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Abstract

The Josephson equation φ̇ = y, ẏ = − sinφ + ε
(
a − (1 + γ cosφ)y

)
was researched by Sanders and 

Cushman (1986) [12] for its phase portraits when ε > 0 is small by applying the averaging method. The 
parameter ε can actually be large or even any real number in the practical application of this model. When 
|ε| is not small, we cannot apply the averaging method because the system is not near-Hamiltonian. For 
general ε ∈ R, we present complete dynamics and more complex bifurcations of the Josephson equation 
in T S1, including saddle-node bifurcation, Hopf bifurcation, Bogdanov-Takens bifurcation, homoclinic 
loop bifurcation, two-saddle heteroclinic loop bifurcation, upper saddle connection bifurcation and lower 
saddle connection bifurcation. Moreover, we prove the monotonicity of bifurcation functions with respect 
to parameters and the nonexistence of a two-saddle heteroclinic loop for all a �= 0.
© 2020 Elsevier Inc. All rights reserved.
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1. Introduction and main results

For planar vector fields with trigonometric functions, there are no general techniques or 
methods to investigate their dynamics. Although some of these vector fields look simple, the 
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phenomena of their dynamics can still be very interesting. For example, the one-parameter pla-
nar differential equation

ẍ + μ sin ẋ + x = 0, x,μ ∈ R, (1)

which has been investigated by many mathematicians, such as [3,10] and [14, Section 4.7], dis-
plays rich and complex dynamics. With the transformation (x, ẋ, t) → (y, x, −t), equation (1) is 
changed into the following system:

ẋ = y + μ sinx, ẏ = −x. (2)

Eckweiler in [5] conjectured that system (2) has an infinite number of limit cycles. Hochstadt 
and Stephan in [10] proved that system (2) has an infinite number of limit cycles for sufficiently 
small |μ|. Later, D’Heedene in [3] obtained the same result for general μ ∈R. According to [14, 
Section 4.7], system (2) has exactly n limit cycles for |x| ≤ (n + 1)π and n ∈N .

As shown in [12], the Josephson equation is of the form

β
d2φ

dt2 + (1 + γ cosφ)
dφ

dt
+ sinφ = α, (3)

where φ ∈ S1 and (α, β, γ ) ∈ R3. Note that system (3) includes two trigonometric functions 
and three parameters. System (3) can describe a single point contact Josephson junction. See 
[11,13] and references therein for the applications of point contact Josephson junctions, where 
the junctions can be used as precision voltage sources. When α is small and β = 1/ε2 is large, 
with the transformation (α, t) → (α̃ε, tε), system (3) can be rewritten as

φ̇ = y,

ẏ = − sinφ + ε
(
α̃ − (1 + γ cosφ)y

)
,

(4)

where φ ∈ S1. Sanders and Cushman in [12] studied the bifurcation diagram and the phase por-
traits of system (4) when ε > 0 is sufficiently small by the averaging method. Recently, research 
on the dynamics of similar forms, such as system (4) has attracted great interests from many 
authors. For example, Gasull, Geyer and Mañosas in [6] studied the number of limit cycles of 
the more general system

ẋ = y,

ẏ = − sinx + ε
∑m

s=0 Qn,s(x)ys

than system (4) by the averaging method, where Qn,s are Fourier polynomials of degree n and 
ε > 0 is small. Furthermore, Gasull, Giné and Valls in [7] studied the center problem of the 
second order trigonometric differential equation

θ̇ = y,

ẏ = g(θ) + yf (θ),
(5)

where f (0) = g(0) = 0, g′(0) < 0 and f, g are trigonometric polynomial functions. Recently, 
Gasull, Giné and Valls in [8] obtained an upper bound of the maximum order of the weak focus 
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of equations (5) only in terms of the degrees of the involved trigonometric polynomials, when 
(5) is a pure trigonometric Liénard system.

To apply the averaging method, β → +∞ and |α| must be small to guarantee that system 
(4) is near-Hamiltonian. However, in practical applications, the parameters (α, β, γ ) ∈ R3 are 
actually general. Naturally, we have the following question:

What is the global dynamics of system (4) for (α, β, γ ) ∈ R3?
Note that the original differential equation (3) of system (4) is of first order and its dy-

namics is simple when β = 0. Therefore, we only consider the case β > 0 since equation 
(3) is invariant under the transformation (φ, φ̇, t, α, β, γ ) → (φ + π, −φ̇, −t, −α, −β, −γ )

when β < 0. Moreover, we let α ≥ 0, since equation (3) is invariant under the transformation 
(φ, φ̇, α) → (−φ, −φ̇, α) when α < 0. Therefore, we consider the case α ≥ 0, β > 0 and γ ∈ R
for equation (3). This is equivalent to considering the general case α̃ > 0, ε > 0 and γ ∈ R for 
system (4). Letting (a, b, c) := (α̃ε, ε, γ ε), we change system (4) into

ẋ = y,

ẏ = −g(x) − f (x)y,
(6)

where

g(x) = sinx − a, f (x) = b + c cosx,

φ is replaced by x ∈ S1, and

(a, b, c) ∈ G := [0,+∞) × (0,+∞) ×R.

The main results of this paper for system (6) are given as follows.

Theorem 1. The parameter space G of system (6) includes the following local and global bifur-
cation surfaces and curves, and cross-sections of the bifurcation diagram are as shown in Fig. 1
for an arbitrarily fixed constant c0:

(a): Saddle-node bifurcation surface

SN := {(a, b, c) ∈ G : a = 1}.

(b): Hopf bifurcation surface

H := {(a, b, c) ∈ G : b = −c
√

1 − a2, 0 ≤ a < 1}.

(c): Bogdanov-Takens bifurcation curve

BT := {(a, b, c) ∈ G : a = 1, b = 0, c < 0}.

(d): The bifurcation surface of the homoclinic loop

HL := {(a, b, c) ∈ G : b = ϕ(a, c), 0 < a < 1, c < 0},
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Fig. 1. Cross-sections of the bifurcation diagram of system (6).

where ϕ ∈ C0, ϕ(1, c) = 0, 0 < ϕ(a, c) < −c
√

1 − a2 for 0 < a < 1 and c < 0, and

ϕ(a, c) = −5c
√

2(1 − a)/7 + o(−c
√

1 − a)

when −c
√

1 − a is sufficiently small.
(e): The bifurcation curve of the 2-saddle heteroclinic loop

HE := {(a, b, c) ∈ G : b = ϕ(0, c), a = 0, c < 0}.
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(f): The bifurcation surface of the upper saddle connection

SC1 := {(a, b, c) ∈ G : b = ψ1(a, c), 0 < a < 1},
where ψ1(0, c) = ϕ(0, c), ψ1(a, c) > ϕ(a, c) for 0 < a < 1 and c < 0, and ψ1 ∈ C0 is 
increasing with respect to a. In addition, there exists a unique constant a∗ satisfying 
ψ1(a

∗, c) = −c
√

1 − a∗2.
(g): The bifurcation surface of the lower saddle connection

SC2 := {(a, b, c) ∈ G : b = ψ2(a, c), 0 < a < a∗ < 1, c < 0}
for a unique constant a∗ ∈ (0, 1), where ψ2(0, c) = ϕ(0, c), ψ2(a∗, c) = 0, 0 < ψ2(a, c) <
ϕ(a, c) for 0 < a < a∗ and c < 0, and ψ2 ∈ C0 is decreasing with respect to a.

