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Abstract

We prove existence of global weak solutions to the chemotaxis system

M;ZAM—V-(MVU)+KM—MM2

vi=Av—v+u

under homogeneous Neumann boundary conditions in a smooth bounded convex domain 2 C R”, for
arbitrarily small values of u > 0.

Additionally, we show that in the three-dimensional setting, after some time, these solutions become
classical solutions, provided that « is not too large. In this case, we also consider their large-time behaviour:
We prove decay if ¥ < 0 and the existence of an absorbing set if ¥ > 0 is sufficiently small.
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1. Introduction

Starting from the pioneering work of Keller and Segel [9], an extensive mathematical liter-
ature has grown on the Keller—Segel model and its variants, mathematical models describing
chemotaxis, that is the tendency of (micro-)organisms to adapt the direction of their (otherwise
random) movement toward increasing concentrations of a signalling substance. For a survey see
[6] or [7,8].

If biological phenomena where chemotaxis plays a role are modelled not only on small
timescales, often the growth of the population, whose density we will denote by u, must be
taken into account. A prototypical choice to accomplish this is the addition of logistic growth
terms +«u — pu’ in the evolution equation for u. Here +ku, with k € R being the difference
between birth rate and death rate of the population, is used to describe population growth, and the
term —u® models additional overcrowding effects. Negative values of «x can be used to include
effects like spontaneous degradation into the model (e.g. in the case of a starving population)
that — in contrast to the effects modelled by the quadratic term — take place also in regions with
small population density. Unfortunately, it is unclear whether global classical solutions to the
chemotaxis-system

Uy =Au—V-(qu)+/cu—/u42
vw=Av—v+4+u
dhulpe =0vlse =0

M(',O)ZM(), v('ﬂo):vOa (1)

where ug, vo are given functions, exist in the smooth, bounded domain £ C R" if n > 3 and
w > 0 is small.

The parabolic—elliptic simplification (where v; is replaced by 0) of (1) has been considered
in [23], where — besides some study of asymptotic behaviour — it is shown that weak solutions
exist for arbitrary p > 0 and that they are smooth and globally classical if p > ”n;z In [24] the
existence of (very) weak solutions is proven under more general conditions. Under additional
assumptions, also the existence of a bounded absorbing set in L°°(£2) is shown.

Turning to the parabolic—parabolic system, important findings are given in [26], which assert
existence and uniqueness of global, smooth, bounded solutions to (1) under the condition that
be large enough.

Additional results on existence of global solutions or even of an exponential attractor have
been given in the two-dimensional case (see e.g. [16,17]). In this case, global solutions exist for
arbitrary p© > 0.

Not only the restriction to dimension 2, but also the inclusion of some kind of saturation effect
in the chemotactic sensitivity [2], sublinear dependence of the chemotactic sensitivity on « [3] or
even changing the second equation into one that models the consumption of the chemoattractant
(as done in [20,22] for k = u = 0) can make it possible to derive the global existence of solutions.
The same can be accomplished by replacement of the secretion term +u in the second equation of
(1) by ~I—W with some 0 < 8 < 19—0, which enables the authors of [14] to show the existence
of attractors in the corresponding dynamical system.
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On the other hand, the model

utzeAu—V-(qu)+Ku—pLu2
O=Av—v+u 2)

has recently been shown to exhibit the following property [12]: If u € (0, 1) and the (radially
symmetric) initial datum ug is large in a certain L” (£2)-space, there exists some finite time such
that up to this time any given threshold will be surpassed by solutions to (2) for sufficiently small
& > 0. Although this demeanour may be interesting from an emergence-of-patterns point-of-view
and although solutions become very large, it still is not the same as blow-up and, in fact, also
occurs in case of bounded solutions, even in space-dimension 1 [29].

In [27] it is shown that in another related model,

1
ur=Au—V - uVv) +rxu — pu®, vy =Av—m(t) +u, m(t)=@[u,
2

blow-up may occur for space-dimension n > 5 and exponents |1 < o < % + Tl_z

Consequently, the supposition that any superlinear growth restriction already signifies the
existence of a global, bounded solution does not stand unchallenged; and the question whether
the above-mentioned results on the presence of global smooth solutions in similar situations find
their analogue in the case of (1), the most prototypical chemotaxis system including logistic
growth, is not clear at all.

In the present article, we therefore investigate the existence of solutions to (1). More precisely,
we will construct weak solutions in the sense of Definition 5.1 below. We shall show that, in
dimension 3 and under a smallness condition on «, they become smooth after some time, which
also excludes finite-time blow-up from then on. Note that this, however, does not provide any
information on a small timescale.

To the aim sketched above we will then consider the approximate system

Ut = Aug — V - (U V) + KUue — Mu? — eug

Ver = AvVg — Vg + Ug
Ovligla = dyvelae =0

uS('aO):MO,Sv U(',O) =U0,89 (3)

for 6 > n 4 2 with nonnegative initial values ug , € C(£2) and Vo,s € wlntl(2), where global
classical solutions are quickly seen to exist, and derive estimates finally allowing for compactness
arguments, which will provide the existence of a weak solution to (1) in Proposition 6.1 and
Lemma 6.2.

We will employ the estimates from Section 4 to conclude that a solution must become small in
an appropriate sense after some time. This, in turn, will be the starting point for an ODE compar-
ison argument for the quantity f o ug(t) + f o Ve () |4, whose thereby-obtained boundedness in
conjunction with estimates on the Neumann heat semigroup results in eventual boundedness and
hence in eventual smoothness of («, v). We finally arrive at the following result:
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Theorem 1.1. Let 2 C R” be a smooth bounded convex domain and ug € L*(£2), vg € W2(£2)
nonnegative. Let k € R, u > 0.

Then there is a nonnegative weak solution (u, v) (in the sense of Definition 5.1 below) to (1)
with initial data ug, vg.

It can be approximated in the sense of a.e.-convergence by solutions of (3).

Furthermore, if n =3, for any pu > 0 there exists ko > 0 such that if k < ko, there is T > 0
such that u and v are a classical solution of (1) fort > T. Moreover; in this case, there are C > 0
and o > 0 such that for any t > T

— _ <(C.
”u||C2+°"l+%(Q><[t,t+l]) + ||v”C2+°"H%(Q><[1,z+1]) <C

Remark 1.2. Because we have adopted a weak concept of solution, it is conceivable that solutions
to (1) are not unique. Investigation of this issue is beyond the scope of the present work and we
state the following theorems only for solutions as provided by Theorem 1.1.

Besides the aforementioned results about attractors, little is known about asymptotic be-
haviour of solutions to models like (1). Recently, in [28] convergence to the positive homo-
geneous equilibrium was found for values of p being sufficiently large as compared to the
chemotactic sensitivity.

The richness of dynamics and pattern formation exhibited by chemotaxis models with growth
[18,10] however indicates that any speculation about asymptotical behaviour, especially about
convergence to homogeneous states, should be backed by rigorous examinations.

In the situation of (1), we can summarize the long-term behaviour as follows: If ¥ < 0, solu-
tions will converge to the trivial steady state — and any formation of interesting patterns has to
take place on intermediary timescales.

Theorem 1.3. Let &t > 0, k <0. Let 2 C R3 be a smooth bounded convex domain and let (u, v)
be the solution to (1) provided by Theorem 1.1. Then

(u(t), v(t)) — (0,0) ast— o0
in the sense of uniform convergence.
Remark 1.4. The same convergence result can be given for any classical solution of (1) for
w>0,k <0in £ C R3 as above. In this case, only minor adaptions of the proofs become

necessary.

If « is positive and sufficiently small, we can assert the existence of an absorbing set in the
following sense:

Theorem 1.5. Let 2 C R3 be a smooth bounded convex domain. Then for any ju > 0 there is
ko > 0 such that for all k € (0, ko), there is a > 0 and a bounded set B, , C (C*H(2))? such
that for all (ug, vo) € Lz(.Q) X Wl’z(.Q), the corresponding solution (u,v) as constructed in
Theorem 1.1 admits the existence of T > 0 such that

(u(t), v(t)) €By, forallt>T.
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Furthermore, for each fixed p > 0,

diam ;oo () wi.oo(2) (Bux) = 0 ask (0.

