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Abstract

We address the boundary value problem for the ellipsoidal BGK model of the Boltzmann equation posed
in a bounded interval. The existence of a unique mild solution is established under the assumption that the
inflow boundary data does not concentrate too much around the zero velocity, and the gas is sufficiently
rarefied.
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1. Introduction

In this paper, we are interested in the boundary value problem of stationary ellipsoidal BGK
model:

V)— =

[l
0x T

(Mo(H) = £), (1.1)
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on a finite interval [0, 1] associated with the boundary condition:

f(@O,v)= fr(v) forv; >0, f,v)= fr(v) forv; <O. (1.2)

The velocity distribution function f(x, v) is the number density at x € [0, 1] with velocity v =
(v1, v2, v3) € R?. We have normalized the spatial domain for simplicity. 7 is defined by 7 =
k(1 — v), where « denotes the Knudsen number defined as the ratio between the mean free
path and the characteristic length, and v € (—1/2, 1) is the relaxation parameter. The ellipsoidal
Gaussian M, (f) reads

My (f) = eXP(-%(v—U)TTv_l(v—U)>,

I
Jdet2xT,)

where the local density p, momentum U, temperature 7 and the stress tensor ® are given by

px)= / f(x,v)dv,
R3

p(x)U(x) = f f(x,v)vdv,
R3

(1.3)
3p<x>T(x>=/f<x,v>|v—U|2dv,

R3

p(x)®(x)=/f(x,v)(v—U)®(v—U)dv,
R%

and the temperature tensor 7y, is defined as a linear combination of 7 and ®:

1=v)T +v0O, vO12 VO3
T, = vBsr (1 —=v)T +v0Ox; VB»r3
VO3 VB3, (1=v)T +v033

=1 —vTId+10O.
A direct calculation gives the following cancellation property
1
[in-n| v |aw=o

2
R3 |U|

leading to the conservation of following quantities along x € [0, 1]:

/fvldv, /fvlvdv, /fv1|v|2dv.
R3 R3 R3
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Andries et al. [2] derived

[ M) rynrav <o,

R3

which gives the H-theorem for the time dependent problem (see also [10,31]).

The ellipsoidal BGK model is a generalized version of the original BGK model [7,28] which
has been widely used as a model equation of the Boltzmann equation. It was introduced by Hol-
way [19] to overcome the well-known short-coming of the original BGK model: the incorrect
Prandt]l number in the Navier—Stokes limit. He introduced the relaxation parameter v and gener-
alized the local Maxwellian in the original BGK model into the ellipsoidal Gaussian by replacing
the macroscopic temperature with a temperature tensor 7, parametrized by v € (—1/2, 1) (for the
discussion of the range of v, see [30]). Through a Chapmann—Enskog expansion, it can be shown
that the Prandtl number of the ES-BGK model is given by 1/(1 — v), and the desired physical
Prandtl is obtained by choosing the proper relaxation parameter, whichisv=1—1/Pr ~ —1/2.
Note that, in the case v = 0, the ES-BGK model reduces back to the original BGK model. There-
fore, any results for the ES-BGK model automatically holds for the original BGK model either.
The ES-BGK model, however, has been somewhat neglected in the literature, due mainly to the
fact that the H -theorem was not verified. This was done recently by Andries et al. [2] and revived
the interest on this model [1,8,15,16,21,20,23,29-33].

In this paper, we consider the ES-BGK model posed in a bounded interval with fixed inflow
boundary conditions at both ends. Similar problem was considered by Ukai in [25] for the orig-
inal BGK model (the case of v = 0) using a version of the Schauder fixed point theorem to the
macroscopic variables. No smallness assumption was imposed, but the uniqueness was not guar-
anteed. We develop here a Banach fixed point type approach for the ES-BGK model which works
for the whole range of relaxation parameter (—1/2 < v < 1), under the assumptions that the gas
is sufficiently rarefied and the boundary inflow data does not concentrate too much near the zero
velocity. The first assumption is a kind of smallness condition, which is typical for Banach fixed
point type arguments. It is, however, not clear whether the second condition is of intrinsic nature,
or mere a technicality that can be overcome by developing finer analysis. (See Remark (3) in
Section 2.)