The complete classification of the phase portraits of system (6) is given in Fig. 2, where

S1 := {(a, b, c) ∈ G : 0 < b < ψ2(a, c), 0 < a < a∗, c < 0},
S2 := {(a, b, c) ∈ G : ψ2(a, c) < b < ϕ(a, c), 0 < a < a∗, c < 0}

∪{(a, b, c) ∈ G : 0 < b < ϕ(a, c), a∗ ≤ a < 1, c < 0},
S3 := {(a, b, c) ∈ G : ϕ(a, c) < b < ψ1(a, c), 0 < a < a∗, c < 0}

∪{(a, b, c) ∈ G : ϕ(a, c) < b < −c
√

1 − a2, a∗ ≤ a < 1, c < 0},
S4 := {(a, b, c) ∈ G : ψ1(a, c) < b < −c

√
1 − a2, 0 < a < a∗, c < 0},

S5 := {(a, b, c) ∈ G : b ≥ −c
√

1 − a2, 0 < a < a∗, c < 0}
∪{(a, b, c) ∈ G : b > ψ1(a, c), a∗ ≤ a < 1, c < 0}
∪{(a, b, c) ∈ G : b > max{ψ1(a, c),0}, 0 < a < 1, c ≥ 0},

S6 := {(a, b, c) ∈ G : − c
√

1 − a2 ≤ b < ψ1(a, c), a∗ < a < 1, c < 0}
∪{(a, b, c) ∈ G : 0 < b < ψ1(a, c), 0 < a < 1, c ≥ 0},

S7 := {(a, b, c) ∈ G : a > 1},
SC11 := {(a, b, c) ∈ G : b = ψ1(a, c), a∗ ≤ a < 1, c < 0}

∪{(a, b, c) ∈ G : b = ψ1(a, c), 0 < a < 1, c ≥ 0},
SC12 := {(a, b, c) ∈ G : b = ψ1(a, c), 0 < a < a∗, c < 0},

P1 := {(a, b, c) ∈ G : a = 1, b = ψ1(1, c), c < 0},
SN1 := {(a, b, c) ∈ G : a = 1, b > ψ1(1, c)}
SN2 := {(a, b, c) ∈ G : a = 1,0 < b < ψ1(1, c)},

HEC := {(a, b, c) ∈ G : a = b = c = 0},
HLC := {(a, b, c) ∈ G : 0 < a < 1, b = c = 0}.
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Fig. 2. Phase portraits of system (6).

Remark 1. Note that the phase portraits in Fig. 2 (g, m-p, r) for local and non-local parameters 
have not been presented in [12]. In Figure 3 of [12, P. 499], when system (4) has an upper saddle 
connection, the direction of vector fields in the phase portraits is clockwise not counterclockwise, 
as presented in Fig. 2 (j, k).

The paper is organized as follows. In Section 2, we give local bifurcations and dynamics of 
system (6). In Section 3, we research the problems of limit cycles and saddle connections of 
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system (6), and further present its global bifurcations and dynamics. The last section is devoted 
to the proof of our main results, i.e., Theorem 1. Moreover, our theoretical results are illustrated 
by some numerical simulations.

2. Local bifurcations

In this section, we describe all local bifurcations of system (6).

Theorem 2. We find the local bifurcation surfaces and curves in parameter space G of system 
(6) as follows

(a): There is a saddle-node bifurcation surface SN when a = 1. When a > 1, system (6) has no 
equilibria. When 0 ≤ a < 1, system (6) has three equilibria

El = (−π − arcsina,0), E0 = (arcsina,0), Er = (π − arcsina,0)

for x ∈ [−π − arcsina, π − arcsina], where E0 is an anti-saddle and El,r are saddles. 
When a = 1, system (6) has two equilibria El = (−3π/2, 0) and Er = (π/2, 0) for x ∈
[−3π/2, π/2], which are saddle-nodes.

(b): There is a Hopf bifurcation surface H for the equilibrium at E0 when

b = −c
√

1 − a2 and 0 ≤ a < 1.

A limit cycle can bifurcate from this equilibrium for 0 ≤ a < 1 and sufficiently small −(b +
c
√

1 − a2) > 0.
(c): The intersection of H and HL defines Bogdanov-Takens bifurcation curve BT as a = 1, 

b = 0 and c < 0, where the local bifurcation surface of homoclinic loop HL is represented 
by b = −5c

√
2(1 − a)/7 + o(

√
1 − a).

Proof. (a) Note that the equilibria of system (6) are solved by the equations

{y = 0, − sinx + a = 0}.

For x ∈ [−π − arcsina, π − arcsina], system (6) has two equilibria at El = (−3π/2, 0) and 
Er = (π/2, 0) when a = 1; three equilibria at El = (−π − arcsina, 0), E0 = (arcsina, 0) and 
Er = (π − arcsina, 0) when 0 ≤ a < 1; and no equilibria when a > 1. Note that the Jacobian 
matrix at a general equilibrium E of system (6) is

JE =
(

0 1
− cosx −(b + c cosx)

)
.

Then, for 0 ≤ a < 1 equilibria El,r are saddles and equilibrium E0 is a focus, node or center 
according to a classical and easy analysis of the eigenvalues of JEl

, JEr and JE0 .
When a = 1, the determinants of JEl

and JEr satisfy that Det(JEl
) = 0 = Det(JEr ). More-

over, applying the Taylor expansion, we have
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a − sinx = a − 1 + 1

2
(x − π

2
)2 − 1

4! (x − π

2
)4 + O(|x − π

2
|6), (7)

(
resp. a − sinx = a − 1 + 1

2
(x + 3π

2
)2 − 1

4! (x + 3π

2
)4 + O(|x + 3π

2
|6)

)

in the small neighborhood of x = π/2 (resp. x = −3π/2). From (7), the canonical form of system 
(6) becomes

ẋ = − 1

2b2 x2 + (
1

b2 − c

b
)xy + (− 1

2b2 + c

b
)y2 + O(|(x, y)|4),

ẏ = −by − 1

2b2 x2 + (
1

b2 − c

b
)xy + (− 1

2b2 + c

b
)y2 + O(|(x, y)|4)

after the change (x − (1/2)π, y) → ((y − x)/b, −y). Then, equilibrium Er is a saddle-node 
when a = 1. By a similar analysis, we obtain that equilibrium El is also a saddle-node when 
a = 1.

(b) When 0 ≤ a < 1, a Hopf bifurcation can occur at equilibrium E0 = (arcsina, 0) because 
the trace of matrix JE0 is −b − c

√
1 − a2 and vanishes when b = −c

√
1 − a2. Thus, we have 

c < 0 by b > 0. Localizing system (6) at E0 and making the transformation (x, y) → (x +
arcsina, y), we change system (6) into

ẋ = y,

ẏ = −√
1 − a2x + a

2 x2 + acxy +
√

1−a2

6 x3 + c
√

1−a2

2 x2y + O(|(x, y)|4). (8)

Further, with the transformation

(y, t) →
(

4
√

1 − a2y,
t

4
√

1 − a2

)
,

system (8) is changed into

ẋ = y,

ẏ = −x + a

2
√

1−a2
x2 + ac

4
√

1−a2
xy + 1

6x3 + c
4
√

1−a2

2 x2y + O(|(x, y)|4). (9)

By using the formula given in [2, p. 211], we compute the first Lyapunov value g3 for system (9)
and obtain

g3 = c
4
√

(1 − a2)−3

16
< 0,

which implies that (0, 0) of system (9) is a stable weak focus of multiplicity one. Note that the 
equilibrium E0 of system (6) is an unstable focus for sufficiently small −(b + c

√
1 − a2) > 0. 

Therefore, we obtain the Hopf bifurcation surface H and a stable limit cycle can bifurcate from 
E0 for 0 ≤ a < 1 and sufficiently small −(b + c

√
1 − a2) > 0.

