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Abstract

We establish sharp regularity estimates for solutions to Lu = f in � ⊂R
n, L being the generator of any 

stable and symmetric Lévy process. Such nonlocal operators L depend on a finite measure on Sn−1, called 
the spectral measure.

First, we study the interior regularity of solutions to Lu = f in B1. We prove that if f is Cα then u
belong to Cα+2s whenever α + 2s is not an integer. In case f ∈ L∞, we show that the solution u is C2s

when s �= 1/2, and C2s−ε for all ε > 0 when s = 1/2.
Then, we study the boundary regularity of solutions to Lu = f in �, u = 0 in Rn \�, in C1,1 domains �. 

We show that solutions u satisfy u/ds ∈ Cs−ε(�) for all ε > 0, where d is the distance to ∂�.
Finally, we show that our results are sharp by constructing two counterexamples.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction and results

The regularity of solutions to integro-differential equations has attracted much interest in the 
last years, both in the Probability and in the PDE community. This type of equations arise natu-
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rally in the study of Lévy processes, which appear in many different situations, from Physics to 
Biology or Finance.

A very important class of Lévy processes are the α-stable processes, with α ∈ (0, 2); see [4]
and [32]. These are processes satisfying self-similarity properties. More precisely, Xt is said to 
be α-stable if

X1
d= 1

t1/α
Xt for all t > 0.

These processes are the equivalent to Gaussian random processes when dealing with infinite 
variance random variables. Indeed, the Generalized Central Limit Theorem states that, under 
certain assumptions, the distribution of the sum of infinite variance random variables converges 
to a stable distribution (see for example [32] for a precise statement of this result).

Stable processes can be used to model real-world phenomena [32,20], and in particular they 
are commonly used in Mathematical Finance; see for example [26,11,27–29,8] and references 
therein.

The infinitesimal generator of any symmetric stable Lévy process is of the form

Lu(x) =
∫

Sn−1

+∞∫
−∞

(
u(x + θr) + u(x − θr) − 2u(x)

) dr

|r|1+2s
dμ(θ), (1.1)

where μ is any nonnegative and finite measure on the unit sphere, called the spectral measure, 
and s ∈ (0, 1).

The aim of this paper is to establish new and sharp interior and boundary regularity results for 
general symmetric stable operators (1.1).

Remarkably, the only ellipticity assumptions in all our results will be

0 < λ ≤ inf
ν∈Sn−1

∫
Sn−1

|ν · θ |2sdμ(θ),

∫
Sn−1

dμ ≤ 	 < ∞. (1.2)

Notice that these hypotheses are satisfied for any symmetric stable operator whose spectral mea-
sure μ is n-dimensional, i.e., such that there is no hyperplane V of Rn such that μ is supported 
on V . Notice also that in case that the spectral measure μ is supported on an hyperplane V , then 
no regularity result holds.

When the spectral measure is absolutely continuous, dμ(θ) = a(θ)dθ , then these operators 
can be written as

Lu(x) =
∫
Rn

(
u(x + y) + u(x − y) − 2u(x)

)a(y/|y|)
|y|n+2s

dy, (1.3)

where a ∈ L1(Sn−1) is a nonnegative and even function.
The most simple example of stable Lévy process Xt in Rn is the one corresponding to 

dμ(θ) = c dθ , with c > 0. In this case, the operator L is a multiple of the fractional Lapla-
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cian −(−
)s . Another simple example is given by Xt = (X1
t , . . . , X

n
t ), Xi

t being independent 
symmetric stable processes in dimension 1. In this case, the infinitesimal generator of Xt is

−Lu = (−∂x1x1)
su + · · · + (−∂xnxn)

su, (1.4)

and its spectral measure consist on 2n delta functions. For example, when n = 2 we have μ =
δ(1,0) + δ(0,1) + δ(−1,0) + δ(0,−1) (up to a multiplicative constant).

The regularity of solutions to Lu = f (or Lu = 0) for operators L like (1.3), (1.1), or re-
lated ones, has been widely investigated; see the works by Bass, Kassmann, Schwab, Silvestre, 
Sztonyk, and Bogdan, among others [1,23,22,3,38,21,2,36,5–7,9,24]. A typical assumption in 
some of these results is that

0 < c ≤ a(θ) ≤ C in Sn−1. (1.5)

Still, the results in [22,5,23], and [21] do not require this assumption, and they apply to all 
operators of the form (1.3) satisfying

a(θ) ≥ c > 0 in a subset � ⊂ Sn−1 of positive measure; (1.6)

see also [33]. Furthermore, the results of [23] and [1] do not assume the spectral measure to be 
absolutely continuous, and apply also to the operator (1.4) (and also to x-dependent operators of 
the type (1.4)).

An important difficulty when studying the regularity for operators (1.1) is that no Harnack in-
equality holds in general; see Bogdan–Sztonyk [6]. Also, the Fourier symbols of these operators 
are in general only Hölder continuous, so that the usual Fourier multiplier theorems [37], [17, 
page 168], or [25] can not be used to show our results.

Here we establish sharp regularity results in Hölder spaces for all stable operators (1.1)–(1.2).
Our first result reads as follows.

Theorem 1.1. Let s ∈ (0, 1), and let L be any operator of the form (1.1)–(1.2). Let u be any 
bounded weak solution to

Lu = f in B1. (1.7)

Then,

(a) If f ∈ L∞(B1) and u ∈ L∞(Rn),

‖u‖C2s (B1/2)
≤ C

(‖u‖L∞(Rn) + ‖f ‖L∞(B1)

)
if s �= 1

2
,

and

‖u‖C2s−ε (B1/2)
≤ C

(‖u‖L∞(Rn) + ‖f ‖L∞(B1)

)
if s = 1

2
,

for all ε > 0.
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(b) If f ∈ Cα(B1) and u ∈ Cα(Rn) for some α > 0, then

‖u‖Cα+2s (B1/2)
≤ C

(‖u‖Cα(Rn) + ‖f ‖Cα(B1)

)
(1.8)

whenever α + 2s is not an integer.

The constant C depends only on n, s, α, ε, and the ellipticity constants (1.2).

Notice that when s �= 1
2 we obtain a C2s estimate in part (a), and not only a C2s−ε one.

Note also that in part (b) it is required that u ∈ Cα(Rn) in order to have a Cα+2s estimate for 
u in B1/2. When the spectral measure μ is not regular, the estimate is not true anymore if u is not 
Cα in all of Rn: we can construct a solution to Lu = 0 in B1, which satisfies u ∈ Cα−ε(Rn) but 
u /∈ Cα+2s(B1/2); see Proposition 6.1.

When L is of the form (1.3) and a ∈ Cα(Sn−1), then it is easy to see that one can replace the 
Cα(Rn) norm of u in (1.8) by the L∞(Rn) norm; see Corollary 3.5. Also, when the equation is 
posed in the whole Rn then there is no such problem, and one has the estimate ‖u‖Cα+2s(Rn) ≤
C(‖u‖L∞(Rn) + ‖f ‖Cα(Rn))—which follows easily from (1.8).

Concerning the boundary regularity of solutions, our main result reads as follows.

Theorem 1.2. Let s ∈ (0, 1), L be any operator of the form (1.1)–(1.2), and � be any bounded 
C1,1 domain. Let f ∈ L∞(�), and u be a weak solution of

{
Lu = f in �

u = 0 in R
n \ �.

(1.9)

Let d be the distance to ∂�. Then, u ∈ Cs(Rn), and

‖u/ds‖Cs−ε (�) ≤ C‖f ‖L∞(�)

for all ε > 0. The constant C depends only on n, s, �, ε, and the ellipticity constants (1.2).

For general stable operators (1.1), we expect this result to be optimal. Indeed, we can construct 
a C∞ domain � for which L(ds) does not belong to L∞(�); see Proposition 6.2. Thus, even 
in C∞ domains and with f ∈ C∞, we do not expect solutions u to satisfy u/ds ∈ Cs(�).

The estimate of Theorem 1.2 was only known in case that the spectral measure μ is abso-
lutely continuous and satisfies quite strong regularity assumptions. Indeed, when (1.5) holds, 
a ∈ C1,α(Sn−1), and � is C2,α , then the result is a particular case from our estimates in [31] for 
fully nonlinear equations. Also, when � is C∞ and a ∈ C∞(Sn−1) then Theorem 1.2 follows 
from the results of Grubb [18,19] for pseudodifferential operators satisfying the μ-transmission 
property.

Even for the fractional Laplacian, the proof we present here is new and completely indepen-
dent with respect to the ones in [30] and [18,19]. Let us explain briefly the main ideas in the 
proofs of our results.

To prove Theorems 1.1 and 1.2 we use some ideas introduced in [34,31,35]. Namely, all the 
proofs of the present paper have a similar structure in which we first establish a Liouville-type 
theorem in Rn (or Rn+ in case of boundary regularity), and then we deduce by a blow up and 
compactness argument an estimate for solutions to Lu = f in, say, B1. An important difference 
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with respect to the proofs [34,31,35] is that here we do not have any Cγ estimate that we can iter-
ate in order to prove a Liouville theorem, and hence the proofs of the present Liouville theorems 
must be completely different from the ones in [34,31,35].

For example, in case of Theorem 1.1, to prove the Liouville-type Theorem 2.1 we need to 
establish first a Cγ estimate in Rn via the heat kernel of the operator, to then iterate it and deduce 
the Liouville theorem. Recall that even this first Cγ estimate is new for general operators (1.1). 
In case of Theorem 1.2, we also prove the Liouville-type Theorem 4.1 in a different way with 
respect to [31]. Indeed, in [31] we first established a Cγ estimate for u/ds by using a method 
of Caffarelli, which relies mainly on the Harnack inequality, and then we deduced from this a 
Liouville theorem in Rn+. However, in the present context we do not have any Harnack inequality, 
and we have to establish Theorem 4.1 using only the interior estimates for u previously proven 
in Theorem 1.1.

All the regularity estimates of this paper are for translation invariant equations. Still, the meth-
ods presented here can be used to establish similar regularity results for non translation invariant 
equations (with continuous dependence on x), and also for parabolic equations ∂tu + Lu = f in 
� × (0, T ). We plan to do this in a future work.

The paper is organized as follows. In Section 2 we establish a Liouville-type theorem in the 
entire space, Theorem 2.1. In Section 3 we prove Theorem 1.1. Then, in Section 4 we establish a 
Liouville-type theorem in the half-space, Theorem 4.1, and in Section 5 we prove Theorem 1.2. 
Finally, in Section 6 we prove Proposition 6.2.

2. A Liouville theorem in the entire space

The aim of this section is to prove the following.

Theorem 2.1. Let s ∈ (0, 1), and let L be any operator of the form (1.1)–(1.2). Let u be any weak 
solution of

Lu = 0 in R
n

satisfying the growth condition

‖u‖L∞(BR) ≤ CRβ for all R ≥ 1,

for some β < 2s.
Then, u is a polynomial of degree at most 
β�, where 
x� denotes the integer part of x.

This Liouville theorem will be used in the proof of Theorem 1.1. For related Liouville theo-
rems, see [14,13,10].