Brief reference check for related works is in order. In [3], 1d stationary problem for the Boltz-
mann equation with Maxwellian molecules was studied in the frame work of measure valued
solutions. In a series of paper [4-6], Arkeryd and Nouri studied the existence of weak solutions
in L'. Extensions of these arguments into the case of two component-gases were made in [8,9].
Gomeshi obtained the existence and uniqueness for the Boltzmann equation when the gas is suf-
ficiently rarefied [ 18], which largely motivated our work. For nice survey of mathematical and
physical aspects of the Boltzmann equation and BGK models, see [11,13,14,17,22,24,26,27].

1.1. Notations

To prevent confusion, we fix some notational conventions which we will keep throughout this
paper.

o Every constant, usually denoted by C or Cy ... will be generically defined. The values of C
may differ line by line, and even when the same C appears more than once in a line, they are
not necessarily of the same value. But all the constants are explicitly computable in principle.
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e We use Cy, to denote a positive constant that can be explicitly computed using only the
quantities in (2.1), y, in the Theorem 2.2 and the relaxation parameter v. Cy , is generic too
in the above mentioned sense.

e We fix ay, ay, as, ¢y, c¢, ¢s and y¢ appearing in (2.1) and Theorem 2.2 for this use only.

o When there’s no risk of confusion, we write

M) =e S (i=1,2,3)

without explicitly showing the dependence on Cy , for simplicity of notations.

e When there’s no risk of confusion, we use v; > 0 to denote either {v; > 0} C R or {v; > 0} x
R? according to the context.

e We define sup, || - ||L% and || - ||L§>c by

sup 11, =sup | [ 17 e wI(1+ sl
R3

1£1lge = supl £ (x, v)I(1+ o)),

This paper is organized as follows. The main result is stated in the following section 2. Some
relevant issues are also discussed. In section 3, we reformulate the problem in the fixed point set
up. Some useful technical lemmas are recorded. Then section 4 and 5 is devoted respectively to
showing that the solution map is invariant and contractive in the solution space.

2. Main result

Before we state our main result, we need to define the following quantities (recall that T =

k(1 —v)):

__au 1
ay =2/fLRdv, aez/e ‘ol fy rdv, ag =/meRdv,
R3 R3 :

R @.1)

2 — o 2 1 2
cu =2 | frrlvl“dv, ce= | e ™I firgrlv|°dv, ¢s = ﬁfLR|U| dv,
V]
R3 R3

R3
where we used abbreviated notation:
SLR(W) = fL(W) 1y 50 + fR(V) 1y <0.
We define the mild solution of (1.1) as follows:

Definition 2.1. f € L ([0, 1], x R?) is said to be a mild solution for (1.1) if it satisfies

f vy = TR IO f, )

1

X
_ 1 >
o f b IO )My (f)dy i vy >0 22)
0

7|



J. Bang, S.-B. Yun / J. Differential Equations 261 (2016) 5803-5828 5807

and
I B B ,
f(X, U) =e Thil fx pr(y)dy fR(v)

1

T|vy|

1
1 y
+ /e_T'H JEpr @ () My(f)dy if vy <0. @3)

X

The main result of this paper is as follows:

Theorem 2.2. Suppose that the mass of the inflow boundary data frr > 0 (not identically zero)
is finite and does not concentrate too much around the zero velocity in the following sense:

1
fLr, — fLr € L), (2.4)
[v1]

so that the quantities defined in (2.1) are well-defined. Suppose further that

/vaidvzdv3 =/vaidv2dv3 =0 (=23 2.5)
R2 R2

and there exists a constant y; > 0 such that

/e_%‘ﬁ(v)lv]ldv /e‘%‘fm)wdv > . 2.6)

v1>0 v1 <0

Then there exists a constant K > 0 depending only on the quantities defined in (2.1) and y; such
that, if t > K, then there exists a unique mild solution f > 0 for (1.1) satisfying

aziff(x,v)dviau, Ceiff(x,v)lvlzdvfcu,
R3 R3

and

2
/fdv /flvlzdv - /fvldv > 1.
R3 R3 R3

Remark 2.3. (1) The last assertion of the above theorem guarantees the strict positivity of the
temperature tensor for k € R3. This is important since, otherwise, the ellipsoidal Gaussian is not
well-defined. (See Lemma 3.2.)

(2) The well-posedness of bulk velocity follows from the above estimates since

‘/f(x,v)vdv)f
R3

ay +cy
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(3) The condition (2.4) is used to prove the contractiveness of the solution operator. (See the
proof of Proposition 5.2.) In the literature on the stationary problem of the Boltzmann equation,
truncation of the collision kernel near origin is often employed to overcome the technical diffi-
culties arising in the small velocity region. (See, for example, [3,4,12].) Our non-concentration
condition (2.4) can be understood in some sense as a weak truncation of the boundary data near
zero. This is good in that we are not imposing any restriction on the equation, but bad at the same
time since it excludes Maxwellian boundary data, which is the most representative distribution
function in the kinetic theory.