(c) The Bogdanov-Takens bifurcation occurs when the divergence vanishes at a double zero 
point. When a = 1, b = 0 and c < 0, system (8) becomes
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ẋ = y,

ẏ = 1
2x2 + cxy + O(|(x, y)|4),

which indicates that equilibrium Er(= E0) of system (6) is a cusp. By a similar discussion, 
equilibrium El of system (6) is also a cusp. With the transformation (x, y) → (x + π/2, y) for 
general parameters (a, b, c), we locate system (6) at (x, y) = (0, 0) and have

ẋ = y,

ẏ = a − 1 − by + 1
2x2 + cxy + O(|(x, y)|4). (10)

With the scaling

(x, y, t) → (
1

2c2 x,
1

4c3 y,2ct),

system (10) can be rewritten as

ẋ = y,

ẏ = μ1 + μ2y + x2 + xy + O(|x, y|4),

where

(μ1,μ2) := (
8c4(a − 1),−2bc

)
.

By Theorem 1.2 of [2, Chapter 4], the homoclinic bifurcation curve is

μ1 = −49

25
μ2

2 + O(|μ2|5/2), μ2 > 0

for small enough |μ1| and |μ2|, i.e., b = −5c
√

2(1 − a)/7 + o(−c
√

1 − a). �
3. Limit cycles, saddle connections and global bifurcation

In this section, we study the limit cycles and saddle connections of system (6). For simplicity, 
the parameter space G is divided into the following regions:

G1 := {(a, b, c) ∈ G : a ≥ 1},
G2 := {(a, b, c) ∈ G : 0 ≤ a < 1, b ≥ −c},
G3 := {(a, b, c) ∈ G : 0 ≤ a < 1, b < −c

√
1 − a2, c < 0},

G4 := {(a, b, c) ∈ G : 0 ≤ a < 1, − c
√

1 − a2 ≤ b < −c, c < 0}.

We find that no limit cycles exist in the parameter regions G1, G2 and G4.

Lemma 3. System (6) has no limit cycles when (a, b, c) ∈ G1.
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Proof. By Theorem 2, system (6) has no equilibria when a > 1, implying that no limit cycles 
exist in this case. Moreover, system (6) has two equilibria El and Er for x ∈ [−3π/2, π/2] when 
a = 1, which are saddle-nodes. By [14, Chapter 3], the index of any saddle-node is 0 and the sum 
of the index of all equilibria surrounded by any limit cycle is +1. Therefore, system (6) has no 
limit cycles when a = 1. �
Lemma 4. System (6) has no limit cycles when (a, b, c) ∈ G2.

Proof. When (a, b, c) ∈ G2, we have 0 ≤ a < 1 and b ≥ −c. First, we consider the case −b ≤
c ≤ b. Note that the divergence of the vector field of (6) is −b − c cosx ≤ 0. Thus, from the 
Dulac criterion in [14, Chapter 4], system (6) has no limit cycles when −b ≤ c ≤ b.

Next, we consider the case c > b. With the global transformation (x, y) → (x, y − F(x)), 
system (6) is changed into

ẋ = y − F(x), ẏ = −g(x), (11)

for x ∈ S1, where

F(x) = bx + c sinx, f (x) = F ′(x) = b + c cosx

and g(x) is shown in (6). When c > b, with the transformation

(x, y) → (x + arcsina, y + b arcsina + ac),

we move the equilibrium EC = (arcsina, b arcsina +ac) of system (11) to the origin and system 
(11) is rewritten as

ẋ = y − Fa(x), ẏ = −ga(x), (12)

where

Fa(x) = bx + c sin(x + arcsina) − ac, ga(x) = sin(x + arcsina) − a

and −π − 2 arcsina < x < π − 2 arcsina. Let

�(x,y) := G(x) + y2

2
= − cos(x + arcsina) +

√
1 − a2 − ax + y2

2
, (13)

where G(x) := ´ x

0 ga(s)ds. It follows from (13) that

d�

dt
|(12) = −ga(x)Fa(x)

= −(
sin(x + arcsina) − a

)(
bx + c sin(x + arcsina) − ac

)
= −c

(
sin(x + arcsina) − a

)2 − bx
(

sin(x + arcsina) − a
)

≤ 0 (14)
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in the strip −π − 2 arcsina < x < π − 2 arcsina. Assume that system (12) exhibits a limit cycle 
γ in strip −π − 2 arcsina < x < π − 2 arcsina. Clearly, we have

˛

γ

d� = 0.

However, we can obtain from (14) that

˛

γ

d� =
˛

γ

−ga(x)Fa(x)dt < 0,

indicating a contradiction. Therefore, system (6) has no limit cycles when (a, b, c) ∈ G2 �
Lemma 5. System (6) has at most one limit cycle in interval −π − arcsina < x < π − arcsina

when (a, b, c) ∈ G3. Moreover, the limit cycle is stable and hyperbolic if it exists.

Proof. It follows from c < −b/
√

1 − a2 that

√
a2 + b2

c2 <
√

a2 + 1 − a2 = 1.

Therefore, by system (6), we have

d(f (x)/g(x))

dx
= c

d(
b/c+cosx

sinx−a
)

dx
(15)

= c
− sinx(sinx − a) − (b/c + cosx) cosx

(sinx − a)2

= c
a sinx − b cosx/c − 1

(sinx − a)2

= c

√
a2 + b2

c2 sin(x + x0) − 1

(sinx − a)2 > 0

for x ∈ (−π − arcsina, arcsina) ∪ (arcsina, π − arcsina), 0 ≤ a < 1 and c < 0, where sinx0 =
b/

√
a2c2 + b2. Note that (x − arcsina)g(x) > 0 for x �= arcsina.

Now, consider the equivalent systems (11) and (12) of system (6). Let

z(x) :=
xˆ

0

ga(s)ds = − cos(x + arcsina) +
√

1 − a2 − ax.

Then, we have the two inverse branch functions x = x1(z) for 0 < x < π − 2 arcsina and x =
x2(z) for −π − 2 arcsina < x < 0. Furthermore, in strip −π − 2 arcsina < x < π − 2 arcsina, 
system (12) can be changed into
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Fig. 3. y = F(x) and equilibrium EC of system (11).

dz
dy

= Fa(x1(z)) − y =: H1a(z) − y,
dz
dy

= Fa(x2(z)) − y =: H2a(z) − y

by the transformation (x, y) → (z, y).
First, we need to present the relative position of the images of H1a(z) and H2a(z) in the zy-

plane to obtain the existence and uniqueness of limit cycles. Fig. 3(a) depicts the image curve 
for the function y = F(x), which becomes the curve y = Fa(x) after moving the equilibrium EC

of system (11) to the origin of system (12). Note that the function y = F(x) has three zeros at 
P0, Q0 and the origin O on the x-axis, and has the same negative function value at three other 
points Pa , Qa and equilibrium EC . Moreover, the abscissa of EC increases and the abscissae of 
Pa and Qa decrease when a increases. In the zy-plane, the curves y = H1a(z) and y = H2a(z)

are shown in Fig. 3(b), which are translated from the curve y = Fa(x) by the transformation 
(x, y) → (z, y). Note that the curves y = H1a(z) and y = H2a(z) become the curves y = H10(z)

and y = H20(z) when a = 0, respectively.
Since Fa(x) has exactly one positive zero and one negative zero, the curve H1a(z) (resp. 

H2a(z)) has a unique positive zero at z1a (resp. z2a). Moreover, (z − z1a)H1a(z) > 0 for z ∈
(0, z1a) ∪ (z1a, +∞) and (z − z2a)H2a(z) > 0 for z ∈ (0, z2a) ∪ (z2a, +∞). Note that z1a =
z2a = z10 for a = 0.