Further steps in this direction may hopefully lead to an even more detailed insight, much in
the spirit of [13,1], into the long-time behaviour of solutions to (1) in dimension 3 for small,
positive .

Remark 1.6. In the calculations below, we will assume that p > 0 is a fixed number.
Throughout the article, we fix £2 C R” to be a convex bounded domain with smooth boundary
and ug € L2(£2), vp € WH2(£2) nonnegative. Also, let & denote a number satisfying 6 > n + 2.

2. Existence of approximate solutions

The system (3) has a unique, global, classical solution. At a first glance, the source term
f(s) =ks—us?—es? seems to satisfy the condition f(s) <a— wos? from Theorem 0.1 of [26],
which would provide a global solution, but as p depends on a, this theorem is not applicable in
the present case. Even tracing the dependence of (1o on a does not improve the situation.

We therefore use Lemma 1.1 of the same article, which asserts the local existence of a unique
classical solution (u, ve) to (3) for initial data ug, € C(£2), voe € WT1(£2). More specifically,
it implies that this solution exists on a time interval [0, Tiax), Tmax € (0, 0o], and satisfies

limsup(”ltg(f) ”Lao(g) + ||v8(t) ” W1’°°(9)) =

t max

if Thax < 00. Hence, in order to show the global existence of this solution, it is sufficient to derive
boundedness of u,, v, and Vu,.
Our means of pursuing this aim will be

Proposition 2.1. Let ¢ > n + 2. Let (u, v) be a nonnegative classical solution of

ur=Au—V-wvVv) + f(u),
vw=Av—v+u
in 2 x [0, T], T > 0, with homogeneous Neumann boundary conditions, for initial data vo €

Who®(£2), ug € L®(2) and some function f satisfying f(s) < Co for all s > 0 with some
Co > 0. Furthermore, assume that there exists C > 0 such that u satisfies

(1)«

Then u, v and Vv are bounded in 2 x [0, T].
Proof. Denote by C1, C, C3 the constants provided by Lemma 1.3 of [25] such that

[ver® < C1lIVwl| (@) 4

w”Loo(.Q)
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for all w € W1 (§2) and

||Ve’Aw||Loo<9) <G+t %_ZL)HwIILq(m ©®)

for all w € L9($2) as well as

eV - w] oo o) <C(1+ 27wl ey ©

for w € L9(£2,R"). Here, e™2V- denotes the extension of the corresponding operator on
(C5°(£2))" to a continuous operator from L7(§2,R") to L°°(£2), see [25, Lemma 1.3]. Since

1 qg _ _lg+n g __ +1 +1
(—3—9) =17 =— 2(1"‘" )> = 2(1+(niz) ) =-L

T
= </ l+(T—s)
0
is finite.

Let ¢ € [0, T]. Employing (4) and (5) in the variations-of-constants formula for v, we obtain

gq—1

)q‘ds> ' %

N|=

[V 1oy = V"™ Dv0] o + f [ Ve ™AV u)] o )
t

< CillVuollLo(2) + C2/(1 +(t—s) 2 21)”“@) ”Lq(md
0

t q—1
_l_n_a a
5CIHVUOHLOO(_Q)+C2</(1+(I—s) 2 2q)q—1ds>
0

(4 [l )

< CilIVuoll L2y + C2C4C =: Cs. )

Qi

We represent also u in terms of the semigroup, use the order-preserving property of the heat
semigroup and estimate with the help of (6) to see that

f ¢
0<u@)=e%ug+ / PR v (u(s)Vu(s))ds + / e(’ﬂ')Af(u(s))ds
0 0
t
< lluollL=(@) + C3 /(1 + =92 2_) | Loy VOS] oo )88 + T Co
0
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Another application of Holder’s inequality, now in time, in combination with (8) and (7) gives

t 1

a1 t
1. n. g \1 q
O<u() =< ||M0||L°°(Q)+C3C5</(1+(t—s) 2 24)‘!‘) (/Hu(s)qu(Q)) +TCo
0

0
< lluollLo(2) + C3CsC4C + T Co =: Cé.

Boundedness of v on £2 x [0, T'] then is an easy consequence:

t

t
0<v® <[ P g + / [ ADu(s)]| o )88 < Nvolloe(e) + / Cods
0 0

forallz € [0, T]. O

For given nonnegative ug € L2(£2), vo € WE2(£2) and & > 0, we choose upe € C(2), Vo,s €
wLr+1(2) nonnegative such that

lluo — uoell12(ey < minfe, 1}, lvo — vo,ellwi1.2() < min{e, 1}. )

From now on, by (u., v;) we denote the unique classical solution on [0, Thax) to (3) with initial
data ug . and vg ¢. Proposition 2.1 in conjunction with the next two lemmata and Lemma 1.1 of
[26] will show that, indeed, Trax = 0.

Note that, by (9), in the following lemmata estimates in terms of ug, or vp . can be made
e-independent by retreating to the corresponding integral of uq or v plus 1.

3. Estimates
In this section we present estimates for different quantities involving u, and v, respectively,

which can be obtained more or less directly from (3) together with ODE comparison arguments.
In the following, denote

k4 := max{k, 0}.
Lemma 3.1. For any ¢ > 0, the function u. satisfies

/ug(t)fmax{/uo,s,w}
7

2 2

fort > 0. Furthermore,

2
limsup/ug(t) < e |,
I

—0o0

uniformly in ¢ > 0.
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Proof. By Holder’s inequality, ( f o ug)? < ( f o u3)|.Q|. Hence, integration of the first equation

of (3) yields
— 2 %
</Ms> —/ustSO_O+K+/MS—M/M£—8/M5
Q e

2 2 Q
" 2
§K+/M£—ﬁ /ue . (10)
Q 2

The claim can be seen by solving the logistic ODE. O

Lemma 3.2. Let k > 0, let T > 0. Then there exists C > 0 such that for all ¢ > 0

2 1
/ugf"imax{/uo,g,”' |}T+—/uo‘g§C.
J iz iz iz

2 ko)

T T

[[]

0 0

Proof. The estimate

T
f/u?-k
0

2

=
IA

T T | |
K

/fu? —+//Ms+—/uo,s——fus(T)
% 5 %

0 2 0 2

A
= |7
=
o
bl
rm— e,
Re—
<
(=}

2
i
= | =

S
N——
ﬂ
+
| —
—_—
<
o
™

results from (10) after time-integration. 0O
Also for the second component of the solution some basic estimates are available:

Lemma 3.3. Let k € R, ¢ > 0. The inequality

K+ |82]
Vg (1) < max Uo,e, [ voe
"
2 22 2

holds as well as

forallt > 0.

Proof. Integrating the second equation of (3) gives, by Lemma 3.1,
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d
a7 Ve(t) = [ ver () = | Ave(t) — | ve(®) + [ ue(?)
2 2 2 2 2

K+|82]
< — | ve(?) + max UQe, ——
"
2 2

for t > 0, an ODI for f o Ve» whose solution directly shows

Q
/ve(t)smaX{/uo,s,K+| |}+€I/U0,s (11)
2 2 H* 2

and hence the first part of the assertion.
As to the second part, we derive an ODI for % /, o vg in quite the same way: For ¢ > 0, by
Young’s inequality

VT Ug(t)Z/Us(t)vet(t):/US(I)AUS(I)_/Ug(t)+/us(t)ve(t)

Q o (9] 2 2
5_/\we(;)f_/vg(m%/ug(z>+%/v§<z)
2 2 2 2
<—1/v2(t)+lfu2(l)-
= 2 £ 2 &
2 2

Integrating this with respect to the time variable, so that we can use the bound from Lemma 3.2

2 we obtain

on u;,

t t

[ro-[a=] [e] ]2
0 2 0 2

2 2

for any ¢ > 0 and the claim follows. O
The next lemma gives estimates on the derivatives of v.