(4) Let us provide an explicit example of the boundary data which satisfies all the conditions
above. Define f; and fg by

P el P Jusf?
fL(v)ZCLlrlfvlfrze e 2, fR(U):CRl—rzgvlg—rle e z

with Cp, Cg > 0 and r, > r; > 0. Here 14 is the characteristic function on A. Clearly, f1g sat-
isfies (2.5). Moreover, since frr decays sufficiently fast and vanishes near v; = 0, all quantities
in (2.1) are well-defined. To check (2.6), we compute

ay =n(Cr+Cgr)(ra—r1)

so that

_ 7(Cp+CR)(rp—r1)

/ e_#ul‘fL(v)vldee 1 /fL(U)UldU

v1>0 R3
rn
_m(CL+CRIrp ) B Y 2\
=Cre i3 ( vldvl)( e 2 e 2 dvzdv3>
r RZ
T _H(CL+CR)(r2—r1) 5 )
= ZCLe 1 (ry —r7).
Similarly,
__au_ T _TOFCR) )
/e r‘“l‘fR(v)vldvzZCRe i (ry —ry).
v1>0
Therefore,

[ e Hnoman || [ e @i

v1>0 v1 <0
7.[2 _ 4(CR+CL)(R—T) ) )
ZTCLCRE 1 (rz_r]) )

which is strictly positive.
(5) At first sight, the definition of ag, c¢ and y, seems a little dangerous in that they contain t
inside the integral, which may lead to a kind of circular reasoning in the choice of T. But, when



J. Bang, S.-B. Yun / J. Differential Equations 261 (2016) 5803-5828 5809

T is very large (whose size is determined only by f1 r), we can treat ay, c¢ and y; as if they are
independent of . We only consider ¢;: Take r > 0 small enough such that

1
/ fLR(U)|U|2dUZ E/fLR(v)Ivlzdv.
R3

[vi|=r

Then, we observe

/[#u"fm(v)lvlzdvze_a# f fr@)vPdv
R3 lvi|=r

—du

e v / fLr@)|v|*dv.
R3

=

| =

Since we are going to take 7 sufficiently large, and a,, and r does not depend on 7, we can assume

that 7 is large enough such that e T > 1/2 which yields

_a 1
/e il frr()|v[Pdv > Z/fLR(U)|U|2dU'
R3

R3
That is,

o> —cy.
ay and y, can be treated similarly.
3. Fixed point set-up

We will find the solution for (1.1) as a fixed point of a solution map defined on the following
function space:

Q= {f € LI([0, 11, x R3) | £ satisfies (A), (B), (C)}

endowed with the metric d(f, g) = sup || f — gl L where (A), (B) and (C) denote

x€[0,1]
e (A) f is non-negative:
f(x,v) >0forx,vel0,1] x R,

e (B) The macroscopic field is well-defined:

aes/ﬂx,v)dvsau, cesff(x,v)|v|2dv5cu.
R3 R3
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e (C) The following lower bound holds:

2
/fdv /f|v|2dv - /fvdv > .
R3 R3 R3

In view of (2.2) and (2.3), we define our solution map by

D(f) =D (f)ly=0+ D~ (f)1y <o,

where ®T(f) and ®~(f) are

d>+(f)(x, 1)) — 6‘_#}” f(;c Pf()’)dny(v)

. - 3.1)
+ ﬂi |/67ﬁ‘f~v O M)y vy >0
"
and
1
e (f)(x,v) — ik PIOMY o (v)
3.2)

1
1 __vL Vdz ~
+ ‘r|v1| /e T|v1|fx o Z'Of(y)Mv(f)dy if %1 < 0.
X

Our main Theorem 2.2 then follows directly once we show that the solution map & is invariant
and contractive in 2. The remaining of this paper is devoted to the proof of these two properties,
which is stated in Proposition 4.1 and Proposition 5.2 respectively. Before we move on to the
existence proof, we record some technical lemmas that will be useful throughout this paper.
Lemma 3.1. [29] Suppose p(x) > 0. Then T, satisfies

ClTId<T,<CTld,
where C‘f =min{l — v, 1 4+ 2v} and Cg =max{l —v, 1+ 2v}.