In the following, we prove that z1a < z2a for 0 < a < 1. Assume that there is an a ∈ (0, 1)

such that z1a = z2a . Then, we have

Fa(x1a) = Fa(x2a) and Ga(x1a) = Ga(x2a), (16)

where Fa(x1a) = Fa(x2a) = 0. By (16), it follows that

bx1a + c sin(x1a + arcsina) = bx2a + c sin(x2a + arcsina) (17)

and
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ax1a + cos(x1a + arcsina) = ax2a + cos(x2a + arcsina). (18)

It follows from (17) and (18) that

sin(x1a + arcsina + arcsin
b√

a2c2 + b2
) (19)

= sin(x2a + arcsina + arcsin
b√

a2c2 + b2
).

Since 0 < b < −c
√

1 − a2, we can obtain

0 < arcsina + arcsin
b√

a2c2 + b2
<

π

2
.

Further, by (19) we have

χ := x1a + x2a + 2 arcsina + 2 arcsin
b√

a2c2 + b2
= 2kπ + π, k ∈Z.

Moreover, applying −π − 2 arcsina < x2a < 0 < x1a < π − 2 arcsina, we obtain χ ∈ (−π, 2π)

and then k = 0. Thus, we obtain

χ = π (20)

There exists a unique x0 ∈ (0, π − arcsina) such that F(±x0) = 0. Since x1a < x0 and x2a <

−x0, we have x1a + x2a < 0 and

χ = x1a + x2a + 2 arcsina + 2 arcsin
b√

a2c2 + b2
< π,

which contradicts equality (20). Therefore, we have proven that z1a < z2a for 0 < a < 1.
By Proposition 2.1 of [1], system (12) has no closed orbits in the region x ∈ [x2(z1a), x1a] and 

a closed orbit of system (12) must surround the two points (x1a, 0) and (x2(z1a), Fa(x2(z1a))) if 
the closed orbit exists.

Next, we claim that system (12) has at most one limit cycle in interval (− arccos(−b/c), π −
2 arcsina). Moreover, the limit cycle is stable and hyperbolic if it exists. Note that F ′

a(x) has 
a unique zero at x = arccos(−b/c) − arcsina and that Fa(x) has a unique positive zero in the 
interval (− arccos(−b/c) − arcsina, π − 2 arcsina). By the monotonicity of f (x)/g(x) with 
respect to x in (15), the simultaneous equations

Fa(x1) = Fa(x2),
F ′

a(x1)

ga(x1)
= F ′

a(x2)

ga(x2)

have at most one dual solution {x1, x2} satisfying − arccos(−b/c) < x1 < 0 < x2 < π −
2 arcsina. Moreover, Fa(x)F ′

a(x)/ga(x) decreases for x ∈ (− arccos(−b/c) − arcsina, 0). Thus, 
by Theorem 2.1 of [4], the claim is proven.
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Fig. 4. Limit cycles of system (12) for parameter region G3.

In the following, we verify the uniqueness of limit cycles of system (12) when (a, b, c) ∈ G3. 
Assume that system (12) has two adjacent limit cycles γint and γout , where γint lies in the interior 
region surrounded by γout . We claim that

˛

γout

F ′
a(x)dt >

˛

γint

F ′
a(x)dt. (21)

In the first case, we consider that the limit cycles γint = γ2 and γout = γ3 surround the point 
J4 : (− arccos(−b/c) − arcsina, Fa(− arccos(−b/c) − arcsina)), where Fa(x) has a maximum 
value at − arccos(−b/c) −arcsina < 0, as shown in Fig. 4. Note that γi = ̂AiBiCiDiHiIiJiKiAi

for i = 1, 2, 3, where

xBi
= xDi

= arccos(−b/c) − arcsina, xKi
= xIi

= − arccos(−b/c) − arcsina,

yCi
= Fa(xCi

), yJi
= Fa(xJi

) xAi
= xHi

= 0. (22)

Letting y = y2(x) and y = y3(x) represent the orbit segments ̂K2A2B2 and ̂K3A3B3 respectively, 
we have

ˆ

̂K2A2B2

F ′
a(x)dt −

ˆ

̂K3A3B3

F ′
a(x)dt =

xB2ˆ

xK2

(
F ′

a(x)

y2 − Fa(x)
− F ′

a(x)

y3 − Fa(x)

)
dx

=
xB2ˆ

xK2

F ′
a(x)(y3 − y2)

(y2 − Fa(x))(y3 − Fa(x))
dx

< 0. (23)
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Similarly, we can obtain

ˆ

̂D2H2I2

F ′
a(x)dt −

ˆ

̂D3H3I3

F ′
a(x)dt < 0. (24)

Using (15), we can obtain that 
(
Fa(x) − Fa(arccos(−b/c) − arcsina

)
F ′

a(x)/ga(x) is increas-
ing for x ∈ (arccos(−b/c) − arcsina, π − 2 arcsina) and 

(
Fa(x) − Fa(− arccos(−b/c) −

arcsina)
)
F ′

a(x)/ga(x) is increasing for x ∈ (−π − 2 arcsina, − arccos(−b/c) − arcsina). Then, 
applying Theorem 2.1 of [4] or Lemma 4.5 of [14, Chapter 4], we have

ˆ

̂B2C2D2

F ′
a(x)dt −

ˆ

̂B3C3D3

F ′
a(x)dt < 0 (25)

and ˆ

̂I2J2K2

F ′
a(x)dt −

ˆ

̂I3J3K3

F ′
a(x)dt < 0. (26)

It follows from (23)-(26) that inequality (21) holds.
In the second case, we consider that system (12) has one limit cycle γ1 in strip

(− arccos(−b/c), π − 2 arcsina), as shown in Fig. 4. Note that system (12) has at most one 
limit cycle in this strip according to the aforementioned analysis. Take a closed curve

C1 := ̂H1J1A1 ∪ A1A2 ∪ ̂A2J2H2 ∪ H2H1.

It follows from the Green formula thatˆ

̂H1J1A1

F ′
a(x)dt −

ˆ

̂H2J2A2

F ′
a(x)dt =

˛

C

F ′
a(x)dt (27)

=
˛

C

−F ′
a(x)

g(x)
dy

=
¨

S(C)

−∂(F ′
a(x)/g(x))

∂x
dxdy < 0,

where S(C1) is the region surrounded by C1. Similarly, we also have

ˆ

̂A1C1H1

F ′
a(x)dt −

ˆ

̂A2C2H2

F ′
a(x)dt < 0. (28)

By (27)-(28), inequality (21) still holds for the closed orbits γ1 and γ2.
Let γint be the innermost limit cycle surrounding the origin of system (12), and it is internally 

stable because the origin is a source. It follows from Theorem 2.2 and its Corollary 1 of [14, 
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Chapter 4] that 
¸
γint

F ′
a(x)dt ≥ 0. Thus, we have 

¸
γout

F ′
a(x)dt > 0 by (21), implying that γout

is stable. Note that two adjacent limit cycles cannot be simultaneously stable. Therefore, system 
(12) has at most two limit cycles. Moreover, the inner limit cycle is semistable and the outer one 
is stable if system (12) has exactly two limit cycles. It is obvious that the vector field of system 
(12) is generalized rotated with respect to b according to [14, Chapter 4.3]. Assume that system 
(12) exhibits a semistable limit cycle γint for (a, b, c) = (a0, b0, c0). By the rotation in b0, system 
(12) bifurcates a stable limit cycle γ̂0 and an unstable limit cycle γ̃0 in a small neighborhood of 
γint , where γ̂0 lies in the interior region surrounded by γ̃0. Consequently, we obtain

˛

γ̃0

F ′
a(x)dt ≤ 0 ≤

˛

γ̂0

F ′
a(x)dt.

