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This paper concerns the linear stability of the well-known periodic orbits of

Lagrange in the three-body problem. Given any three masses, there exists a family of

periodic solutions for which each body is at the vertex of an equilateral triangle and

travels along an elliptic Kepler orbit. Reductions are performed to derive equations

which determine the linear stability of the periodic solutions. These equations depend

on two parameters – the eccentricity e of the orbit and the mass parameter
b ¼ 27ðm1m2 þ m1m3 þ m2m3Þ=ðm1 þ m2 þ m3Þ

2: A combination of numerical and

analytic methods is used to find the regions of stability in the be-plane. In particular,
using perturbation techniques it is rigorously proven that there are mass values

where the truly elliptic orbits are linearly stable even though the circular orbits

are not. # 2002 Elsevier Science (USA)

Key Words: n-body problem; linear stability; relative equilibria; Lagrange’s
equilateral triangle solutions.
1. INTRODUCTION

In 1772, Lagrange discovered one of the most simple and elegant
solutions to the n-body problem [5]. It consists of three masses located at the
vertices of an equilateral triangle, each traveling along a specific Kepler
orbit. The triangular configuration of the bodies is maintained over the
course of the motion. This family of solutions was one of the first explicit
solutions given in the three-body problem. Contained in the family are two
types of periodic orbits: rigid circular motion (choosing a circular Kepler
orbit) and homographic motion (choosing an elliptic Kepler orbit).
Although Lagrange thought his equilateral triangle solutions were of no
great practical significance, it was later realized that the sun, Jupiter and the
Trojan asteroids formed such a configuration in our galaxy. Thus, it became
fruitful to study the behavior of nearby solutions.
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A crucial first step in analyzing the local behavior near a periodic solution
is to compute the characteristic multipliers of the linearized equations. For
the circular case, this was first accomplished by Gascheau in 1843 in his
thesis [3]. He proved that linear stability was achieved only when the masses
satisfied

m1m2 þ m1m3 þ m2m3
ðm1 þ m2 þ m3Þ

2
5
1

27
:

This rather well-known inequality is also often attributed to Routh [10].
The circular problem is made easier by the fact that in a rotating co-
ordinate frame, Lagrange’s circular solution becomes a fixed point. One can
obtain analytic expressions for the multipliers as functions of the mass
parameter

b ¼ 27ðm1m2 þ m1m3 þ m2m3Þ=ðm1 þ m2 þ m3Þ
2:

Then, using perturbation or continuation methods, the existence of nearby
periodic solutions can be proven (see for example [6] or [12]).
Calculating the characteristic multipliers for the elliptic Lagrange orbits

requires finding the fundamental matrix solution to the associated time-
dependent linear system. Unfortunately, this is difficult in general and
usually requires the use of numerical methods. In [1], Danby studies the
elliptic restricted three-body problem and uses numerical integration to
determine the linear stability of the elliptic Lagrange orbits. Using the
traditional mass value m and the eccentricity e as parameters, he obtains a
stability diagram in the me-plane and notes that there are cases where the
elliptic orbits appear to be linearly stable even though the circular ones
are not. We will show that the same phenomenon occurs in the unrestricted
problem.
First, we carefully reduce the dimensions of the problem from 12 to 4.

This is accomplished by eliminating the standard integrals and then
making a clever change of coordinates which decouples the associated
linear system. One of the resulting systems yields two þ1 multipliers,
expected due to the nature of the problem. The other system is four
dimensional and governs the linear stability of the periodic solution. This
system is surprisingly simple and only depends on the mass coefficient b and
the eccentricity e:
We then analyze the behavior of the characteristic multipliers and how

they vary with e and b: In general, as the eccentricity is increased, stability is
lost through a period-doubling bifurcation. A simple numerical method is
used to generate the period-doubling curve in the be-plane. Two crucial
values of b are located at b ¼ 3=4 and 1: For b ¼ 3=4; stability is
immediately lost for e > 0 while for b ¼ 1; stability is maintained locally for
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e > 0: We prove this analytically by using perturbation techniques and
perturbing away from the known case e ¼ 0: This result is crucial to the
linear stability analysis as it divides the stability diagram into two pieces and
rigorously proves that there are mass values where the elliptic orbits are
linearly stable even though their circular counterparts are not.