Lemma 3.4. Let k € R, ¢ > 0. The solutions of (3) satisfy, for all t > 0,

1 1 ky+1 Ky|$2
[/‘Vve(t)}z‘i‘_/ue(t)} Smax{/|vvo,s|2+_/u0,e’ e max{/uo,s, ! |}}
124 124 2 M
2 2 2 2

and
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t

K K+ |82 1
[/|Avg(t)|2§ imax{/uo,g, | l}t+/‘|Vvo,8|2+—/u0,s.
I m n
0 2 2 2 2

Proof. Integration by parts and Young’s inequality result in

d fIV |2+1/
— ) — | u
dt e m €
Q Q
2 K+ 2 ¢ 0
<=2 |Av|" 42 | Avgvg =2 | Aveug +— | ug — | u; —— | uy
Q MQ Q H”

Q Q Q
2 2 2 2 2, K+
<=2 A" =2 | Ve[ + | [Ave|" + | uz — u8+; Ug
Q Q 2 Q Q Q
1 Ky +1
s—/|Av8|2—/|Vvs|2——/ug+ + /u (12)
W W
Q Q 2 Q

on (0, 0o). From this, we can conclude by Lemma 3.1

d 1 1 ke +1 Ki|82
_[/|VU£|2+_/M{| §_|:/|VU8|2+_/MS]+ hs max{/”O,e, +| |}
dt M 7 7 7

2 2 2 2 2

on (0, c0) and hence the claim follows by comparison with the solution of y’ = —y + const.
Re-sorting the terms in (12) moreover gives

/|Av8(r>|2 < _/|ng@>|2 + %/w) - %Uwvg(nf + i/ug(t)]

2 2 2 2 2

for t > 0, and therefore

t

K Ky|82 1
//|Av8|2§ imax{/uo,g,g}t— [/|va(t)|2+—/u8(t)]
I I I
0 2 2 2 2
5 1
+ |VUO,8| +— [ uoe
I
Q2 2

K Ki|$2 1
5imax{/uo,g,L}t+/|Vvo,g|2+—/uo,e. O
M M 28
Q 2 Q

The bounds that have been derived so far can be combined to yield

Lemma 3.5. Let k € R. For any T > 0, there exists a constant C = C(T, u, k+, ||u0||Lz(Q),
lvollwi2(e)) such that for all ¢ > 0

Please cite this article in press as: J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis
system with logistic source, J. Differential Equations (2014), http://dx.doi.org/10.1016/j.jde.2014.10.016




YJDEQ:7631

J. Lankeit / J. Differential Equations eee (eeee) eee—see 11

T T T
1 |Vue|? ) p
— +u uglog(l4+ug) +¢ u; log(1 +ug) <C.
2 14 ug

0 2 0 2 0 2

In particular: The families {ug}ge(o,]) and {sug}ge(o)l) are equi-integrable over §2 x (0, T).

Proof. Let T > 0. Testing the first equation of (3) with log(1 + u,) and integrating by parts gives

|Vug|? ue Ve - Vg
ugr log(l +ug) < — + +it | uglog(l+u)

14+ u, 14 u,
2 2 2 Q
—u/uflog(l+u8)—e/uglog(l+u8),
Q Q

which, using ((1 4+ u,)log(l +us) — ue)r = uer log(l + u,), can be turned into

u/uglog(l+ug)+€/uf log(1 4 u;)

2 2
[Viug|? /Lthvg -Vu, /
log(1
= T +u. T+ u. +uxy | uglog(l +ue)
2 2
- f[(l +ug)log(l +ue) — ue]t-
2
Integration in time hence yields
T T
I:=u//u?log(1+u8)+8//u§10g(1+u5)
0 R 2

~

T
Vu,|? Vo, -V
= _//|14L-{8u| //ugll:iu - K*//uslog(lﬂg)
& &
0 2

((1+ ue (7)) Tog(1 + ue(T)) — ue(T)) + / ((1+ uo.e) log(1 + uo.e) — wo.c)
2
T

0

Q

[ |Viue|?

Vug //ungg Vu, //
< — +« uglog(l +u

f 1+ u, 1+u, + e log( €)
0

Q

0 2

+ | u(T)+ f(l 4+ ug.e) log(l +up ). (13)

We integrate the second term by parts:
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u5>

T T
Vv -V
-f [ [ [ (i
02

T

1+u; —u,

Av usVug - Vu .
’ /f C (T Hue)?

u Vug va _
l+u8
0 2

T
//1+ua
0 2

Inserting this into (13) then results in
T
/< / |w€|2 // ue Vo, Vu,
= 3 1
s S I Fue 50 (I4u)? (L+up)?
T
+K+f/uglog<1 +u5)+/ug(T>+f<1+uo,s)log(1+u08)
2 Q
where application of the trivial inequality + < 1 gives rise to
(1+ug)7
T 5 T
[Vie| [Vug|
I<— ——uAve + IV Ve| ———
1 + us 1 + Ug 1 + Ug
0 0
T
+K+//M510g(1+Ms)+/ug(T)+/(1+M0,e)10g(1+1405)
0 2 2 Q
Estimating 11; and employing Young’s inequality shows
|Vue |
1+ u,

%]/ﬁ%j!mﬁ fledz f

e
I <
1+ u,
0 2
T
K+[/M§+/M5(T)+/(1+u0,a)10g(1+'405)
0 £ 2 2
T
1 |Vug|? 2 2
[ [ () [ [ femed ] [t ] [
2 ¢ 0 £

0
+ / (1 + u0.0) log(1 + u.e)
2

And if we compile the bounds provided by Lemmata 3.2, 3.4 and 3.1, we arrive at
Please cite this article in press as: J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis
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T
1/1/|Vud2
I+
2 14 ug
002
)i (remos] foe SE T+ ) mas] [ =2}
— | x4+ max UQ,e, T+ | upe | + max uoe,
® M 1
2 2 2
1/« Ky |82 1
+—<—+maX{/uo,g, +| |}T+/|Vvo,g|2+—/uo,g>
2\ 2 2
2 2 2
1 1 1 2
+—Tmax{/|Vvo,g|2~|——/uo,g,K++ max{/‘uo,g,KJrl |H
2 MQ iz J iz

+ / (1 +uoo)log( +upe) = C. O
2

[Vue |2
2 l+u,

From the bound on fOT we can extract information on the behaviour of the spatial

gradient of u.

Lemma 3.6. Let k € R. For all T > 0 there is C > 0 such that for all ¢ > 0

lluell 4

<
L3((0 H.wh 3 (£2))

Proof. Denote by C; the constant provided by Lemma 3.2 and by C, that of Lemma 3.5. Then,
by Holder’s and Young’s inequalities,

4 4 A 4
el /Ilusl - =/</ ; /IVual‘)
L’((O ), w" *(Q)) 3( 0
3 T
2 % u5|_
S ug |Q|T + 2(1+u8)3
0 2 0 2 (H_”g)g

T T
§|MT%+2/ |wm2 1//U+ 2
= = u
3 l4u, 3 ¢
0 0 2

% 4 2 2
1(|.Q|T) +§C2+§T|Q|+§C1 =:C. O

In order to gain convergence results from Aubin-Lions-type lemmas, we need some informa-
tion on the time derivative. The following lemma provides this kind of information.

Lemma 3.7. Let «k e R and T > 0. Then there is C > 0 such that for all ¢ > 0

et 10,7y, (w2 2y = C-
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Proof. Definition of the norm and integration by parts in (3) lead us to
T
/ sup / Ugt P
0 2

ol 2002y <1
T
5/ <’/u5A<p‘ ‘/uSva V(p‘—i— /uggo
<1
0

where we can use [|¢||y2.0(p) < 1 and Young’s inequality to see

T
1 1
||u5t||L1((0,T),(W2’OO(Q))*) Sf(/ug+5/”3"‘5/|va|2+|K|/M5+M/Mg+8/M§)
0 2 2 2 2 2 2

and infer boundedness of this norm, independent of ¢, from Lemmata 3.1, 3.2 and 3.4. O

+u

—
<
™ B
S

||<ouwz m)

The space in which the spatial gradient is known to be bounded can be improved if a bound
on u is assumed.