However, we can obtain that 
¸
γ̃0

F ′
a(x)dt >

¸
γ̂0

F ′
a(x)dt from (21). This is a contradiction, in-

dicating that systems (11) and (6) have at most one limit cycle in interval −π − arcsina < x <

π − arcsina when (a, b, c) ∈ G3, which is stable and hyperbolic. The conclusion in this lemma 
is proven. �

Based on the results in Lemmas 4 and 5, we consider the parameter region G4 in the following 
lemma.

Lemma 6. System (6) has no limit cycles when (a, b, c) ∈ G4.

Proof. First, we prove that the equivalent system (12) of system (6) has no limit cycles for 
b = −c

√
1 − a2. Assume that there is a dual {x1, x2} solution satisfying

Fa(x1) = Fa(x2) and Ga(x1) = Ga(x2), (29)

where −π − 2 arcsina < x1 < 0 < x2 < π − 2 arcsina. By (29) and c = −b/
√

1 − a2, we have

−
√

1 − a2x1 + sin(x1 + arcsina) = −
√

1 − a2x2 + sin(x2 + arcsina) (30)

and

ax1 + cos(x1 + arcsina) = ax2 + cos(x2 + arcsina). (31)

It follows from (30) and (31) that

sin(x1 + arcsina + arccosa) = sin(x2 + arcsina + arccosa).

Further, by arcsina + arccosa = π/2 and −π − 2 arcsina < x1 < 0 < x2 < π − 2 arcsina, we 
have x1 = −x2. By x1 = −x2 and (31), we further obtain that x1 = sinx1, implying x1 = x2 = 0. 
Thus, equations (29) have only the zero dual solution {x1, x2}. By Proposition 2.1 in [1], system 
(12) has no limit cycles for c = −b/

√
1 − a2.

Second, we prove that system (6) has no limit cycles for 0 < −c
√

1 − a2 < b < −c. Assume 
that system (6) has limit cycles for b = b0 ∈ (−c

√
1 − a2, −c) and that � is the innermost limit 

cycle. It follows from the stability of EC that � is internally unstable. Note that
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Fig. 5. Manifolds of saddles of system (6) under small perturbations of b + ε when 0 ≤ a < 1.∣∣∣∣ y − sinx + a − (b0 + c cosx)y

y − sinx + a − (b + c cosx)y

∣∣∣∣ = (b0 − b)y2 ≥ 0, (32)

where b ∈ (b0, b0 + ε) and ε > 0 is small. Moreover, the equality for (32) holds if and only 
if y = 0. Thus, analytic system (6) defines a family of generalized rotated vector fields for 
(x, y, b) ∈ R3 by Definition 3.3 in [14]. Therefore, unstable limit cycles of system (6) contract 
and stable limit cycles expand as b decreases; a semistable limit cycle of system (6) that is inter-
nally unstable bifurcates into an unstable one and a stable one as b0 decreases by Theorem 3.4 
of [14, Chapter IV], where the unstable one lies in the interior region surrounded by the stable 
one. Therefore, in system (6), a new unstable limit cycle occurs in a small interior neighborhood 
of � when b = b0 − δ, where δ > 0 is small. Further, unless b = −c

√
1 − a2, system (6) still 

has an unstable limit cycle since EC remains stable. This is a contradiction and the assertion is 
proven. �

In strip −π − arcsina < x < π − arcsina, let Wu
l0 (or Ws

l0) and Wu
r0 (or Ws

r0) be the unstable 
(or stable) manifold of equilibria El = (−π − arcsina, 0) and Er = (π − arcsina, 0) for system 
(6), respectively. System (6)|b→b+ε or system (6)|a→a+ε is regarded as a perturbation of system 
(6). Let Wu

lε (or Ws
lε ) and Wu

rε (or Ws
rε) be the unstable (or stable) manifold of equilibria El and 

Er of system (6)|b→b+ε or system (6)|a→a+ε , respectively.
In the following lemma, we reveal that the stable or unstable manifolds of two saddles of 

system (6) have some monotonicity with respect to a and b.

Lemma 7. When (a, b, c) ∈ G2 ∪ G3 ∪ G4, for any fixed a (resp. b) and c, the manifolds Wu
lε , 

Ws
lε , Wu

rε and Ws
rε vary monotonically as b (resp. a) varies monotonically. Specifically, when 

ε < 0 for b + ε, the manifolds Wu
lε and Ws

lε are situated above Wu
l0 and Ws

l0, but the manifolds 
Wu

rε and Ws
rε are situated below Wu

r0 and Ws
r0, respectively, as shown in Fig. 5. When ε < 0

for the perturbation a + ε, the manifolds Ws
lε and Ws

rε are situated above Ws
l0 and Ws

r0, but the 
manifolds Wu and Wu

rε are situated below Wu and Wu , respectively, as shown in Fig. 6.
lε l0 r0
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Fig. 6. Manifolds of saddles of system (6) under small perturbations of a + ε when 0 < a < 1.

Proof. Denote the points on Ws
l0 and Ws

lε by (x, ys
0(x)) and (x, ys

ε (x)), respectively, for x ∈
(−π − arcsina, δ) and δ ∈ (arcsina, π − arcsina). First, we consider that the manifolds Wu

lε , 
Ws

lε , Wu
rε and Ws

rε vary monotonically with respect to b. We can define the distance function 
z1,b(x) := ys

ε (x) − ys
0(x) for all x ∈ [−π − arcsina, δ]. Note that

z1,b(−π − arcsina) = 0.

For all x in [−π − arcsina, δ], we have
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z1,b(x) = z1,b(x) − z1,b(−π − arcsina)

= {
ys
ε (τ ) − ys

0(τ )
} |τ=x

τ=−π−arcsina

=
xˆ

−π−arcsina

(− sinx + a − (b + ε + c cosx)ys
ε (τ )

ys
ε (τ )

−− sinx + a − (b + c cosx)ys
0(τ )

ys
0(τ )

)
dτ

= H1(x) +
xˆ

−π−arcsina

z1,b(τ )H2(τ )dτ,

(33)

where

H1(x) := −ε(x + π + arcsina), H2(x) := sinx − a

ys
0(x)ys

ε (x)
.

It follows from (33) that

H2(x)z1,b(x) = H1(x)H2(x) + H2(x)

xˆ

−π−arcsina

z1,b(τ )H2(τ )dτ.