Definition 2.2. Given f ∈ L∞(�), we say that u is a weak solution of Lu = f in � ⊂ R
n if: 

|u(x)| ≤ C(1 + |x|2s−δ) in Rn for some δ > 0, and∫
Rn

uLv dx =
∫
�

f v dx

for all v ∈ C∞
c (�).
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Remark 2.3. Thanks to the translation invariance of the operator, we have the following useful 
fact. If u satisfies Lu = f in � in the weak sense, and ηε ∈ C∞

c (Bε) is a mollifier, then uε :=
u ∗ ηε satisfies Luε = f ∗ ηε in �ε in the weak sense, where �ε = � ∩ {dist(x, ∂�) > ε}.

2.1. Heat kernel: regularity and decay in average

The heat kernel of L is defined via Fourier transform as

p(t, ·) =F−1(exp(−A(ξ)t)
)
, (2.1)

where A(ξ) is the Fourier symbol of L.
The symbol A(ξ) of L can be explicitly written in terms of s and the spectral measure μ. 

Indeed, it is given by

A(ξ) = c

∫
Sn−1

|ξ · θ |2sdμ(θ); (2.2)

see for example [32]. Notice that A(ξ) is homogeneous of order 2s.
In order to prove Theorem 2.1, we will need to show some kind of decay for the heat kernel 

of L.
The decay of the heat kernel has been studied in [12] and [16] in case that dμ(θ) = a(θ)dθ

(see also [7,39]). It turns out that, when a ∈ L∞(Sn−1), the heat kernel p(t, x) associated to the 
operator (1.3) satisfies

p(1, x) ≤ C

1 + |x|n+2s
. (2.3)

However, for general operators (1.1), the heat kernel does not satisfy in general (2.3). For exam-
ple, when Xt = (X1

t , . . . , X
n
t ), Xi being independent symmetric stable processes in dimension 1, 

p satisfies

p(t, x) = p1(t, x1) · · ·p1(t, xn),

and thus it does not satisfy (2.3).
We prove here that for general operators (1.1), even if there is no decay of the form (2.3), the 

heat kernel p(1, x) decays “in average” faster than |x|−n−2s+δ for any δ > 0. This is stated in the 
following result.

Proposition 2.4. Let s ∈ (0, 1), and let L be any operator of the form (1.1)–(1.2). Let p(t, x) be 
the heat kernel associated to L. Then,

(a) For all δ > 0,

∫
Rn

(
1 + |x|2s−δ

)
p(1, x)dx ≤ C. (2.4)
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(b) Moreover,

[p(1, x)]C0,1(Rn) ≤ C.

The constant C depends only on n, s, δ, and the ellipticity constants (1.2).

Proof. (a) Assume first that μ(dθ) = a(θ)dθ , with a ∈ C∞(Sn−1).
We claim that the function

ϕ(x) = (1 + |x|2)s−δ

satisfies

|Lϕ| ≤ C in all of Rn,

with C depending only on n, s, and the ellipticity constants λ, 	 in (1.2).
Indeed, observe that for all ρ ≥ 1, the rescaled function ϕρ(x) = ρ−2s+2δϕ(ρx) satisfies 

ϕρ(x) = (ρ−2 +|x|2)s−δ and |Lϕρ | ≤ C in B2 \B1, with C independent of ρ. Therefore, scaling 
back we obtain that |Lϕ| ≤ Cρ−2δ in B2ρ \ Bρ for every ρ ≥ 1. Hence, Lϕ is bounded in all of 
R

n, as claimed.
Now, we have

∫
Rn

ϕ(x)p(1, x) dx − 1 =
∫
Rn

ϕ(x)
(
p(1, x) − p(0, x)

)
dx =

1∫
0

dt

∫
Rn

ϕ(x)pt (t, x)dx

=
1∫

0

dt

∫
Rn

ϕ(x)Lp(t, x)dx =
1∫

0

dt

∫
Rn

Lϕ(x)p(t, x)dx. (2.5)

Thus, it follows that

∫
Rn

ϕ(x)p(1, x) dx ≤ 1 +
1∫

0

dt

∫
Rn

|Lϕ(x)|p(t, x)dx ≤ C.

Notice that in the last integration by parts in (2.5) we used that p and all its derivatives decay 
(since a ∈ C∞(Sn−1)).

We have proved (2.4) in case a ∈ C∞(Sn−1), with C depending only on n, s, δ, λ, and 	. 
Finally, by an approximation argument the same identity holds for any spectral measure μ, and 
thus (a) is proved.

(b) Notice that, by (2.2) and by definition of the ellipticity constants (1.2), we clearly have

0 < λ|ξ |2s ≤ A(ξ) ≤ 	|ξ |2s .

Using this, it follows immediately from the expression (2.1) that the Fourier transform of p(1, x)

is rapidly decreasing and, therefore, the result follows. �
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Remark 2.5. In case that L is an operator of the form (1.3) and a belongs to the space 
L logL(Sn−1), Proposition 2.4 (a) is an immediate consequence of the results of Glowacki–
Hebisch [16]. Indeed, it was proved in [16] that, under this assumption on a, the heat kernel 
satisfies p(1, x) ≤ C|x|−n−2sω(x/|x|) for some function ω ∈ L1(Sn−1).

2.2. Proof of Theorem 2.1

Using Proposition 2.4, we can now give the:

Proof of Theorem 2.1. Given ρ ≥ 1 let

v(x) = ρ−βu(ρx).

Then, v clearly satisfies Lv = 0 in the whole Rn. Moreover,

‖v‖L∞(BR) = ‖ρ−βu‖L∞(BρR) ≤ Cρ−β(ρR)β ≤ CRβ. (2.6)

Then, formally we have

v − p(1, ·) ∗ v = [
p(t, ·) ∗ v

]t=1
t=0 =

1∫
0

∂tp ∗ v dt =
1∫

0

Lp ∗ vdt =
1∫

0

p ∗ Lv = 0

and thus

v ≡ p(1, ·) ∗ v. (2.7)

This computation is formal, since we did not checked that the integrals defining the convolutions 
are finite and since Lv is in principle only defined in weak sense (in the sense of distributions).

To prove rigorously (2.7), we have to do the previous computation in the weak formulation, 
as follows. Let

V (x, t) = (p(t, ·) ∗ v)(x).

Then, using the growth control on v and Proposition 2.4 (a), it follows that V is a weak solution 
of Vt = LV in (0, +∞) ×R

n. Thus, for all η ∈ C∞
c

(
(0, 1) ×R

n
)

we have

−
1∫

0

∫
Rn

V ηt dx dt =
1∫

0

∫
Rn

V Lη dx dt

=
1∫

0

∫
Rn

p(t, z)

∫
Rn

v(x − z)Lη(x, t) dx dz dt = 0. (2.8)

In the last identity we have used that 
∫
Rn v(x − z)Lη(x, t)dx = 0 for all x and t , which follows 

from the fact that v is a weak solution of Lv = 0 in the whole Rn.
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Let us justify in detail the change in the order of integration in (2.8). First, observe that the 
growth control of v (2.6) implies that 

∫
Rn |v(x − z)| |Lη(x, t)|dx ≤ C(1 + |z|)β , with C depend-

ing on η and on the constant in the growth control. Therefore,

1∫
0

∫
Rn

t−
n
2s p(1, zt−

1
2s )

∫
Rn

|v(x − z)| |Lη(x, t)|dxdzdt ≤ C

∫
Rn

p(1, z)(1 + |z|)βdz < ∞.

Hence, we can use Fubini in (2.8) to change the order of the integrals, as desired. Thus, (2.7) is 
proved.

Let us now show that

[v]Cγ (B1) ≤ C (2.9)

for some γ > 0 and C depending only on n, λ, 	, and β .
Indeed, given x, x′ ∈ B1 with x �= x′, we have

|v(x) − v(x′)| = ∣∣p(1, ·) ∗ v(x) − p(1, ·) ∗ v(x′)
∣∣=

∣∣∣∣∣∣
∫
Rn

(
p(x − y) − p(x′ − y)

)
v(y)dy

∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∫

|y|≤M

(
p(x − y) − p(x′ − y)

)
v(y)dy

∣∣∣∣∣∣∣+ 2 sup
x∈B1

∣∣∣∣∣∣∣
∫

|y|≥M

p(x − y)v(y)dy

∣∣∣∣∣∣∣ .
To bound the first term in the right hand side of the inequality, we use Proposition 2.4 (b) and 
also (2.6) to find

∣∣∣∣∣∣∣
∫

|y|≤M

(
p(x − y) − p(x′ − y)

)
v(y)dy

∣∣∣∣∣∣∣≤ CMn+β |x − x′|.

To bound the second term, we use Proposition 2.4 (a), with δ > 0 such that 2δ = 2s − β . Using 
also (2.6), we find that

∣∣∣∣∣∣∣
∫

|y|≥M

p(x − y)v(y)dy

∣∣∣∣∣∣∣≤
∫

|y|≥M

p(x − y)(1 + |y|)2s−δ |v(y)|
(1 + |y|)β+δ

dy ≤ CM−δ.

Thus, we have proved

|v(x) − v(x′)| ≤ CMn+β |x − x′| + CM−δ.

Since this can be done for any M > 0, we may choose

M = |x − x′|−γ /δ, with 1 − (n + β)γ /δ = γ.
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Then, we have

|v(x) − v(x′)| ≤ C|x − x′|γ ,

and γ > 0.
This shows (2.9). Equivalently, what we have proved can be written as

[u]Cγ (Bρ) ≤ Cρβ−γ for all ρ ≥ 1.

Next we consider the incremental quotient

u
γ

h = u(· + h) − u

|h|γ

which grows (by the last inequality) as ‖uγ

h‖L∞(BR) ≤ CRβ−γ . Then we can repeat the previous 
argument with v replaced by uγ

h and β replaced by β − γ to show that [uγ

h ]Cγ (BR) ≤ CRβ−2γ , 
and thus

[u]C2γ (BR) ≤ CRβ−2γ .

We used here that the new γ ′ in the second step will be larger than γ , and thus we may take γ
instead of γ ′.

Iterating this procedure, after N steps we find

[u]CN ·γ (BR) ≤ CRβ−N ·γ .

Taking N the least integer such that β − Nγ < 0 and sending R → +∞, we obtain

[u]CNγ (Rn) = 0.

This implies that u is a polynomial of degree at most 
β�. �
Finally, we give a consequence of Theorem 2.1 that will be also needed in the proof of Theo-

rem 1.1.

Corollary 2.6. Let s ∈ (0, 1), α ∈ (0, 1), and L be any operator of the form (1.1)–(1.2). Let u be 
any function satisfying, in the weak sense,

L[u(· + h) − u(·)] = 0 in R
n, for all h ∈ R

n.

Assume that u satisfies the growth condition

[u]Cα(BR) ≤ CRβ for all R ≥ 1,

for some β < 2s.
Then, u is a polynomial of degree at most 
β + α�.
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Proof. We apply Theorem 2.1 to v(x) = u(x + h) − u(x), and we find that v is a polynomial. 
Since this can be done for any h, then u is a polynomial. Finally, the growth condition implies 
that the degree of the polynomial is at most 
β + α�. �
3. Interior regularity

The aim of this section is to prove Theorem 1.1. For it, we will use a compactness argument 
and the Liouville theorems established in the previous section.

