, L), the triple (N, L, X) is a Dirac–Lie system if and 
only if there exists a curve γ : t ∈ R → γt ∈ Γ (L) satisfying that ρ(γt ) = Xt ∈ Ham(N, L) for 
every t ∈ R and Lie({γt }t∈R, [[·,·]]C) is a finite-dimensional real Lie algebra.

Proof. Let us prove the direct part of the theorem. Assume that (N, L, X) is a Dirac–Lie sys-
tem. In virtue of Theorem 6.4, it admits a Dirac–Lie Hamiltonian (N, L, h), with ht = T (Xt )

and T : V X → Adm(N, L) a linear morphism associating each element of V X with one of 
its L-Hamiltonian functions. We aim to prove that the curve in Γ (L) of the form γt = Xt +
d(T (Xt )) satisfies that dim Lie({γt }t∈R, [[·,·]]C) < ∞.

The sections of Γ (L) of the form

X1 + dT (X1), . . . ,Xr + dT (Xr), dΥ (Xi,Xj ), i, j = 1, . . . , r, (6.3)

where X1, . . . , Xr is a basis of V X and Υ : V X × V X → Cas(N, L) is the map (6.2), span a 
finite-dimensional Lie algebra (E, [[·,·]]C). Indeed,

[[
Xi + dT (Xi),Xj + dT (Xj )

]]
C

= [Xi,Xj ] + d
{
T (Xi), T (Xj )

}
L
, i, j = 1, . . . , r.

Taking into account that {T (Xi), T (Xj )}L − T ([Xi, Xj ]) = Υ (Xi, Xj), we see that the above is 
a linear combination of the generators (6.3). Additionally, we have that

[[
Xi + dT (Xi), dΥ (Xj ,Xk)

]]
C

= d
{
T (Xi),Υ (Xj ,Xk)

}
L

= 0.

So, sections (6.3) span a finite-dimensional subspace E of (Γ (L), [[·,·]]C). As γt ∈ E, for all 
t ∈ R, we conclude the direct part of the proof.
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The converse is straightforward from the fact that (L, [[·,·]]C, ρ) is a Lie algebroid. Indeed, 
given the curve γt within a finite-dimensional real Lie algebra of sections E satisfying that Xt =
ρ(γt ) ∈ Ham(N, L), we have that {Xt }t∈R ⊂ ρ(E) are L-Hamiltonian vector fields. As E is a 
finite-dimensional Lie algebra and ρ is a Lie algebra morphism, ρ(E) is a finite-dimensional Lie 
algebra of vector fields and (N, L, X) becomes a Dirac–Lie system. �

The above theorem shows the interest of defining a class of Lie systems related to general Lie 
algebroids.

7. On diagonal prolongations of Dirac–Lie systems

The so-called diagonal prolongations of Lie systems play a fundamental rôle in the deter-
mination of superposition rules which motivates their study in this section [8]. Specifically, we 
analyze the properties of diagonal prolongations of Dirac–Lie systems. As a result, we discover 
new features that can be applied to study their superposition rules and introduce some new con-
cepts of interest.

Let τ : E → N be a vector bundle. Its diagonal prolongation to Nm is the Cartesian product 
bundle E[m] = E × · · · × E of m copies of E, viewed as a vector bundle over Nm in a natural 
way:

E
[m]
(x(1),...,x(m))

= Ex(1)
⊕ · · · ⊕ Ex(m)

.

Every section X : N → E of E has a natural diagonal prolongation to a section X[m] of E[m]:

X[m](x(1), . . . , x(m)) = X(x(1)) + · · · + X(x(m)).

Given a function f : N → R, we call diagonal prolongation of f to Nm the function f̃ [m] on Nm

of the form f̃ [m](x(1), . . . , x(m)) = f (x(1)) + . . . + f (x(m)).
We can consider also sections X(j) of E[m] given by

X(j)(x(1), . . . , x(m)) = 0 + · · · + X(x(j)) + · · · + 0. (7.1)

It is clear that, if {Xi | i = 1, . . . , p} is a basis of local sections of E, then {X(j)
i | i = 1, . . . , p,

j = 1, . . . , m} is a basis of local sections of E[m]. Note that all this can be repeated also for 
generalized vector bundles, like generalized distributions.

Since there are obvious canonical isomorphisms

(T N)[m] � T Nm and
(
T ∗N

)[m] � T ∗Nm,

we can interpret the diagonal prolongation X[m] of a vector field on N as a vector field X̃[m]
on Nm, and the diagonal prolongation α[m] of a 1-form on N as a 1-form α̃[m] on Nm. In the 
case when m is fixed, we will simply write X̃ and α̃. The proof of the following properties of 
diagonal prolongations is straightforward.

Proposition 7.1. The diagonal prolongation to Nm of a vector field X on N is the unique vector 
field X̃[m] on Nm, projectable under the map π : (x(1), . . . , x(m)) ∈ Nm �→ x(1) ∈ N onto X and 



JID:YJDEQ AID:7516 /FLA [m1+; v 1.193; Prn:5/06/2014; 16:35] P.22 (1-38)

22 J.F. Cariñena et al. / J. Differential Equations ••• (••••) •••–•••
invariant under the permutation of variables x(i) ↔ x(j), with i, j = 1, . . . , m. The diagonal 
prolongation to Nm of a 1-form α on N is the unique 1-form ̃α[m] on Nm such that ̃α[m](X̃[m]) =
α̃(X)

[m]
for every vector field X ∈ Γ (T N). We have dα̃ = d̃α and LX̃[m] α̃[m] = L̃Xα

[m]
. In 

particular, if α is closed (exact), so is its diagonal prolongation ̃α[m] to Nm.

Using local coordinates (xa) in N and the induced system (xa
(i)) of coordinates in Nm, we can 

write, for X = ∑
a Xa(x)∂xa and α = ∑

a αa(x)dxa ,

X̃[m] =
∑
a,i

Xa(x(i))∂xa
(i)

and α̃[m] =
∑
a,i

αa(x(i))dxa
(i). (7.2)

Let us fix m. Obviously, given two vector fields X1 and X2 on N , we have ˜[X1,X2] =
[X̃1, ̃X2]. In consequence, the prolongations to Nm of the elements of a finite-dimensional real 
Lie algebra V of vector fields on N form a real Lie algebra Ṽ isomorphic to V . Similarly to 
standard vector fields, we can define the diagonal prolongation of a t -dependent vector field X
on N to Nm as the only t -dependent vector field X̃ on Nm satisfying that X̃t is the prolongation 
of Xt to Nm for each t ∈R.

