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Abstract

In this paper, the dynamics of a spruce budworm model with diffusion and physiological structures are 
investigated. The stability of steady state and the existence of Hopf bifurcation near positive steady state are 
investigated by analyzing the distribution of eigenvalues. The properties of Hopf bifurcation are determined 
by the normal form theory and center manifold reduction for partial functional differential equations. And 
global existence of periodic solutions is established by using the global Hopf bifurcation result of Wu. 
Finally, some numerical simulations are carried out to illustrate the analytical results.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

The spruce budworm is one of the most destructive insects in North American forests, where 
spruce and balsam fir trees grow. Normally, the spruce budworm exists in low numbers in these 
forests, kept in check by the predators, primarily birds. However, outbreak of these insects occurs 
periodically (every 30–40 years lasting for about 10 years) causing billions of dollars loss to for-
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est industry [1–6]. Understanding the dynamics of spruce budworm population is very important 
to control the growth of budworm and protect spruce and fir forests.

Notice that, as far as the budworm dynamics are concerned, the forest variables may be treated 
as constants. Also since the birds do not feed exclusively on budworms, their numbers are for 
the most part independent of the budworm population. In 1979, Ludwig et al. [7] proposed the 
diffusing budworm population dynamics governed by the equation:

ut = d�u + ru
(

1 − u

K

)
− Bu2

A2 + u2
, (1)

and investigated the dynamics of Eq. (1) in spatial one dimension. In 2013, Wang and Yeh [8]
studied the steady-state problem of (1) and obtained the S-shaped bifurcation diagrams. For some 
other results about budworm population dynamics we refer to the papers and monographs [9–13].

In fact, the logistic model of budworm population with Holling type III predation function 
is widely accepted in the literature because of the existence of a stable periodic orbit. But both 
predation and carrying capacity are unlikely to be a primary cause of budworm population oscil-
lation, see [5]. In 2008, Vaidya and Wu [14] derived a delay differential equation for the matured 
budworm population from a structured population model and by considering the inactive stage 
from egg to the second instar caterpillars (L2) as the immature stage

u̇ = −Du(t) − βu2(t)

γ 2 + u2(t)
+ q1e

−d̃τ u(t − τ)e−α1u(t−τ). (2)

They showed that the simulation results of Eq. (2) are in very good agreement with the real data 
from the Green River area of New Brunswick, Canada and discussed the role of the parameters on 
controlling budworm population. They also pointed out that spatial nonhomogeneity should be 
incorporated as additional factors in further research. So, in this paper, we consider the following 
diffusive budworm model with Neumann boundary conditions

∂u(x, t)

∂t
= d1�u(x, t) − Du(x, t) − βu2(x, t)

γ 2 + u2(x, t)
+ q1e

−d̃τ u(x, t − τ)e−α1u(x,t−τ), (3)

where u(x, t) is the mature budworm density at location x and time t , d1 > 0 is the diffusion 
coefficient, D > 0 is the average mortality rate of the mature budworms, β > 0 represents the 
predation rate of the birds, γ > 0 is the budworm population when the predation rate is at half of 
the maximum, τ is the maturation time delay, d̃ > 0 is the average mortality rate of the immature 
budworms and b(u) = q1ue−α1u is the birth function of budworms with q1, α1 > 0.

We would like to mention that, when the stability and Hopf bifurcation at the positive steady 
state are considered, the difficulty resides in the presence of the dependent delay and the fact 
that some coefficients in the equations depend upon this delay. Consequently, the characteristic 
equation of the linearized system has delay-dependent coefficients. As mentioned by Beretta and 
Kuang [15], models with delay-dependent coefficients often exhibit very rich dynamics as com-
pared to those with constant coefficients. In the analysis, we need to study a series of first degree 
transcendental polynomial with delay coefficients. The problem of determining the distribution 
of roots to such polynomials is very complex and there are very few studies on this topic (see 
[16–21], and references therein).
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The rest of the paper is organized as follows. In Section 2, we investigate the existence of the 
constant steady state. In Section 3, we analyze the distribution of the roots of the characteristic 
equation, and give various conditions on the stability of steady state and the existence of Hopf 
bifurcation. In Section 4, we establish the extended existence of bifurcation periodic solutions by 
using the global Hopf bifurcation result of Wu [22]. In Section 5, we carry out some numerical 
simulations to support the analytical results.

2. Existence analysis of the non-negative constant steady state

In this paper, we consider the non-dimensional model of Eq. (3) with Neumann boundary 
conditions by changing the variables as û(x, ̂t) = 1

γ
u(x, t), t̂ = βt

γ
and τ̂ = βτ

γ
. After removing 

the hat, we obtain the following non-dimensional model:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut = d�u − r1u − u2

1 + u2
+ be−r2τ uτ e

−αuτ , x ∈ �, t > 0,

uν = 0, x ∈ ∂�, t > 0,

u = η(x, t) ≥ 0, x ∈ �, t ∈ [−τ,0],

(4)

where

d = γ d1

β
, r1 = γD

β
, b = γ q1

β
, r2 = γ d̃

β
, α = γ α1, (5)

uτ = u(x, t − τ), � = (0, lπ), ν is the outward unit normal vector on ∂� and η(x, t) is Hölder 
continuous with η(x, 0) ∈ C1(�̄).

Obviously, u = 0 is always a steady state of Eq. (4). Let u = u0 be a positive constant steady 
state of Eq. (4). Then u0 satisfies

r1 + u

1 + u2
= be−r2τ e−αu. (6)

It is easy to see that, if be−r2τ ≤ r1,

r1 + u

1 + u2
> r1 ≥ be−r2τ > be−r2τ e−αu,

for any u ∈ (0, ∞). Consequently, Eq. (4) has no positive constant steady state when be−r2τ ≤ r1. 
Next, we consider the case be−r2τ > r1, i.e. b > r1 and

0 ≤ τ < τmax := 1

r2
ln

b

r1
.

In this case, Eq. (4) maybe has 1, 2 or 3 positive constant steady states depending upon the 
value of parameters. However, if we assume that α > 1, one can obtain that Eq. (4) has a unique 
positive constant steady state. In fact, we can multiply Eq. (6) by 1 + u2 and denote

g1(u) = r1(1 + u2) + u, g2(u, τ ) = be−r2τ (1 + u2)e−αu. (7)
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Table 1
Spruce budworm population model parameters.