2. LAGRANGE’S EQUILATERAL TRIANGLE SOLUTIONS

We begin with the equations of motion for the planar n-body problem.
Letting mi and qi 2 R2 denote the mass and position, respectively, of the ith
body, the second-order equation for the ith body is

mi .qqi ¼
X
i=j

mimjðqj � qiÞ

jjqj � qijj
3

¼
@U
@qi

; ð1Þ

where U ðqÞ is the Newtonian potential function:

U ðqÞ ¼
X
i5j

mimj

jjqj � qijj
:

Following Meyer’s approach in [6], we look for solutions of the form qiðtÞ ¼
cðtÞzi; where cðtÞ is a scalar function and zi is a constant vector. For the
moment, identify R2 with the complex plane C so that qiðtÞ; cðtÞ and zi are
complex numbers. Substituting this guess into Eq. (1) yields

jcj3c�1 .ccmizi ¼
X
i=j

mimjðzj � ziÞ

jjzj � zijj3
:

This can be split into an equation for the scalar function cðtÞ

.cc ¼ �
mc

jcj3
ð2Þ

and an equation for the initial vectors fz1; z2; . . . ; zng

X
i=j

mimjðzj � ziÞ

jjzj � zijj
3

þ mmizi ¼ 0: ð3Þ

The motion of our special solution is determined by Eq. (2), which is simply
the planar Kepler problem. Among the solutions to this problem are
periodic orbits on circles and ellipses. The initial shape of the solution in
position space R2n is determined by Eq. (3). This is a complicated set of
nonlinear algebraic equations for which very few explicit solutions
are known. Solutions to (3) are called central configurations and a great
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deal of effort has gone into understanding their properties (see for
example [7, 11, 13]).
The above analysis shows that given a planar central configuration

fz1; z2; . . . ; zng; there exists a solution to the n-body problem where each
body travels along an ellipse with one focus at the origin. Since
multiplication by a complex number is geometrically the composition of a
rotation and a scaling, the shape (but not necessarily the size) of the
configuration is maintained for all time. In other words, the motion of
the solution is homographic. The larger the eccentricity of the Kepler orbit,
the more the size of the configuration is varied. A periodic solution of this
form with a circular Kepler orbit is often called a relative equilibrium, for in
a rotating coordinate frame this solution becomes a fixed point. We will
refer to any periodic solution of the form qiðtÞ ¼ cðtÞzi as a relative periodic

solution.
Perhaps, the most famous central configuration is Lagrange’s

equilateral triangle solution. This solution is a central configuration
for any choice of the three masses, a fact that can be understood
geometrically from the symmetry of the configuration. Indeed, the
gravitational force on any body in a central configuration is proportional
to its position. This is the case for the equilateral triangle. If the initial
velocity is zero, the configuration shrinks toward its center of mass
(homothetic motion) resulting in collision.
The coordinates fz1; z2; z3g for the equilateral triangle are functions

of the three masses m1; m2 and m3: Note that summing Eq. (3) over
all i yields

X3
i¼1

mizi ¼ 0

so that the center of mass is at the origin. This will be beneficial later
when we change coordinates. For simplicity, we choose z1 ¼ ða; 0Þ; with
a > 0: The other two coordinates z2 and z3 can be expressed in terms of
a by requiring the center of mass to be at the origin and making the
triangle equilateral. We then scale the triangle so that the parameter m in
Eq. (3) is set to one. This fixes a unique value of a as a function of the three
masses.
Fortunately, we do not need explicit expressions for fz1; z2; z3g to

perform the linear stability analysis of the relative periodic solution.
The only important feature is that the bodies lie at the vertices of
an equilateral triangle with center of mass at the origin. Let t
denote the length of the side of the equilateral triangle and
let M ¼ m1 þ m2 þ m3 represent the total mass. To find the scaling
of the triangle which yields m ¼ 1; we examine Eq. (3) for i ¼ 1:
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This gives

z1 ¼
m2ðz1 � z2Þ þ m3ðz1 � z3Þ

t3

¼
�m2z2 � m3z3 þ ðm2 þ m3Þz1

t3

¼
m1z1 þ ðm2 þ m3Þz1

t3

¼
M
t3

z1:

Since z1=0; we have

t ¼ M1=3: ð4Þ

Kepler’s equation (2) is solvable up to quadrature [6]. In polar
coordinates ðr; yÞ; the solution with m ¼ 1 is given by

rðtÞ ¼
o2

1þ e cos yðtÞ
; ’yy ¼

o
r2
; yð0Þ ¼ 0;

where e; the eccentricity of the ellipse, and o; the angular momentum, are
two parameters. We have chosen the argument of the perihelion and yð0Þ
both to be zero. This means the true anomaly begins at zero and is measured
from the positive horizontal axis. While these choices clearly do not affect
the stability of the periodic orbit, the parameters e and o could. As e gets
larger, the orbit becomes more eccentric and the triangle dilates and expands
to a greater amount. This suggests a loss of stability for larger values of e;
although we show in Section 4 that this is not always the case. As o is
varied, the angular speed of the orbit and hence the period is altered. By
reducing the dimensions of the problem, we show that this has no effect on
the linear stability of Lagrange’s triangle solutions.
If we write our central configuration in polar coordinates, zi ¼ riðcos yi;

sin yiÞ; then the position component of the periodic orbit is written as

qiðtÞ ¼ ri rðtÞ
cosðyðtÞ þ yiÞ

sinðyðtÞ þ yiÞ

 !
: ð5Þ

The period of the orbit T ; which is equivalent to the period of the Kepler
orbit, is given by