When X is a Lie–Hamilton system, its diagonal prolongations are also Lie–Hamilton systems 
in a natural way [23]. Let us now focus on proving an analogue of this result for Dirac–Lie 
systems.

Definition 7.2. Given two Dirac manifolds (N, LN) and (M, LM), we say that ϕ : N → M is a 
forward Dirac map between them if (LM)ϕ(x) =Pϕ(LN)x , where

Pϕ(LN)x = {
ϕ∗xXx + ωϕ(x) ∈ Tϕ(x)M ⊕ T ∗

ϕ(x)M
∣∣ Xx + (

ϕ∗ωϕ(x)

)
x

∈ (LN)x
}
,

for all x ∈ N .

Proposition 7.3. Given a Dirac structure (N, L) and the natural isomorphism

(
T Nm ⊕Nm T ∗Nm

)
(x(1),...,x(m))

� (
Tx(1)

N ⊕ T ∗
x(1)

N
) ⊕ · · · ⊕ (

Tx(m)
N ⊕ T ∗

x(m)
N

)
,

the diagonal prolongation L[m], viewed as a vector subbundle in T Nm ⊕Nm T ∗Nm =PN [m], is 
a Dirac structure on Nm.

The forward image of L[m] through each πi : (x(1), . . . , x(m)) ∈ Nm → x(i) ∈ N , with i =
1, . . . , m, equals L. Additionally, L[m] is invariant under the permutations x(i) ↔ x(j), with i, j =
1, . . . , m.

Proof. Being a diagonal prolongation of L, the subbundle L[m] is invariant under permutations 
x(i) ↔ x(j) and each element of a basis Xi + αi of L, with i = 1, . . . , n, can naturally be con-

sidered as an element X(j)
i + α

(j)
i of the j th-copy of L within L[m]. This gives rise to a basis 

of L[m], which naturally becomes a smooth mn-dimensional subbundle of PNm. Considering 
the natural pairing 〈·,·〉+ of PNm and using 〈α(i)

, X(k)〉 = 0 for i �= k, we have
j l
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〈(
X

(i)
j + α

(i)
j

)
(x(1), . . . , x(m)),

(
X

(k)
l + α

(k)
l

)
(x(1), . . . , x(m))

〉
+

= δi
k

〈
(Xj + αj )(x(i)), (Xl + αl)(x(i))

〉
+ = 0,

for every p = (x(1), . . . , x(m)) ∈ Nm. As the pairing is bilinear and vanishes on a basis of L[m], it 
does so on the whole L[m], which is therefore isotropic. Since L[m] has rank mn, it is maximally 
isotropic.

Using that [X(i)
j , X(k)

l ] = 0, ι
X

(i)
j

dα
(k)
l = 0, and L

X
(i)
j

ω
(k)
l = 0 for i �= k = 1, . . . , m and j, l =

1, . . . , dimN , we obtain

[[
X

(i)
j + α

(i)
j ,X

(k)
l + α

(k)
l

]]
C

= δi
k

[[
X

(i)
j + α

(i)
j ,X

(i)
l + α

(i)
l

]]
C

∈ Γ
(
L[m]).

So, L[m] is involutive. Since it is also maximally isotropic, it is a Dirac structure.
Let us prove that Pπa (L

[m]) = L for every πa . Note that (X(a)
j + α

(a)
j )p ∈ L

[m]
p is such 

that πa∗(X(a)
j )p = (Xj )x(a)

and (αj )x(a)
◦ (π∗a)p = (α

(a)
j )p for every p ∈ π−1

a (x(a)). So, 

(Xj + αj )x(a)
∈ (Pπa (L

[m]))x(a)
⊂ Lx(a)

for j = 1, . . . , n and every x(a) ∈ N . Using that 
Xj + αj is a basis for L and the previous results, we obtain L ⊂ Pπa (L

[m]). Conversely, 
Pπa (L

[m]) ⊂ L. Indeed, if (X+α)x(a)
∈Pa(L

[m]), then there exists an element (Y +β)p ∈ L
[m]
p , 

with p ∈ π−1(x(a)), such that πa∗Yp = Xx(a)
and (α)x(a)

◦ (π∗a)p = βp . Using that (Y + β)p =∑
ij cij (X

(i)
j + α

(i)
j )p for a unique set of constants cij , with i = 1, . . . , m and j = 1, . . . , n, we 

have πa∗(
∑

ij cij (X
(i)
j )p) = ∑

j caj (Xj )x(a)
= Xx(a)

. Meanwhile, βp = αx(a)
◦ (π∗a)p means that ∑

j caj (αj )x(a)
= αx(a)

. So, (X + α)x(a)
= ∑

j caj (Xj + αj )x(a)
∈ Lx(a)

. �
Corollary 7.4. Given a Dirac structure (N, L), we have ρm(L[m]) = ρ(L)[m], where ρm is the 
projection ρm : PNm → T Nm. Then, if X is an L-Hamiltonian vector field with respect to L, 
its diagonal prolongation X̃[m] to Nm is an L-Hamiltonian vector field with respect to L[m]. 
Moreover, ρ∗

m(L[m]) = ρ∗(L)[m], where ρ∗
m is the canonical projection ρ∗

m :PNm → T ∗Nm.

Corollary 7.5. If (N, L, X) is a Dirac–Lie system, then (Nm, L[m], ̃X[m]) is also a Dirac–Lie 
system.

Proof. If X admits a Vessiot–Guldberg Lie algebra V of Hamiltonian vector fields with respect 
to (N, L), then X̃ possesses a Vessiot–Guldberg Lie algebra Ṽ given by the diagonal prolonga-
tions of the elements of V , which are L[m]-Hamiltonian vector fields, by construction of L[m]
and Corollary 7.4. �

Similarly to the prolongations of vector fields, one can define prolongations of functions and 
1-forms in an obvious way.