Letting

H3(x) :=
xˆ

−π−arcsina

z1,b(τ )H2(τ )dτ,

we have

dH3(x)

dx
− H2(x)H3(x) = H1(x)H2(x). (34)

Solving H3 from (34), we obtain that

H3(x) =
xˆ

−π−arcsina

H1(τ )H2(τ ) exp

⎧⎨
⎩

xˆ

τ

H2(η)dη

⎫⎬
⎭dτ. (35)

Thus, by (33) and (35), we can compute that

z1,b(x) = H1(x) +
xˆ

−π−arcsina

H1(τ )H2(τ ) exp

⎧⎨
⎩

xˆ

τ

H2(η)dη

⎫⎬
⎭dτ

= H1(−π − arcsina) exp

⎧⎨
⎩

xˆ
H2(η)dη

⎫⎬
⎭ +
−π−arcsina



JID:YJDEQ AID:10322 /FLA [m1+; v1.328; Prn:6/04/2020; 9:06] P.20 (1-30)

20 H. Chen, Y. Tang / J. Differential Equations ••• (••••) •••–•••
xˆ

−π−arcsina

H ′
1(τ ) exp

⎧⎨
⎩

xˆ

τ

H2(η)dη

⎫⎬
⎭dτ

= −ε

xˆ

−π−arcsina

exp

⎧⎨
⎩

xˆ

τ

H2(η)dη

⎫⎬
⎭dτ

{
< 0,if ε > 0,

> 0,if ε < 0,
(36)

which implies that Ws
lε is situated above Ws

l0 when ε < 0.
Denote the points on Wu

l0 and Wu
lε by (x, yu

0 (x)) and (x, yu
ε (x)), respectively, for x ∈ (−π −

arcsina, δ) and δ ∈ (arcsina, π − arcsina). We can also define the distance function z2,b(x) :=
yu
ε (x) − yu

0 (x) for all x ∈ [−π − arcsina, δ]. Using a similar computation as for (36), we have

z2,b(x) = −ε

xˆ

−π−arcsina

exp

⎧⎨
⎩

xˆ

τ

H̃2(η)dη

⎫⎬
⎭dτ =

{
< 0,if ε > 0,

> 0,if ε < 0
(37)

for all x ∈ [−π − arcsina, δ], where

H̃2(x) := sinx − a

yu
0 (x)yu

ε (x)
.

Thus, for 0 ≤ a < 1 and ε < 0, the manifolds Wu
lε and Ws

lε are situated above Wu
l0 and Ws

l0.
In addition, for the manifolds Wu

rε and Ws
rε , we can also obtain that they vary monotonically 

with respect to b by a similar analysis as for the manifolds Wu
lε and Ws

lε . Since the proof is 
similar, we omit it.

Next, we investigate the variation in the manifolds of saddles for the perturbed system 
(6)|a→a+ε when ε > 0. For simplicity, we denote the points on Ws

l0 and Ws
lε by (x, ys

0,a(x))

and (x, ys
ε,a(x)), respectively, for x ∈ (−π − arcsina, δ) and δ ∈ (arcsina, π − arcsina). We can 

define the distance function z1,a(x) := ys
ε,a(x) − ys

0,a(x) for all x ∈ [−π − arcsina, δ]. Note that 
z1,a(−π − arcsina) = 0 when ε = 0 and the equilibrium ((−π − arcsin(a + ε), 0) of perturbed 
system (6)|a→a+ε lies in a small neighborhood of the equilibrium ((−π − arcsina, 0) of system 
(6). Thus, we compute that

z1,a(−π − arcsina)

= 1

2
(−b + cρ −

√
(cρ − b)2 + 4ρ) (arcsin(a + ε) − arcsina) + o(|ε|) < 0, (38)

where ρ := √
1 − (a + ε)2 > 0 for small enough |ε|. For all x in [−π − arcsina, δ], we have
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z1,a(x) = z1,a(x) − z1,a(−π − arcsina) + z1,a(−π − arcsina)

= (
ys
ε,a(τ ) − ys

0,a(τ )
) |τ=x

τ=−π−arcsina +z1,a(−π − arcsina)

=
xˆ

−π−arcsina

(− sinx + a + ε − (b + c cosx)ys
ε,a(τ )

ys
ε,a(τ )

−− sinx + a − (b + c cosx)ys
0,a(τ )

ys
0,a(τ )

)
dτ + z1,a(−π − arcsina)

= Ĥ1(x) +
xˆ

−π−arcsina

z1,a(τ )Ĥ2(τ )dτ,

(39)

where

Ĥ1(x) := ε

xˆ

−π−arcsina

1

ys
ε,a(τ )

dτ + z1,a(−π − arcsina), Ĥ2(x) := sinx − a

ys
0,a(x)ys

ε,a(x)
.

Similar to the discussion for the perturbed system (6)|b→b+ε , we have

z1,a(x) = Ĥ1(x) +
xˆ

−π−arcsina

Ĥ1(τ )Ĥ2(τ ) exp

⎧⎨
⎩

xˆ

τ

Ĥ2(η)dη

⎫⎬
⎭dτ

= Ĥ1(−π − arcsina) exp

⎧⎨
⎩

xˆ

−π−arcsina

Ĥ2(η)dη

⎫⎬
⎭ +

xˆ

−π−arcsina

Ĥ ′
1(τ ) exp

⎧⎨
⎩

xˆ

τ

Ĥ2(η)dη

⎫⎬
⎭dτ

= ẑ1,a(−π − arcsina) exp

⎧⎨
⎩

xˆ

−π−arcsina

Ĥ2(η)dη

⎫⎬
⎭

+ε

xˆ

−π−arcsina

1

ys
ε,a(τ )

exp

⎧⎨
⎩

xˆ

τ

Ĥ2(η)dη

⎫⎬
⎭dτ

< 0 (40)

from (38) and (39). Therefore, the manifold Ws
lε is situated below Ws

l0; see Fig. 6(a). By a similar 
investigation, we can prove that the manifold Wu

rε is situated above Wu
r0 when ε > 0, the manifold 

Wu
lε is situated below Wu

l0 when ε < 0, and the manifold Ws
rε is situated above Ws

r0 when ε < 0; 
see Fig. 6(b). Thus, the conclusion is proven. �
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From Lemma 5, we can obtain the uniqueness of limit cycles but not solve the existence 
problem. In the following proposition, we further research the existence of limit cycles and ho-
moclinic (or heteroclinic) orbits when (a, b, c) ∈ G3.

Proposition 8. When (a, b, c) ∈ G3, there are three continuous functions b = ϕ(a, c), b =
ψ1(a, c) and b = ψ2(a, c) such that 0 < ψ2(a, c) < ϕ(a, c) < −c

√
1 − a2 for 0 < a < 1, 

ϕ(1, c) = 0, ϕ(0, c) = ψ1(0, c) = ψ2(0, c) > 0 and the following statements hold:

(a): System (6) has one homoclinic loop that connects the right saddle Er = (π − arcsina, 0) if 
and only if b = ϕ(a, c) for 0 < a < 1 and one two-saddle loop if and only if b = ϕ(0, c) for 
a = 0.

(b): System (6) has exact one limit cycle if and only if ϕ(a, c) < b < −c
√

1 − a2.
(c): System (6) has no limit cycles if and only if 0 < b ≤ ϕ(a, c).
(d): System (6) has an upper saddle connection if and only if b = ψ1(a, c) for 0 ≤ a < 1, 

where ψ1 is increasing with respect to a. There exists a unique a∗ ∈ (0, 1) such that 
−c

√
1 − (a∗)2 = ψ1(a

∗, c).
(e): There exists a unique a∗ ∈ (0, 1) such that system (6) has a lower saddle connection if and 

only if b = ψ2(a, c) for 0 ≤ a < a∗ < 1, where ψ2 is decreasing with respect to a and 
satisfies ψ2(a∗, c) = 0.

Proof. Consider the case b = 0 first in parameter region G3. We have

d�

dt
|(12) = −ga(x)Fa(x)

= −c
(

sin(x + arcsina) − a
)2

> 0 (41)

from (14), which implies that system (12) has neither limit cycles nor homoclinic loops. Note 
that system (12) has two saddles ẼR = (π − 2 arcsina, Fa(π − 2 arcsina)) and ẼL = (−π −
2 arcsina, Fa(−π − 2 arcsina)). From (13) we have

�(π − 2 arcsina,0) = 2
√

1 − a2 − a(π − 2 arcsina) (42)

and

�(−π − 2 arcsina,0) = 2
√

1 − a2 + a(π + 2 arcsina). (43)

It follows from (42) and (43) that

�(π − 2 arcsina,0) − �(−π − 2 arcsina,0) = −2aπ

{ = 0, for a = 0,

< 0, for a > 0.