Lemma 3.8. Let k € R and let [Ty, T;] be an interval such that there exists a constant M satis-

Jying
e Loy =M

forallt € [Ty, T»] and € > 0. Then there is C > 0 such that for all ¢ > 0

IVuell L2y 1):2(2)) = C-
Proof. By Lemma 3.5 we can find C > 0 such that
T

f/|ws|2<
1+u, —

0

for all € > 0, ergo, setting C = (1 + M)a

T T
1+M ~

[ [wurs [ [{Eiwur=asmi=c. o
1+ u,

T 2 T, 2

Under similar conditions, also the time derivative is bounded in a better space.
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Lemma 3.9. Let « € R and let [Ty, T>] be an interval such that there exists a constant M satis-

fying
”ua(t) ”LOO(.Q) + ”Ug(t) ”WI'OO(Q) =M

forallt € [Ty, T»] and € > 0. Then there is C > 0 such that for all ¢ > 0

e ll 21y, 10)s (w1 2(2)y%) = C-

Proof. }et ¢ be an element of L?((Ty, T»); W'2(£2)) with norm 1.
Let C be the bound on [|Vue |l 27, 1,): 12(52)) Provided by Lemma 3.8. Then

T 7
//mﬂﬂ // Kitg — [ uz—euZ)go
T T

< ”VMSHLZ((TLTZ)QLZ(Q))”V(p”LZ((Tl»Tz)}LZ(-Q))

Vu, -Vo|+ u:Vue - Vo | +

+< sup ||Vvs(f)||mc<g>)||”a||L2<<T1 r:22n IV @Il 21y 1): 12 (2)
te[T1,T2]

2, 0
+ v (T2 — T1)|$2] ”"”8 + nug tug “Lw((zx(Tl,Tz)) el z2(ry. 7). 22(2))
<C+M(T,—T)IQIM + (T, — T)|2|(Ic|M + uM? + M?) =: C

and hence boundedness of u,; in (L*>((T1, T»); W2(£2)))* follows. O

4. Preservation of smallness

In the last two lemmata, we have seen that boundedness can provide bounds also for deriva-
tives. It will as well be important in establishing regularization effects. Therefore, in this section
we will derive this boundedness and to this aim proceed as follows: At first we will prepare some
estimates on y, () := f o ug(t) + f o |Vv€|4. These will establish that y, satisfies a differential
inequality with a polynomial right hand side; we will show that this polynomial has a positive
root and y, eventually undermatches its value. Finally, we will use the bounds just gained to
improve them to L°°-bounds for the solutions under consideration.

At first we state the following easy consequence of Poincaré’s inequality.

Lemma 4.1. If we denote w = Wl‘ Jo w, then

w? ch/|Vw|2+ |2|w?
2

R—

for all w € WH2(82), where Cp is the Poincaré-constant of $2, defined by fg(w —w)? <
Cp [o IVw|? for w e W2(£2).
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Proof. As announced, this is a direct consequence of Poincaré’s inequality:

Cpfle|2z/(w—w)2:/w2—Z/ww—i-/lﬁz:/wz—2@|.Q|E+|.Q|w2
2 2 2 2 2 2

=/w2—|rz|w2. O
2

Another elementary but useful identity is the following:

Lemma 4.2. Let w € C3(2). Then
AlVw[? =2VwVAw + 2| D*wl.

In the proof of Lemma 4.4 we will also make use of the well-known Gagliardo—Nirenberg
inequality:

Lemma 4.3. Let §2 be a bounded Lipschitz domaininR", p,q,r,s > 1, j,m e Ngand o € [%, 1]

TR 1 _J 1 1— ..
satisfying »=mT G — %)a + Ta' Then there are positive constants C1 and Cy such that for
all functions w € L1($2) with Vw € L (£2), w € L*(£2),

1—

|DTw |50y < CL D" w7 ) 1wl e + CallwllLs ().

Proof. See [15,p. 126]. O

We are aiming for an estimate for | o |Vve |*. During the calculations we therefore will have
to get rid of integrals of | Vv, |®. The Gagliardo-Nirenberg inequality enables us to replace them
by more convenient terms.

Lemma 4.4. Let n = 3. For any a > 0 there is C(a) > 0 such that, for any k € R, & > 0,

: :
/|w€|6sa/|V|va|2!2+C(a>[(f|wg|4) +(f|wg|4) ]
2 2 2 2

Proof. For given j =0,m =1, 2, p =3, r =q =2, s = 2, the Gagliardo—Nirenberg inequal-
ity (Lemma 4.3) provides constants C; and C; such that for w € LZ(.Q) and with o = % the
inequality

3

3 3
<8CT VWil o g 1wl 12 o) +8C3 w1l

3
”w”Lz(Q) L2(Q)’

holds true (where we at the same time have used (x + y)3 <83+ y3)). Applied to w = |V, |2
this means
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3 3 3

2 g g 2

fle8|6§8C13(/|V|Vv£|2| ) (/|Vv8|4) +8C§</|Vu8|4) )
2 2 2 2

, ¢ =4, corresponding to a > 0 Young’s inequality provides C(a) > 0 such that

3 3
/|va|65af|V|Vv£|2|2+C(a)(/|Vv£|4) +8CS</|V05|4>
2 2 2 22

and the claim results with the choice of C(a) = max{8C3, C ()}. O

With p =

[NES

With the help of Lemma 4.4, we separate u., Vu, and Vv, in one of the terms arising from
differentiation of [, u?.

Lemma 4.5. Let n = 3. Corresponding to p > 0 there exists C > 0 such that for any k € R and

& > 0 the estimate
1 2 3,1 212
ugVug~Vv€§Z [Vue|”+ 1 u€+§ |V|va| ’
Q Q

wef( !w): ( [[W%ﬁ)%)

Q

holds.
Proof. Double application of Young’s inequality yields a constant C > 0 such that
1 1 ~
fugwg.wg < Z/|Vug|2+/u§|wg|25 Z/|W€|Z+M/u§+C/|Vv8|6.
2 Q2 Q2 2 Q2 Q2

Using Lemma 4.4 with a = % to estimate f o1V |® this produces the assertion, with the choice
C=CC}). O

The term f o |V|Vve|2|?, known to us from Lemma 4.4, arises from the following estimate
with the “right” sign.

Lemma 4.6. Let k € R, let g > 1. Then

d 2q 2g—4 212 2q 2g—1

7 Ve "7 < —q(qg — D) | Vo277 VIV [|" =29 | [Vvel™ +2g [ [V [*77 ! [Vugl.
Q Q Q 2

Proof. Evaluating the derivative and inserting the second equation of (3) gives
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d 2q 2g-2 2g-2
7 [Vve[“ =2q | |Vug| Vg - VAv, —2q | |Vug| Vg - Vg
2 2 2

+ 2q/ Vv, |2V, - Vu,.
2

Here, Lemma 4.2 and integration by parts eventuate

d _ _ 2
E[stﬁq:q/mgﬁq 2A|Vvs|2—2q/|wg|2" 2| D% |
2 2 2

—2q/|wg|2‘f +2q/|wg|2‘1*2wg.wg
2 2

_ 2 _
S—q(q—l)/IVvslz‘f VIV | —2q/|w8|2‘1+2q/|wg|2‘1 Vgl
2 2 2

In this step we used convexity of £2 to estimate the boundary integral
/ Ve 272V (Ve ?) v <0
952

due to the fact that in convex domains 3u|va|2|a o <0 follows from d,v|3 = 0, confer [21,
Lemma3.2]. O

The other summand arising in the calculation of y/(f) can be estimated as follows:
Lemma 4.7. For any k € R, ¢ > 0,

d
o u?f—2/|Vug|2+2/u€Vug~va+2K/ug—2,u/ug.
Q Q Q Q Q

Proof. This results from integration by parts and estimation of the negative last term in
Z/Ltgugt 52/u5Au6 —2/u€V~(u€Vv€)+2K/u§—2u/u2—28/14?. O
Q Q 2 Q Q 2

We put the estimates that we have found so far to their use and state

Proposition 4.8. Let n = 3 and p > 0. There is a constant A > 0 such that for all ¢ > 0, for all
v>0,n¢€(0,4] andk > 0 the following holds: If k € R satisfies k <k and 2k +n < é, where
Cp is the Poincaré-constant associated with S2, then the quantity

yelt) = / (1) + / Vo ()]} (14)
22

2
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satisfies the differential inequality

412182 |

’ 1 3
yg(t)iv—ny(t)+A<1+4v> ()+ :p(ve()

for all t > Ty with some Ty = To(j1, k, ) > 0 depending on u, k,k only.