Symbol Description Value Source

β Max. budworms predated 105700 (Ludwig et al., 1979)
larvae/ha/yr (Ludwig et al., 1978)

γ Related to predation function 69748 larvae (Ludwig et al., 1979)
(Ludwig et al., 1978)

τ Maturation delay 0.75–2 yrs (Fleming and Shoemaker, 1992)
(Sheehan et al., 1989)
(Royama, 1984)

d̃ Death rate of immature 0.95–2.53 (Sheehan et al., 1989)
(Royama, 1984)
Calculated

D Death rate of mature 0.30 (Blais,1981)
(Sheehan et al., 1989)
Estimated

α1 Related to birth function 0.00017 Estimated
q1 Related to birth function 9.83 × 105 (Royama, 1984)

Estimated, Calculated

Then u0 is a positive root of Eq. (6) if and only if it is a positive root of g1(u) = g2(u). Notice 
that

g′
1(u) = 2r1u + 1,

∂g2(u, τ )

∂u
= be−r2τ e−αu

(
2u − α(1 + u2)

)
,

and g1(0) = r1, g2(0, τ) = be−r2τ . Clearly, for u ∈ (0, ∞), we have g′
1(u) > 0 and ∂g2(u,τ)

∂u
< 0

if α > 1. These imply that ∂(g1−g2)
∂u

> 0 when α > 1. Therefore, from g1(0) < g2(0, τ) and 
g1 − g2 → ∞ as u → ∞, the equation g1(u) = g2(u, τ) has a unique positive root.

Now we can state the following theorem on the existence of the nonnegative constant steady 
state.

Theorem 2.1.

(i) If be−r2τ ≤ r1, then u = 0 is the only biologically meaningful constant steady state of Eq. (4);
(ii) If be−r2τ > r1 and α > 1, then, in addition to the trivial steady state, there exists a unique 

positive constant steady state of Eq. (4), which satisfies Eq. (6).

Remark 2.2. We would like to mention that the assumption α > 1, which ensures the uniqueness 
of positive constant steady state, is biologically reasonable. For convenience, we copy the table 
of spruce budworm model parameters here, which is given by Vaidya and Wu [14]. From Table 1
and (5), one can easily obtain that α ≈ 11.8572 
 1.

3. Stability and Hopf bifurcation analysis

The existence and uniqueness of the solution of systems Eq. (4) can be obtained by using 
results introduced in Wu [22]. In this section, we investigate the stability of steady state and 
existence of Hopf bifurcation.
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3.1. Stability of steady state u = 0

In order to prove the global stability of u = 0, we first give the following lemmas.

Lemma 3.1. Every solution u(x, t) of Eq. (4) satisfies u(x, t) ≥ 0 for x ∈ � and t > 0. Further-
more, if η(x, 0) �≡ 0, then every solution u(x, t) of Eq. (4) satisfies u(x, t) > 0 for x ∈ �̄ and 
t > 0.

Proof. Let v(x, t) be the unique solution of

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vt = d�v − r1v − v2

1 + v2
, x ∈ �, t > 0,

vν = 0, x ∈ ∂�, t > 0,

v(x,0) = η(x,0), x ∈ �.

(8)

Note that u(x, t − τ) = η(x, t − τ) ≥ 0 for t ∈ [0, τ ]. Then comparison principle implies that 
u(x, t) ≥ v(x, t) ≥ 0 for x ∈ � and t ∈ [0, τ ]. That is u(x, t) ≥ 0 for x ∈ � and t ∈ [0, τ ], and 
one can obtain u(x, t) ≥ v(x, t) ≥ 0 for x ∈ � and t ∈ [0, 2τ ] in the same way. Hence, by using 
the mathematical induction, we have u(x, t) ≥ v(x, t) ≥ 0 for x ∈ � and t > 0. Moreover, the 
strong maximum principle implies that u(x, t) ≥ v(x, t) > 0 for x ∈ �̄ and t > 0 if η(x, 0) �≡ 0. 
The proof is complete. �
Lemma 3.2. ([23, Theorem 3.1]) Assume that d, δ, τ > 0, f ∈ C1

([0, ∞), [0, ∞)
)

and f (0) = 0. 
If supy∈(0,∞) f

′(y) < δ, then every solution u(x, t) of

∂u(x, t)

∂t
= d�u(x, t) − δu(x, t) + f

(
u(x, t − τ)

)
, (9)

with Neumann boundary conditions and non-negative initial conditions, converges to zero (uni-
formly in x) as t → ∞ if and only if f (y) < δy for all y > 0.

Applying Lemmas 3.1 and 3.2, we have the following result about global attractivity of u = 0.

Lemma 3.3. If be−r2τ < r1, then the solution u(x, t) of Eq. (4) converges to u = 0 (uniformly 
in x) as t → ∞.

Proof. In order to apply Lemma 3.2, we denote

g(y) = be−r2τ ye−αy. (10)

Clearly, g ∈ C1
([0, ∞), [0, ∞)

)
and g(0) = 0. Let v(x, t) be the unique solution of

⎧⎪⎪⎨
⎪⎪⎩

vt = d�v − r1v + be−r2τ vτ e
−αvτ , x ∈ �, t > 0,

vν = 0, x ∈ ∂�, t > 0,

v = η(x, t) ≥ 0, x ∈ �, t ∈ [−τ,0].
(11)
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Then comparison principle implies that u(x, t) ≤ v(x, t) for x ∈ �, t > 0. From (10), we have

g′(y) = be−r2τ e−αy(1 − αy),

g′′(y) = be−r2τ e−αy(α2y − 2α).

Thus, one has g′′(y) < 0 when y ∈ (0, 2
α
) and g′′(y) > 0 when y ∈ ( 2

α
, ∞). These lead to g′(y)

is monotone decreasing when y ∈ (0, 2
α
) and monotone increasing when y ∈ ( 2

α
, ∞). Also note 

that g′(0) = be−r2τ and g′(∞) = 0. Therefore, if be−r2τ < r1, we have

sup
y∈(0,∞)

g′(y) = be−r2τ < r1,

and

g(y) = be−r2τ ye−αy < be−r2τ y < r1y,

for all y > 0. From Lemma 3.1 and Lemma 3.2, every solution v(x, t) of Eq. (11) converges 
to u = 0 (uniformly in x) as t → ∞, so does the solution u(x, t) of Eq. (4). The proof is com-
plete. �

Moreover, define the real-valued Sobolev space

X = {u ∈ H 2(0, lπ)|ux = 0, x = 0, lπ}, (12)

and the abstract space

C = C([−τ,0],X). (13)

Then, the linearization of Eq. (4) at u = 0 can be rewritten as an abstract differential equation in 
the phase space C,

U̇ (t) = d�U(t) + L(Ut ), (14)

where U(t) = u(x, t), Ut(θ) = U(t + θ) and

L(φ) = −r1φ(0) + be−r2τ φ(−τ).

From Wu [22], the corresponding characteristic equation of Eq. (14) is equivalent to

λ + dn2

l2
+ r1 − be−r2τ e−λτ = 0, n ∈N0 := N∪ {0}. (15)

It is well known that all roots of Eq. (15) have negative real parts if and only if be−r2τ < dn2

l2
+ r1

for all n ∈ N0 (see [24] or [25]). Thus, be−r2τ < r1 implies all roots of Eq. (15) have negative 
real parts and, for Eq. (4), u = 0 is locally asymptotically stable. Meanwhile, be−r2τ > r1 leads 
to Eq. (15) has at least one root with positive real part and, for Eq. (4), u = 0 is unstable.