We start with the following.

Lemma 3.1. Let s ∈ (0, 1), and let λ and 	 be fixed positive constants. Let {Lk}k≥1 be any 
sequence of operators of the form (1.1) whose spectral measures satisfy (1.2).

Then, a subsequence of {Lk} converges weakly to an operator L of the form (1.1)–(1.2).
More precisely, if Lk have spectral measures μk then, up to a subsequence, the measures μk

converge to a measure μ satisfying (1.2).
Moreover, assume (uk) and (fk) are sequences of functions satisfying in the weak sense

Lkuk = fk in �

for a given bounded domain � ⊂R
n. Assume also that, for some functions u and f , we have:

(1) uk → u uniformly in compact sets of Rn,
(2) fk → f uniformly in �,
(3) |uk(x)| ≤ C

(
1 + |x|2s−ε

)
for some ε > 0, and for all x ∈R

n.

Then, u satisfies

Lu = f in �

in the weak sense, where L be the operator associated to μ.

Proof. Let {μk}k≥1 be the spectral measures of the operators Lk . Using the weak compactness 
of probability measures on the sphere, we find that there is a subsequence μkm converging to a 
measure μ that satisfies (1.2).

Let L be the operator given by (1.1) whose spectral measure is μ.
We have that

∫
Rn

ukLkη =
∫
�

fkη, for all η ∈ C∞
c (�).

On the other hand, since |η(x + y) + η(x − y) − 2η(x)| ≤ C min{1, |y|2}, by the dominated 
convergence theorem we obtain that Lkη → Lη uniformly over compact subsets of Rn.
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Moreover, η has support in �, which yields |Lkη(x)| ≤ C(1 + |x|n+2s)−1. Combining this 
with the growth of uk we get that |uk Lkη| ≤ C(1 + |x|n+ε)−1, and therefore, by the dominated 
convergence theorem ∫

Rn

uk Lkη →
∫
Rn

uLη, for all η ∈ C∞
c (�).

Since ∫
�

fkη →
∫
�

f η,

it then follows that u is a weak solution of Lu = f in �, as desired. �
We next establish the following result, which is the main step towards Theorem 1.1 (b).

Proposition 3.2. Let s ∈ (0, 1), and let L be any operator of the form (1.1)–(1.2). Let α ∈ (0, 1)

be such that α + 2s is not an integer. Let α′ ∈ (0, α) be such that 
α + 2s� < α′ + 2s < α + 2s

and that α < α′ + 2s.
Let w be any C∞

c (Rn) function satisfying Lw = f in B1, with f ∈ Cα(B1). Then, we have 
the estimate

[w]Cα+2s (B1/2)
≤ C

([f ]Cα(B1) + ‖w‖
Cα′+2s (Rn)

)
. (3.1)

The constant C depends only on n, s, α, α′, and the ellipticity constants (1.2).

Proof. The proof of (3.1) is by contradiction. If the statement of the proposition is false then, for 
each integer k ≥ 0, there exist Lk , wk , and fk satisfying:

• Lkwk = fk in B1;
• Lk is of the form (1.1)–(1.2);
• [fk]Cα(B1) + ‖wk‖C2s+α′

(Rn)
≤ 1 (we may always assume this dividing wk by the previous 

quantity);
• ‖wk‖C2s+α(B1/2)

≥ k.

In the rest of the proof we denote

ν = 
α + 2s�.
Since ν < α′ + 2s < α + 2s we then have

sup
k

sup
z∈B1/2

sup
r>0

rα′−α [wk]
C2s+α′

(Br (z))
= ∞. (3.2)

Next, we define

θ(r) := sup
k

sup
z∈B

sup
′

(r ′)α′−α
[
wk

]
C2s+α′ (

Br′ (z)
).
1/2 r >r
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The function θ is monotone nonincreasing, and we have θ(r) < ∞ for r > 0 since we are assum-
ing that ‖wk‖C2s+α′

(Rn)
≤ 1. In addition, by (3.2) we have θ(r) → ∞ as r ↓ 0.

Now, for every positive integer m, by definition of θ(1/m) there exist r ′
m ≥ 1/m, km, and 

zm ∈ B1/2, for which

(r ′
m)α

′−α
[
wkm

]
C2s+α′(

Br′m(zm)
) ≥ 1

2
θ(1/m) ≥ 1

2
θ(r ′

m). (3.3)

Here we have used that θ is nonincreasing. Note that we will have r ′
m ↓ 0.

Let pk,z,r (· − z) be the polynomial of degree less or equal than ν in the variables (x − z)

which best fits uk in Br(z) by least squares. That is,

pk,z,r := arg min
p∈Pν

∫
Br(z)

(
wk(x) − p(x − z)

)2
dx,

where Pν denotes the linear space of polynomials of degree at most ν with real coefficients. From 
now on in this proof we denote

pm = pkm,zm,r ′
m
.

We consider the blow up sequence

vm(x) = wkm(zm + rmx) − pm(rmx)

(rm)2s+αθ(rm)
. (3.4)

Note that, for all m ≥ 1 we have∫
B1(0)

vm(x)q(x) dx = 0 for all q ∈ Pν. (3.5)

This is the optimality condition for least squares. Note also that (3.3) implies the following 
nondegeneracy condition for all m ≥ 1:

[vm]
C2s+α′

(B1)
≥ 1/2. (3.6)

Next, we can estimate

[vm]
C2s+α′

(BR)
= 1

θ(rm)(rm)α−α′
[
wkm

]
C2s+α′ (

BRrm(zm)
)

= Rα−α′

θ(rm)(Rrm)α−α′
[
wkm

]
C2s+α′ (

BRrm(zm)
).

Indeed, the definition of θ and its monotonicity yield the following growth control for the C2s+α′

seminorm of vm

[vm] 2s+α′ ≤ CRα−α′
for all R ≥ 1. (3.7)
C (BR)
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When R = 1, (3.7) implies that ‖vm −q‖L∞(B1) ≤ C, for some q ∈ Pν . Therefore, (3.5) yields

‖vm‖L∞(B1) ≤ C. (3.8)

Now, we will see that using (3.7)–(3.8) we obtain

[vm]Cγ (BR) ≤ CR2s+α−γ for all γ ∈ [0,2s + α′] (3.9)

Indeed, (3.8) implies that for every multiindex l with |l| ≤ ν there is some point x∗ ∈ B1 such 
that

|Dlvm(x∗)| ≤ C, x∗ ∈ B1.

The existence of such x∗ can be shown taking some nonnegative η ∈ C∞
c (B1) with unit mass and 

observing that

∣∣∣∣
∫

η(x)Dlvm(x)dx

∣∣∣∣≤ C

∫
|Dlη|vm(x)dx ≤ C.

Hence, using (3.7), for all l with |l| = ν and x ∈ BR we have

|Dlvm(x)| ≤ |Dlvm(x∗)| + CRα−α′ |x − x∗|2s+α′−ν ≤ CR2s+α−ν.

Iterating the same argument one can show the corresponding estimate for |l| = ν − 1, ν − 2, 
etc. Then, once established (3.9) for all integer γ ∈ [0, 2s + α′], the result for all γ follows by 
interpolation. Thus, (3.9) is proved.

We now claim that, by further rescaling vm if necessary, we may assume that in addition to 
(3.6) the following holds

sup
|l|=ν

oscB1D
lvm ≥ 1/4, (3.10)

where l donates a multiindex. Indeed, if (3.6) holds then there are xm ∈ B1 and hm ∈ B1−|xm|
such that

sup
|l|=ν

∣∣Dlvm(xm + hm) − Dlvm(xm)
∣∣

|hm|2s+α′−ν
≥ 1/4

and thus we can consider, instead of vm, the function

ṽm = vm(xm + |hm|x) − p̃m(x)

|hm|2s+α′ ,

where p̃m ∈Pν is chosen so that ṽm satisfies (3.5) (with vm replaced by ṽm).
Note that p̃m is the polynomial that approximates better (in the L2 sense) vm(xm + · ) in 

B|hm|(xm) and since vm ∈ Cσ+α′
with the control (3.7) we have

∣∣vm(xm + |hm|x) − p̃m(x)
∣∣≤ C|hm|2s+α′ |x|2s+α′

.
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Therefore, ṽm also satisfies (3.7) and (3.9) (with vm replaced by ṽm). Note that ṽm would also be 
of the form (3.4) for new zm and r ′

m defined as zm + xm and |hm|r ′m, respectively—where we 
use that θ(|hm|r ′

m) ≥ θ(r ′
m).

In summary, the new sequence ṽm satisfies the same properties as vm and, in addition, (3.10), 
as desired.

We now prove the following:

Claim. The sequence vm converges in C(ν+2s+α′)/2
loc (Rn) to a function v ∈ C2s+α′

loc (Rn). This func-
tion v satisfies the assumptions of the Liouville-type Corollary 2.6.

The C(ν+2s+α′)/2 uniform convergence on compact sets of Rn of the function vm to some v ∈
C2s+α′

(Rn) follows from (3.9) and the Arzelà–Ascoli theorem (and the usual diagonal sequence 
argument)—the exponent (ν + 2s +α′)/2 is chosen so that it is less that 2s +α′ and greater than 
both ν and 2s.

Moreover, passing to the limit (3.9) with γ ∈ (α, 1] such that γ ≤ α′ + 2s, we find

[v]Cγ (BR) ≤ CRβ for all R ≥ 1, (3.11)

β = 2s + α − γ < 2s. Thus, v satisfies the growth assumption in Corollary 2.6.
On the hand, each wk satisfies a Lkwk = fk in B1. Thus, recalling that we have [fk]Cα(B1) ≤ 1, 

we find that

∣∣Lkwk(x̄ + h̄) − Lkwk(x̄)
∣∣≤ |h̄|α for all x̄ ∈ B1/2(z) and h̄ ∈ B1/2. (3.12)

Note now that, since ν ≤ 2,

δ2p(x + h,y) − δ2p(x, y) = 0 for all p ∈ Pν and for all x, y,h in R
n. (3.13)

Here, as usual, we have denoted δ2ϕ(x) = ϕ(x + y) + ϕ(x − y) − 2ϕ(x).
Next, taking into account (3.13), we translate (3.12) from wkm to vm. Namely, using the defi-

nition of vm in (3.4), and setting h̄ = rmh, and x̄ = zm + rmx in (3.12), we obtain

1

(rm)2s

∣∣∣Lkm

(
(rm)2s+αθ(rm) {vm( · + h) − vm}

)
(x)

∣∣∣≤ (rm)α|h|α

whenever |x| ≤ 1
2rm

, and thus

∣∣Lkm (vm( · + h) − vm) (x)
∣∣≤ 1

θ(rm)
whenever |x| ≤ 1

2rm
. (3.14)

By Lemma 3.1, the operators Lkm converge weakly (up to subsequence) to an operator L. 
Thus, passing (3.14) to the limit we find that

L(v( · + h) − v) = 0 in all of Rn.
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Notice that to be able to pass to the limit m → ∞ on the right hand side of (3.14) we are using 
that, by (3.9), the functions vkm( · + h) − vkm satisfy

‖vkm( · + h) − vkm‖
C2s+α′

(BR)
≤ C(R),

and also the growth control

‖vkm( · + h) − vkm‖L∞(BR) ≤ CR2s−ε for all R ≥ 1,

for some ε > 0 (this follows from (3.9)).
This finishes the proof of claim.
We have thus proved that the limit function v satisfies the assumptions of Corollary 2.6, and 

hence we conclude that v is a polynomial of degree ν. On the other hand, passing (3.5) to the 
limit we obtain that v is orthogonal to every polynomial of degree ν in B1, and hence it must 
be v ≡ 0. But then passing (3.6) to the limit we obtain that v cannot be constantly zero in B1; a 
contradiction. �

We can now give the:

Proof of Theorem 1.1 (b). Let ν = 
α + 2s�, and let α′ be such that ν < α′ + 2s. Such α′ exists 
because α + 2s is not an integer (by assumption). We will deduce the theorem from Proposi-
tion 3.2, as follows.