Lemma 3.2. Let f € Q2. Then the macroscopic fields U, T constructed from f satisfy

)< Qo Y g G
2ap 3a? 3a,
and
Ve 2 T 2Cu ;2
Cl k> <k " Tok < C2 2 1k)?,
u3a%| | — v — v3ae| |

forall k e R3.



J. Bang, S.-B. Yun / J. Differential Equations 261 (2016) 5803-5828 5811
Proof. For the first inequality, we compute

Ul ’fR3fvdv‘ _uteu

\U|= = <
Y f]RS Sfdv 2ay

Besides, we observe that T is represented as
_ GpT +plUP) = 1pUPp”!
3p

Jios f10Pav = fs yoao] ( fs rav) ™
- 3 [ps fdv |

T

We then ignore the last term on the numerator to get

e S0Py _ e,

T < —.
T 3 s fdv T 3ag

For the lower bound, we recall the definition of y; in (2.6) to obtain
) 2
(fR3 fdv)(fR3 flvl dv) — ’f]R@ fvdv‘
2
3( s flv)

Now, the last assertion follows directly from this estimates on 7 and Lemma 3.1. O

Ve
>
~ 3a?

Lemma 3.3. Let [ € Q. Then there exist positive constants Cy , depending only on the quanti-
ties (2.1) and y, such that

2
My (YA + [v) < Ce e,
Remark 3.4. The two Cy,, do not necessarily represent the same constant.
Proof. We only consider M, |v|? since the estimate for M, is similar and simpler. Since

T, is symmetric, it is diagonalizable. Let A; (i = 1,2, 3) denote the eigenvalues. Then, from
Lemma 3.1, we can deduce that

detT, = A1AoA3 > {CJ}3T3.
On the other hand, Lemma 3.1 also implies

lv—U?

~w-0)'T, 0= U) =~ o

Therefore, we have
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b-u?
2027 |U|2

2. P
MNP < TRt

w2 _ P

14 2 2 2
= Gnciprpaae e T
v

CClp 3~
= mciperin e

2,—x

where we have used the boundedness: x2e™*" < C for some C > 0. We then apply the lower and
upper bounds of Lemma 3.2 to get the desired result. O

4. ® maps Q2 into itself

The main result of this section is the following proposition, which says that the elements of €2
are mapped into €2 by our solution map &:

Proposition 4.1. Let f € Q2. Then, under the assumption of Theorem 2.2, we have
d(f) e .
We divide the proof into Lemma 4.1, 4.2, 4.3, and Lemma 4.5.
Lemma 4.1. Let f € Q. Then
Q(f)x,v) =0.

Proof. From the proof of Lemma 3.3, we see that

o o
>
Jdet2x T, — {2nC2T /2’

which, in view of Lemma 3.2, implies

32
P >ay ( 3ac ) >0
Jaet2n T, —  \2mcy '

Hence, we have

My (f) > 0.

Therefore, we can ignore the second term in (3.1) to conclude

O (f)(x,v) = e TN IO 6y o

Similarly, we have
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Q" (f)x,v) =0.
This completes the proof. O

Lemma 4.2. Assume f € Q2. Then we have
/‘b(f)dvzae, /@(f)lvlzdvzq.
R3 R3

Proof. We only prove the second one. Recall from the previous proof that

_ 1 X Nd Loy
q)(f) > Tvq] f() pr(y) ny(U)1u1>0+€ Tvq] fx pr(y) )fR(v)lU1<0~

Then, since p r < ay, we have

(=x)ay

O(f)=e MIfr)lyso+e T fr)ly <o
>e M fL()1ys0+e T fRrW) 1y <0
= 6_”%'fLR-
Integrating with respect to |v|?dv, we obtain the desired lower bound:
[ewniao= [ ppiaza. o
R3 R3
Lemma 4.3. Let f € Q2. Then we have
/Cb(f)dvsau, /CD(f)|v|2dv§cu. 4.1)
R3 R3
Proof. We only prove the second one. Consider

/ o (f)[v)Pdv = f AT PO £ ) w2y

R3 v1>0

- 1 _f)’fﬂ/(z)dz 5
+ / / T p () My () v2dydv.

e
T|vi]
v1>0 0

Using ps > ay, we estimate the first term of 3 &t |v|2dv as

__ 1 X _Aex
/e Tlvllfo Pf(y)deL(v)|v|2dv§ / e T\vllfL(v)|v|2dv§ f fL(v)|v|2dv.

v1>0 v1>0 v1>0
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By Lemma 3.3, we compute