Proposition 7.6. Let X be a vector field and f be a function on N . Then:

(a) If f is an L-Hamiltonian function for X, its diagonal prolongation f̃ to Nm is an 
L[m]-Hamiltonian function of the diagonal prolongation X̃ to Nm.
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(b) If f ∈ Cas(N, L), then f̃ ∈ Cas(Nm, L[m]).
(c) The map λ : (Adm(N, L), {·,·}L) 
 f �→ f̃ ∈ (Adm(Nm, L[m]), {·,·}L[m]) is an injective Lie 

algebra morphism.

Proof. Let f be an L-Hamiltonian function for X. Then, X + df ∈ Γ (L) and X̃ + df̃ =
X̃ + d̃f is as an element of Γ (L[m]). By a similar argument, if f ∈ Cas(N, L), then f̃ ∈
Cas(Nm, L[m]). Given f, g ∈ Adm(N, L), we have {̃f,g}L = X̃f g = X̃f g̃ = Xf̃ g̃ = {f̃ , ̃g}L[m] , 
i.e., λ({f, g}L) = {λ(f ), λ(g)}L[m] . Additionally, as λ is linear, it becomes a Lie algebra mor-
phism. Moreover, it is easy to see that f̃ = 0 if and only if f = 0. Hence, λ is injective. �

Note, however, that in the above we cannot ensure that λ is a Poisson algebra morphism, as in 
general f̃g �= f̃ g̃.

Using the above proposition, we can easily prove the following corollaries.

Corollary 7.7. If h1, . . . , hr : N → R is a family of functions on a Dirac manifold (N, L) span-
ning a finite-dimensional real Lie algebra of functions with respect to the Lie bracket {·,·}L, then 
their diagonal prolongations ̃h1, . . . , ̃hr to Nm close an isomorphic Lie algebra of functions with 
respect to the Lie bracket {·,·}L[m] induced by the Dirac structure (Nm, L[m]).

Corollary 7.8. If (N, L, X) is a Dirac–Lie system admitting a Lie–Hamiltonian (N, L, h), then 
(Nm, L[m], ̃X[m]) is a Dirac–Lie system with a Dirac–Lie Hamiltonian (Nm, L[m], h[m]), where 
h

[m]
t = h̃

[m]
t is the diagonal prolongation of ht to Nm.

8. Superposition rules and t-independent constants of the motion for Dirac–Lie systems

Let us give a first straightforward application of Dirac–Lie systems to obtain constants of the 
motion.

Proposition 8.1. Given a Dirac–Lie system (N, L, X), the elements of Cas(N, L) are constants 
of the motion for X. Moreover, the set IX

L of its admissible t -independent constants of the motion 
form a Poisson algebra (IX

L , �, {·,·}L).

Proof. Two admissible functions f and g are t -independent constants of the motion for X if and 
only if Xtf = Xtg = 0 for every t ∈ R. Using that every Xt is a derivation of the associative 
algebra C∞(N), we see that given f, g ∈ IX

L , then f + g, λf , and f · g are also constants of the 
motion for X for every λ ∈R. Since the sum and product of admissible functions are admissible 
functions, then IX

L is closed under the sum and product of elements and real constants. So (IX
L , �)

is an associative subalgebra of (C∞(N), �).
As (N, L, X) is a Dirac–Lie system, the vector fields {Xt}t∈R are L-Hamiltonian. Therefore,

Xt {f,g}L = {Xtf,g}L + {f,Xtg}L.

As f and g are constants of the motion for X, then {f, g}L is so also. Using that {f, g}L is also 
an admissible function, we finish the proof. �

The following can easily be proved.
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Proposition 8.2. Let (N, L, X) be a Dirac–Lie system possessing a Dirac–Lie Hamiltonian 
(N, L, h). An admissible function f : N → R is a constant of the motion for X if and only if 
it Poisson commutes with all the elements of Lie({ht }t∈R, {·,·}L).

Consider a Dirac–Lie system (N, Lω, X) with ω being a symplectic structure and X being an 
autonomous system. Consequently, Adm(N, L) = C∞(N) and the above proposition entails that 
f ∈ C∞(N) is a constant of the motion for X if and only if it Poisson commutes with a Hamil-
tonian function h associated to X. This shows that Proposition 8.2 recovers as a particular case 
this well-known result [49]. Additionally, Proposition 8.2 suggests us that the rôle played by au-
tonomous Hamiltonians for autonomous Hamiltonian systems is performed by finite-dimensional 
Lie algebras of admissible functions associated with a Dirac–Lie Hamiltonian for Dirac–Lie sys-
tems. This fact can be employed, for instance, to study t -independent first-integrals of Dirac–Lie 
systems, e.g., the maximal number of such first-integrals in involution, which would lead to the 
interesting analysis of integrability/superintegrability and action/angle variables for Dirac–Lie 
systems [48].

Another reason to study t -independent constants of the motion of Lie systems is their use in 
deriving superposition rules [17]. More explicitly, a superposition rule for a Lie system can be ob-
tained through the t -independent constants of the motion of one of its diagonal prolongations [8]. 
The following proposition provides some ways of obtaining such constants.

Proposition 8.3. If X be a system possessing a t -independent constant of the motion f , then:

1. The diagonal prolongation f̃ [m] is a t -independent constant of the motion for X̃[m].
2. If Y is a t -independent Lie symmetry of X, then Ỹ [m] is a t -independent Lie symmetry 

of X̃[m].
3. If h is a t -independent constant of the motion for X̃[m], then Ỹ [m]h is another t -independent 

constant of the motion for X̃[m].

Proof. This result is a straightforward application of Proposition 7.1 and the properties of the 
diagonal prolongations of t -dependent vector fields. �

Using the fact that the diagonal prolongation of vector fields is a Lie bracket homomorphism, 
in virtue of Proposition 3.2 we get the following.