Proof. With the aid of Lemma 3.1, fix Ty > 0 such that

2K |82
ug (1) < forall T > Tp, € > 0. (15)
u
2

By Lemma 4.7 and Lemma 4.6 with g = 2, we have

yga)——(fu +f|wg )
5—2/|Vu5|2+2/usVu5~VUS+ZK/ug—2MfMg

2 2 2 2
—2/|V|Vv8|2}2—4/|va|4+4/|Vv8|3|Vu8|.
2 2 2

By application of Lemma 4.5 to the second and Young’s inequality and Lemma 4.4 to the last
term, this becomes

yL(t) < 2/|w,;|2 /|Vug|2+2ufu +/|V|va| ?
+2C<</|Vv8|4) </|Vv8|4) )
+2x/ u — /u;j’—2/|V|wg|212—4/|wg|4+%/sz
2 2 2 2
s [lvmurtee(G)([rour) + (frour)))
2
3 : 3
§2K/u§+A</|Vve|4> +A7</|Vv€|4) —4/|W£|4—/|w€|2,
2 2 2 2 2

where we denoted A% = max{2C + 8C (%), 1} < A, C being the constant from Lemma 4.5 and
C(%) taken from Lemma 4.4.

Q
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Another application of Young’s inequality with v > 0 — so as to remove the unsolicited expo-
nent % — and sorting other terms, in order that the term —ny appears, leave us with

3 A 3
y;(r)5(2K+n)/u§+A</|ng|4> +u+5</|w8|4> _nfug
2 2 2 2
—4/|Vv£|“—/|wg|2,
22 2

where we apply Lemma 4.1 to the last summand and use that by (15) u.(t) = \:12_| /, oQue(t) < %
for t > Ty to arrive at

Y1) < (2/<+n)—L /u2+A I+ f|w 14 3
€ - Cp € 4y €
2 2
Q
+u—n(/u§+/|wg|4>+|—|zz§
Cp
2 2

4122
Cpu?

< al14 2 3
<v—ny()+ ( “I‘R)(ys(t)) +

aslongas 2« +n)Cp <landne (0,4]. O

The function y, satisfies a differential inequality with polynomial right hand side. This in-
formation is not very useful in obtaining boundedness if not accompanied by the statement that
comparison with a stationary solution to the differential equation might be possible, i.e. that there
is a root of the polynomial. Such is provided by the following lemma.

Lemma 4.9. For any 1 > 0 there exists vy > 0 such that for all v € (0, vg] there are ¥ > 0,
n € (0, 4] such that the polynomial

(x) = paf142 3+4’K\2|9|
px)=v—nx T X Coi2

defined in Proposition 4.8 has a positive root for k =«.
Furthermore, for each’c € [0, K] it has a largest positive root 8, (k) as well, satisfying

[ 4
8§,(K) <8,(k) < | —m—.
(k) <éu(k) < A(l—i—%

Proof. Because p(x) is increasing in &, 8,,(K) < 8, (k) for ¥ € [0, K] is obvious.
Choose vy > 0 such that

T 4 256
Vg + — < min BT
4 27ACP 27A
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and let v € (0, vp]. Then the inequality

42| L\?  4min{(£ —20)3,4%)
<v+ | 'ﬁz) < Cr (16)

w*Cp 27TA(1+ )

is satisfied with © = 0. Let ¥ € (0, ﬁ) be such that (16) is still satisfied for ¥ = ¥. This is

possible due to continuity of the expressions in k. Additionally, let 7 = min{4, é — 2K}
Consequently, the inequality

42| ,\° 4n’ .2 n 42| -,
v+ 5K < thatisv — =n T+ 5K <0 17
Cru 27A(1+ ) 3340 +4)  Ceu

holds. Observe that p attains a local minimum at

-1 -9
Tzaa+ L T
where

plm) =v =7 L+A<1+i> " n__ A2
" 3401+ 1) W )3A0+ L)\ 340+ L) | Cru?
2 n 42|
—v—2n | v g
3N 3a0+ L) " G

is negative by (17) and therefore p has a root in (x,,, c0). For any ¥ € [0, K] this root is smaller

than [—2 . because for x > 4> T we have
A+ A+ A(+3)

1
p(x) > A(l + —>x3 —nx>0. O
4y

We use this root for a comparison argument:
Proposition 4.10. Let n =3 and p > 0, let vg, n, K and 8,(K) for some v € (0, v] be as in

Lemma 4.9. Then for any 0 <k <K, 8,(K) > 8,(K) > 0 is such that for every k <k every & > 0
has the following property: If y. from (14) satisfies

Ye(T) <8y (k)
for some T > Ty (with Ty = Ty(u, K, K) from Proposition 4.8), then y¢(t) < 8,(«) forall t > T.

Proof. Choose as § = §, (k) the largest root of p from Lemma 4.9 and observe that according to
Proposition 4.8 and the assumption on T’
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yo() < p(y(®) forallr>T and y,(T)<S.

The comparison principle for ordinary differential equations therefore shows by means of com-
parison with y = § that y.(¢r) <§ forallz > T as well. O

4.1. Eventual boundedness of y.

Proposition 4.10 asserts that y, stays small, should it ever fall below a certain value. We still
have to ensure that the condition actually occurs.

Proposition 4.11. Let n = 3. Let v € (0, vo] with vg as in Lemma 4.9. Then there exists kg € (0, %)
such that for any k <k € (0, ko] there is ty > 0 such that for all T > to, for all £ > 0

fui(r) + Vo) < 8,®)

2

where 8,() > 0 is the positive root of p given by Lemma 4.9.

Furthermore, i satisfies
8§, 2
c< v () ’ (18)
(4+8Cgq)|$2]

where Cg, is a constant depending on the domain 2 only.

Proof. Due to the embedding W22(£2) — W'#(£2), there is C; > 0 such that

/|Vw|4scgf(w2+|Aw|2) (19)

2 2

for all w € W22(£2).
Let v be as given in the statement of the proposition, let ¥ > 0 be as provided by Lemma 4.9
and let § = §, (). Choose

su? 1}

0<ky< min{k’, _— -
(4+8Cp)|2] 8

(20)

and let ¥ € (0, ko] and k < &. (This already ensures (18) as well as the applicability of Proposi-
tion 4.10.)

Let Ty = To(u, k, k) be as provided by Proposition 4.8 and let 1 > Tg. Note that as a result of
(15) this entails

/ugm ety 1)
"

2

Furthermore denote
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1 1 ©+1 x|$2
CO:max{l+/|Vvo|2+—/uo+—,imax{l—l—/uo,K| |” 22)
wJ " J %

and choose T > 0 so large that

1 (2R]2] 2CoxI2| (3 ralel
— >+ 3 + Co—max{1+ [ ug, t
T\ u J u 2

1 Co ) 2RI\ 8
+Co— [uo+—+Cq [ vg+Co+2CoCo+—F— | <. (23)
wJ J U 2

Combining (19) with Lemmata 3.2, 3.3 and 3.4 gives

t+T t+T t+T t+T
//(u§+|VU£|4)§/fu§+CQ//U§+CQ//|AU8|2
t R r 2 t 2 t 2

2 1
s”imax{fugm,“' '}T+—/us<t)
2 2 2
Q Q
K4+ K+|Q| 1 2
+ Cp — max uy(t), T+Co— [ us(t)+Cgq [ v (t)
w w 0
2 2 2

K K. |$2 C
+CQ—+max{/u8(z>, +| '}T+cg/|wg(r>|2+—9/u(r).
u 7 7
2 2 22

Due to (21), upon another application of Lemmata 3.3 and 3.4 and taking into account that
K4+ <k, this reduces to

t+T

2 4 K 2K|82| 2k|82|
(u8+|vvs|)§— T+ 3
! Y L 0 1%

x 2k|82| 2Cok|82| ra ©|82]
Co— T+ 3 + Co—max{1+ [ uo, t
7" w w W

1 ) 7 2R192|
+Co— 14+ [u|+Co+Cq | vg+Co— T
w 7!