First, it immediately follows from Proposition 3.2 that for any w ∈ C∞
c (Rn),

[w]Cα+2s (B1/2)
≤ C

([f ]Cα(B1) + [w]
Cα′+2s (B2)

+ ‖w‖Cα(Rn)

)
. (3.15)

To prove this, take a cutoff function η ∈ C∞
c (B2) satisfying η ≡ 1 in B3/2, and apply the propo-

sition to the function ηw. One finds

[w]Cα+2s (B1/2)
≤ C

([f ]Cα(B1) + [L(ηw − w)]Cα(B1) + ‖w‖
Cα′+2s (B2)

)
.

And since the function ηw − w vanishes in B3/2, then we have

[L(ηw − w)]Cα(B1) ≤ C[w]Cα(Rn). (3.16)

Thus, (3.15) follows.
We recall now the definition of the norms ‖φ‖(σ )

γ ;U
; see Gilbarg–Trudinger [15]. If γ = k +γ ′, 

with k integer and γ ′ ∈ (0, 1], then

[φ](σ )
γ ;U = sup

x,y∈U

(
d

γ+σ
x,y

|Dkφ(x) − Dkφ(y)|
|x − y|γ ′

)
,

and

‖φ‖(σ )
γ ;U =

k∑
sup
x∈U

(
dl+σ
x |Dlφ(x)|

)
+ [φ](σ )

γ ;U .
l=0
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Here, we denoted

dx = dist(x, ∂U) and dx,y = min{dx, dy}.
We will use next these norms. Indeed, we can rescale (3.15) and apply it to any ball Bρ of 

radius ρ > 0. Then, dividing by ρα , and taking the supremum over all the balls Bρ such that 
B2ρ ⊂ B1, we find

[w](−α)
α+2s;B1

≤ C
([f ](−α+2s)

α;B1
+ ‖w‖(−α)

α′+2s;B1
+ [w]Cα(Rn)

)
.

Thus, using that

‖w‖(−α)
γ+2s;B1

≤ ε‖w‖(−α)
α+2s;B1

+ C(ε)‖w‖L∞(B1) for γ < α,

we deduce

‖w‖(−α)
α+2s;B1

≤ C
([f ](−α+2s)

α;B1
+ ‖w‖Cα(Rn)

)
.

Moreover, since [f ](−α+2s)
α;B1

≤ ‖f ‖Cα(B1),

‖w‖(−α)
α+2s;B1

≤ C
(‖f ‖Cα(B1) + ‖w‖Cα(Rn)

)
.

In particular, we have proved that for all w ∈ C∞
c (Rn), the following inequality holds

‖w‖Cα+2s (B1/2)
≤ C

(‖f ‖Cα(B1) + ‖w‖Cα(Rn)

)
.

Finally, by using a standard approximation argument (see Remark 2.3), the result follows for 
any solution u ∈ Cα(Rn), and thus we are done. �

We now establish the estimate with a L∞ right hand side. As before, we prove first a prelimi-
nary result.

Proposition 3.3. Let s ∈ (0, 1), s �= 1
2 , and let L be any operator of the form (1.1)–(1.2). Let 

α ∈ (0, 2s) be such that 
2s� < α < 2s.
Let w be any C∞

c (Rn) function satisfying Lw = f in B1, with f ∈ L∞(B1). Then, we have 
the estimate

[w]C2s (B1/2)
≤ C

(‖f ‖L∞(B1) + ‖w‖Cα(Rn)

)
. (3.17)

The constant C depends only on n, s, α, and the ellipticity constants (1.2).

Proof. We follow the steps of the proof of Proposition 3.2.
Assume that the statement is false. Then, for each integer k ≥ 0, there exist Lk , wk , and fk

satisfying:

• Lkwk = fk in B1;
• Lk is of the form (1.1)–(1.2);
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• ‖fk‖L∞(B1) + ‖wk‖Cα(Rn) ≤ 1;
• ‖wk‖C2s (B1/2)

≥ k.

In the rest of the proof we denote

ν = 
2s�, β = 2s − α.

Since ν < α < 2s we then have

sup
k

sup
z∈B1/2

sup
r>0

r−β [wk]Cα(Br (z)) = ∞. (3.18)

Next, we define

θ(r) := sup
k

sup
z∈B1/2

sup
r ′>r

(r ′)−β
[
wk

]
Cα

(
Br′ (z)

).

The function θ is monotone nonincreasing, and we have θ(r) < ∞ for r > 0 since we are assum-
ing that ‖wk‖Cα(Rn) ≤ 1. In addition, by (3.18) we have θ(r) → ∞ as r ↓ 0.

Now, for every positive integer m, by definition of θ(1/m) there exist r ′
m ≥ 1/m, km, and 

zm ∈ B1/2, for which

(r ′
m)−β

[
wkm

]
Cα

(
Br′m(zm)

) ≥ 1

2
θ(1/m) ≥ 1

2
θ(r ′

m). (3.19)

Here we have used that θ is nonincreasing. Note that we will have r ′
m ↓ 0.

As in the proof of Proposition 3.2, we define pk,z,r (· − z) as the polynomial of degree less or 
equal than ν in the variables (x − z) which best fits uk in Br(z) by least squares, and we denote 
pm = pkm,zm,r ′

m
.

We consider the blow up sequence

vm(x) = wkm(zm + r ′
mx) − pm(r ′

mx)

(r ′
m)α+βθ(r ′

m)
. (3.20)

Note that, for all m ≥ 1 we have

∫
B1(0)

vm(x)q(x) dx = 0 for all q ∈ Pν. (3.21)

(Here, as in (3.5), Pν denotes the linear space of polynomials of degree at most ν with real 
coefficients.) Note also that (3.19) implies the following nondegeneracy condition for all m ≥ 1:

[vm]Cα(B1) ≥ 1/2. (3.22)

Next, as in (3.7), one can show that

[vm]Cα(B ) ≤ CRβ for all R ≥ 1. (3.23)

R
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When R = 1, (3.23) implies that ‖vm − q‖L∞(B1) ≤ C, for some q ∈ Pν . Therefore, (3.21)
yields

‖vm‖L∞(B1) ≤ C. (3.24)

We now prove the following:

Claim. Given ε > 0 small, the sequence vm converges in Cα−ε
loc (Rn) to a function v ∈ Cα

loc(R
n). 

This function v satisfies the assumptions of the Liouville-type Theorem 2.1.

The Cα−ε uniform convergence on compact sets of Rn of the function vm to some v ∈ Cα(Rn)

follows from (3.23) and the Arzelà–Ascoli theorem. Moreover, passing to the limit (3.23), we find 
that

[v]Cα(BR) ≤ CRβ for all R ≥ 1. (3.25)

Thus, v satisfies the growth assumption in Theorem 2.1.
On the hand, each wk satisfies a Lkwk = fk in B1. Thus, recalling that we have

‖fk‖L∞(B1) ≤ 1, we find that

∣∣Lkwk(x̄ + h̄) − Lkwk(x̄)
∣∣≤ 2 for all x̄ ∈ B1/2(z) and h̄ ∈ B1/2. (3.26)

Next, as is (3.14), one can translate (3.26) from wkm to vm. Indeed, setting h̄ = r ′
mh, and 

x̄ = zm + r ′
mx in (3.26), one has

∣∣Lkm (vm( · + h) − vm) (x)
∣∣≤ 2

θ(r ′
m)

whenever |x| ≤ 1

2r ′
m

. (3.27)

By Lemma 3.1, the operators Lkm converge weakly (up to subsequence) to an operator L. 
Thus, passing (3.27) to the limit we find that

L(v( · + h) − v) = 0 in all of Rn. (3.28)

Notice that to be able to pass to the limit m → ∞ on (3.27) we used that, by (3.23), the 
functions vkm( · + h) − vkm satisfy the growth control

‖vkm( · + h) − vkm‖L∞(BR) ≤ C|h|αRβ for all R ≥ 1.

This, combined with the locally uniform convergence of vkm( · +h) −vkm and Lemma 3.1, yields 
(3.28).

This finishes the proof of claim.
We have thus proved that the limit function v satisfies the assumptions of Theorem 2.1, and 

hence we conclude that v is a polynomial of degree ν. On the other hand, passing (3.21) to the 
limit we obtain that v is orthogonal to every polynomial of degree ν in B1, and hence it must be 
v ≡ 0. But then passing (3.22) to the limit we obtain that v cannot be constantly zero in B1; a 
contradiction. �

We also have the following.
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Proposition 3.4. Let s = 1
2 , and let L be any operator of the form (1.1)–(1.2). Let α ∈ (0, 2) be 

such that 
2s� < α < 2s.
Let w be any C∞

c (Rn) satisfying Lw = f in B1, with f ∈ L∞(B1). Then, we have the esti-
mate

[w]C2s−ε (B1/2)
≤ C

([f ]L∞(B1) + ‖w‖Cα(Rn)

)
.

The constant C depends only on n, s, α, and the ellipticity constants (1.2).

Proof. The proof is minor modification of the one in Proposition 3.3. One only has to take 
β = 2s − α − ε instead of β = 2s − α, and follow the same steps as in Proposition 3.3. �

Finally, we can give the:

Proof of Theorem 1.1 (a). We prove only the case s �= 1
2 , the case s = 1

2 follows with exactly 
the same argument.

By Proposition 3.3, for all w ∈ C∞
c (Rn) we have the estimate

[w]C2s (B1/2)
≤ C

(‖f ‖L∞(B1) + ‖w‖Cα(Rn)

)
,

where α is such that 
2s� < α < 2s.
Then, multiplying w by a cutoff function, it immediately follows that

[w]C2s (B1/2)
≤ C

(‖f ‖L∞(B1) + ‖w‖Cα(B2) + ‖w‖L∞(Rn)

); (3.29)

see the proof of Theorem 1.1 (b) above.
Now, using the norms ‖φ‖(σ )

γ ; U
defined before, we can rescale (3.29) and apply it to any ball 

Bρ of radius ρ > 0. Then, taking the supremum over all the balls Bρ such that B2ρ ⊂ B1, we 
find

[w](0)
2s;B1

≤ C
(‖f ‖(2s)

0;B1
+ ‖w‖(0)

α;B1
+ ‖w‖L∞(Rn)

)
.