Proposition 8.4. Given a Dirac–Lie system (N, L, X) that admits a Dirac–Lie Hamiltonian 
(N, L, h) such that {ht }t∈R is contained in a finite-dimensional Lie algebra of admissible func-
tions (M, {·,·}L). Given the momentum map J : Nm →W∗ associated with the Lie algebra mor-
phism φ : f ∈ W �→ f̃ ∈ Adm(Nm, L[m]), the pull-back J ∗(C) of any Casimir function C on W∗
is a constant of the motion for the diagonal prolongation X̃[m]. If W � Lie({̃ht }t∈R, {·,·}L[m]), 
the function J ∗(C) Poisson commutes with all L[m]-admissible constants of the motion of X̃[m].

8.1. Example

Let us use the above results to devise a superposition rule for the third-order Kummer–
Schwarz equation in first-order form (5.2) with c0 = 0, the so-called Schwarzian equations [34,
35]. To simplify the presentation, we will always assume c0 = 0 in this section. It is known 
(cf. [60]) that the derivation of a superposition rule for this system can be reduced to obtaining 
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certain three t -independent constants of the motion for the diagonal prolongation X̃3KS of X3KS

to O2
2. In [60] such constants were worked out through the method of characteristics which con-

sists in solving a series of systems of ODEs. Nevertheless, we can determine such constants more 
easily through Dirac–Lie systems.

The t -dependent vector field X̃3KS is spanned by a linear combination of the diagonal prolon-
gations of Y1, Y2, and Y3 to O2

2. From (5.4), we have

Ỹ1 =
2∑

i=1

vi

∂

∂ai

, Ỹ2 =
2∑

i=1

(
vi

∂

∂vi

+ 2ai

∂

∂ai

)
,

Ỹ3 =
2∑

i=1

(
vi

∂

∂xi

+ ai

∂

∂vi

+ 3

2

a2
i

vi

∂

∂ai

)
.

From Proposition 7.6 and functions (6.1), the vector fields Ỹ1, ̃Y2, ̃Y3 are L[2]-Hamiltonian with 
L[2]-Hamiltonian functions

h̃1 = − 2

v1
− 2

v2
, h̃2 = −a1

v2
1

− a2

v2
2

, h̃3 = − a2
1

2v3
1

− a2
2

2v3
2

.

Indeed, these are the diagonal prolongations to O2
2 of the L-Hamiltonian functions of Y1, Y2, 

and Y3. Moreover, they span a real Lie algebra of functions isomorphic to that one spanned by 
h1, h2, h3 and to sl(2, R). We can then define a Lie algebra morphism φ : sl(2, R) → C∞(N2)

of the form φ(e1) = h̃1, φ(e2) = h̃2 and φ(e3) = h̃3, where {e1, e2, e3} is the standard basis 
of sl(2, R). Using that sl(2, R) is a simple Lie algebra, we can compute the Casimir invariant 
on sl(2, R)∗ as e1e3 − e2

2 (where e1, e2, e3 can be considered as functions on sl(2, R)). Propo-
sition 8.4 ensures then that h̃1h̃3 − h̃2

2 Poisson commutes with h̃1, ̃h2 and h̃3. In this way, we 
obtain a constant of the motion for X̃3KS given by

I = h̃1h̃3 − h̃2
2 = (a2v1 − a1v2)

2

v3
1v3

2

.

Schwarzian equations admit a Lie symmetry Z = x2∂/∂x [37]. Its prolongation to T 2R, i.e.,

ZP = x2 ∂

∂x
+ 2vx

∂

∂v
+ 2

(
ax + v2) ∂

∂a
, (8.1)

is a Lie symmetry of X3KS. From Proposition 7.6, we get that Z̃P is a Lie symmetry of X̃3KS. So, 
we can construct constants of the motion for X̃3KS by applying Z̃P to any of its t -independent 
constants of the motion. In particular,

F2 ≡ −Z̃P log |I | = x1 + x2 + 2v1v2(v1 − v2)

a2v1 − a1v2

is constant on particular solutions (x(1)(t), v(1)(t), a(1)(t), x(2)(t), v(2)(t), a(2)(t)) of X̃3KS. If 
(x(2)(t), v(2)(t), a(2)(t)) is a particular solution for X3KS, its opposite is also. So, the function
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F3 ≡ x1 − x2 + 2v1v2(v1 + v2)

a2v1 − a1v2

is also constant along solutions of X̃3KS, i.e., it is a new constant of the motion. In consequence, 
we get three t -independent constants of the motion: Υ1 = I and

Υ2 = F2 + F3

2
= x1 + 2v2

1v2

a2v1 − a1v2
, Υ3 = F2 − F3

2
= x2 − 2v1v

2
2

a2v1 − a1v2
.

This gives rise to three t -independent constants of the motion for X̃3KS. Taking into account 
that ∂(Υ1, Υ2, Υ3)/∂(x1, v1, a1) �= 0, the expressions Υ1 = λ1, Υ2 = λ2, and Υ3 = λ3 allow us 
to obtain the expressions of x1, v1, a1 in terms of the remaining variables and λ1, λ2, λ3. More 
specifically,

x1 = 4

λ1(λ3 − x2)
+ λ2, v1 = 4v2

λ1(λ3 − x2)2
, a1 = 8v2

2 + 4a2(λ3 − x2)

λ1(λ3 − x2)3
.

According to the theory of Lie systems [8], the map Φ : (x2, v2, a2; λ1, λ2, λ3) ∈ O2
2 × R3 �→

(x1, v1, a1) ∈ O2
2 enables us to write the general solution of (5.2) into the form

(
x(t), v(t), a(t)

) = Φ
(
x2(t), v2(t), a2(t);λ1, λ2, λ3

)
.

This is the known superposition rule for Schwarzian equations (in first-order form) derived in 
[25] by solving a system of PDEs. Meanwhile, our present techniques enable us to obtain the 
same result without any integration. Note that x(t), the general solution of Schwarzian equa-
tions, can be written as x(t) = τ ◦ Φ(x2(t), λ1, λ2, λ3), with τ the projection τ : (x2, v2, a2) ∈
T 2R �→ x2 ∈ R, from a unique particular solution of (5.1), recovering a known feature of these 
equations [37].

9. Bi-Dirac–Lie systems

It can happen that a Lie system X on a manifold N possesses Vessiot–Guldberg Lie algebras 
of vector fields with respect to two different Dirac structures. This results in defining two Dirac–
Lie systems. For instance, the system of coupled Riccati equations (4.2) admits two Dirac–Lie 
structures [19]: the one previously given, (O, Lω, X), where ω is given by (4.4), and a second 
one, (O, Lω̄, X), with

ω̄ =
4∑

i<j=1

dxi ∧ xj

(xi − xj )2
.