Therefore, for system (12) the unstable manifold of saddle ẼL is situated above the stable mani-
fold of saddle ẼR in the upper half plane by (41).

With x → x + arcsina, system (6) can be written as

ẋ = y, ẏ = − sin(x + arcsina) + a − (
b + c cos(x + arcsina)

)
y (44)
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after moving the equilibrium E0 = (arcsina, 0) to the origin O . Note that system (44) has three 
equilibria

EL = (−π − 2 arcsina,0), O = (0,0), ER = (π − 2 arcsina,0).

Here, let Wu
L0 (or Ws

L0) and Wu
R0 (or Ws

R0) be the unstable (or stable) manifold of equilibria 
EL and ER for system (44), respectively. When b = 0 and a = 0, the equivalent system (12) of 
system (44) is symmetric with respect to the origin. Thus, the unstable manifold of saddle ER is 
situated below stable manifold of saddle EL of system (44) in the lower half plane, as shown in 
Fig. 7(a). In addition, from (13) we have

lim
a→1

�(π − 2 arcsina,0) = 0 < lim
a→1

�(−π − 2 arcsina,0) = 2π. (45)

Thus, when b = 0 and a → 1, the manifolds of the two saddles are as shown in Fig. 7(b). Actu-
ally, we can obtain that the unstable manifold of saddle EL is situated above the stable manifold 
of saddle ER of system (44) in the y > 0 half plane by (45). Therefore, by Lemma 7, in the y < 0
plane, the perturbed manifold Ws

Lε is situated below Ws
L0, but the perturbed manifold Wu

Rε is 
situated above Wu

R0 when a → a + ε and ε > 0. Further, by Fig. 7(a)-(b) and Lemma 7, there is 
a unique value a∗ ∈ (0, 1) such that the unstable manifold of saddle ER and the stable manifold 
of saddle EL coincide in the lower half plane, i.e., there is a lower saddle connection between 
the two saddles, as shown in Fig. 7(c).

When b = −c
√

1 − a2, system (44) can be written in the following form:

dy

dx
= − sin(x + arcsina) + a

y
+ c

√
1 − a2 − c cos(x + arcsina). (46)

With x → −x, equation (46) can be changed into

dy

dx
= − sin(x − arcsina) − a

y
− c

√
1 − a2 + c cos(x − arcsina). (47)

By

dy

dx
|(46) − dy

dx
|(47) = 2a(1 − cosx)

y
+ 2c

√
1 − a2(1 − cosx) ≤ 0 (48)

for y < 0 and the comparison theorem (see [9, Chapter 2]), we have that Ws
L0 lies below Wu

R0
for 0 ≤ a < 1 and y < 0. Actually, using (48), the image of the half-manifold of Ws

L0 after the 
change x → −x for x < 0 and y < 0 will connect with the point (π + 2 arcsina, 0) and lie above 
the half-manifold of Ws

L0 for x > 0 and y < 0. Thus, as x = π −2 arcsina, we have that Ws
L0 lies 

below ER for 0 ≤ a < 1 and y < 0, and the relative positions of Ws
L0 and Wu

R0 can be obtained, 
i.e., Ws

L0 is situated below Wu
R0. Moreover, denote the abscissa of the first intersection point of the 

negative x-axis and Wu
R0 in the y < 0 half plane by x3

R , and we have −π − 2 arcsina < x3
R < 0. 

When a = 0, system (44) is symmetric with respect to the origin, implying that Ws
R0 is situated 

above Wu
L0 in the upper half plane, as shown in Fig. 8(a) for a = 0. By a similar analysis as for the 

case of b = 0, we can show the relative position of the manifolds of the two saddles in Fig. 8(b) 
when a → 1. Therefore, there is a unique value a∗ ∈ (0, 1) such that Ws and Wu coincide in 
R0 L0
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Fig. 7. Manifolds of saddles of system (44) when b = 0.

the upper half plane by the continuity of vector fields and Lemma 7, i.e., there is an upper saddle 
connection between the two saddles, as shown in Fig. 8(c). Applying Lemma 7 again, there are 
no upper saddle connections between the two saddles when b = −c

√
1 − a2 and a �= a∗.

By Lemma 7, Fig. 7 and Fig. 8(a, c), there is a unique function b = ψ1(a, c) such that the 
upper saddle connection of system (6) persists and 0 < ψ1(a, c) ≤ −c

√
1 − a2 when 0 ≤ a ≤ a∗. 

Moreover, the functions b = ψ1(a, c) and b = −c
√

1 − a2 have a unique intersection a = a∗
from the above analysis for Fig. 8, i.e., −c

√
1 − (a∗)2 = ψ1(a

∗, c). Using the continuity of vector 
fields, the function b = ψ1(a, c) persists when a∗ < a ≤ 1. Assume that system (6) has an upper 
saddle connection b = ψ1(a, c) for (a, b, c) = (a0, b0, c0). From Lemma 7, for b0 = ψ1(a0, c0)

and ε > 0, there is a unique value δ > 0 such that the upper saddle connection persists when 
b0 − δ = ψ1(a0 − ε, c0). Therefore, ψ1 is increasing with respect to a.

When a = 0, applying the symmetry of vector fields, Fig. 7(a) and Lemma 7, we can obtain a 
unique continuous function b = ϕ(0, c) ∈ (0, −c) such that system (6) has a 2-saddle heteroclinic 
loop HE, where ϕ(0, c) = ψ1(0, c). Using a similar approach as for the upper saddle connec-
tion of system (6), we obtain the unique function b = ψ2(a, c) corresponding to the bifurcation 
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Fig. 8. Manifolds of saddles of system (44) when b = −c
√

1 − a2.

surface of the lower saddle connection of system (6), where ψ2 is decreasing with respect to a, 
ϕ(0, c) = ψ2(0, c) and ψ2(a∗, c) = 0. Then, the statements (d) and (e) of this proposition are 
proven. Moreover, ψ1(a, c) > ψ2(a, c) for a > 0 by monotonicity. In other words, system (6)
has no 2-saddle heteroclinic loops for a > 0.

When a∗ ≤ a < 1 or a∗ ≤ a < 1, by Fig. 7(b, c), Fig. 8(b, c) and Lemma 7, there is a unique 
function b = ϕ(a, c) ∈ (0, −c

√
1 − a2) such that system (6) has a homoclinic loop that connects 

right saddle Er . Obviously, ϕ(a, c) should connect with Bogdanov-Takens bifurcation curve BT

and 2-saddle heteroclinic loop HE. Thus, b = ϕ(a, c) persists when 0 ≤ a ≤ 1.
Consider the case 0 < a < min{a∗, a∗}. Assume that system (6) has a homoclinic loop �l

that connects the left saddle when (a, b, c) = (a0, b0, c0), as shown in Fig. 9. We can find that 
�l lies below a stable manifold and above an unstable manifold of Er . By Lemma 7, for fixed 
(a, c) = (a0, c0), there are values b1 and b2 such that system (6) has an upper saddle connection 
for b = b1 and a lower saddle connection for b = b2, where b1 < b0 < b2. In other words, we can 
obtain b1 = ψ1(a0, c0) < b2 = ψ2(a0, c0). However, it follows from the monotonicity of ψ1(a, c)
and ψ2(a, c) that ψ1(a0, c0) > ψ2(a0, c0). Applying Lemma 7, Fig. 7(a) and Fig. 8(a), there is 
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Fig. 9. Assume that system (6) has a homoclinic loop connecting El .

a function b = ϕ(a, c) ∈ (0, −c
√

1 − a2) such that system (6) has a homoclinic orbit that only 
connects with right saddle Er .