Thus, we deduce

‖w‖(0)
2s;B1

≤ C
(‖f ‖(2s)

0;B1
+ ‖w‖L∞(Rn)

)
.

In particular, for all w ∈ C∞
c (Rn), the following inequality holds

‖w‖C2s (B1/2)
≤ C

(‖f ‖L∞(B1) + ‖w‖L∞(Rn)

)
.

Finally, by using an approximation argument (see Remark 2.3), the result follows. �
To end this section, we give an immediate consequence of Theorem 1.1. Notice that here we 

assume some regularity on the spectral measure a, but the ellipticity constants are the same as 
before. In particular, we are not assuming positivity of a in all of Sn−1.
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Corollary 3.5. Let s ∈ (0, 1), L be given by (1.3), and assume that

a ∈ Cα(Sn−1).

Let u be a solution of (1.7). Then, if f ∈ Cα(B1) and u ∈ L∞(Rn),

‖u‖Cα+2s (B1/2)
≤ C

(‖u‖L∞(Rn) + ‖f ‖Cα(B1)

)
whenever α + 2s is not an integer.

The constant C depends only on n, s, ellipticity constants (1.2), and ‖a‖Cα(Sn−1).

Proof. The proof is a minor modification of the proof of Theorem 1.1 (b). Indeed, one only 
needs to replace the estimate (3.16) therein, by the following one

[L(ηw − w)]Cα(B1) ≤ C[w]L∞(Rn),

which follows easily using that a ∈ Cα(Sn−1)—recall that η ≡ 1 in B1 and η ∈ C∞
c (B2). With 

this modification, the rest of the proof is exactly the same. �
Finally, we give an immediate consequence of Theorem 1.1 that will be used later.

Corollary 3.6. Let s ∈ (0, 1), and let L be any operator of the form (1.1)–(1.2). Let u be any 
solution of

Lu = f in B1,

with f ∈ L∞(B1). Then, for any ε > 0,

‖u‖C2s (B1/2)
≤ C

(
sup
R≥1

Rε−2s‖u‖L∞(BR) + ‖f ‖L∞(B1)

)
if s �= 1

2
,

and

‖u‖C2s−ε (B1/2)
≤ C

(
sup
R≥1

Rε−2s‖u‖L∞(BR) + ‖f ‖L∞(B1)

)
if s = 1

2
.

The constant C depends only on n, s, ε, and the ellipticity constants (1.2).

Proof. The proof follows by using that the truncated function ũ = uχB2 satisfies the hypotheses 
of Theorem 1.1. �
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4. A Liouville theorem in the half space

In this section we prove the following Liouville-type theorem, which will be needed in the 
proof of Theorem 1.2.

Theorem 4.1. Let L be an operator of the form (1.1)–(1.2). Let u be any weak solution of

{
Lu = 0 in R

n+
u = 0 in R

n−.
(4.1)

Assume that, for some β < 2s, u satisfies the growth control

‖u‖L∞(BR) ≤ CRβ for all R ≥ 1.

Then,

u(x) = K(xn)
s+

for some constant K ∈ R.

Notice that Theorem 4.1 is related to Theorem 1.4 in [31]. However, the proofs of the two 
results are quite different. Indeed, in [31] we first used a method of Caffarelli to obtain a Hölder 
estimate for u/ds up to the boundary, and then we iterated this estimate to show the Liouville 
theorem. Here, instead, we only use estimates for u (and not for u/ds ) to establish Theorem 4.1.

Recall that in the present context we can not use the method of Caffarelli (that we adapted 
to nonlocal equations in [31,30]), because the operators (1.1)–(1.2) do not satisfy a Harnack 
inequality.

4.1. Barriers

We next construct supersolutions and subsolutions that are needed in our analysis. We will 
need them both in the proofs of the Liouville Theorem 4.1 and of Theorem 1.2.

These barriers are essentially the same as the ones constructed in our work [31], however the 
proofs must be redone so that the ellipticity constants are (1.2).

Before constructing the sub and supersolution, we give two preliminary lemmas. These are 
the analogues of Lemmas 3.1 and 3.2 in [31].

Lemma 4.2. Let s ∈ (0, 1), and let L be given by (1.1)–(1.2). Let

ϕ(1)(x) = (
dist(x,B1)

)s
.

Then,

0 ≤ Lϕ(1)(x) ≤ C
{
1 + ∣∣log(|x| − 1)

∣∣} in B2 \ B1. (4.2)

The constant C depends only on s, n, and the ellipticity constants (1.2).
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Proof of Lemma 4.2. We use the notation x = (x′, xn) with x′ ∈ R
n−1. Let us estimate 

Lϕ(1)(xρ) where xρ = (0, 1 + ρ) for ρ ∈ (0, 1). To do it, we subtract the function ψ(x) =
(xn − 1)s+, which satisfies Lψ(xρ) = 0. As in [31, Lemma 3.1], we have that

0 ≤ (
ϕ

(1)
1 − ψ

)
(xρ + y) ≤

⎧⎪⎨
⎪⎩

Cρs−1|y′|2 for y = (y′, yn) ∈ Bρ/2

C|y′|2s for y = (y′, yn) ∈ B1 \ Bρ/2

C|y|s for y ∈ R
n \ B1.

Therefore,

0 ≤ Lϕ(1)(xρ) = L
(
ϕ(1) − ψ

)
(xρ)

=
∫

Sn−1

∞∫
−∞

(
ϕ

(1)
1 − ψ

)
(xρ + rθ) + (

ϕ
(1)
1 − ψ

)
(xρ − rθ)

2

dr

|r|1+2s
dμ(θ)

≤ C

∫
Sn−1

⎛
⎜⎝ ∫

|r|<ρ/2

ρs−1|r|2dr

|r|1+2s
+

∫
ρ/2<|r|<1

|r|2sdr

|r|1+2s
+

∫
|r|>1

|r|sdr

|r|1+2s

⎞
⎟⎠dμ

≤ C	
(
1 + | logρ|).

Thus, (4.2) follows. �
Lemma 4.3. Let s ∈ (0, 1), and let L be given by (1.1)–(1.2). Let

ϕ(3)(x) = (
dist(x,B1)

)3s/2
.

Then,

Lϕ(3)(x) ≥ c(|x| − 1)−s/2 for all x ∈ B2 \ B1. (4.3)

The constants c > 0 and C depend only on n, s, and the ellipticity constants (1.2).

Proof. As before, we denote x = (x ′, xn) with x′ ∈R
n−1. Let us estimate Lϕ(3)(xρ), where xρ =

(0, 1 +ρ) for ρ ∈ (0, 1). To do it we subtract the function ψ(x) = (xn − 1)
3s/2
+ . By homogeneity, 

we have that ψ satisfies Lψ(xρ) = cρ−s/2 for some c > 0; see [31, Section 2]. We note that

(
ϕ(3) − ψ

)
(xρ) = 0

and, as in [31, Lemma 3.2],

0 ≥ (
ϕ(3) − ψ

)
(xρ + y) ≥

⎧⎪⎨
⎪⎩

−Cρ3s/2−1|y′|2 for y = (y′, yn) ∈ Bρ/2

−C|y′|3s for y = (y′, yn) ∈ B1 \ Bρ/2

−C|y|3s/2 for y ∈ R
n \ B .
1
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Then, one finds that

Lϕ(3)(xρ) − cρ−s/2 ≥ −C,

which establishes (4.3). �
Using the previous lemma, one can now construct the supersolution that will be used in the 

next section.

Lemma 4.4 (Supersolution). Let s ∈ (0, 1), and let L be given by (1.1)–(1.2). There are positive 
constants ε and C, and a radial, bounded, continuous function ϕ1 which is C1,1 in B1+ε \ B1
and satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Lϕ1(x) ≤ −1 in B1+ε \ B1

ϕ1(x) = 0 in B1

ϕ1(x) ≤ C
(|x| − 1

)s
in R

n \ B1

ϕ1(x) ≥ 1 in R
n \ B1+ε

The constants ε, c and C depend only on n, s, and ellipticity constants.

Proof. See the proof of Lemma 3.3 in [31]. �
4.2. Hölder regularity up to the boundary for u

Using the interior estimates and the supersolution constructed above, we find the following.

Proposition 4.5. Let s ∈ (0, 1), L be any operator of the form (1.1)–(1.2), and � be any bounded 
Lipschitz domain satisfying the exterior ball condition. Let f ∈ L∞(�), and u be a weak solution 
of

{
Lu = f in �

u = 0 in R
n \ �.

(4.4)

Then,

‖u‖Cs(�) ≤ C‖f ‖L∞(�).

The constant C depends only on n, s, �, and the ellipticity constants (1.2).

Proof. The proof of this result is quite standard once one has interior estimates (given by The-
orem 1.1) and an appropriate barrier (given by Lemma 4.4). For more details, see the proof of 
Proposition 1.1 in [30], where this was done for the case of the fractional Laplacian. �

We will also need the following version of the estimate.
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Proposition 4.6. Let L be any operator of the form (1.1)–(1.2). Let f ∈ L∞(B+
1 ), and u ∈

L∞(Rn) be any bounded solution of

{
Lu = f in B+

1
u = 0 in B−

1 .
(4.5)

Then,

‖u‖Cs(B1/2)
≤ C

(‖f ‖L∞(B1) + ‖u‖L∞(Rn)

)
.

Proof. The proof is the same as the one of Proposition 4.5. �
4.3. Proof of Theorem 4.1

Here we prove Theorem 4.1. For it, we will need the following result, established in [31].

Lemma 4.7. (See [31].) Let u satisfy (−
)su = 0 in R+ and u = 0 in R−. Assume that, for some 
β ∈ (0, 2s), u satisfies the growth control ‖u‖L∞(0,R) ≤ CRβ for all R ≥ 1. Then u(x) = K(x+)s .

We can now give the:

Proof of Theorem 4.1. Given ρ ≥ 1, define vρ(x) = ρ−βu(ρx). Then, it follows that vρ satisfies 
the same growth condition as u, namely

‖vρ‖L∞(BR) ≤ CRβ for all R ≥ 1. (4.6)

Indeed, one has

‖vρ‖L∞(BR) = ρ−β‖u‖L∞(BρR) ≤ ρ−β C(ρR)β = CRβ.

Moreover, we know that Lvρ = 0 in Rn+ and vρ = 0 in Rn−.
In particular, if we consider v̄ρ = vρχB2 , then v̄ρ ∈ L∞(Rn) satisfies

{
Lv̄ρ = gρ in B+

1
v̄ρ = 0 in B−

1
(4.7)

for some gρ ∈ L∞(B+
1 ). Indeed, thanks to the growth condition (4.6), we have ‖gρ‖L∞(B+

1 ) ≤ C0

for some C0 independent of ρ. Then, by Proposition 4.6, it follows that

‖vρ‖Cs(B1/2) = ‖v̄ρ‖Cs(B1/2) ≤ CC0.