In the following sections, several similar examples will be shown. This suggests us to define the 
following notion.

Definition 9.1. A bi-Dirac–Lie system is a four-tuple (N, L1, L2, X), where (N, L1) and (N, L2)

are two different Dirac manifolds and X is a Lie system on N such that V X ⊂ Ham(N, L1) ∩
Ham(N, L2).
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Given a bi-Dirac–Lie system (N, L1, L2, X), we can apply indistinctly the methods of the 
previous sections to (N, L1, X) and (N, L2, X) to obtain superposition rules, constants of the 
motion, and other properties of X. This motivates studies on constructions of this type of struc-
tures.

Let us depict a new procedure to build up bi-Dirac–Lie systems from (N, Lω, X) whose X
possesses a t -independent Lie symmetry Z. This method is a generalization to nonautonomous 
systems, associated to presymplectic manifolds, of the method for autonomous Hamiltonian sys-
tems devised in [39].

Consider a Dirac–Lie system (N, Lω, X), where ω is a presymplectic structure, and a 
t -independent Lie symmetry Z of X, i.e. [Z, Xt ] = 0 for all t ∈ R. Under the above assump-
tions, ωZ = LZω satisfies dωZ = dLZω = LZdω = 0, so (N, ωZ) is a presymplectic manifold. 
The vector fields of V X are still Hamiltonian with respect to (N, ωZ). Indeed, we can see that 
Theorem 6.4 ensures that X admits a Dirac–Lie Hamiltonian (N, Lω, h) and

[Z,Xt ] = 0 �⇒ ιXt ◦LZ = LZ ◦ ιXt

�⇒ ιXt ωZ = ιXtLZω = LZιXt ω = −LZdht = −d(Zht ), ∀t ∈R.

So, the vector fields {Xt }t∈R are LωZ -Hamiltonian. Since the successive Lie brackets and lin-
ear combinations of L-Hamiltonian vector fields and elements of V X are L-Hamiltonian vector 
fields, the whole Lie algebra V X is Hamiltonian with respect to ωZ . Consequently, (N, LωZ, X)

is also a Dirac–Lie system. In view of (2.5) and since dim Cas(N, LωZ) = N, we see that 
(BωZ )−1(V X) is a finite-dimensional Lie algebra. As the curve h̄ : t ∈R �→ Zht ∈ Adm(N, LωZ)

is included within (BωZ)−1(V X), the Lie algebra Lie({Zht }t∈R, {·,·}LωZ ), where {·,·}LωZ is the 
Poisson bracket induced by LωZ , becomes finite-dimensional. In other words, (N, LωZ, Zht ) is 
also a Lie–Hamiltonian for X. Moreover,

{h̄t , h̄t ′ }LωZ = Xt(h̄t ′) = Xt(Zht ′) = Z(Xtht ′) = Z{ht , ht ′ }Lω, ∀t ∈ R.

Summarizing, we have the following proposition.

Proposition 9.2. If (N, Lω, X) is a Dirac–Lie system for which X admits a t -independent Lie 
symmetry Z, then (N, Lω, LLZω, X) is a bi-Dirac–Lie system. If (N, Lω, h) is a Dirac–Lie 
Hamiltonian for X, then (N, LLZω, Zh) is a Dirac–Lie Hamiltonian for X and there exists an 
exact sequence of Lie algebras

({ht }t∈R, {·,·}Lω

) Z−→ ({Zht }t∈R, {·,·}LωZ

) → 0.

Note that, given a Lie–Hamilton system (N, Lω, X), the triple (N, LωZ, X) need not be a 
Lie–Hamilton system: ωZ may fail to be a symplectic two-form (cf. [39]). This causes that the 
theory of Lie–Hamilton systems cannot be applied to study (N, LωZ, X), while the methods of 
our work do.

9.1. Example

Let us illustrate the above theory with an example. Recall that Schwarzian equations ad-
mit a Lie symmetry Z = x2∂/∂x. As a consequence, system (5.2), with c0 = 0, possesses a 
t -independent Lie symmetry ZP given by (8.1) and
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ωZP
≡ LZP

ω3KS = − 2

v3
(xdv ∧ da + vda ∧ dx + adx ∧ dv).

Moreover,

ιY1ωZP
= −d(ZP h1) = −d

(
4x

v

)
, ιY2ωZP

= −d(ZP h2) = d

(
2 − 2ax

v2

)
,

ιY3ωZP
= −d(ZP h3) = d

(
2a

v
− a2x

v3

)
.

So, Y1, Y2, and Y3 are Hamiltonian vector fields with respect to ωZP
. Moreover, since

{ZP h1,ZP h2}LωZP = ZP h1,

{ZP h2,ZP h3}LωZP = ZP h3,

{ZP h1,ZP h3}LωZP = 2ZP h2,

we see that ZP h1, ZP h2, and ZP h3 span a new finite-dimensional real Lie algebra. So, if 
(O2, Lω, h) is a Lie–Hamiltonian for X, then (O2, LωZP , ZP h) is a Dirac–Lie Hamiltonian 
for X.

Let us devise a more general method to construct bi-Dirac–Lie systems. Given a Dirac mani-
fold (N, L) and a closed two-form ω on N , the sections on T N ⊕N T ∗N of the form

X + α − ιXω,

where X + α ∈ Γ (L), span a new Dirac structure (N, ωL) [40]. When two Dirac structures are 
connected by a transformation of this type, it is said that they are gauge equivalent. Using this, 
we can prove the following propositions.

Proposition 9.3. Let Z be a vector field on N . Then, the Dirac structures Lω and LωZ , with 
ωZ = LZω, are gauge equivalent.

Proof. The Dirac structure Lω is spanned by sections of the form X − ιXω, with X ∈ Γ (N), and 
the Dirac structure LωZ is spanned by sections of the form X− ιXωZ . Recall that dω = dωZ = 0. 
So, LωZ is of the form

X − ιXω − ιX(ωZ − ω), X − ιXω ∈ Γ
(
Lω

)
.