- 1 _fv pf(2)dz 5
// e Tl pr(MMy(H)v[“dydv

T|vp|
v1>0 0

X
1 fy Jy py@dz
<Cuu /(/ I M1(v1)dv1>,0f(y)dy /MzMadvzdIB

7|
0 v>0 R2

X

1 7/), apdz
SCe,uau/ / tlvlle Tt Mi(vidvidy
0 v;>0

X
1 _agx—y)
< Cé,uau / / e Tl Ml(vl)dvldy

7|vi]
0 v1>0

=Cyuayl.
Then divide the domain of integration into the following two regions

X X

1 ag(x y)
/ / —I—/ / e Tl M](v1)dv1dy
7|

0 |vi|<t 0 |v|>t

=hL+1.

~
Il

For I, we carry out the integration on x first:

X

1 _ap—y
L= / / e Ml dy s Mi(v))dv

T|vi]
lvy|<t 0
1 _Gex
= — f {l—e T”I'}Ml(vl)dvl
ap
lur| <t
1 _
<— / 1 —e il t My(vi)dvy,
ay
[vil<t

and decompose the integration further as

a4
/+ / {1—6 T”l}Ml(vl)dvlfhl-l—Ilz.

11
lvil<y  <lvl<t



J. Bang, S.-B. Yun / J. Differential Equations 261 (2016) 5803-5828

__w
We use rough estimates 1 —e 1l <1 and M(vy) <1 to control I;| by
.

ag

T
e Tl by Taylor series and use M (vy) <1 to find

dvy < ——.
ay T

On the other hand, we expand 1 —

o=+ / ae L (_a 2+ L ( _a 3+ M, (v1)dv
= _— — v
2= i)~ 2 \ 2oy 31\ 7oy REen

r<lvil<t
|+ ar] \/ )'a
‘/ " /2' + 3! tr :
1 1 -1 1 a?z*—1 1 a)t°—1
— —1117,'2+ ClgT (l_e‘f a_er
T 272 1 2.3173 ¢2 3.4174 3
1 et 1
<—1nr2+——
T ay T
In the last line, we used
lagt?—1 1 aet —1 1 1
2072 1 2.3173 2 3. 4'14 73
lag‘l,'—l 1 a§t4—1+ 1 ag’r -1
27 2 2.3 ¢ 4 3.4 ¢ ¢6

1 aez ag a? 1
Py - = ... % —
_a@{2!+3!+4! T

et 1

T ap T

which again is the consequence of (" — 1)/t" < 1. Finally, I, is estimated as follows:

1
ap(x—y)

1 _ab=y
L < / f e ™Ml dyt Mi(v)dv
Tlvy|
[vi]>T
1
/ dy Mi(vp)dvy
lvp|>71 0

/ Mi(v)dvy

|v1 >T

5815



5816 J. Bang, S.-B. Yun / J. Differential Equations 261 (2016) 5803-5828

1
< [ Miwody,
T
R?

1
=< CZ u .
U2

The above decomposition of velocity domain is largely motivated from [18]. In conclusion, we
obtain the following estimate for /:

., 1 1 Int +1
[ <Cpuy=Int"+ -+ =1 <Cou , 4.2)
T T T T

where Cy , > 0 depends only on v, quantities in (2.1) and y,. Finally, we gather these estimates
to obtain

/<I>+(f)|v|2dv5 / fL(v>|v|2dv+ce,u<

v1>0 v1>0

lnt+1>

By an identical argument, similar estimate can be derived for ®~(f):

/ O (f)dv < f fR<v)|v|2dv+ce,u<

v1 <0 v1<0

lnr—i—l)

Summing up these estimates and recalling the definition of ¢,, we get

1 Int +1
/cb(f>|v|2dv <5+ Cru ( . ) ,

R3

which gives the second estimate in (4.1) for sufficiently large t. O

Lemma 4.4. Fori =2, 3, we have

1 1
[ etuar] = e, ().
T
R3

Proof. We only prove for i = 2. We integrate (3.1) with respect to vadvadvs to get

X
__1 x ! 1 S
Falro) = M0 PO R ) 4 f e PO ()G, vy,
1
0

where

Fy = / .. (f)vadvadvs, G = / My(fyvaduadvs. Fr 4 () = / Fr(W)vadvadvs.
R2 R2 R2
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By our assumption on fr, we have