Summarizing the discussion above and applying Lemma 3.3, we arrive at the following pre-
liminary result.
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Theorem 3.4. For Eq. (4), u = 0 is global asymptotically stable if be−r2τ < r1 and unstable if 
be−r2τ > r1.

Theorem 3.4 shows that be−r2τ = r1 is a critical situation for the stability of u = 0. Clearly, 
λ = 0 is a simple root of Eq. (15) if be−r2τ = r1. The following result is to describe the stability 
of u = 0 when be−r2τ = r1.

Theorem 3.5. If be−r2τ = r1, then for Eq. (4), u = 0 is unstable.

Proof. From Theorem 3.4 we know that all roots of Eq. (15) with be−r2τ = r1, except λ = 0, 
have negative real parts. In order to investigate the stability of u = 0 for Eq. (4), we employ the 
center manifold theory and normal form method. Here, we shall use the method of computing 
normal forms for PFDEs introduced by Faria [26].

Following the same algorithms as those in [26], let � = {0} and B = 0. Clearly, the non-
resonance conditions relative to � are satisfied. Therefore, there exists a 1-dimensional ODE 
which governs the dynamics of Eq. (4) near the origin (see [27]).

Firstly, Eq. (4) can be written in C = C([−τ, 0], X) of the form:

U̇ (t) = d�U(t) + L(Ut) + F(Ut ), (16)

where

L(φ) = −r1φ(0) + be−r2τ φ(−τ),

and

F(φ) = −2φ2(0) − 2αbe−r2τ φ2(−τ) + 3α3be−r2τ φ3(−τ) +O(4),

for any φ ∈ C.
Choosing

η(θ) =

⎧⎪⎨
⎪⎩

−be−r2τ , θ = −τ,

0, −τ < θ < 0,

−
(

dn2

l2
+ r1

)
, θ = 0,

we obtain

−dn2

l2
φ(0) + L(φ) =

0∫
−τ

dη(θ)φ(θ), φ(θ) ∈ C.

Using the adjoint theory to decompose C by �, we can obtain C = P
⊕

Q, where P =
span{�(θ)} with �(θ) = 1 being the center space for

U̇ (t) = d�U(t) + L(Ut ).
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Choose a basis � for the adjoint space P ∗ such that (�, �) = 1, where (·, ·) is the bilinear form 
on C∗ × C defined by

(ψ(s),φ(θ)) = ψ(0)φ(0) −
0∫

−τ

θ∫
0

ψ(ξ − θ)dη(θ)φ(ξ)dξ.

Thus, ψ(s) = 1
1+r1τ

.
Taking the enlarged phase space

BC =
{
φ : [−τ,0] → X,φ is continuous on [−τ,0) and lim

θ→0
φ(θ) exists

}
,

we obtain the abstract differential equation with the form

d

dt
Ut = AUt + X0F(Ut ), (17)

where

Aφ = φ̇(θ) + X0[d�φ(0) + L(φ) − φ̇(0)],

and X0 = X0(θ) is given by

X0(θ) =
{

0, − τ ≤ θ < 0,

1, θ = 0.

Consider the projection

π : BC �→ P, π(φ + X0ξ) = �[(�, 〈φ(·), βn〉)βn + �(0) 〈ξ,βn〉βn],

where

βn =
{

1, n = 0,√
2 cos nx

l
, n ∈N.

This leads to the decomposition BC = P
⊕

Kerπ . Then using the decomposition

Ut = �z(t)βn + y(t),

where z(t) = (�, 〈Ut(·), βn〉) ∈ R, y(t) ∈ Q1, we decompose Eq. (17) as

ż = Bz + �(0) 〈F(�zβn + y),βn〉 ,

d
y = AQ1y + (I − π)X0F(�zβn + y).

(18)
dt
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Note that, when be−r2τ = r1, λ = 0 is a root of Eq. (15) if and only if n = 0. Therefore, the flow 
on the manifold is given by the following 1-dimensional ODE

ż = −2 + 2αbe−r2τ

1 + r1τ
z2 +O(3). (19)

Clearly, when be−r2τ = r1, the zero solution of Eq. (19) is unstable, so is the zero solution of 
Eq. (4). The proof is completed. �
3.2. Stability of steady state u = u0

In this subsection, we are going to investigate the stability of positive steady state u0 of Eq. (4)
and show that it can be destabilized via Hopf bifurcation. The time delay τ will be used as 
a bifurcation parameter. Throughout this subsection, we always assume that be−r2τ > r1 and 
α > 1, which can ensure the existence and uniqueness of positive constant steady state u0. We 
would like to emphasize that be−r2τ > r1 is equivalent to b > r1 and τ ∈ [0, τmax).

Similarly, we can obtain the linearization of Eq. (4) at u = u0 in the phase space C,

U̇(t) = d�U(t) + L(Ut ), (20)

where

L(φ) = −
(
r1 + 2u0

(1 + u2
0)

2

)
φ(0) + be−r2τ e−αu0(1 − αu0)φ(−τ).

Thus, the corresponding characteristic equation of Eq. (20) is equivalent to

λ + dn2

l2
+ r1 + 2u0

(1 + u2
0)

2
+ be−r2τ e−αu0(αu0 − 1)e−λτ = 0, n ∈ N0. (21)

Note that some of these coefficients (including u0) depend on the time delay τ . We rewrite 
Eq. (21) in the general form

Pn(λ, τ ) + Q(λ, τ)e−λτ = 0, n ∈ N0, (22)

where

Pn(λ, τ ) = λ + dn2

l2
+ r1 + 2u0

(1 + u2
0)

2
,

Q(λ, τ ) = be−r2τ e−αu0(αu0 − 1).

(23)

In order to apply the geometrical criterion due to Beretta and Kuang [15], we need to verify 
the following properties for n ∈N0 and τ ∈ [0, τmax).

(i) Pn(0, τ) + Q(0, τ) �= 0;
(ii) Pn(iω, τ) + Q(iω, τ) �= 0;

(iii) lim sup{
∣∣∣ Q(λ,τ)

∣∣∣; |λ| → ∞, Reλ ≥ 0} < 1;

Pn(λ,τ)
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(iv) Fn(ω, τ) := |Pn(iω, τ)|2 + |Q(iω, τ)|2 has a finite number of zeros;
(v) Each positive root ωn(τ) of Fn(ω, τ) = 0 is continuous and differentiable in τ whenever it 

exists.

Given the fact that

Pn(0, τ ) + Q(0, τ ) = dn2

l2
+ r1 + 2u0

(1 + u2
0)

2
+ be−r2τ e−αu0(αu0 − 1)

=
[ u

1 + u2

(
g1(u) − g2(u)

)]
u

∣∣∣
u=u0

+ dn2

l2

= u0

1 + u2
0

(
g′

1(u0) − g′
2(u0)

) + dn2

l2

> 0,

and

Pn(iω, τ) + Q(iω, τ) = iω + Pn(0, τ ) + Q(0, τ ),

(i) and (ii) are satisfied.
From (23), we know that

lim|λ|→∞

∣∣∣ Q(λ, τ)

Pn(λ, τ )

∣∣∣ = 0.