Therefore, we find

[u]Cs(Bρ/2) = ρ−s[u(ρx)]Cs(B1/2) = ρβ−s[vρ]Cs(B1/2) ≤ CC0ρ
β−s .

In other words, we have proved that

[u]Cs(B ) ≤ CRβ−s for all R ≥ 1.

R
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Now, given τ ∈ Sn−1 such that τn = 0, and given h > 0, consider

w(x) = u(x + hτ) − u(x)

hs
.

By the previous considerations, we have

‖w‖L∞(BR) ≤ CRβ−s for all R ≥ 1.

Moreover, we clearly have Lw = 0 in Rn+ and w = 0 in Rn−. Therefore, we can repeat the previ-
ous argument (applied to w instead of u), to find that

[w]Cs(BR) ≤ CRβ−2s for all R ≥ 1.

Hence, since β < 2s, letting R → ∞ in the previous inequality we find that

w ≡ 0 in R
n.

Therefore, u(x + hτ) = u(x) for all h > 0 and for all τ ∈ Sn−1 such that τn = 0. Thus, we have 
that u depends only on the xn-variable, i.e.,

u(x) = ū(xn)

for some 1D function ū.
But we then have that

Lu(x) =
∫

Sn−1

∞∫
−∞

(
u(x + θr) + u(x − θr) − 2u(x)

) dr

|r|1+2s
dμ(θ)

=
∫

Sn−1

∞∫
−∞

(
ū(xn + θnr) + ū(xn − θnr) − 2ū(xn)

) dr

|r|1+2s
dμ(θ)

= −c

∫
Sn−1

(−
)s
R

(
ū(xn + θnr)

)∣∣
r=0 dμ(θ)

= −c

∫
Sn−1

|θn|2s(−
)s
R
ū(xn) dμ(θ)

= −c (−
)sū(xn),

for some constant c > 0. Therefore, ū solves (−
)sū = 0 in R+, ū = 0 in R−. Hence, using 
Lemma 4.7 we finally deduce that ū(xn) = K(xn)

s+, and thus

u(x) = K(xn)
s+,

as desired. �
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5. Boundary regularity

In this section we finally prove Theorem 1.2.
The main ingredient in its proof is the following result. In it, we use the following terminology.

Definition 5.1. We say that � is a C1,1 surface with radius ρ0 > 0 splitting B1 into U+ and U−
if the following happens:

• The two disjoint domains U+ and U− partition B1, i.e., B1 = U+ ∪ U−.
• The boundary � := ∂U+\∂B1 = ∂U−\∂B1 is a C1,1 surface with 0 ∈ �.
• All points on � ∩ B3/4 can be touched by two balls of radii ρ0, one contained in U+ and the 

other contained in U−.

The result reads as follows.

Proposition 5.2. Let s ∈ (0, 1) and β ∈ (s, 2s) be given constants. Let � be a C1,1 surface with 
radius ρ0 splitting B1 into U+ and U−; see Definition 5.1.

Let f ∈ L∞(U+), and assume that u ∈ L∞(Rn) is a solution of

{
Lu = f in U+

u = 0 in U−,

where L is any operator of the form (1.1)–(1.2).
Then, for all z ∈ � ∩ B1/2 there is a constant Q(z) with |Q(z)| ≤ CC0 for which

∣∣∣u(x) − Q(z)
(
(x − z) · ν(z)

)s
+
∣∣∣≤ CC0|x − z|β for all x ∈ B1,

where ν(z) is the unit normal vector to � at z pointing towards U+ and

C0 = ‖u‖L∞(Rn) + ‖f ‖L∞(U+).

The constant C depends only on n, ρ0, s, β , and the ellipticity constants (1.2).

In order to show Proposition 5.2, we will need some preliminary lemmas.
First, we will need the following technical result.

Lemma 5.3. Let β > s and ν ∈ Sn−1 be some unit vector. Let u ∈ C(B1) and define

φr(x) := Q∗(r) (x · ν)s+, (5.1)

where

Q∗(r) := arg min
Q∈R

∫ (
u(x) − Q(x · ν)s+

)2
dx =

∫
Br

u(x) (x · ν)s+ dx∫
Br

(x · ν)2s+ dx
.

Br
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Assume that for all r ∈ (0, 1) we have

∥∥u − φr

∥∥
L∞(Br )

≤ C0r
β . (5.2)

Then, there is Q ∈R satisfying |Q| ≤ C
(
C0 + ‖u‖L∞(B1)

)
such that

∥∥u − Q(x · ν)s+
∥∥

L∞(Br )
≤ CC0r

β

for some constant C depending only on β and s.

Proof. We may assume ‖u‖L∞(B1) = 1. By (5.2), for all x ′ ∈ Br we have

∣∣φ2r (x
′) − φr(x

′)
∣∣≤ ∣∣u(x′) − φ2r (x

′)
∣∣+ ∣∣u(x′) − φr(x

′)
∣∣≤ CC0r

β .

But this happening for every x′ ∈ Br yields, recalling (5.1),

∣∣Q∗(2r) − Q∗(r)
∣∣≤ CC0r

β−s .

In addition, since ‖u‖L∞(B1) = 1, we clearly have that

|Q∗(1)| ≤ C. (5.3)

Since β > s, this implies the existence of the limit

Q := lim
r↘0

Q∗(r).

Moreover, using again β − s > 0,

∣∣Q − Q∗(r)
∣∣≤ ∞∑

m=0

∣∣Q∗(2−mr) − Q∗(2−m−1r)
∣∣≤ ∞∑

m=0

CC02−m(β−s)rβ−s ≤ CC0r
β−s .

In particular, using (5.3) we obtain

|Q| ≤ C(C0 + 1). (5.4)

We have thus proven that for all r ∈ (0, 1)

∥∥u − Q(x · ν)s+‖L∞(Br ) ≤ ‖u − Q∗(r)(x · ν)s+‖L∞(Br ) +
+ ‖Q∗(r)(x · ν)s+ − Q(x · ν)s+‖L∞(Br )

≤ C0r
β + |Q∗(r) − Q|rs ≤ C(C0 + 1)rβ . �

Second, we will also need the following estimate in order to control the “errors coming from 
the geometry of the domain”.
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Lemma 5.4. Assume that B1 is divided into two disjoint subdomains �1 and �2 such that B1 =
�1 ∪ �2. Assume that � := ∂�1 \ ∂B1 = ∂�2 \ ∂B1 is a C0,1 surface and that 0 ∈ �. Moreover 
assume that, for some ρ0 > 0, all the points on � ∩ B3/4 can be touched by a ball of radius 
ρ0 ∈ (0, 1/4) contained in �2.

Let s ∈ (0, 1), and let L be any operator of the form (1.1)–(1.2). Let α ∈ (0, 1), g ∈ Cα
(
�2
)
, 

f ∈ L∞(�1), and u ∈ C(B1) satisfying |u(x)| ≤ M (1 + |x|)β in Rn for some β < 2s. Assume 
that u satisfies in the weak sense

Lu = f in �1, u = g in �2.

Then, there is γ ∈ (0, α) such that u ∈ Cγ
(
B1/2

)
with the estimate

‖u‖Cγ (B1/2) ≤ C
(‖u‖L∞(B1) + ‖g‖Cα(�2) + ‖f ‖L∞(�1) + M

)
.

The constants C and γ depend only on n, s, α, ρ0, β , and ellipticity constants.

Proof. Define ũ = uχB1 . Then ũ satisfies Lũ = f̃ in �1 ∩ B3/4 and ũ = g in �2, where 
‖f̃ ‖L∞(�1∩B3/4) ≤ C

(‖f ‖L∞(�1) + M
) := C′

0. The constant C depends only on n, s, β , and 
ellipticity constants.

The proof consists of two steps.
First step. We next prove that there are δ > 0 and C such that for all z ∈ � ∩ B1/2 it is

‖ũ − g(z)‖L∞(Br (z)) ≤ Crδ for all r ∈ (0,1), (5.5)

where δ and C depend only on n, s0, C′
0, ‖u‖L∞(B1), ‖g‖Cα(�2), and ellipticity constants.

Let z ∈ � ∩ B1/2. By assumption, for all R ∈ (0, ρ0) there yR ∈ �2 such that a ball BR(yR) ⊂
�2 touches � at z, i.e., |z − yR| = R.

Let ϕ1 and ε > 0 be the supersolution and the constant in Lemma 4.4. Take

ψ(x) = g(yR) + ‖g‖Cα(�2)

(
(1 + ε)R

)α + (
C′

0 + ‖u‖L∞(B1)

)
ϕ1

(
x − yR

R

)
.

Note that ψ is above ũ in �2 ∩ B(1+ε)R . On the other hand, from the properties of ϕ1, it is 
M+ψ ≤ −(C′

0 + ‖u‖L∞(B1)

)
R−2s ≤ −C′

0 in the annulus B(1+ε)R(yR) \ BR(yR), while ψ ≥
‖u‖L∞(B1) ≥ ũ outside B(1+ε)R(yR). It follows that ũ ≤ ψ and thus we have

ũ(x) − g(z) ≤ C
(
Rα + (r/R)s

)
for all x ∈ Br(z) and for all r ∈ (0, εR) and R ∈ (0, ρ0).

Here, C denotes a constant depending only on n, s0, C′
0, ‖u‖L∞(B1), ‖g‖Cα(�2), and ellipticity 

constants. Taking R = r1/2 and repeating the argument up-side down we obtain

|ũ(x) − g(z)| ≤ C
(
rα/2 + rs/2)≤ Crδ for all x ∈ Br(z) and r ∈ (0, ε1/2)

for δ = 1
2 min{α, s0}. Taking a larger constant C, (5.5) follows.

Second step. We now show that (5.5) and the interior estimates in Theorem 1.1 (b) imply 
‖u‖Cγ (B ) ≤ C, where C depends only on the same quantities as above.
1/2
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Indeed, given x0 ∈ �1 ∩ B1/2, let z ∈ � and r > 0 be such that

d = dist(x0,�) = dist(x0, z).

Let us consider

v(x) = ũ

(
x0 + d

2
x

)
− g(z).

We clearly have

‖v‖L∞(B1) ≤ C and ‖v‖L∞(BR) ≤ CRs for R ≥ 1.

On the other hand, v satisfies

Lv(x) = (d/2)2sLũ(x0 + rx) in B1

and thus

‖Lv‖L∞(B1) ≤ C′
0 in B1.