Fr 4+(v) =0,
so that
l X
__1 x d
F*“"””:M/e Wi b PO ()G (y, vi)dy. 4.3)
0

Using Lemma 3.3, we compute

Gervn) = Couty( [ MoMiloaldvadin) = CouMi(on.
R2

Substituting this into (4.3),

X
1 L x d
Fy(x,v1) Scl’u—rlml /e ol Jy P ‘p(y)Mi(v)dy
0

=< Cf,u

X
a _agx—y)
) /e i My (vi)dy.
T|v1] J

Now, integrating on v > 0 and recalling (4.2), we get

X
1 _agx—y)
/F+(x,v1)dv1=Cz,uf/ | Ie ol My (v))dvidy
T|V1
v1>0 0 v1>0

1 1
ECZ,M ( ntr+ )

/ @4 (f)vadv < Coy (1“ i 1) .

That is,

T
v1>0

Applying the same type of argument to ®_(f), we can derive

| [ e-mar] <cu (1‘” i 1) :
T

v1 <0

We sum these up to obtain the desired result. O
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Lemma 4.5. Let f € Q2. Then, for sufficiently large t, we have
2
/‘D(f)dv /¢(f)|0|2dv - /‘D(f)vdv > Ve

R3 R3 R3

Proof. Since we have shown ®(f) > 0 in Lemma 4.1, we can apply the Cauchy—Schwarz in-
equality as

2

/Cb(f)dv /Cb(f)|v|2dv — f@(f)vdv

R3 ]R3 R3
2 2
> /<I>(f)|v|dv - /d>(f)vdv
R3 R3
2 2
> /CD(f)Ivlldv - /cb(f)vdv
R3 R3

In the last line, we have used |v| > |v|. Then we decompose the last term as

2
2
[ewmlav| ~| [ e
R3 R3
2
2
= | [emlar| ~{ 3 | [oual)
w0 1<i<3 &
2
2
| [enmiaw| = ([ormar) =
R3 R3
=1 —R,

where

R = M3+ M3 +2M My + 2Ma M5 + 2M3 M},

for M; = ‘ ng CD(f)vidv‘. Since M, is bounded: M; < a, + ¢,, we see from Lemma 4.4 that R
can be made arbitrarily small by taking 7 sufficiently large:
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For the estimate of I, we use the simple identity: a?> — b? = (a — b)(a + b) to bound I from
below by

1= /®(f)(|v1|+v1)dv fq)(f)(|vl|—vl)dv

R3 R3

_4 /Q(f)lvlldv /<I>(f)|v1|dv

v1>0 v1 <0

‘We then recall from (3.1) that

1 qx d __1 I d
B(f)>e T fo pr» Y filyym0 + € T Je pr Y Ly <0

to obtain

4 fcb(f)lvlldv /<I>(f)lvlldv

v1>0 v1 <0

_ 1 > __ 1t ,
>4 /e r\vl\fo 'Of(y)dny|v1|dv f e r\v.lfx /’_f(y)d}levlldv

v1>0 v1 <0

_ _Qu _ _Qu
>4 /e wol frlvi|dv /e woil frlvr|dv

v1>0 v1 <0

In view of (2.6), we see that the last term is bounded from below by 4y,. In summary, we have
derived the following estimate:

2
/‘Nf)dv /cb(f)|v|2dv - /Cb(f)vdv
R3 R3 R3

>4y —Cyy (IHT—H).

Therefore, upon choosing sufficiently large t, we can get the desired result. O
5. @ is contractive in

The goal of this section is to show that the solution map ® is contractive in 2. First, we
consider the continuity property of the ellipsoidal Gaussian.
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Proposition 5.1. Let f, g be elements of Q2. Then the non-isotropic Gaussian M, satisfies the
following continuity property:

IMu(f) = My(@)] = Ceusup £ — gl e Ceol"
X

Proof. (1) We expand M, (f) — M, (g) as

oM, (0
MU)M@VW-W/ © 46

IM,(0)
Ur—Uy) | 2222 a0
+Ur g)/ U (5.1)

oM, (O
+m—m/a;)

=h+Db+15,
where

an(O) BMV
X

(,09, Us, Tp)

for (pg, Ug, To) = (1 — 9)(,0f, Uy, 7}) + G(pg, Uy, ’7;,) Since (pg, Uy, Tg) is a linear combi-
nation of macroscopic fields of f and g, all lemmas in the previous sections hold the same.
Therefore, instead of restating the corresponding lemmas, we refer to them whenever such esti-
mates are needed for (g, Uy, Tp).