2Co¥K|82|

+2CoCo+ >
n

where Cy is as defined in (22). Therefore,
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1 wr 244Cgp)|82|
+4Co -~
7 [ s =
t 2

1 (2R|R2] 2Cax|2] 3 raled
+ = — + 5— + Co—maxy 1+ [ u, t
T\ u 2 u u
1 C 2Cok|£2
+C9—fu0+—Q+Cg/v5+Cg+2CQCO+%>.
2 iz J iz

Our choice of kg and T in (20) and (23), respectively, now entails

t+T

%//(uﬂwva“)sa(k‘).
t

Accordingly, for at least one 79 € (¢, 4+ T)

/ (u20) + |Voe(10)] ) < 5@

22

holds as well. Due to §,(K) < 8, (k) < 8,(k) for 0 <& < Ko, the claimed inequality for larger
times t is a direct consequence of Proposition 4.10. O

4.2. Eventual boundedness of (us, vs) in L®(§2) x WH®(£2)

The next step is to refine these bounds on y, to bounds on u,, v, and Vv,. LP — L7 estimates
for the heat semigroup will be the cornerstone of this procedure.

Proposition 4.12. Let n = 3. Then there exists a function K:[0,00) — [0, 00) satisfying
lims_.o K (8) = O with the following properties:

Assume, v € (0, vp), k < kg with vy, ko as in Lemma 4.9 and Proposition 4.11 respectively.
Choose K € (k4, ko] and let 8,(K) be as given by Proposition 4.11. Then there are Ty > 0 and
C > 0 such that for all t > T, and for all ¢ > 0

||”£(t)||L°°(s2) + ”va(t)”Lw(m < K (8,(®)).

Furthermore, corresponding to any |luoll 2oy, lvoll 2 (o), there is C > 0 such that for all t > T,
e>0

[ve @] oo ) < Ce ") + K(8,®)).
Proof. Let vy, v,k <k4 <k < ko and § := §, (k) be as indicated in the statement of the propo-

sition. Let 7, — 2 be the number from Proposition 4.11, let o > T, — 2 and let us first show
boundedness of u, on [fg + 1, g + 2]. Define
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M= sup @ —0) i) g
TE€(t,t0+2]

Let p € (3,4). By the choice of T, and § and Proposition 4.11, [ u?(t) + [ |Vve(1)[* <8
for t > T,. Together with Holder’s inequality this implies

|ue)Vve®)|| o)

L%7 ()

1 ) KX
<|ue@] s |Vve@® | paq) 564( / s’ (s))
2

1 L ) e 1 7 -2 N\
sa4</u§<s)'u;" <s>> 554(/”5@)) (supu™ ") ¥
2
2

1, 4— l—ﬂ 1 3434 7 5
<sitm sup(ue 7 (5)) <8P (s —19) *TH 3 sup((s — fo)g“a(s))1 a (24)
o 2

for s € (ty, to + 2]. Triangle inequality and L? — L9-estimates [25, Lemma 1.3] give a constant
C1 > 0 such that

HerAué‘(to) HLDO(Q) E Cl (1 + T_%) ||u8(t0) - l’_ts(to) || LZ(.Q) + ”lzs(to) HLOO(Q)?

— _1 1
where |lie(t0) |2y = g7 Joue(to) < 12172 uelo)ll 2@y < 12172+/5 and  thus

liZe (t0) | 22y < +/8 lead to

le™2ue(t0) | ) < C1 (1 +773)2V6 + 12172 V5. (25)

Again, by semigroup representation and the fact that the heat semigroup is order-preserving,

0< r%ug(to + 1)
T
< t%e’Aus(to) — 1 /e(f*S)AV . (us(to + $)Vue(to + s))ds
0

T

+ T% /e(T_S)A(KJ’_MS(t() + s) — Mug(to —+ S))ds
0

T
<74 [T ue (1) | o ) + T / |2V - (e (to + ) Vve (to + 9) || oo 4
0

T
3 3
+ 114 /K+MS_ZdS.
0
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Together with L? — L9-estimates, (24) and (25) this entails for 7 € [0, 2] and some C> > 0
from [25, Lemma 1.3]

|23uetto+ ) gy < THC1(1+T73)2V8 + 731217 3V5 + 8k, M

3

21’) ||u8(to +5)Vue(tg +5) ” Lp(_(z)ds

; 1
+2/(1+(r—s)*i
0

<20 (1+73)V6 + 131217 2V/5 + 8M

T
4—p 4-p

_1_ 1 343 : 1-
+C2/(1+(t—s) 2T )srs AT s%us(roﬂ)”mfg)ds
0

<201 (14 13)V5 + 131217 2V5 + 8kM

+
T
131 3.3
+C2/(1+(r—s) 2TU) s ATA M T ds,
0

1
As [fd+ (@ —572
T € [0, 2], we infer

33434 .
2)s 47372 ds is finite and 1—1—8/(0 > 0, taking the supremum over

E

1
M<CiVo+CasP M™%

with obvious choices of the constants C3, C4 > 0.
Therefore

M < D(8) := sup{& €[0,00) : § — C48%§]742_7p < C3\/§} < 00.

Note that D(8) tends to 0 as § becomes small.
For t € [y, to + 2]

3
(t = 10)% |ue ()] ;oo ) < DO,
meaning that for t € [fg + 1, fp + 2]
_3
”ué‘(t)” L®(£2) < D(t - z‘0) < D(S)

D(8) is independent of the choice of fy > T, — 2, therefore we can conclude

e @] oo ) = DO (26)
forany r > T, — 1.

Boundedness of {Vv(7)};~7, in L*°(£2) can be achieved from the following estimates: Let
to = Ty — 1 and denote t = t — #p. Then [25, Lemma 1.3] provides Cs > 0 such that
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t
”Vvs(f)“pc(:z) = ||Vet(A71)”8(t0)||Loo(.rz) + / I VeI, (1 +s)||L°°(Q)dS
0
t

< Cst™% | Ve (t0) | ) + Cs /(1 (= 5)72)e 0 Juelto +5) | o gy d

0
o0
1 _7 _1y
< Cs58%t7% +D(8)C5/(1+6 2)e “do (27)
0

is bounded on [T}, 00). By similar reasoning together with Lemma 3.3, we obtain bounds on
lve(t) |l Loo(s2). In preparation for these estimates, let 7, > #p and let us note that by (11) and

Lemma 3.3
1 —(ts—10) 1
|_Q| Ve(ty) < |.Q| ve(to) Je + + |.Q| ug (to)

« o K
(e il

~ 1
< C6e*(t*flo) + 25 + 32 1
1% |_Q|7

< Cge™ 70 4 €782,

where Cg depends on [lugll 1) and ||v0||L1(9) (and |£2]) only, and where we have applied (18)

in the last step, so that C7 = (1 + J(‘HT) N with Cg asin (18).
Lemma 1.3 of [25] yields Cg > 0, which, in conjunction with Poincaré’s inequality and (26),
gives

lve (2 +1) ||L°°(.Q) = ”etm_l)vf(t*)nmom) + / e A Du o, +S)||L°°(.Q)ds

1 1
H(A—1) st*——/at*> +_/£t* +tD(S
e (v( ) IQIQ Vg (1) o) IQIQ Ve (1) (%)

1 1
Ve (ts) — @/vg(t*) . + ﬁ/ve(t*) +2D(9)
2 I?)