Therefore (iii) follows.
Let Fn be defined as in (iv) with the following expression

Fn(ω, τ) := ω2 +
(dn2

l2
+ r1 + 2u0

(1 + u2
0)

2

)2 − b2e−2r2τ e−2αu0(αu0 − 1)2.

It is obvious that property (iv) is satisfied, and by the Implicit Function Theorem, (v) is also 
satisfied.

From Theorem 2.1 we have know that Eq. (4) has a unique positive constant steady state. We 
denote the positive constant steady state as u0 = u0(τ ) since u0 satisfies Eq. (6) which depends 
on τ . Then we have the following result.

Lemma 3.6. If b > r1 and α > 1, then u0(τ ) is a strictly decreasing function on [0, τmax).

Proof. From the discussion of Theorem 2.1, we have know that u0(τ ) satisfies g1(u) = g2(u, τ). 
Assume that, for i = 1, 2, τi ∈ [0, τmax), ui is the unique positive root of g1(u) = g2(u, τi) and 
τ1 < τ2. Then we only need to verify u1 > u2. In fact, if u1 ≤ u2, by the definition of g2 in (7), 
we have

g2(u1, τ2) < g2(u1, τ1) = g1(u1) ≤ g1(u2) = g2(u2, τ2) ≤ g2(u1, τ2).

This is a contradiction and the proof is complete. �
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From Eq. (6), we know that umax := u0(0) satisfies

r1 + u

1 + u2
= be−αu.

Denote

Tn(τ) = dn2

l2
+ r1 + 2u0

(1 + u2
0)

2
,

h(τ ) = be−r2τ e−αu0(αu0 − 1).

(24)

Then, when τ = 0, the roots of Eq. (21) satisfy

λ = −Tn(0) − h(0)

= −
[ umax

1 + u2
max

(
g′

1(umax) − g′
2(umax)

) + dn2

l2

]
< 0.

That is, all roots of Eq. (21) have negative real part when τ = 0.
Now, let λ = iω(ω > 0) be a root of Eq. (21). Substituting it into Eq. (21) and separating the 

real and imaginary parts, we have

Tn(τ) = −h(τ) cosωτ, ω = h(τ) sinωτ. (25)

This leads to

ωn =
√

h2(τ ) − T 2
n (τ ). (26)

Clearly, ωn make sense if and only if |h(τ)| > Tn(τ). Note that

Tn(τ) + h(τ) = Pn(0, τ ) + Q(0, τ ) > 0. (27)

Thus, |h(τ)| > Tn(τ) is equivalent to h(τ) > Tn(τ).
It is well known that a stability change at u = u0 can only happen when there are characteristic 

roots crossing the imaginary axis to the right. Then, from the discuss above, we can arrive at the 
following result.

Theorem 3.7. Assume that α > 1 and denote b0 = e
(
r1 + α

1+α2

)
.

(i) If r1 < b ≤ b0, then for Eq. (4), u = u0 is locally asymptotically stable for any τ ∈ [0, τmax);
(ii) If b > b0, there exists a τ̂ ∈ (0, τmax) such that g1(

1
α
) = g2(

1
α
, τ̂ ) and for Eq. (4), u = u0 is 

locally asymptotically stable for any τ ∈ [τ̂ , τmax).

Proof. Assume that b > r1 and α > 1 hold. Then we can obtain

b ≤ b0 ⇔ g2

( 1
,0

)
≤ g1

( 1 )
⇔ umax ≤ 1

.

α α α



JID:YJDEQ AID:8681 /FLA [m1+; v1.246; Prn:3/02/2017; 14:18] P.12 (1-25)

12 X. Xu, J. Wei / J. Differential Equations ••• (••••) •••–•••
This implies that h(τ) ≤ 0 < Tn(τ) for all n ∈ N0 and τ ∈ [0, τmax) if b ≤ b0. The proof of (i) is 
complete.

If b > b0, we have umax > 1
α

. Let u0(τ̂ ) = 1
α

, then, from Eq. (6), we have

τ̂ = 1

r2
ln

b

b0
. (28)

By using the monotonicity of u0(τ ), one has u0(τ ) ≤ 1
α

for all τ ∈ [τ̂ , τmax). It follows that 
h(τ) ≤ 0 < Tn(τ) for all n ∈N0 and τ ∈ [τ̂ , τmax).

Moreover, when τ = τ̂ , the roots of Eq. (21) satisfy

λ = −
(dn2

l2
+ r1 + 2α3

(1 + α2)2

)
< 0.

The proof of (ii) is complete. �
From Theorem 3.7, we know that Hopf bifurcation near u0 can only possibly happen when 

b > b0, τ ∈ [0, τ̂ ) and α > 1. Set

In = {
τ |τ ∈ [0, τ̂ ), satisfies h(τ) > Tn(τ)

}
.

Assume that In is nonempty. Then for τ ∈ In, there exists a unique ωn = ωn(τ) > 0, which 
satisfies Eq. (26), such that Fn(ωn, τ) = 0. Let θn(τ ) ∈ [0, 2π ] be defined for τ ∈ In by

sin θn(τ ) = ωn(τ)

h(τ)
, cos θn(τ ) = −Tn(τ)

h(τ)
. (29)

Then we have θn(τ ) ∈ [π
2 , π] by the fact that τ ∈ [0, τ̂ ) implies sin θn(τ ) > 0 and cos θn(τ ) < 0. 

From the above definitions, it follows that θn(τ ) is well and uniquely defined for all τ ∈ In.
One can check that iωn(τ

∗) (ωn(τ
∗) > 0) is a purely imaginary root of Eq. (21) if and only if 

τ ∗ is a root of the function Sm
n , defined by

Sm
n (τ) = τ − θn(τ ) + 2mπ

ωn(τ)
, τ ∈ In, with n,m ∈ N0. (30)

Obviously, Sm
n (0+) < 0 if 0 ∈ ∂In. Observing that when τ is close to the border of In, which is 

not equal to zero, ωn(τ) → 0 as well as sin θn(τ ) → 0 and cos θn(τ ) → −1 imply θn(τ ) → π , 
therefore, Sm

n (τ) → −∞ for any m ∈N0.
The following is the result introduced by Beretta and Kuang [15].

Lemma 3.8. For a fixed n0 ∈ N0, assume that the function Sm
n0

(τ ) has a simple positive root 
τ ∗ ∈ In0 for some m ∈ N0, then a pair of simple purely imaginary roots ±iωn0(τ

∗) of Eq. (21)
exists at τ = τ ∗ and

Sign

{
dReλ(τ)

dτ

∣∣∣∣
λ=iωn0 (τ∗)

}

= Sign

{
∂Fn0 (ωn0(τ

∗), τ ∗)
}

× Sign

{
dSm

n0
(τ )

∣∣∣∣
}
.