As d(ωZ − ω) = 0, then Lω and LωZ are connected by a gauge transformation. �
This result gives us a hint to construct a more general method to create bi-Dirac–Lie systems.

Proposition 9.4. Let (N, L, X) be a Dirac–Lie system and ω be a closed two-form such that 
ω̂(V X) ⊂ B1(N), where B1(N) is the space of exact one-forms on N . Then, (N, L, ωL, X) is a 
bi-Dirac–Lie system.
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Proof. If Y ∈ V X , then it is L-Hamiltonian and Y + df ∈ Γ (L) for a certain function f ∈
C∞(N). By definition of ωL, we have that Y + df − ιY ω ∈ Γ (ωL). Since ω̂(V X) ⊂ B1(N) by 
assumption, then ω̂(Y ) = −dg for a certain g ∈ C∞(N). So, Y + d(f + g) ∈ Γ (ωL) and Y is 
ωL-Hamiltonian. Hence, V X is a finite-dimensional real Lie algebra of ωL-Hamiltonian vector 
fields, (N, ωL, X) is a Dirac–Lie system and (N, L, ωL, X) is a bi-Dirac–Lie system. �
Note 9.5. Note that two gauge equivalent Dirac structures may have different spaces of admis-
sible functions. This causes that they can be used to obtain different admissible constants of the 
motion and other properties of X. In brief, gauge equivalent Dirac structures are not equivalent 
from the point of view of their associated Dirac–Lie systems.

10. Dirac–Lie systems and mixed superposition rules

In this section we will use the developed methods of Dirac–Lie systems to constructing mixed 
superposition rules.

Recall that a mixed superposition rule for a system X on Rn, in terms of some systems 
X(1), . . . , X(m), is a superposition function Φ : Rn1 × . . . × Rnm × Rn → Rn allowing us to 
express the general solution, x(t), of X in the form

x(t) = Φ
(
x(1)(t), . . . , x(m)(t), λ1, . . . , λn

)
,

where λ1, . . . , λn are real constants and x(1)(t), . . . , x(m)(t) are particular solutions of the systems 
X(1), . . . , X(m), respectively. The main advantage of the use of mixed superposition rules is that 
they are much more versatile than standard superposition rules [41].

In [41] it was proved that a mixed superposition rule for a Lie system X on Rn can be obtained 
by the following procedure. We have to determine a series of systems

X(a) =
na∑
i=1

Xi
(a)(t, x(a))

∂

∂xi
(a)

∈ Γ
(
TRna

)
, a = 1, . . . ,m,

such that XE = X(1) × . . . × X(m) × X, i.e., the time-dependent vector field

XE(t, x(1), . . . , x(m)) =
n∑

i=1

Xi(t, x)
∂

∂xi
+

m∑
a=1

na∑
i=1

Xi
(a)(t, x(a))

∂

∂xi
(a)

,

gives rise to the distribution DXE for which the projection

pr∗ : DXE → T
(
Rn1 × . . . ×Rnm

)
, with pr(x(1), . . . , x(m), x) = (x(1), . . . , x(m))

is an injective map. In such a case, a family F1, . . . , Fn : Rn1 × . . . × Rnm × Rn → R of 
t -independent constants of the motion for XE satisfying

∂(F1, . . . ,Fn) �= 0,

∂(x1, . . . , xn)
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where (x1, . . . , xn) is the coordinate system on Rn, enables us to construct a mixed superposition 
rule. Indeed, the equations Fi = λi , where λ1, . . . , λn are real constants, allow us to obtain the 
variables x1, . . . , xn in terms of the remaining variables x(1), . . . , x(m) and λ1, . . . , λn, giving rise 
to a map

(x1, . . . , xn) = Φ(x(1), . . . , x(m);λ1, . . . , λn),

which becomes, along with X(1), . . . , X(m), the searched mixed superposition rule for X.

10.1. Example

We now aim to obtain a mixed superposition rule to study the Schwarzian equation

{x, t} = d3x

dt3

(
dx

dt

)−1

− 3

2

(
d2x

dt2

)2(
dx

dt

)−2

= 2b1(t), (10.1)

where {x, t} is the referred to as Schwarzian derivative of the function x(t) in terms of the vari-
able t and b1(t) is an arbitrary nonconstant t -dependent function. More specifically, we obtain a 
mixed superposition rule for the Lie system (5.2) with c0 = 0, which is obtained from Schwarzian 
equations by adding two variables v = dx/dt and a = dv/dt . Then, we use the mixed superpo-
sition rule to analyze (10.1).

In order to determine the searched mixed superposition rule, consider for example the direct 
product of (10.1) along with the Lie systems

⎧⎪⎨
⎪⎩

dx(i)

dt
= v(i),

dv(i)

dt
= −b1(t)x(i),

i = 1,2. (10.2)

The above systems can be written in the form (Xt)(i) = X3
(i) + b1(t)X

1
(i), with i = 1, 2 and

X1
(i) = −x(i)

∂

∂v(i)

, X2
(i) = 1

2

(
v(i)

∂

∂v(i)

− x(i)

∂

∂x(i)

)
, X3

(i) = v(i)

∂

∂x(i)

.

Since X1
(i), X

2
(i), and X3

(i)
, with i = 1, 2, close the same commutation relations as the vector fields 

Y1, Y2, and Y3 given by (5.4), we obtain that the vector fields

M1 ≡ X1
(1) × X1

(2) × Y1, M2 ≡ X2
(1) × X2

(2) × Y2, M3 ≡ X3
(1) × X3

(2) × Y3,

satisfy the same commutation relations as Y1, Y2, and Y3. In consequence, XE
t = M3 + b1(t)M

1, 
span a generalized distribution DXE

of rank three at a generic point of TR2 × O2. As this 
manifold is seven-dimensional and the differential of the t -independent first-integrals of X
must vanish on vector fields taking values on the integrable distribution DXE

, we obtain 
that XE admits four (locally defined) t -independent functionally independent first integrals. 
Moreover, since pr∗ : DXE → T (TR2), with pr : (x(1), v(1), x(2), v(2), x, v, a) ∈ TR2 × O2 �→
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(x(1), v(1), x(2), v(2)) ∈ TR2, is injective at each point of an open dense subset of TR2 ×O2, we 
can ensure that the system XE possesses a mixed superposition rule (cf. [41]).