Note that for arbitrary b > b∗, we have∣∣∣∣ y − bx − c sin(x + arcsina) + ac − sin(x + arcsina) + a

y − b∗x − c sin(x + arcsina) + ac − sin(x + arcsina) + a

∣∣∣∣
= (b∗ − b)x

( − sin(x + arcsina) + a
) ≥ 0 (49)

when x ∈ (−π −2 arcsina, π −2 arcsina) for system (12). Moreover, the aforementioned equal-
ity holds if and only if x = 0. Thus, analytic system (12) defines a family of generalized rotated 
vector fields for (x, y, b) ∈ (−π − 2 arcsina, π − 2 arcsina) ×R ×R+ by Definition 3.3 in [14]. 
Then, the amplitude of the stable and unstable limit cycles of system (12) or its equivalent sys-
tem (6) varies monotonically when b varies in a fixed direction. By the above analysis, we obtain 
statements (a)-(c) of this proposition. �
4. Proof of Theorem 1 and numerical examples

Proof of Theorem 1. Using Theorem 2, we obtain complete local properties and bifurcations 
of all equilibria for system (6), including saddle-node bifurcation surface SN for the three equi-
libria El = (−π − arcsina, 0), E0 = (arcsina, 0) and Er = (π − arcsina, 0), Hopf bifurcation 
surface H for equilibrium E0, local bifurcation surface of homoclinic loop HL near cusp Er , 
and Bogdanov-Takens bifurcation curve BT , which is the intersection of SN , H and HL. In 
addition, from Proposition 8, we can present all nonlocal bifurcations, including the bifurcation 
surface of homoclinic loop HL, the bifurcation curve of 2-saddle heteroclinic HE, the bifur-
cation surfaces of upper saddle connection SC1 and lower saddle connection SC2 when c < 0. 
Their monotonicity with respect to the parameters and their relative positions are also obtained 
in this proposition. In addition, the dynamics on bifurcation surfaces and bifurcation curves have 
been described clearly in Theorem 2 and Proposition 8.

When a = b = c = 0 or b = c = 0 for 0 < a < 1, system (6) is a Hamiltonian system, whose 
dynamics is easy to obtain, as shown in Fig. 2 (q) and (r) for dynamics in the parameter regions 
HEC and HLC, respectively.

When c < 0, from Proposition 8 and the monotonicity of functions, the function b = ϕ(a, c)
for the bifurcation surface of homoclinic loop HL, the function b = ψ1(a, c) for the bifurca-
tion surface of upper saddle connection SC1 and the function b = ψ2(a, c) for the bifurcation 
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surface of lower saddle connection SC2 have a unique intersection at the bifurcation curve of 
2-saddle heteroclinic HE. Moreover, the functions b = ϕ(a, c) and a = 1 and the function 
b = −c

√
1 − a2 for Hopf bifurcation have a unique intersection at Bogdanov-Takens bifurcation 

curve BT . The functions b = ψ1(a, c) and a = 1 have a unique intersection at P1 = (1, ψ1(1, c)). 
The function b = ψ1(a, c) and the function b = −c

√
1 − a2 for Hopf bifurcation have a unique 

intersection at P2 = (a∗, −c
√

1 − a∗2). The functions b = ψ2(a, c) and b = 0 have a unique 
intersection at (a∗, 0). In addition, the dynamics on bifurcation surfaces and bifurcation curves 
have been clearly described in Theorem 2 and Proposition 8.

Based on the results of all bifurcation surfaces and curves, we divide the parameter space of 
system (6) into seven regions S1-S7 when c < 0 and three regions S5-S7 when c ≥ 0, as shown in 
Fig. 1 for the complete bifurcation diagram. Applying Lemma 3, Lemma 4, Lemma 6 and Propo-
sition 8, no closed orbits (including heteroclinic or homoclinic loops) exist when the parameters 
belong to regions S1, S2, S5-S7. Therefore, together with local dynamics, it is not difficult to 
obtain phase portraits when the parameters belong to these five regions. Note that system (6)
has a unique stable limit cycle when (a, b, c) ∈ SC12 and no limit cycles when (a, b, c) ∈ SC11

because of the Hopf bifurcation at P2 = (a∗, −c
√

1 − a∗2) and the generalized rotated proper-
ties of the vector field with respect to parameter b. When (a, b, c) ∈ S3 ∪ S4, system (6) has a 
unique stable limit cycle but no homoclinic loops by Lemma 5 and Proposition 8. Moreover, 
the relative locations of unstable (or stable) manifolds of equilibria El = (−π − arcsina, 0) and 
Er = (π − arcsina, 0) can be presented by Lemma 7. Then, we have the dynamics of system (6)
when (a, b, c) ∈ S3 ∪ S4. Therefore, we can obtain all phase portraits in Fig. 2 when c < 0.

When c ≥ 0, the local and nonlocal bifurcations are not as complicated as in the case of 
c < 0. There exist only the bifurcation surface of saddle-node SN and the bifurcation surface of 
upper saddle connection SC1. Actually, from Theorem 2, we can obtain the bifurcation surface 
of saddle-node SN . When c > 0 and b = 1/c, we can obtain

d(y − bx − ac)

dt
|(11) = −1

c
(y − bx − ac).

That is, the line y − bx − ac = 0 is invariant for system (11) when b = 1/c. Note that all three 
equilibria lie on the line y − bx − ac = 0 for b = 1/c. When c > 0 and a = b = 0, we can 
obtain the same phase portrait as in Fig. 8(a) because no limit cycles exist by Theorem 2 and 
Lemmas 3-4. Similarly, when c > 0, b = 0 and a → 1 − 0, we can obtain the same phase portrait 
as in Fig. 8(b) because no limit cycles exist by Theorem 2 and Lemma 4. From Lemma 7, there 
is a unique value a = a∗ for arbitrarily fixed c > 0 such that system (6) has an upper saddle 
connection when b = 0. Then, there is a unique function b = ψ1(a, c) such that the upper saddle 
connection of system (6) persists. In addition, the bifurcation surface SC1 of the upper saddle 
connection is located between the line

{(a, b, c) ∈ G : b = 1/c, 0 < a < 1, c > 0}

and the line {(a, b, c) ∈ G : b = 0, 0 < a < 1, c > 0}. When c = 0, the approach is similar to 
the case of c > 0. The difference is that bifurcation surface SC1 should connect with bifurcation 
curve HEC according to the dynamics on this curve. �

In the following, we illustrate some theoretical results by numerical simulations.
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Fig. 10. Numerical phase portraits of (6).

Example 1. Let (a, c) = (0.5, −1). When b = 0.6, 0.8, 0.56082 and 0.78665, we can obtain the 
phase portraits, as the parameters belong to the regions S3, S4, HL and SC12, respectively, as 
shown in Fig. 10 (a)-(d).
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Fig. 11. Numerical phase portraits of (6).

Example 2. Let (a, c) = (0.2, −1). When b = 0.1515, 0.1, 1.2 and 0.24, we can obtain the phase 
portraits, as the parameters belong to regions SC2, S1, S5 and S2, respectively, as shown in Fig. 10
(e)-(f) and Fig. 11 (a)-(b).
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Example 3. Let (a, c) = (0.6, −1). When b = 0.801 and 0.89966, we can obtain the phase por-
traits, as the parameters belong to regions S6 and SC11 respectively, as shown in Fig. 11 (c)-(d).

Example 4. When (a, b, c) = (1, 0, −1) and (a, b, c) = (0, 0.3215, −1), we can obtain the phase 
portraits, as the parameters belong to regions BT and HE respectively, as shown in Fig. 11 (e)-
(f).
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