(31)
∂ωn0 dτ τ=τ∗
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Since

∂Fn0

∂ωn0

(ωn0 , τ ) = 2ωn0,

condition Eq. (31) is equivalent to

δ(τ ∗) = Sign

{
dReλ(τ)

dτ

∣∣∣∣
λ=iωn0 (τ∗)

}
= Sign

{
dSm

n0
(τ )

dτ

∣∣∣∣
τ=τ∗

}
.

Therefore, this pair of simple conjugate purely imaginary roots crosses the imaginary axis from 
left to right if δ(τ∗) = 1 and from right to left if δ(τ ∗) = −1.

Remark 3.9. It can be easily observed that In+1 ⊂ In, Sm
n (τ) > Sm+1

n (τ ) for all τ ∈ In and 
Sm

n (τ) > Sm
n+1(τ ) for all τ ∈ In+1. Thus, if Sm0

n0 has no zero in In0 , then for any n ≥ n0, m ≥ m0, 
τ ∈ In, we have Sm

n (τ) ≤ S
m0
n0 (τ ) and Sm

n have no zeros in In.

Remark 3.10. For n, m ∈N0, denote the set of the zeros of Sm
n by

Jm
n = {τm

n |τm
n ∈ In, S

m
n (τm

n ) = 0}.

In what follows, we always assume dSm
n (τ)

dτ
(τm

n ) �= 0 and Jm1
n1 ∩ J

m2
n2 = ∅ for n1 > n2 and 

m1 < m2. Rearrange these roots in the set

J =
⋃

n,m∈N0

Jm
n = {τ0, τ1, · · · τk}, with τi < τi+1,0 ≤ i ≤ k − 1.

Applying Corollary 2.4 in [16], we can draw the conclusion: If b > b0 and α > 1, then all roots 
of Eq. (21) have negative real parts when τ ∈ [0, τ0) ∪ (τk, τ̂ ] and at least a pair of roots has 
positive real parts when τ ∈ (τ0, τk). Furthermore, all other roots of Eq. (21), except a pair of 
purely imaginary roots, have negative real parts when τ = τ0 or τ = τk .

Now we can state the following theorem on the existence of a Hopf bifurcation at the positive 
steady state.

Theorem 3.11. Assume that b > b0 and α > 1.

(i) If either I0 is empty or the function S0
0 has no positive zero in I0(�= ∅), then for all τ ∈ [0, τ̂ ), 

the steady state u0 of Eq. (4) is locally asymptotically stable;
(ii) If J �= ∅, then the steady state u0 of Eq. (4) is locally asymptotically stable for τ ∈ [0, τ0) ∪

(τk, τ̂ ] and unstable for τ ∈ (τ0, τk) with a Hopf bifurcation occurring at u0 when τ = τi ∈ J .

Theorem 3.11 gives some sufficient conditions to ensure that Eq. (4) undergoes a Hopf bifur-
cation at u0. Next, under the conditions of Theorem 3.11(ii), we shall use the center manifold 
and normal form theories presented by Wu [22] and Faria [26] to study the direction of Hopf bi-
furcation and the stability of the bifurcating periodic solutions from u0. As the details are given 
in the Appendix, we summarize the results in the following theorem.
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Theorem 3.12. Assume that the conditions ensuring that Hopf bifurcation at u0 occurs in Theo-
rem 3.11(ii) are fulfilled. Then the periodic solutions bifurcated from u0 are asymptotically stable 
(unstable) on the center manifold if Re(c1(0)) < 0 (> 0). In particular, if b > b0 and α > 1, 
then the bifurcating periodic solutions at the bifurcation value τ = τ0, τk is stable (unstable) if 
Re(c1(0)) < 0 (> 0).

Here c1(0) is derived in the Appendix. In Section 5, we shall give a example to illustrate the 
above results.

4. Global Hopf bifurcation analysis

In this section, we study the global continuation of periodic solutions bifurcating for Eq. (4)
by using global Hopf bifurcation theorem given by Wu [22]. Assume that b > b0, α > 1 and 
J �= ∅. Then from Theorem 3.11(ii) we know that Hopf bifurcation occurs at u0 and nontrivial 
periodic solutions exist when τ is near τm

n ∈ J . Denote

Jm+ = {τ |τ ∈ In, S
m
n (τ ) = 0,

dSm
n (τ)

dτ
> 0, n ∈ N0}, m ∈ N0,

Jm− = {τ |τ ∈ In, S
m
n (τ ) = 0,

dSm
n (τ)

dτ
< 0, n ∈ N0}, m ∈ N0,

and Jm = Jm+ ∪ Jm− . Assume further that J − J 0 �= ∅. In this section, we will investigate the 
global continuation of periodic solutions bifurcated from the point (u0, τm

n ) (τm
n ∈ J −J 0) as the 

bifurcation parameter τ varies.

Lemma 4.1. Assume that b > b0 and α > 1. Then system (4) has no nontrivial periodic solution 
of period τ .

Proof. From Lemma 3.3, we know that system (4) has no nontrivial periodic solution of period 
τ > τmax. Let u(x, t) be a periodic solution to Eq. (4) of period τ ∈ [0, τmax]. Then it is a periodic 
solution to the following system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut = d�u − r1u − u2

1 + u2
+ be−r2τ ue−αu, x ∈ �, t > 0,

uν = 0, x ∈ ∂�, t > 0,

u(x,0) = η(x,0) ≥ 0, x ∈ �.

(32)

The corresponding ordinary differential equation of Eq. (32) is

⎧⎪⎨
⎪⎩

vt = −r1v − v2

1 + v2
+ be−r2τ ve−αv,

v = v0.

(33)

Now we can distinguish two cases.
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Case (i): τ ∈ [0, τmax).
From Theorem 2.1(ii), Eq. (33) has the unique positive equilibrium u0 and vt > 0 for 0 <

v < u0 and vt < 0 for v > u0. Therefore, lim
t→∞v(t, v0) = u0 for any v0 > 0. If η(x, 0) �≡ 0, then 

strong maximum principle implies that u(x, t) > 0 for x ∈ �̄ and t > 0. Hence, for a fixed ε > 0, 
we have u(x, ε) > 0 for x ∈ �̄. Let w(x, t) = u(x, t + ε) and

m = min
x∈�̄

u(x, ε), M = max
x∈�̄

u(x, ε).

Then w(x, t) satisfies

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wt = d�w − r1w − w2

1 + w2
+ be−r2τwe−αw, x ∈ �, t > 0,

wν = 0, x ∈ ∂�, t > 0,

w(x,0) = u(x, ε), x ∈ �,

(34)

and z(t, M) and z(t, m) are upper and lower solutions of Eq. (34). Notice that

lim
t→∞v(t,M) = lim

t→∞v(t,m) = u0.