(a) Estimate for /;: Since we have

M, (6) iM o),
B

it follows directly from pg > a, and Lemma 3.3 that

(b) Estimate for />: An explicit computation gives

an(g) 1 - -
P =St 4T 0 - Un f Mo,

Let X = v — Uy and observe
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X7, = sup X (T}~ 'Y

lY|=1

=5 swp [N T ) - XTI X -y T ()
I¥|=1

2 2
(X AYPHIXP 4
< o

1 —Uy|?
C( +v e|>’
Ty

which is, by Lemma 3.2, bounded by Cp , (1 + [v]?). Similarly, we can derive

IA

1{Ta} ™ (v — Up)| < Cru(1+ [v]?).
With these computations and Lemma 3.2 and Lemma 3.3, we have

a 0
2P0 < M) + 10 = CoeCenltE.

aUu

(c) Estimate for /3: We first observe

oM, (©0) 1 1 ddetTy T 1 {975 1
o7 —2|: ety 9700 +@—-Us) T, 9T, Ty (v—Up) | M, (6).
Since each entry of 3377-7?_ is either 1 or 0, we have
0ij
_1( 978 _ _ _
v—"U, T’r1< )Tlv—U <|w-U)"T YT, ' w=U
0=V (570 ) T 0= U <@ -0 T |7, »)| .

< Cru(1 4 [v]).

Since det 7y is a homogeneous polynomial of entries of 7y:

Z CijkemnToij Tore Tomn

i,j,k,t,m,n

for some constants C;jxemn, % is written in the following form.
. i

Z Cijmn%ij%mn

i,j,m,n

for some constants Cj . Therefore, in view of Lemma 3.1 and Lemma 3.2, we have

<CT} <Cy,.

‘8det’7'9
070ij

Hence, Lemma 3.3 yields
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‘3/\/11,(9) < Coa(1+ [0])M,(0) < CpyeCrul?l,

7
Plugging all these estimates into (5.1) gives

My (f) — My(9)l
= Cf,u{|,0f - pgl + |Uf - Ugl =+ |Tf — El]efcf,ulv‘z'

It remains to estimate the macroscopic fields. The first term is estimated straightforwardly:

|pf_pg|=/|f_g|dv§Csup||f—gllL;-
X
R3

We divide the second term into two parts and estimate separately as

1 1
Us = Ugl < —IpgUs — pgUgl + —Ipg — pgllUs]
of of

1 |U,|
<— [ If—glivldv+— [ |f —gldv
Pf Pf
R3 R3
=Ceusupllf =gl
X

The last term is decomposed similarly:
1 1
[Ty = Tel < —losTr — 0 Tel + —log — pglTgl = J1 + Ja,
P of
where J; and J, are computed as

1
J15—/If—g|’3_1(1—v)|v—U|21d+v(v—U)®(v—U) dv
ag
R3

1
<— / If — gl(1+ [v[Hdv
ay
R3

=< Cé,u SuP”f _g”Lé’
X

and

JZSCZ,M/|f_g|dU§CZ,usup||f_g||L£~
X
R3

We now substitute these estimates into (5.4) to obtain

_ 2
My (f) = My(@)] = Ceusupllf =gl e O
X

(5.4)
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Proposition 5.2. Suppose f, g € Q2. Then, under the assumption of Theorem 2.2, ® satisfies

sup [|®(f) — Pl <a sup [|f—gll1
xel0,1] 2 xel0,1] 2

for some constant o < 1 depending on the quantities in (2.1), ye, v and k.

Proof. We first consider ®*(f). We write

ST () =1(f)+ UL, ], f),

where I (f) and II(f, g, h) are defined by

1(f)=e Ml 1O £ )

and

X
1 1 X d
H(f, g, h)= m/e ot Jy P @ “pg (MM, (h)dy.
0

(i) The estimate for I (f) — I(g): Consider

I(f) _ I(g) — {e_#’l‘ f(;V pr(y)dy _ e_#'l' f(; Pg(y)dY}fL(v)_
By the mean value theorem, there exists 0 < 6 < 1 such that