1
<Cy(1+173)Cp [ Vve || 12 + @fvg(t*)+2D(8)
2

ECg(l—H_%)

< Cs(1+173)Cp|R|787 + Cge™ 027 1 €787 +2D(5)

for any ¢ € (0, 2] and therefore
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isi 3 —(r=(to+1)
|06 (D) o ) < 2C5CpIR138% + C78% +2D(8) + Coee (28)

for any t > #9 + 1 = T,. Collecting terms from (26), (27) and (28), we obtain a suitable definition
of C and of K (§) — and as 8%, 87 and D(6) tend to 0 as 6 \ 0, indeed, lims\ o K(8) =0. O

5. Definition of solutions
Definition 5.1. A pair of functions (u, v) € Lloc([O, 00): L2(£2)) x ZOC([O 00): Wh2(£2)) is

called weik solution of (1) for initial data (1o, vo) € L2(§2) x W12(£2) if for all test functions
Qe Cgo (£2 x [0, 00)) the following holds:

// /uo(p(O) /qu(p—f[qu~V¢+Kf/u¢—/L//u2(p (29)
0 0 2 0 2 0 £

and, for all g € C{°(£2 x [0, 00)),
o

—//vgo,—/vocp(O)z—/va~V¢—f/v¢+//u¢. (30)
0 2 2 0 2 0 2 0 2

6. Convergence to a solution

Purpose of the estimates from Section 3 was to make the extraction of convergent sequences
of approximate solutions (i, ve) possible. The following proposition lists, in which sense we
have obtained convergence.

([0, 00), W"*(£2)) and a

Proposition 6.1. There exist u € L2 ([0, 00), L2(2)) and v € L?

sequence € \ 0 such that for any TIU; 0 e
Ug; = U a.e.in 2 x[0,T], 31
Ug, = U in L*(2 x (0, T)), (32)
gjul, =0 in L'(£2 x (0, 7)), (33)
Ve, = v in L*((0, T); W'(£2)), (34)
Ve, >V in L*(2 x (0, T)), (35)
Vg; =V a.e. in 2 x[0,T], (36)
Avg; = Av in L*(£2 x (0, T)), (37)
Vejr = vp in L*(2 x (0, T)), (38)
ug; Vg, ~uVv in L' (2 x (0,7)). (39)
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Proof. Lemmata 3.6 and 3.7 show boundedness of {u.}. in L%((O, T); Wl’%(Q)) and of the
derivatives {us;}s in L1((0, T); (W>%°(£2))*) so that by a variant of the Aubin—Lions lemma
[4, Prop. 6], {u¢}. is relatively compact in L%(.Q x (0, T)); in particular, there is a sequence
£j \¢ 0 (of which we will, without relabelling, choose further subsequences in the following)
such that Ug; = U almost everywhere in £2 x (0, T') for some u € L% (£2 x (0, T)). Boundedness
of {ug}e in L2(22 x (0,T)) due to Lemma 3.2 yields a subsequence along which Ug; = U in
L?(£2 x (0, T)).

By Lemma 3.5, {u?}s is equi-integrable and thus, according to [5, Thm. IV.8.9], weakly se-
quentially precompact in LY(£2 x (0,T)). Along a subsequence, u%j —~u%in L2 x (0, 7))
and hence

2 _ 2 2 _ 2
”Mé‘_,' ||L2(Q><(O,T)) - / usj 1= / u 1= ||u”L2(S?><(O,T))'
£2x(0,T) £2x(0,T)

The combination of u,; — u in L%(22 x (0, T)) and el 22x0.1y) = 1l L2(2x(0.7)) Shows
that actually (32) holds.

Similarly, we see that {8142}8 is equi-integrable (Lemma 3.5) and hence is weakly convergent
along a subsequence. Pointwise a.e. convergence of ug to u” identifies the weak limit of & juf,
as 0, which is (33). !

According to Lemmata 3.3 and 3.4, {v,}. is bounded in L*°((0, T); W1'2([2)) — Lz((O, T);
W12(£2)) and a subsequence with (34) can be found.

Furthermore, {v,;}s = {Avs — Ve + 1} is bounded in L2((0, T); L?(§2)) due to Lemmata 3.4,
3.3, 3.2, and the Aubin—Lions lemma yields (35) as well as, along another subsequence, (36). At
the same time, we can conclude (37) and (38).

The statement (39), finally, results from a combination of (32) and (34). O

From now on, by (u, v) we will denote the limit provided by Proposition 6.1. Of course, it
would be desirable for (u, v) to be a solution to the original problem. That is the case.

Lemma 6.2. (1, v) is a solution to (1) in the sense of Definition 5.1.

Proof. Take ¢ as specified in Definition 5.1 and test the equations of (3) against it. The conver-
gence results of Proposition 6.1 then produce (29) and (30). O

Remark 6.3. None of the arguments used for Proposition 6.1 and Lemma 6.2 depend on dimen-
sion n nor on the specific values of u > 0, k € R.

7. Eventual smoothness. Proof of Theorem 1.1

In the most important scenario of spatial dimension 3, we can show that these solutions are
not only solutions in some weak sense, but possess the property of eventual smoothness: From
some time on, they are classical solutions. Our preparations from Section 4 that have provided
boundedness of (u., ve) constitute the first step.

The next proposition transfers these properties to (u, v).
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Proposition 7.1. Let n = 3 and assume, k < ko with ko from Proposition 4.11. With Ty denoting
the number from Proposition 4.12,

ue Ly ((Tv,00), W'(2)),  u, €L} ([T 00), (WH(£2))").
Furthermore u, v, Vv € L (2 x [T, 00)).

Proof. On the interval [T, oo), from Proposition 4.12 we obtain boundedness of {u¢}ec(0,1),
{ve}ee(o,1y and {|Vugl}ee,1) in L(£2 x [Ty, 00)) and hence can choose a sequence &; N\ 0
such that u., v, Vv, are weak-*-convergent in this space. For 7 > 0, boundedness of {u.}.
and {ug}e in L3 ([T, T + T1, WH2(2)) and L2 ([ Ty, Ti + T1, (W!2(£2))*) respectively are
guaranteed by Lemma 3.8 and 3.9 and the choice of a weakly convergent subsequence yields the

assertion. O
Corollary 7.2. Under the conditions of Proposition 7.1, u € Cioe([Tx, 00), L%(£2)).

Proof. Forany T > 0, u € L>([Ty, T + T1, WH2(2)) and u; € L*>([Ty, T + T1, (WH2(82))).
By Proposition 23.23 of [30], u is L2-continuous on [Ty, T + T]. O

Actually, u and v are even Holder continuous.

Lemma 7.3. Let n = 3. Assume, k < ko with kg from Proposition 4.11 and let Ty be as in Propo-

sition 4.12. There is a > 0 such that u,v € C;’f (2 X [T + 1, 00)). Moreover, there is C > 0
such that for every T > Ty + 1,

<C.

llel c"*%(éx[T,Tﬂ]) -

C“‘%(ﬁx[T,T+1]) + vl
Proof. Let T be as in Proposition 4.12 and let # > T, such that [|u(?) | Lo (@) < U]l Lo (2 x (T, 00))
and [|v(#)|lLo@) < IVllLo (2 x(T,,00))» Which is the case for almost every such ¢.

Definition 5.1, Corollary 7.2 and Proposition 7.1 enable us to interpret u as a local weak
solution in the sense of [19] of the equation

Uy —V-(Vu —uVv) =ku — ;Lu2, (40)

for u on [T, 00).
Using boundedness of ku — pu? and Vv, an application of Theorem 1.3 of [19] ensures

ueC¥ % (2 x [Ty + %, 00)) for some o’ > 0.

Theorem 1.3 of [19] additionally asserts that the norm ||u|| can be estimated

C* 5 (@ x[t+4.142])
by a constant C,, which depends on the L% (§2)-norm of u(¢) and some “data” of the prob-
lem, a term condensing structural information on the equation (such as exponents) and certain
L"-norms of coefficients and the right-hand side in (40).