Therefore, Corollary 3.6 yields

‖v‖Cα(B1/2) ≤ C

or equivalently

[u]Cα(Bd/4(x0)) ≤ Cd−α. (5.6)

Combining (5.5) and (5.6), using the same argument as in the proof of Proposition 1.1 in [31], 
we obtain

‖u‖Cγ (�1∩B1/2) ≤ C,

as desired. �
Using the previous results, and a compactness argument in the spirit of the one in [31], we 

can give the:

Proof of Proposition 5.2. Assume that there are sequences �k , �+
k , �−

k , fk , uk , and Lk that 
satisfy the assumptions of the proposition, that is,

• �k is a C1,1 hyper surface with radius ρ0 splitting B1 into �+
k and �−

k ;
• Lk is of the form (1.1) and satisfying (1.2);
• ‖uk‖L∞(Rn) + ‖fk‖L∞(�+

k ) = 1;

• uk is a solution of Luk = fk in �+ and uk = 0 in �−;
k k
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but suppose for a contradiction that the conclusion of the proposition does not hold. That is, for 
all C > 0, there are k and z ∈ �k ∩ B1/2 for which no constant Q ∈R satisfies

∣∣∣uk(x) − Q
(
(x − z) · νk(z)

)s
+
∣∣∣≤ C|x − z|β for all x ∈ B1. (5.7)

Here, νk(z) denotes the unit normal vector to �k at z, pointing towards �+
k .

In particular, using Lemma 5.3,

sup
k

sup
z∈�k∩B1/2

sup
r>0

r−β
∥∥uk − φk,z,r

∥∥
L∞(Br (z))

= ∞, (5.8)

where

φk,z,r (x) = Qk,z(r)
(
(x − z) · νk(z)

)s
+ (5.9)

and

Qk,z(r) := arg min
Q∈R

∫
Br (z)

∣∣∣uk(x) − Q
(
(x − z) · νk(z)

)s
+
∣∣∣2 dx

=
∫
Br (z)

uk(x)
(
(x − z) · νk(z)

)s
+dx∫

Br (z)

(
(x − z) · νk(z)

)2s

+ dx
.

Next define the monotone in r quantity

θ(r) := sup
k

sup
z∈�k∩B1/2

sup
r ′>r

(r ′)−β
∥∥uk − φk,z,r ′

∥∥
L∞(

Br′ (x0)
).

We have θ(r) < ∞ for r > 0 and θ(r) ↗ ∞ as r ↘ 0. Clearly, there are sequences rm ↘ 0, km, 
and zm → z ∈ B1/2, for which

(rm)−β
∥∥ukm − φkm,zm,rm

∥∥
L∞(Brm(xm))

≥ θ(rm)/2. (5.10)

From now on in this proof we denote φm = φkm,zm,rm and νm = νkm(zm).
In this situation we consider

vm(x) = ukm(zm + rmx) − φm(zm + rmx)

(rm)βθ(rm)
.

Note that, for all m ≥ 1,

∫
B1

vm(x)
(
x · νm

)s
+ dx = 0. (5.11)

This is the optimality condition for least squares.
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Note also that (5.10) is equivalent to

‖vm‖L∞(B1) ≥ 1/2, (5.12)

which holds for all m ≥ 1.
In addition, for all k and z we have

|Qk,z(2r) − Qk,z(r)| ≤ rβ−sθ(r).

Indeed,

|Qk,z(2r) − Qk,z(r)|rs = ‖φk,z,2r − φk,z,r‖L∞(Br (z))

≤ ‖φk,z,2r − u‖L∞(B2r (z)) + ‖u − φk,z,r‖L∞(Br (z))

≤ (2r)βθ(r) + rβθ(r) = Crβθ(r).

Thus, for R = 2N we have

rs−β |Qk,z(rR) − Qk,z(r)|
θ(r)

≤
N−1∑
j=0

2j (β−s) (2
j r)s−β |Qk,z(2j+1r) − Qk,z(2j r)|

θ(r)

≤ C

N−1∑
j=0

2j (β−s) θ(2j r))

θ(r)
≤ C2N(β−s) = CRβ−s ,

where we have used β > s.
Moreover, we have

‖vm‖L∞(BR) = 1

θ(rm)(rm)β

∥∥ukm − Qkm,zm(rm)
(
(x − zm) · νm

)sm
+
∥∥

L∞(
BrmR

)

≤ Rβ

θ(rm)(rmR)β

∥∥ukm − Qkm,zm(rmR)
(
(x − zm) · νm

)sm
+
∥∥

L∞(
BrmR

)+
+ 1

θ(rm)(rm)β
|Qkm,zm(rmR) − Qkm,zm(rm)| (rmR)sm

≤ Rβθ(rmR)

θ(rm)
+ CRβ,

and hence vm satisfy the growth control

‖vm‖L∞(BR) ≤ CRβ for all R ≥ 1. (5.13)

We have used the definition θ(r) and its monotonicity.
Now, without loss of generality (taking a subsequence), we assume that

νm −→ ν ∈ Sn−1.

Then, the rest of the proof consists mainly in showing the following claim.
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Claim. A subsequence of vm converges locally uniformly in Rn to some function v which satisfies 
Lv = 0 in {x · ν > 0} and v = 0 in {x · ν < 0}, for some L of the form (1.1) satisfying (1.2).

Once we know this, a contradiction is immediately reached using the Liouville type Theo-
rem 4.1, as seen at the end of the proof.

To prove the claim, given R ≥ 1 and m such that rmR < 1/2 define

�+
R,m = {

x ∈ BR : (zm + rmx) ∈ �+
km

and x · νm(zm) > 0
}
.

Notice that for all R and k, the origin 0 belongs to the boundary of �+
R,m.

We will use that vm satisfies an elliptic equation in �+
R,m. Namely,

Lkmvm(x) = (rm)2s

(rm)βθ(rm)
fkm(zm + rmx) in �+

R,m. (5.14)

This follows from the definition of vm and the fact that Lkmφm = 0 in {(x − z) · νm > 0}.
Notice that the right hand side of (5.14) converges uniformly to 0 as rm ↘ 0, since β < 2s

and θ(rm) ↑ ∞.
In order to prove the convergence of a subsequence of vm, we first obtain, for every fixed 

R ≥ 1, a uniform in m bound for ‖vm‖Cδ(BR), for some small δ > 0. Then the local uniform 
convergence of a subsequence of vm follows from the Arzelà–Ascoli theorem.

Let us fix R ≥ 1 and consider that m is always large enough so that rmR < 1/4.
Let �−

m be the half space which is “tangent” to �−
km

at zm, namely,

�−
m := {

(x − zm) · ν(zm) < 0
}
.

The first step is showing that, for all m and for all r < 1/4,∥∥ukm − φm

∥∥
L∞

(
Br (zm)∩(�−

km
∪�−

m)
) ≤ Cr2s ≤ Cr2s (5.15)

for some constant C depending only on s, ρ0, ellipticity constants, and dimension.
Indeed, we may rescale and slide the supersolution ϕ1 from Lemma 4.4 and use the fact that 

all points of �km ∩ B3/4 can be touched by balls of radius ρ0 contained in �−
km

. We obtain that

|ukm | ≤ C
(
dist (x,�−

km
)
)s

,

with C depending only on n, s, ρ0, and ellipticity constants. On the other hand, by definition of 
φm we have

|φm| ≤ C
(
dist (x,�−

m)
)s

.

But by assumption, points on �k ∩ B3/4 can be also touched by balls of radius ρ0 from the �+
km

side, and hence we have a quadratic control (depending only on ρ0) on how �km separates from 
the hyperplane ∂�−

m . As a consequence, in Br(zm) ∩ (�−
km

∪ �−
m) we have

C
(
dist (x,�−

km
)
)s ≤ Cr2s and C

(
dist (x,�−

m)
)s ≤ Cr2s .

Hence, (5.15) holds.
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We use now Lemma 5.4 to obtain that, for some small γ ∈ (0, s),

‖ukm‖Cγ (B1/8(zm)) ≤ C for all m.

On the other hand, clearly

‖φm‖Cγ (B1/8(zm)) ≤ C for all m.

Hence, ∥∥ukm − φm

∥∥
Cγ

(
Br(zm)∩(�−

km
∪�−

m)
) ≤ C. (5.16)

Next, interpolating (5.15) and (5.16) we obtain, for some positive δ < γ small enough (de-
pending on γ , s, and β),

∥∥ukm − φm

∥∥
Cδ
(
Br (zm)∩(�−

km
∪�−

m)
) ≤ Crβ. (5.17)

Therefore, scaling (5.17) we find that

∥∥vm

∥∥
Cδ
(
BR\�+

R,m

) ≤ C for all m with rmR < 1/4. (5.18)

Next we observe that the boundary points on ∂�+
R,m ∩B3R/4 can be touched by balls of radius 

(ρ0/rm) ≥ ρ0 contained in BR \ �+
R,m. We then apply Lemma 5.4 (rescaled) to vm. Indeed, we 

have that vm solves (5.14) and satisfies (5.18). Thus, we obtain, for some δ′ ∈ (0, δ),

∥∥vm

∥∥
Cδ′ (BR/2)

≤ C(R), for all m with rmR < 1/4, (5.19)

where we write C(R) to emphasize the dependence on R of the constant, which also depends on 
s, ρ0, ellipticity constants, and dimension, but not on m.

As said above, the Arzelà–Ascoli theorem and the previous uniform (in m) Cδ′
estimate (5.19)

yield the local uniform convergence in Rn of a subsequence of vm to some function v.
In addition, by Lemma 3.1 there is a subsequence of Lkm which converges weakly to some 

operator L, which is of the form (1.1) and satisfies (1.2). Hence, it follows that Lv = 0 in all 
of Rn, and thus the claim is proved.

Finally, passing to the limit the growth control (5.13) on vm we find ‖v‖L∞(BR) ≤ Rβ for all 
R ≥ 1. Hence, by Theorem 4.1, it must be

v(x) = K
(
x · ν(z)

)s
+.

Passing (5.11) to the limit, we find

∫
B1

v(x)
(
x · ν(z)

)s
+ dx = 0.

But passing (5.12) to the limit, we reach the contradiction. Thus, the proposition is proved. �
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Before giving the proof of Theorem 1.2, we prove the following.

Lemma 5.5. Let � be a C1,1 surface of radius ρ0 > 0 splitting B1 into U+ and U−; see Defini-
tion 5.1. Let d(x) = dist (x, U−). Let x0 ∈ B1/2 and z ∈ � be such that

dist (x0,�) = dist (x0, z) =: 2r.

Then, ∥∥∥((x − z) · ν(z)
)s
+ − ds(x)

∥∥∥
L∞(Br (x0))

≤ Cr2s , (5.20)

[
ds − (

(x − z) · ν(z)
)s
+
]
Cs−ε (Br (x0))

≤ Crs , (5.21)

and

[
d−s

]
Cs−ε (Br (x0))

≤ Cr−2s+ε . (5.22)

The constant C depends only on ρ0.

Proof. Let us denote

d̄(x) = (
(x − z) · ν(z)

)
+.