1 ¢ 1
o Tl Jo prmndy o T Jo peONdy

X
— [ (1=0)p s () +6pg(y)d 1
= —o M Um0 IOy F [ () — o)y
Tlvllo

Then, since

lor(¥) — pg(M) =< sup ||f—g||L;,
x€[0,1]

and pyr, pg > ag, we have

1 ) 1
o~ Jo prndy ki Jo pedy

X
1 px 1—6 . +6 Ndy 1
<e ,m‘fo( )P (M)+6pg () y_/|pf(y)_pg(y)|dy
7|y ,

1 X
— L X(1—0)p+Opedy | X
<o o 0ROy f X If =gl
T|vil xefo,1] 2
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e—#ﬂ Jo A1=0)ag+0apdy

< sup |If —gll;
Tlvy| xel0,1] 2
1 _ax
=——e "Mlsup|lf—gll-
Tlvll X Ly

Using this, we integrate

/Il(f)—l(g)l(1+|v|2)dv
R3

< / }e*ﬁ” Jo prmdy e*#ll Jo pgdy L)1+ |v|2)a’v

v1>0

1 _ agx
/ e T f )1+ v)dv ¢ sup |l f — gl
T|vp| x 2

v1>0

1
< —(as+cs)supllf —gll1-
T o 2

Taking supreme in x, we have

1
sup [1(f) = 1(®)l.y = —(as+c)sup |l f —gllp1-
X T x 2
(ii) The estimate for II( f) — II(g): We divide it into three parts as

H(f, f. /) —1(g. g &)
=\{I(f. f. )=, f. H}+{U g, f. [)—1(g. g )}
+{l(g.8. f)—1(g.8.8)}
=1l + 1, + 1I5.

By a similar manner as for 7 (f), we first compute

1 1
e—m f; Pf(Z)dZ _ e—m f;( pg(z)dz

X
1 r*q—p 00, (2)dz 1
<o b I OPr @ / 1042 = P (2)1dz
Tl
y

X

< o7y Sy (1=0)ar+bardz /'

y

dz ¢ llpf — pgliLe

x— a4y (—y)

= e T sup|lf—glg
X 2

T|vy ]



J. Bang, S.-B. Yun / J. Differential Equations 261 (2016) 5803-5828 5825

ap(x—y)

< —e 2l gu — gl
= up If =gl

where we used the uniform boundedness of xe™ (x > 0). With this, (4.2) and Lemma 3.3, we
bound [gs [11](1 + [v|*)dv by

f|111|(1 + vP)dv
R3

X
1 B L
5/ / m\e ot b POy 2K () My () o P)dydy
1
R3O

X

a 1 &=y
=— // e Tl Mi(v)dydv; sup [l f — gl
X

ag Tlvy|

v1>0 0

Int+1
<Cuu . sup [/ —gll .-
X

We can treat 11, similarly:

/|112|(1 + |v[H)dv
R3

vy

T R
=/ /e Aot Jy 2@ () — e DIM ()(1+ [v]P)dydv
R 0

[ R
<Ce. / / L b O p gy (g P b o () = pe(0)Idy

T|vy|
0 R3

X
1 __ 1 x
< Cuu /[—e ol Jy 2@ p g ) Vduydy sup | f — gl
‘L’|U1| X 2
0 v1>0

X
1ty
sCud [ [ come T Miendudy {supllf - gl
X

7|y

0 v1>0

Int+1
<Ceu - sup [[.f —gll.1-
X

For the estimate of I3, we use Proposition 5.1 as
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/|113|(1 + v»)dv
R%

l ; 1 rx
:/—r|v1| /e rlunfy p(Z)dng(yﬂMv(f)_MV(8)|(1+|U|2)dydv
R3 0

X
1 1 rx
< auce’u / ‘C|U1| /e Tl fy p(Z)dle—Cz,ulv‘z(l + |U|2)dvdy sup “f _ g”Lé
X
0

v1>0

X
1 _at s
<Cou / / e il e CeulP gy dy b sup If =gl
T|v| x 2

0 v1>0

Therefore, in view of (4.2), we have

Int+1

II3§C(Z,u< )Supllf—gllL;
X

We now gather all these estimates to obtain

1
sup |0 (f) = ¥ (9)ll1 < Cra {;(as ¢ +cr} sup | f = gll .
X X

where

Int+1
C; = .
T

In a similar fashion, we can derive the corresponding estimate for ®~(f):

_ _ 1
sup |[®7(f) — @ (g)”L%fCZ,u{;(as +Cs)+Cr}SuP||f—g||L%-
x x

Therefore, we conclude that
1
Sup [ @ (/) = P()ll 3 < Crar | —(as ) + Cr psupllf = gl 3.
X X

This gives the desired result for sufficiently large 7 > 0. O
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