Which implies lim
t→∞u(x, t) = lim

t→∞w(x, t) = u0. Moreover, if η(x, 0) ≡ 0, then we have 

u(x, t) ≡ 0. Therefore, system (4) has no nontrivial periodic solution of period τ ∈ [0, τmax).

Case (ii): τ = τmax.
From Theorem 2.1(i), Eq. (33) has the unique negative equilibrium v = 0 and vt < 0 for any 

v > 0. It follows that lim
t→∞v(t, v0) = 0 for any v0 ≥ 0. Using the similar method, we can obtain 

that every solution u(x, t) of Eq. (32) converges to u = 0 (uniformly in x) as t → ∞. Therefore, 
system (4) has no nontrivial periodic solution of period τ = τmax. The proof is complete. �

Throughout this section, we closely follow the notations in [22]. To state the global Hopf 
bifurcation theorem, we define that

(i) E = C(S1, X) is a real isometric Banach representation of the group G = S1 := {z ∈ C :
|z| = 1};

(ii) Let EG := {x ∈ E : gx = x for all g ∈ G}. Then EG = X, and E has an isotypical direct 

sum decomposition E = EG
∞⊕

k=1
Ek where Ek = {eiktx : x ∈ X} for k ≥ 1.

Then from [22], Eq. (4) can be casted into an integral equation which is continuously differen-
tiable, completely continuous and G-invariant.

Assume that b > b0 and α > 1. From Lemma 3.3 and the proof of Lemma 4.1 we know that 
Eq. (4) has no positive nonconstant steady state. Thus, u0 is the unique positive steady state 
solution of Eq. (4) when τ ∈ [0, τmax). From Pn(0, τ) + Q(0, τ) > 0 for any τ ∈ [0, τmax) and 
n ∈ N0, we know that 0 is not an eigenvalue of Eq. (21), hence the assumption H(1) in [22, 
Sect.6.5] is satisfied. When τ = τm

n , Eq. (21) has a unique pair of purely imaginary eigenvalues 
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±iωn(τ
m
n ), hence the assumption H(2) in [22, Sect.6.5] is satisfied. We choose sufficiently small 

ε0, ς0 > 0, and define the local steady state manifold

M = {(u0, τ,ω) : |τ − τm
n | < ε0, |ω − ωn(τ

m
n )| < ς0} ⊂ EG ×R×R+.

Then for

(τ,ω) ∈ [τm
n − ε0, τ

m
n + ε0] × [ωn(τ

m
n ) − ς0,ωn(τ

m
n ) + ς0],

±iωn(τ
m
n ) is an eigenvalue of Eq. (21) if and only if τ = τm

n and ω = ωn(τ
m
n ). From [22, Lemma 

6.5.3], we conclude that (u0, τm
n , ωn(τ

m
n )) is an isolated singular point in M .

Let μk(u0, τm
n , ωn(τ

m
n ))(k = 1, 2, · · · ) be the generalized crossing number defined in [22, 

Sect.6.5]. Then from Lemma 3.8, if λ(τ) = α(τ) ± iβ(τ ) are the eigenvalues of Eq. (21) satisfy-

ing λ(τm
n ) = ±iωn(τ

m
n ), then dSm

n (τ)

dτ
> 0(< 0) implies that μ1(u0, τm

n , ωn(τ
m
n )) = 1(−1). Hence 

one obtains the local topological Hopf bifurcation for Eq. (4) at τ = τm
n .

Next we consider the global nature of the Hopf bifurcation. Let

S = Cl{(z, τ,ω) ∈ E ×R×R+ : u(·, t) = z(·,ωt) is a nontrivial

2π

ω
periodic solution of Eq. (4)}.

Then from the local bifurcation theorem, (u0, τm
n , ωn(τ

m
n )) ∈ S. We also define the complete 

steady state manifold:

M∗ = {(u0, τ ) : τ ∈ R} ⊂ EG ×R.

Let Cm
n (u0, τm

n , ωnτ
m
n ) be the connected component of S, for which (u0, τm

n , ωnτ
m
n ) belongs to 

and denote ProjτC
m
n (u0, τm

n , ωnτ
m
n ) its projection on τ component. Then we can state the global 

Hopf bifurcation theorem given by Wu:

Lemma 4.2. [22, Theorem 6.5.5] For each connected component Cm
n , at least one of the following 

holds:

(i) Cm
n is unbounded, i.e.,

sup{max
t∈R

|z(t)| + |τ | + ω + ω−1 : (z, τ,ω) ∈ Cm
n } = ∞;

(ii) Cm
n ∩ M∗ ×R+ is finite and for all k ≥ 1, one has the equality

∑
(u0,τ

m
n ,ωnτm

n )∈Cm
n ∩M∗×R+

μk(u0, τ
m
n ,ωn(τ

m
n )) = 0.

Lemma 4.3. All periodic solutions of Eq. (4) are uniformly bounded.
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Proof. Let u(x, t) be a periodic solution of Eq. (4) and

u(x0, t0) = max
x∈�̄,t>0

u(x, t).

Then we have

∂u(x, t)

∂t
|(x0,t0) = 0,

∂2u(x, t)

∂x2
|(x0,t0) ≤ 0.

Which implies that

r1u(x0, t0) + u2(x0, t0)

1 + u2(x0, t0)
≤ be−r2τ u(x0, t0 − 1)e−αu(x0,t0−1).

Clearly, it follows that u(x0, t0) ≤ b
αr1e

. The proof is complete. �
Lemma 4.4. Suppose that (z, τ, ω) ∈ Cm

n for n, m ∈ N0 and let u(x, t) = z(x, ωt) be a 2π
ω

-periodic solution of Eq. (4) with delay τ . Then u(x, t) > 0 for x ∈ �̄ and t > 0.

Proof. For each fixed τ ∈ ProjτC
m
n (u0, τm

n , ωnτ
m
n ), let z(x, t, τ) be the corresponding non-

trivial periodic solution. Since z(x, t, τ) → u0 uniformly for x ∈ �̄ and t > 0 when τ →
τm
n , then inf

x∈�̄, t>0
z(x, t, τ) is continuous with respect to τ and z(x, t, τ) > 0 when τ suf-

ficiently reaches τm
n . Suppose that there exists a τ ∗ ∈ ProjτC

m
n (u0, τm

n , ωnτ
m
n ) such that 

inf
x∈�̄, t>0

z(x, t, τ ∗) = 0. Then there exists x∗ and t∗ satisfied z(x∗, t∗, τ ∗) = 0. If there exists 

a x∗∗ such that z(x∗∗, t∗, τ ∗) > 0, then z(x, t, τ ∗) > 0 for x ∈ �̄ and t > t∗, which contradicts 
with z(x∗, t∗, τ ∗) = 0. If z(x, t∗, τ ∗) = 0 for x ∈ �̄, then we have z(x, t, τ ∗) ≡ 0, which con-
tradicts with the fact that z(x, t, τ ∗) is a nontrivial periodic solution of Eq. (4). The proof is 
complete. �

Up to now, we have prepared sufficiently to state the following global Hopf bifurcation results.