First, since � is C1,1 with curvature radius bounded below by ρ0, we have that |d̄ − d| ≤ Cr2

in Br(x0), and thus (5.20) follows.
To prove (5.21) we use on the one hand that

∥∥∇d − ∇d̄
∥∥

L∞(Br (x0))
≤ Cr, (5.23)

which also follows from the fact that � is C1,1. On the other hand, using the inequality |as−1 −
bs−1| ≤ |a − b| max{as−2, bs−2} for a, b > 0, we find

∥∥∥ds−1 − d̄s−1
∥∥∥

L∞(Br (x0))
≤ Cr2 max

{∥∥∥ds−2
∥∥∥

L∞(Br (x0))
,

∥∥∥d̄s−2
∥∥∥

L∞(Br (x0))

}
≤ Crs. (5.24)

Thus, using (5.23) and (5.24), we deduce

[
ds − d̄s

]
C0,1(Br (x0))

=
∥∥∥ds−1∇d − d̄s−1∇d̄

∥∥∥
L∞(Br (x0))

≤ Crs .

Therefore, (5.21) follows.
Finally, interpolating the inequalities

[
d−s

]
C0,1(Br (x0))

= ‖d−s−1∇d‖L∞(Br (x0)) ≤ Cr−s−1 and ‖d−s‖L∞(Br (x0)) ≤ Cr−s ,

(5.22) follows. �
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We can finally give the

Proof of Theorem 1.2. First, by Proposition 4.4, we have ‖u‖L∞(�) ≤ C‖f ‖L∞(�). We may 
assume that

‖u‖L∞(Rn) + ‖f ‖L∞(�+) ≤ 1.

Let us pick any point on ∂�, and let us see that u/ds is Cs−ε around this point. Rescaling 
and translating � if necessary, we may assume that 0 ∈ ∂�, and that the sets U+ = � ∩ B1 and 
U− = B1 \ � satisfy the conditions in Definition 5.1 (with � = B1 ∩ ∂�).

Then, by Proposition 5.2 we have that, for all z ∈ � ∩ B1/2, there is Q = Q(z) such that

|Q(z)| ≤ C and ‖u − Q
(
(x − z) · ν(z)

)s
+‖L∞(BR(z)) ≤ CR2s−ε (5.25)

for all R > 0, where C depends only on n, s, ρ0, ε, and ellipticity constants.
Now, to prove the Cs−ε estimate up to the boundary for u/ds we must combine a Cs interior 

estimate for u with (5.25).
Let x0 be a point in �+ ∩ B1/4, and let z ∈ � be such that

2r := dist (x0,�) = dist (x0, z) < ρ0.

Note that Br(x0) ⊂ B2r (x0) ⊂ �+ and that z ∈ � ∩ B1/2 (since 0 ∈ �).
We claim now that there is Q = Q(x0) such that |Q(x0)| ≤ C,

‖u − Qds‖L∞(Br (x0)) ≤ Cr2s−ε, (5.26)

and

[u − Qds]Cs−ε (Br (x0)) ≤ Crs, (5.27)

where the constant C depends only on n, s, ε, ρ0, and ellipticity constants.
Indeed, (5.26) follows immediately combining (5.25) and (5.20).
To prove (5.27), let

vr(x) = r−su(z + rx) − Q(x · ν(z))s+.

Then, (5.25) implies

‖vr‖L∞(B4) ≤ Crs−ε

and

‖vr‖L∞(BR) ≤ Crs−εRs.

Moreover, vr solves the equation

Lvr = rsf (z + rx) in B2(x̃0),
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where x̃0 = (x0 − z)/r satisfies |x̃0 − z| = 2. Hence, using the interior estimate in Corollary 3.6
we obtain [vr ]Cs−ε (B1(x̃0)) ≤ Crs−ε . This yields that

rs−ε
[
u − Q

(
(x − z) · ν(z)

)s
+
]
Cs−ε (Br (x0))

= rs[v]Cs−ε (B1(x̃0)) ≤ Crsrs−ε .

Therefore, using (5.21), (5.27) follows.
Let us finally show that (5.26)–(5.27) yield the desired result. Indeed, note that, for all x1 and 

x2 in Br(x0),

u

ds
(x1) − u

ds
(x2) =

(
u − Qds

)
(x1) − (

u − Qds
)
(x2)

ds(x1)
+ (

u − Qds
)
(x2)

(
d−s(x1) − d−s(x2)

)
.

By (5.27), and using that d is comparable to r in Br(x0), we have

∣∣(u − Qds
)
(x1) − (

u − Qds
)
(x2)

∣∣
ds(x1)

≤ C|x1 − x2|s−ε .

Also, by (5.26) and (5.22),

∣∣u − Qds
∣∣(x2)

∣∣d−s(x1) − d−s(x2)
∣∣≤ C|x1 − x2|s−ε .

Therefore,

[u/ds]Cs−ε (Br (x0)) ≤ C.

From this, we obtain the desired estimate for ‖u/ds‖Cs−ε (�+∩B1/2) by summing a geometric 
series, as in the proof of Proposition 1.1 in [30]. �
6. Final comments and remarks

Even for the fractional Laplacian, all the interior regularity results are sharp; see for example 
Section 7 in [3]. The only difference between Theorem 1.1 (b) and the classical interior estimate 
for the fractional Laplacian is that we need to assume that u ∈ Cα(Rn) in order to have a Cα+2s

estimate in B1/2. We show here that this assumption is in fact necessary.

Proposition 6.1. Let s ∈ (0, 1), and let L be the operator in R2 given by (1.4). Let α ∈ (0, s], and 
ε > 0 small.

Then, there exists a function u satisfying:

(i) Lu = 0 in B1
(ii) u ∈ Cα−ε(Rn)

(iii) u ≡ 0 in B2 \ B1
(iv) u /∈ Cα+2s(B1/2)

This means that in Theorem 1.1 (b) the Cα(Rn) norm on the right hand side can not be 
removed.
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Concerning our boundary regularity result, we also expect it to be sharp for general stable 
operators (1.1)–(1.2). Indeed, while for the fractional Laplacian (and for any operator (1.3) with 
a ∈ C∞(Sn−1)) one has that (−
)s(ds) is C∞(�) whenever � is C∞ (see [18]), in this case we 
have the following.

Proposition 6.2. There exists an operator of the form (1.1)–(1.2) and a C∞ bounded domain 
� ⊂R

n for which

L(ds) /∈ L∞(�),

where d(x) is a C∞ function satisfying d ≡ 0 in Rn \ �, and that coincides with dist(x, Rn \ �)

in a neighborhood of ∂�.

As a consequence of the previous example, we do not expect the estimates in Theorem 1.2 to 
hold at order s. In other words, we do not expect u/ds to be Cs(�).

We next show Propositions 6.1 and 6.2.

Proof of Proposition 6.1. Let

u0(x) = (x1)
α−ε+ η(x),

where η ∈ C∞
c (B2(p)), p = (0, 4), and η ≡ 1 in B1(p). Let u be the solution to

{
Lu = 0 in B1

u = u0 in R
n \ B1.

Then, u clearly satisfies (i), (ii), (iii).
Let us show next that u /∈ Cα+2s(B1/2) by contradiction. Assume u ∈ Cα+2s(B1/2), and define 

u1 = uχB1 , and u2 = u −u1. Notice that u1 ∈ Cα(Rn) (by Proposition 4.4, since Lu1 = −Lu2 ∈
L∞(B1) and α ≤ s) and u1 ∈ Cα+2s(B1/2) (by Theorem 1.1). Thus, we have Lu1 ∈ Cα(B1/4). 
Therefore, we also have

Lu2 ∈ Cα(B1/4)

since Lu2 = −Lu1 in B1.
Now recall that

Lw(a,b) =
∞∫

−∞

w(a,b) − w(a,b + t)

|t |1+2s
dt +

∞∫
−∞

w(a,b) − w(a + t, b)

|t |1+2s
dt.

Hence, taking the points x1 = (0, 0) and x2 = (δ, 0), with δ > 0 small, we have

Lu2(x1) − Lu2(x2) =
∞∫

u2(δ, t) − u2(0, t)

|t |1+2s
dt,
−∞
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where we have used that u2 has support in B2(p). Also, u2(0, t) = 0 for all t , and hence

Lu2(x1) − Lu2(x2) =
∞∫

−∞

u2(δ, t)

|t |1+2s
dt >

4∫
3

Cδα−ε

|t |1+2s
dt = cδα−ε.

Therefore,

Lu2(x1) − Lu2(x2)

|x1 − x2|α > cδ−ε,

and hence Lu2 /∈ Cα(B1/4), a contradiction. �
We finally give the

Proof of Proposition 6.2. We take � to coincide with �̃ = {x ∈R
n : |x| > 1} in a neighborhood 

of z0 = (1, 0, . . . , 0). Then, in a neighborhood of x0, we have ds(x) = (|x| − 1)s .
We will show that L(ds) is not bounded in a neighborhood of z0. Equivalently, we will show 

that Lu is not bounded in a neighborhood of z0, where

u(x) = (|x|2 − 1)sη(x),

where η is a smooth function satisfying η ≡ 1 in Bδ(z0) and η ≡ 0 outside B2δ(z0), where δ > 0
is small enough so that ∂� coincides with ∂�̃ in B2δ(z0).

We claim that Lu is bounded if and only if L(ds) is bounded, because the quotient of these 
two functions is C∞(�). Indeed, let w be any C∞(Rn) extension of u/ds |�. Then, we have

Lu = L(dsw) = wL(ds) + dsLw − IL(ds,w),

where IL is the bilinear form associated to the operator L. Now, w is C∞ and ds is Cs , it turns 
out that Lw and IL(ds, w) belong to L∞(�). Hence, using that w is bounded by above and 
below by positive constants, we find that

Lu ∈ L∞(�) ⇐⇒ L(ds) ∈ L∞(�),

as claimed.
Notice now that, since u is bounded at infinity, then to prove the boundedness of Lu(x) it is 

only important the values of u in a neighborhood of x.
Let x = (x1, x′), with x′ ∈ R

n−1. Let us restrict the function ds to the hyperplane {x1 = 1 + r}, 
with r > 0 very small. We find that

u(1 + r, x′) = (
(1 + r)2 + |x′|2 − 1

)s
η(1 + r, x′) = (2r + r2 + |x′|2)sη(1 + r, x′)

= rs

(
2 + r +

∣∣∣∣ x′
√

r

∣∣∣∣
2
)s

η(1 + r, x′).
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Thus, if we choose L = L1 + L2, with L1 being the (n − 1)-dimensional fractional Laplacian in 
the (x2, . . . , xn) variables, and L2 the 1-dimensional fractional Laplacian in the x1-variable, we 
find that

Lu(1 + r,0, . . . ,0) = L1v
(r)(0) + L2v2(r),

where v(r)(x′) = rs

(
2 + r +

∣∣∣ x′√
r

∣∣∣2)s

η(1 + r, x′), and v2(r) = rs+ + (−1 − r)s+. Since L2[(r+)s]
= 0, then L2v2(r) is bounded for r > 0. Thus, to prove that Lu is not bounded in � it suffices to 
show that L1v

(r)(0) → ∞ as r ↓ 0.
But, defining

ṽ(r)(y) =
(

2 + r + |y|2
)s

η(1 + r, ry)

we have that

L1v
(r)(0) = L1ṽ

(r)(0).

Finally, as r ↓ 0, we have that η(1 + r, ry) converges to the constant function 1 in all of Rn, and 
hence it is immediate to see that

lim
r→0

L1ṽ
(r)(0) = ∞,

as desired. �
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