Standard techniques to obtain a mixed superposition rule for XE demand the integration of 
the vector fields M1, M2, and M3, e.g., by means of the method of characteristics [41]. We 
here propose a simpler method based on the fact that X, X(1), and X(2) are Dirac–Lie systems. 
More specifically, X is a Dirac–Lie system with respect to ω = v−3dv ∧ da and X(1), X(2) with 
respect to ω(1) = dx(1) ∧ dv(1) and ω(2) = dx(2) ∧ dv(2), respectively. Using this, we can define 
on TR × TR ×O2 the closed two-form

ω1 = v−3dv ∧ da + dx(1) ∧ dv(1).

Now, since Y1, Y2, and Y3 have Lω-Hamiltonian functions (6.1) and X1
(i), X

2
(i), X

3
(i)

have 
Lω(i) -Hamiltonian functions

h1 = −x2
(i)

2
, h2 = 1

2
x(i)v(i), h3 = −v2

(i)

2
, i = 1,2,

the vector fields M1, M2, and M3 admit the Lω1 -Hamiltonian functions

h1 = −2

v
− 1

2
x2
(1), h2 = − a

v2
+ 1

2
x(1)v(1), h3 = − a2

2v3
− v2

(1)

2
,

which close the same commutation relations (relative to the Poisson bracket induced by ω1) 
as M1, M2, and M3 with respect to the Lie bracket of vector fields. Thus, h1, h2 and h3 span 
a finite-dimensional real Lie algebra of functions isomorphic to sl(2, R). In consequence, the 
function

F1 = h1h3 − h2
2 = (2vv(1) + ax(1))

2

4v3

Poisson commutes with h1, h2, and h3, so F1 is a constant of the motion for XE . Proceeding in 
a similar way with the closed two-form

ω2 = v−3dv ∧ da + dx(2) ∧ dv(2),

we obtain a new constant of the motion

F2 = (2vv(2) + ax(2))
2

4v3

for XE . In order to obtain a mixed superposition rule, we need a third common t -independent 
constant of the motion for M1, M2, and M3. This can be done by recalling that Schwarzian 
equations admit a Lie symmetry ZP given by (8.1) and the systems (10.2) have the Lie symmetry

ZL = 1
(

x(1)

∂ + v(1)

∂ + x(2)

∂ + v(2)

∂
)

.

2 ∂x(1) ∂v(1) ∂x(2) ∂v(2)
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Hence, ZP × ZL is a Lie symmetry for XE . Using the method employed in the last section, we 
have that (TR × TR ×O2, LωZP ×ZL , X(1) × X(2) × X) is a Dirac–Lie system with

ωZP ×ZL
≡ LZP ×ZL

ω1 = 2

v3
(xda ∧ dv + vdx ∧ da + adv ∧ dx) + dx(1) ∧ dv(1).

As Hamiltonian functions for Z1, Z2, and Z3 can be taken

h1 = 4x

v
− 1

2
x2
(1), h2 = −2 + 2ax

v2
+ 1

2
x(1)v(1), h3 = −2a

v
+ a2x

v3
− v2

(1)

2
.

These functions span a Lie algebra isomorphic to sl(2, R). In consequence, we obtain through 
the corresponding Casimir the constant of the motion

I = − (2vv(1) + ax(1))(2v(1)vx − 2v2x(1) + axx(1))

2v3
= 2F1

(
−x + 2x(1)v

2

2vv(1) + ax(1)

)
.

As F1 is a constant of the motion, we obtain that

F3 = −x + 2x(1)v
2

2vv(1) + ax(1)

is a much simpler constant of the motion which will simplify further calculations. Note that

∂(F1,F2,F3)

∂(x, v, a)
�= 0.

Hence, we can make use of F1, F2, and F3 to obtain a mixed superposition rule for X in terms 
of X(1) and X(2). More specifically, by imposing F3 = λ3, with λ3 being a certain real constant, 
we obtain

x = −λ3 + 2v2x(1)

2vv(1) + ax(1)

.

Now, imposing F1 = λ1 and F2 = λ2, we see that

2vv(1) + ax(1) = ±2v
√

λ1v, 2vv(2) + ax(2) = ±2v
√

λ2v. (10.3)

For simplicity, we restrict ourselves to the case when the signs are positive. Multiplying the first 
equality in (10.3) by x(2), the second by x(1), subtracting and using that v �= 0, we obtain

v(1)x(2) − v(2)x(1) = x(2)

√
λ1v − x(1)

√
λ2v.

Multiplying the first equality in (10.3) by v(2), the second by v(1), and subtracting, we get

a(v(2)x(1) − v(1)x(2)) = 2v(v(2)

√
λ1v − v(1)

√
λ2v ).



JID:YJDEQ AID:7516 /FLA [m1+; v 1.193; Prn:5/06/2014; 16:35] P.34 (1-38)

34 J.F. Cariñena et al. / J. Differential Equations ••• (••••) •••–•••
If we assume that W = v(2)x(1) − v(1)x(2) �= 0, i.e., (x(1), v(1)) and (x(2), v(2)) are not propor-
tional, then

v = sg(λ1)
(v(2)x(1) − v(1)x(2))

2

[x(2)

√|λ1| − x(1)

√|λ2| ]2
.

From this,

x = −λ3 + sg(λ1)

∣∣∣∣ v(2)x(1) − x(2)v(1)

x(2)

√|λ1| − x(1)

√|λ2|
∣∣∣∣ x(1)√|λ1| ,

a = −2 sg(λ1)
(v(2)x(1) − x(2)v(1))

2

(x(2)

√|λ1| − x(1)

√|λ2|)3

(
v(2)

√|λ1| − v(1)

√|λ2|
)
. (10.4)

Previous expressions give rise to a mixed superposition rule for system (5.2) with c0 = 0 in terms 
of two linearly independent particular solutions of the systems X(1) and X(2). More specifically, 
the mapping Φ : (x(1), v(1), x(2), v(2); λ1, λ2, λ3) ∈ TR2 ×R3 �→ (x, v, a) ∈ O2 allows us to bring 
the general solution of X into the form

(
x(t), v(t), a(t)

) = Φ
(
x(1)(t), v(1)(t), x(2)(t), v(2)(t);λ1, λ2, λ3

)
.