Theorem 4.5. Assume that b > b0, α > 1 and J − J 0 �= ∅. For any τ ∗ ∈ Jm± , m ∈ N, there exists 
a τ∗ ∈ Jm∓ such that system (4) has at least one positive periodic orbit when τ varies between τ ∗
and τ∗.

Proof. Without loss of generality, we assume that τ ∗ ∈ Jm
n ∩ Jm+ for n ∈ N0, m ∈ N and still 

denote τ ∗ by τm
n . Notice that

2mπ < ωnτ
m
n < 2(m + 1)π, m ∈ N.

It follows that

1
<

2π

m
<

1
, m ∈N.
m + 1 ωnτn m
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Fig. 1. The graphs of h − Tn on [0, τ̂ ).

Assume that (z, τ, ω) ∈ Cm
n (u0, τm

n , ωnτ
m
n ) for m ∈ N. Applying Lemma 4.1, one has that τ

m+1 <
2π
ω

< τ
m

. From Lemma 4.3, we have that the projection of Cm
n (u0, τm

n , ωnτ
m
n ) onto the z-space is 

bounded. Meanwhile, Lemma 4.1 and Lemma 3.3 lead to system (4) has no nontrivial periodic 
solution when τ = 0 or τ > τmax. Consequently, we can obtain Cm

n is finite and

∑
(u0,τ

m
n ,ωnτm

n )∈Cm
n ∩M∗×R+

μ1(u0, τ
m
n ,ωn(τ

m
n )) = 0.

This completes the proof. �
5. Simulations

According to Table 1 and the variable substitution at the beginning of Section 2, we choose a 
set of parameter values of Eq. (4):

r1 = 0.1980, r2 = 1.1, b = 648649.8, α = 11.8572, d = 0.3, l = 1. (35)

Under this parameter set, one can easily see that b > b0 ≈ 0.7658 and α > 1. By calculation, we 
obtain that

τ̂ ≈ 12.4086 and τmax ≈ 13.64.

In order to gain the set In, we picture the graphs of h −Tn in Fig. 1. Note that τ ∈ In is equivalent 
to h(τ) − Tn(τ) > 0. Hence, we have

I0 = [0,10.77), I1 = [0,10.03), I2 = [0,8.46), I3 = [0,6.52),

I = [0,4.14), I = [0,0.93), I = ∅, n ≥ 6.
4 5 n
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Fig. 2. The graphs of Sm
n (τ) on In.

Accordingly, the pictures of Sm
n on In can be drawn clearly (see Fig. 2). From Fig. 2, we obtain 

the set of the zeros of Sm
n

J 0
0 = {0.19,10.62}, J 1

0 = {0.94,9.78}, J 2
0 = {1.92,8.66}, J 3

0 = {3.24,7.17},
J 0

1 = {0.20,9.93}, J 1
1 = {0.98,9.33}, J 2

1 = {1.94,8.35}, J 3
1 = {3.30,6.93},

J 0
2 = {0.21,8.44}, J 1

2 = {1.03,8.06}, J 2
2 = {2.03,7.34}, J 3

2 = {3.63,5.86},
J 0

3 = {0.23,6.48}, J 1
3 = {1.13,6.19}, J 2

3 = {2.31,5.44}, J 0
4 = {0.31,4.07},

J 1
4 = {1.61,3.51},

and dSm
n (τ)

dτ
(τm

n ) �= 0. Hence, we have

τ0 ≈ 0.19 and τk ≈ 10.62 with k = 33.

Therefore, the unique positive steady state u0 is asymptotically stable when τ ∈ [0, τ0) ∪
(τk, τmax), and unstable when τ ∈ (τ0, τk), as well as Hopf bifurcation takes place when τ =
τi ∈ J . The stability of u0 is illustrated by Fig. 3(a) and (b). When τ > τmax, the positive steady 
state u0 disappears, and by Theorem 3.4, the steady state u = 0 is globally asymptotically stable 
(see Fig. 3(c)).

By using the algorithm given in the Appendix, we can obtain Rec1(0) corresponding to τ = τ0
and τ = τk , as

Rec0(0) ≈ −76.83 and Reck(0) ≈ −60.43,
1 1
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Fig. 3. The unique positive steady state u0 of system (4) is asymptotically stable when τ ∈ [0, τ0) ∪ (τk, τmax) and the 
steady state u = 0 is globally asymptotically stable when τ > τmax, where η(x, t) = 1.1 + 0.1 cosx and τ = 0.18 < τ0 ≈
0.19 in (a), τ = 10.8 > τk ≈ 10.62 in (b) and τ = 15 > τmax ≈ 13.64 in (c).

Fig. 4. For system (4), the bifurcating periodic solutions are asymptotically stable when τ > τ0 and τ < τk and is 
close to τ0 and τk , respectively; and system (4) has a spatially inhomogeneous periodic solution when τ > τ1 and is 
close to τ1, where η(x, t) = u0 + 0.1 + 0.04 cosx and τ = 0.195 > τ0 ≈ 0.19 in (a), τ = 10.6 < τk ≈ 10.62 in (b) and 
τ = 0.205 > τ1 ≈ 0.20 in (c).

respectively. It follows that the direction of Hopf bifurcation is forward at τ0 and backward at 
τk ; The bifurcating periodic solutions at τ = τ0 and τ = τk are all stable. These are illustrated 
in Fig. 4 (a) and (b). Moreover, by using the similar method, we can obtain that the direction 
of Hopf bifurcation is forward at τ1. This implies that system (4) has a spatially inhomogeneous 
periodic solutions when τ > τ1 and is close to τ1 (see Fig. 4(c)). From the global Hopf bifurcation 
result Theorem 4.5, we know that, when τ ∈ (τ5, τ32)\J , system (4) has at least one positive 
periodic orbit, where τ5 ≈ 0.94 and τ32 ≈ 9.78. To verify the extended existence of bifurcating 
periodic solutions, we choose τ = 1.75 and τ = 2.75 far away from the bifurcation point. The 
corresponding numerical simulation results are shown in Fig. 5.

Remark 5.1. From Table 1 and the above-mentioned variable substitution, the time delay τ in 
the model given by Vaidya and Wu belongs to the interval [0.75, 2] is equivalent to the time delay 
τ in system (4) belongs to the interval [1.1366, 3.0309]. So we can conclude that the model given 
by Vaidya and Wu with diffusion has at least one positive periodic orbit when the parameters are 
choose as which in Table 1. This can be used to explain the phenomenon of periodic outbreaks 
of spruce budworm.
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Fig. 5. System (4) has a positive periodic solution when τ = 1.75 and τ = 2.75.
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Appendix A. Properties of Hopf bifurcation

In this section, by applying the normal formal theory and the center manifold theorem of 
partial differential equations with delay [22,26], we study the direction of Hopf bifurcation and 
stability of the bifurcating periodic solutions from u0 under the conditions of Theorem 3.11(ii).