Important to note is that, due to Proposition 7.1, u, v, Vv € L®°(§2 x [T, 00)) and therefore
the restrictions of these functions to £2 x [, t 4+ 2] are bounded in L™ (§2 x [t, ¢ + 2]) indepen-
dently of # > T,. Hence C, can be chosen independently of ¢.
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Similar to Corollary 7.2, from (35), (38) and (34), we infer v € legc((O, 00), Wh2(22)) N

C((0, 00), L2(.Q)) and boundedness of u, v on [Ty + %, oo) imply, again by Theorem 1.3 of [19]
applied to the solution v of

V-V (VD) =u—v 41)

for 7, that v € C*+T (2 x [t + 1,1 + 2]) for some &’ > 0 — and that

<Cl}a

ol o _ <
C% T (2 x[t+1,142])

with some constant C,, which can be chosen independently of 7.
Letting o = min{o’, a”}, deriving a suitable constant C from the values of C, and C, and
taking the arbitrariness of ¢ into account, the claim follows. O

Thanks to the regularity of # and v that we have gained so far, we can interpret # and v as
generalized solutions in the sense of [11] of the homogeneous Neumann boundary value problem
with initial value u(Ty + 1), v(Tx + 1) to (40) or (41). As the coefficients are bounded, these
problems are known to be uniquely solvable [11, Thm. ITI1.5.1]. Therefore we can use existence
theorems for smoother solutions to establish higher regularity of u and v.

Theorem IV.5.3 of [11] asserts the existence of C 2ta,l+53 solutions, albeit under stronger
smoothness assumptions on the initial datum than we can guarantee so far. In order to nev-
ertheless apply this theorem, let us, for #tp > 0, T > ¢ > 0, introduce a smooth monotone
function X+, 7:[f0,f0o + T1 — R satisfying x(fp) =0 and x =1 on [t9 + 1,79 + T] as well

2
as ||Xt0,T,T||C1(t0,t0+T) < 1+ 7

Proposition 7.4. Let n = 3 and assume that k < ko with kg from Proposition 4.11. Then there

24a,1+% —
are T* > 0and a > 0 such that u, v Clota’ T2 (2 x [T*, 00)).
Moreover, there exists C > 0 such that forall t > T*

)+ il

u o _ a _ <C.
N o 2O S (@ x[rr+1]) =

Proof. Let T, be as in Proposition 4.12 and Ty > Ty + 1. Let x = Xz, 1088 defined above and
)2",
observe that (xv)(Typ) =0, 3, (xv)|se =0 and vV := y v satisfies

Uy — AV=x;v+ xu—xv on (To, To +2), (42)

a parabolic PDE with smooth coefficients and Holder continuous right-hand side (due to
Lemma 7.3). Theorem IV.5.3 of [11] in conjunction with the above-mentioned uniqueness prop-
erty makes yv an element of C2+°"1+%(.{_2 x [Ty, To + 2]) and therefore v € C2+“’1+%(S_2 X
[To + %, To + 2]), where, according to the aforementioned theorem, its norm can be estimated

by the C* % -norm of the right-hand side in (42) and therefore independently of Ty > T, + 1, cf.
Lemma 7.3.

For an analogous procedure concerning u let x = X741 1 and consider ¥ = xu, satisfying

113
2°2°2

#(To+ %) =0, 3,7y = 0 and solving

Uy — AU —VuVv —iAv = xu+ X(Ku — /mz),
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where the coefficients are Holder continuous as well as the right-hand side and, by the same
argument as before, [11, Thm. IV.5.3] asserts u € C2t*1T3(2 x [Ty + 1, Ty + 2]) with a
Tp-independent estimate on the norm. The claim follows upon the choice T* = Tp + 1 and due
to the independence of the Holder norm of 7p. O

After these preparations, the proof of our main result consists in nothing more than collating
the right statements:

Proof of Theorem 1.1. Existence of a solution is given by Proposition 6.1 in combination with
Lemma 6.2, eventual smoothness and bounds on the Holder norms by Proposition 7.4. 0O

8. Asymptotic behaviour

Now that existence and smoothness of (#, v) have been ensured, let us concentrate on the long
time behaviour of solutions.

8.1. The case k < 0. Proof of Theorem 1.3

Proof of Theorem 1.3. Let {(u¢;, v¢;)} jen be a sequence of solutions to (3) approaching (u, v)
in the sense of Proposition 6.1. Let & > 0.

From Proposition 4.12 we can infer g > O such that K(§) from Proposition 4.12 satisfies
K(8) < % forany § € [0, 8).

Now apply Lemma 4.9 with v € (0, vp] so small that < 8o and choose ¥ > 0 and

4
A(l+7)
n € (0, 4] as provided thereupon. In particular, this implies §, (k) < 8y for any ¥ € (0, ¥).

Let ¥ € (0,%) and let Ty = Ty(u,0,%) be as in Proposition 4.8. As k¥ < 0 < &k, Proposi-
tion 4.12 implies that there is T > 0 such that, independent of j € N,

e, O] oo 2y + [0 O 1,00 () < 2K (80®)) +Ce™ =T forall s > T, (43)
where C is a constant depending on the norm of the initial data (uq, vo).
Choose Ty > T in such a way that Ce=Tr=T) % and that u, v are continuous on [Ty, 00)

by Theorem 1.1.
Our choice of §g thus shows that, independent of j € N,

T
lue; O Loy + Ve, Ol y1.002) = 23+3 =0 foralli>T,.

Almost everywhere convergence of (ug;, ve;) — (u,v) (as stated by Proposition 6.1 in (31),
(36)) and continuity of # and v hence imply that

|u@ ] ooy + @] ooy =¥ forallz > Ty. (44)
In conclusion,
(u(®),v(®)) >0 ast— o0

in the sense of uniform convergence on 2. O
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8.2. Asymptotics for positive k. Proof of Theorem 1.5

Proof of Theorem 1.5. Under the condition of x being sufficiently small, Theorem 1.1 shows
that the solutions constructed above enter some bounded set B, , C (C te (2))2, where o > 0
is chosen as in Proposition 7.4.

As to the statement about the diameter of B, , in L*°(£2) x Wl (2) as k — 0, we can
proceed almost exactly as in the proof of Theorem 1.3: Let ¢ > 0. From Proposition 4.12 we
can infer 89 > 0 such that K (§) from Proposition 4.12 satisfies K (§) < % for any § € [0, &o).

The application of Lemma 4.9 with v € (0, vg] satisfying /ﬁ < &g provides 1 € (0, 4] and
v

K >0.Letk € (0,x).

We will prove that diam B, , <20 if k <¥k.

Assume that ¥k < ¥ and let Ty = To(u, k, %) be as in Proposition 4.8. As k < k, Proposi-
tion 4.12 implies that there is 7 > 0 such that, independent of j € N,

|ue; @) ||Lw(m + ||ve; (@) ||W1,oo(m <2K(8,(®) + Ce 1) forallt > T, (45)

where C is a constant depending on the norm of the initial data (¢, vo).

Choose Ty > T in such a way that Ce~T?=T) < % and that u, v are continuously differen-
tiable on [T}y, 0o) by Theorem 1.1.

Our choice of §p thus shows that, independent of j € N,

90
||u5j(t)||Lw(Q)+||u8j(t)||W],w(Q)52§+§=ﬂ forallt > Tj.

We make use of the almost everywhere convergence of (u, s vg_/) — (u, v) (as stated by Propo-
sition 6.1 in (31), (36)) and the fact that Vvsj is essentially bounded by some constant C on
£2 x [Ty, 00) uniformly in j, which allows us to extract a L*°-weak™*-convergent subsequence
leading to | V| o2y < C.

Together with the continuity of #, v and Vv these convergence results hence imply that

||u(t) ”L°°(Q) + ”v(t)”wlvoo(m <9 forallt > Ty.
In terms of By, this means

L®(2)xWhe(2
BM,KCBIQ (§2)x ( )(0)

and hence diam(B,, ) < 2¢ for sufficiently small « > 0. O
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