Moreover, we can further simplify the form of Φ . Observe that x(1)(t)v(2)(t) − x(2)(t)v(1)(t), 
where (x(i)(t), v(i)(t)), i = 1, 2, are particular solutions of X(1) and X(2), is the Wronskian asso-
ciated to two particular solutions x(1)(t), x(2)(t) of d2x/dt2 = −b1(t)x.

It is interesting to note that the map τ (2) ◦Φ , where τ (2) : (x, v, a) ∈ T 2R �→ x ∈R is the pro-
jection of the second tangent bundle T 2R onto R, describes the general solution of Schwarzian 
equations in terms of particular solutions of other systems. We could say that this is an exam-
ple of a mixed superposition rule for higher-order systems of differential equations, which could 
be used to generalize the notion of superposition rules for higher-order systems of differential 
equations proposed in [60].

11. Dirac–Lie systems and Schwarzian–KdV equations

Let us give some final relevant applications of our methods. In particular, we devise a pro-
cedure to construct traveling wave solutions for some relevant nonlinear PDEs by means of 
Dirac–Lie systems. For simplicity, we hereafter denote the partial derivatives of a function 
f : (x1, . . . , xn) ∈ Rn �→ f (x1, . . . , xn) ∈ R in the form ∂xi

f .
Consider the so-called Schwarzian Korteweg–de Vries equation (SKdV equation) [43]

{Φ,x}∂xΦ = ∂tΦ, (11.1)

where Φ : (t, x) ∈ R2 → Φ(t, x) ∈ R and

{Φ,x} ≡ ∂3
xΦ

∂xΦ
− 3

2

(
∂2
xΦ

∂xΦ

)2

.

This PDE has been attracting some attention due to its many interesting properties [43,64,65]. For 
instance, Dorfman established a bi-symplectic structure for this equation [66], and many others 
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have been studying its solutions and generalizations [43,65]. As a relevant result, we can mention 
that, given a solution Φ of the SKdV equation, the function {Φ, x} is a particular solution of the 
Korteweg–de Vries equation (KdV equation) [42]

∂tu = ∂3
xu + 3u∂xu. (11.2)

We now look for traveling wave solutions of (11.1) of the type Φ(t, x) = g(x − f (t)) for 
a certain fixed t -dependent function f with df/dt = v0 ∈ R. Substituting Φ = g(x − f (t))

within (11.1), we obtain that g is a particular solution of the Schwarzian equation

d3g

dz3
= 3

2

(d2g/dz2)2

dg/dz
− v0

dg

dz
, (11.3)

where z ≡ x − f (t). We already know that the Schwarzian equations can be studied through the 
superposition rule (10.4), which can better be obtained by using that Schwarz equations can be 
studied through a Dirac–Lie system, as seen in this work. More specifically, we can generate all 
their solutions from a known one as

g2(z) = αg1(z) + β

γg1(z) + δ
, αδ − βγ �= 0, α,β, γ, δ ∈R. (11.4)

In addition, (11.3) is a HODE Lie system, i.e., when written as a first-order system by adding the 
variables v = dx/dz and a = dv/dz, it becomes a Lie system X, namely one of the form (5.3). It 
can be proved that (11.3) can be integrated for any v0 = df/dt . For instance, particular solutions 
of this equation read

ḡ1(z) = th[√v0/2z] (v0 > 0), g1(z) = 1

z + 1
(v0 = 0).

Note that g1(z) has the shape of a solitary stationary solution, i.e., limx→±∞ g1(x − λ0) = 0
for every λ0 ∈ R. Meanwhile, ḡ1 is a traveling wave solution. Moreover, the general solution 
of (11.3) in both cases can be obtained from (11.4).

Other methods can be employed to study SKdV equations through the Lie system (11.3). For 
instance, our mixed superposition rule allows us to obtain the general solution of (11.3) out of 
a couple of particular solutions of the linear system (10.2). Obviously, this can be much easier 
than solving (11.3) directly.

Finally, it is also relevant that every Lie system related to a Lie algebra of vector fields V
induces the so-called quasi-Lie scheme S(V, V ) [60]. One of the reasons of the importance of 
this scheme is that it induces a group G(V ) of t -dependent changes of variables, the referred to 
as the group of the scheme, that enables us to transform the system X into a new Lie system 
with the same Vessiot–Guldberg Lie algebra. This can be potentially employed to transform X
into a new Schwarzian equation with a different f (t), which would be rise to a certain type of 
Bäcklund transformations for our traveling solutions of SKdV equations.
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12. Conclusions and outlook

We have introduced a new type of Lie systems on Dirac manifolds generalizing Lie–Hamilton 
systems. We have analyzed their geometric properties and we showed that they can be employed 
to study systems, e.g. SKdV and Schwarzian equations, appearing in the physics and mathematics 
literature.

In addition, the more general structure of Dirac–Lie systems allowed us to investigate systems 
that could not be treated through known techniques. In particular, we have developed a theory to 
obtain bi-Dirac–Lie systems, several methods to obtain constants of the motion, Lie symmetries, 
and superposition rules for Dirac–Lie systems, and various generalizations of notions appearing 
in the theory of Lie systems. As a result, we were able to obtain through geometric and algebraic 
techniques mixed and standard superposition rules for Schwarzian equations.

In a future research, we will aim at finding new types of Lie systems related to other geometric 
structures. For instance, it would be interesting to study the existence of Lie systems admitting 
a Vessiot–Guldberg Lie algebra of Hamiltonian vector fields with respect to almost or twisted 
Poisson structures. We are also interested in developing a generalization of the theory of this 
work to the framework of Lie algebroids. The latter has shown to be very fruitful in Geometric 
Mechanics [67–70] and Control Theory [63,71]. Moreover, a further analysis of the properties 
of Dirac–Lie systems is being performed. Moreover, we aim to develop co-algebra techniques 
[23,57] to obtain mixed and standard superposition rules for Dirac–Lie systems.
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