By normalizing the delay τ by the time scaling t �→ t
τ

and using the change of variables 
u(x, t) = u(x, τ t), system (4) is transformed into

∂u(x, t)

∂t
= dτ�u(x, t) − τ

(
r1u(x, t) − u2(x, t)

1 + u2(x, t)
+ be−r2τ u(x, t − 1)e−αu(x,t−1)

)
. (A.1)

Without loss of generality, we denote the critical value τm
n at which Eq. (A.1) undergoes a Hopf 

bifurcation at u0. Set τ = τm
n + μ, then μ = 0 is the Hopf bifurcation value of system (A.1). Let 

U(t) = u(x, t) − u0, then in an abstract form in the space C = C([−1, 0], X), Eq. (A.1) can be 
written in the form:

U̇ (t) = d̃�U(t) + Lμ(Ut ) + F(μ,Ut ),

where d̃ = d(τm
n + μ) and Lμ : C → X, F : C → X are defined, respectively, by

Lμ(φ) = (τm
n + μ)

( − T0(τ
m
n + μ)φ(0) − h(τm

n + μ)φ(−1)
)
,

F (μ,φ) = (τm
n + μ)

(
a20φ

2(0) + a02φ
2(−1) + a30φ

3(0) + a03φ
3(−1)

) +O(4),

where T0 and h are defined by (24) and
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a20 = 2(3u2
0 − 1)

(1 + u2
0)

3
, a02 = be−r2τ e−αu0(α2u0 − 2α),

a30 = 24u0(1 − u2
0)

(1 + u2
0)

4
, a03 = be−r2τ e−αu0(3α2 − α3u0).

The linearized equation at the origin has the form

U̇ (t) = d̃�U(t) + Lμ(Ut ). (A.2)

By Riesz representation theorem, there exist a bounded variation function

η(θ,μ) =

⎧⎪⎨
⎪⎩

(τm
n + μ)h(τm

n + μ), θ = −1,

0, −1 < θ < 0,

−(τm
n + μ)

(
dn2

l2
+ T0(τ

m
n + μ)

)
, θ = 0,

such that

−(τm
n + μ)

dn2

l2
φ(0) + Lμ(φ) =

0∫
−1

dη(θ,μ)φ(θ), φ(θ) ∈ C([−1,0],R).

We have that the solution operator of Eq. (A.2) is a C0 semigroup, and the infinitesimal generator 
Aμ is given by

Aμ(φ(θ)) =
{

φ̇(θ), θ ∈ [−1,0),

d̃�φ(0) + Lμ(φ), θ = 0,
(A.3)

and the domain dom (Aμ) of Aμ is

dom (Aμ) := {φ ∈ C : φ̇ ∈ C , φ(0) ∈ dom (�), φ̇(0) = d̃�φ(0) + Lμ(φ)}.
Hence, Eq. (A.1) can be rewritten as the abstract ODE in C :

U̇t = AμUt + R(μ,Ut ),

where

R(μ,Ut )(φ) =
{

0, θ ∈ [−1,0),

F (μ,Ut ), θ = 0.

Define the adjoint operators of A0

A∗(ψ(s)) =
{ −ψ̇(s), s ∈ (0,1],∫ 0

−1 dη(s,0)ψ(−s), s = 0,

under the bilinear form
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(ψ(s),φ(θ)) = ψ̄(0)φ(0) −
0∫

−1

θ∫
0

ψ̄(ξ − θ)dη(θ,0)φ(ξ)dξ,

where ψ(s) ∈ C([0, 1], R∗) and φ(θ) ∈ C([−1, 0], R). It can be verified that ±iωnτ
m
n are the 

eigenvalues of A0 and A∗, and q(θ) = eiωnτm
n θ and q∗(s) = D̄ne

iωnτm
n s are eigenvectors of A0

and A∗ corresponding to the eigenvalue iωnτ
m
n and −iωnτ

m
n , respectively, where ωn = ωn(τ

m
n )

and

Dn = (
1 + τm

n Tn(τ
m
n ) + iωnτ

m
n

)−1
.

By setting

fn =
{

1, n = 0,√
2 cos nx

l
, n ∈ N,

and using a computation process similar to that in [22], we can obtain the coefficients which will 
be used in determining the important quantities:

g20 =
{

0, n ∈N,

2Dnτ
m
n (a20 + a02e

−2iωnτm
n ), n = 0,

g11 =
{

0, n ∈ N,

2Dnτ
m
n (a20 + a02), n = 0,

g02 =
{

0, n ∈N,

2Dnτ
m
n (a20 + a02e

2iωnτm
n ), n = 0,

g21 = Dnτ
m
n

lπ

lπ∫
0

[(
a20

(
W20(0) + 2W11(0)

) + a02
(
eiωnτm

n W20(−1)

+ 2e−iωnτm
n W11(−1)

))
f 2

n + (3a30 + 3a03e
−iωnτm

n )f 4
n

]
dx,

where

W20(θ) =
( ig20

ωnτm
n

eiωnτm
n θ + iḡ02

3ωnτm
n

e−iωnτm
n θ

)
fn + E1e

2iωnτm
n θ ,

W11(θ) =
(−ig11

ωnτm
n

eiωnτm
n θ + iḡ11

ωnτm
n

e−iωnτm
n θ

)
fn + E2,

and

E1 = a20 + a02e
−2iωnτm

n

2iωn + T0(τm
n ) + h(τm

n )e−2iωnτm
n

+
(
a20 + a02e

−2iωnτm
n
)

cos 2nx
l

2iωn + 4dn2

l2
+ T0(τm

n ) + h(τm
n )e−2iωnτm

n

,

E2 = a20 + a02

T0(τm
n ) + h(τm

n )
+ (a20 + a02) cos 2nx

l

4dn2 + T (τm) + h(τm)
.

l2 0 n n
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Consequently, g21 could be expressed explicitly.
Thus, we can compute the following values:

c1(0) = i

2ωnτm
n

(g20g11 − 2|g11|2) + 1

2
g21,

μ2 = −Re(c1(0))

τm
n δ(τm

n )
, β2 = 2Re(c1(0)).

By the general Hopf bifurcation theory (see [28]), we know that μ2 determines the directions of 
the Hopf bifurcation: if μ2 > 0(μ2 < 0), then the direction of the Hopf bifurcation is forward 
(backward), that is the bifurcating periodic solutions exist when μ2 > 0(μ2 < 0); and β2 deter-
mines the stability of the bifurcating periodic solutions: the bifurcating periodic solutions on the 
center manifold are orbitally stable (unstable) if β2 < 0(β2 > 0).
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