T ¼ o3
Z 2p

0

1

ð1þ e cos yÞ2
dy ¼

2po3

ð1� e2Þ3=2
;

where the last equality is a consequence of Kepler’s third law.
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3. REDUCING FROM 12 TO 4 DIMENSIONS

We are interested in studying the linear stability of Lagrange’s equilateral
triangle solutions and how this stability depends on the masses and
eccentricity of the orbit. To do this, we must compute a fundamental matrix
solution X ðtÞ to the equations of motion linearized about the periodic orbit.
The monodromy matrix is the matrix C satisfying X ðt þ T Þ ¼ X ðtÞC (see [4,
Ch. 37]). In particular, if we choose initial conditions X ð0Þ ¼ I ; then C ¼
X ðT Þ: The monodromy matrix is the linear part of the time T flow about the
periodic orbit. Stability is governed by the eigenvalues of the monodromy
matrix, called the characteristic multipliers. Since we are dealing with a
Hamiltonian system, C is symplectic and the multipliers are symmetric
about the unit circle. In order to have linear stability, it is necessary that all
the multipliers have modulus one.
As is well known, the n-body problem is a Hamiltonian system with

several integrals. These integrals show up in the linear stability analysis as
characteristic multipliers with a value of þ1: For example, if we vary the
center of mass for the relative periodic solution but maintain the total linear
momentum equal to zero, then the elliptic orbits for each mass will revolve
around a different point. In the full phase space R2n; this corresponds to
a two-dimensional surface of periodic orbits. Any vector tangent to this
surface corresponds to a left eigenvector of the monodromy matrix with
eigenvalue þ1 (see [6, p. 134]). If the total linear momentum is not zero, then
nearby orbits will have different periods and drift apart in the full phase
space, leading to instability in the classical sense. It follows that the
monodromy matrix has two 2
 2 Jordan blocks of the form

1 1

0 1

" #

corresponding to the center of mass and total linear momentum integrals.
It is natural then to define the linear stability of the relative periodic

solution on a reduced space by fixing all the integrals and obtaining the non-
trivial multipliers [8, 9]. For the planar n-body problem there will always be
8 trivial multipliers for any relative periodic solution. There are 2 from the
center of mass, 2 from the total linear momentum, 2 from the SOð2Þ
symmetry and angular momentum, 1 from the Hamiltonian and 1 from the
periodic orbit itself.

Definition. A relative periodic solution of the planar n-body problem
has 8 trivial characteristic multipliers of value þ1: The solution is spectrally

stable if the remaining multipliers lie on the unit circle and linearly stable,
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if in addition, the monodromy matrix restricted to the reduced space is
diagonalizable.

3.1. Eliminating the Standard Integrals

We now reduce the dimensions of our problem from 12 to 6. Let the
momenta of each body be pi ¼ mi ’qqi: The Hamiltonian for the three-body
problem is

H1 ¼
jjp1jj

2

2m1
þ

jjp2jj
2

2m2
þ

jjp3jj
2

2m3
�

m1m2
jjq2 � q1jj

�
m1m3

jjq3 � q1jj
�

m2m3
jjq3 � q2jj

:

We first eliminate the center of mass and total linear momentum by using
Jacobi coordinates. Specifically, set

u1 ¼ q2 � q1; v1 ¼ �
m2

m1 þ m2
p1;

u2 ¼ q3 �
1

m1 þ m2
ðm1q1 þ m2q2Þ; v2 ¼ �

m3
M

ðp1 þ p2 þ p3Þ þ p3;

u3 ¼
1

M
ðm1q1 þ m2q2 þ m3q3Þ; v3 ¼ p1 þ p2 þ p3:

This is a symplectic change of variables. By setting u3 ¼ 0 and v3 ¼ 0; the
new Hamiltonian becomes

H2 ¼
jjv1jj2

2M1
þ

jjv2jj2

2M2
�

m1m2
jju1jj

�
m1m3

jju2 þM3u1jj
�

m2m3
jju2 þM4u1jj

;

where

M1 ¼
m1m2

m1 þ m2
; M2 ¼

m3ðm1 þ m2Þ
M

;

M3 ¼
m2

m1 þ m2
; M4 ¼ �

m1
m1 þ m2

:

Note that we are justified in choosing u3 ¼ 0 and v3 ¼ 0 because on our
periodic orbit we have X3

i¼1

miqi ¼ c
X3
i¼1

mizi ¼ 0

and similarly, X3
i¼1

pi ¼ ’cc
X3
i¼1

mizi ¼ 0:

This reduction reduces the dimensions from 12 to 8.
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Next, we change to symplectic polar coordinates to eliminate the integrals
due to the angular momentum and rotational symmetry. Set

ui ¼
ri cos yi
ri sin yi

 !
and vi ¼

Ri cos yi �
Yi

ri
sin yi

Ri sin yi þ
Yi

ri
cos yi

0
BB@

1
CCA

for i ¼ 1; 2: The new Hamiltonian then becomes

H3 ¼
1

2M1
R21 þ

Y21
r21


 �
þ
1

2M2
R22 þ

Y22
r22


 �
�

m1m2
r1

�
m1m3
d1

�
m2m3
d2

;

where

d1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 þM2

3 r
2
1 þ 2M3r1r2 cosðy2 � y1Þ

q
;

d2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 þM2

4 r
2
1 þ 2M4r1r2 cosðy2 � y1Þ

q
:

The angles only enter the Hamiltonian H3 in the form y2 � y1: This suggests
making a final symplectic change of coordinates by leaving the radial
variables alone and setting

u ¼ y1; U ¼ Y1 þY2;

f ¼ y2 � y1; F ¼ Y2:

The new Hamiltonian will be independent of u which means that U (angular
momentum) is an integral, and u is an ignorable variable. SettingY1 þY2 ¼
U ¼ c and plugging into the Hamiltonian H3 yields

H ¼
1

2M1
R21 þ

ðc� FÞ2

r21


 �
þ
1

2M2
R22 þ

F2

r22


 �
�

m1m2
r1

�
m1m3
d1

�
m2m3
d2

;

where we now have

d1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 þM2

3 r
2
1 þ 2M3r1r2 cos f

q
;

d2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 þM2

4 r
2
1 þ 2M4r1r2 cos f

q
:

This reduces the system to six dimensions, with the variables ðr1; r2;f;R1;
R2;FÞ:
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The equations of motion in these new variables are

’rr1 ¼
R1
M1

; ’rr2 ¼
R2
M2

; ’ff ¼
F� c
M1r21

þ
F

M2r22
;

’RR1 ¼
ðF� cÞ2

M1r31
�

m1m2
r21

�
m1m3M3ðr1M3 þ r2 cos fÞ

d31

�
m2m3M4ðr1M4 þ r2 cos fÞ

d32
;

’RR2 ¼
F2

M2r32
�

m1m3ðr2 þ r1M3 cos fÞ

d31
�

m2m3ðr2 þ r1M4 cos fÞ

d32
;

’FF ¼m3r1r2 sinf
m1M3
d31

þ
m2M4
d32

 !
:

Using (4) and (5), a short calculation reveals that the relative periodic
solution, denoted in general as gðtÞ; is written as

r1ðtÞ ¼C1rðtÞ; R1ðtÞ ¼ M1C1RðtÞ;

r2ðtÞ ¼C2rðtÞ; R2ðtÞ ¼ M2C2RðtÞ;

f ¼ y3 þ Z; F ¼ oM2C22 ; ð6Þ

where C1 ¼ t ¼ M1=3; C2 ¼ %rr3M=ðm1 þ m2Þ; and Z is the angle between the
vector z2 � z1 and the positive horizontal axis. Recall that

rðtÞ ¼
o2

1þ e cos yðtÞ
; ’rr ¼ R; ’yy ¼

o
r2
; yð0Þ ¼ 0

is the periodic solution to Kepler’s problem mentioned earlier. In
addition to the three masses, the two parameters in this solution are the
eccentricity e and the angular momentum o of the elliptic orbits. The
angular momentum integral for the full problem has the value U ¼ c ¼
oðM1C21 þM2C22Þ:
Note that along the periodic orbit gðtÞ; we have

r1ðtÞ ¼ d1ðtÞ ¼ d2ðtÞ
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since each of the above terms gives the length of one side of the triangle
formed by the three bodies. Simplifying d1ðtÞ ¼ d2ðtÞ gives

2%rr3 cos f ¼ M�2=3ðm1 � m2Þ ð7Þ

and then solving r1ðtÞ ¼ d1ðtÞ gives

%rr23 ¼ M�4=3ðm21 þ m1m2 þ m22Þ: ð8Þ

These expressions will be useful in simplifying the associated linear system.
Linearizing the six-dimensional system about the periodic solution gðtÞ

gives the time-dependent periodic linear Hamiltonian system

’xx ¼ J3D2H ðgðtÞÞx;

where J3 is the canonical matrix

J3 ¼
0 I3

�I3 0

" #
:

After a good deal of calculation and simplification, using expressions (6)–
(8), we have

J3D2H ðgðtÞÞ ¼

0 0 0
1

M1
0 0

0 0 0 0
1

M2
0

2o
C1r3

�2o
C2r3

0 0 0
c

oM1M2C21C
2
2r
2

a11 a12 a13 0 0
�2o
C1r3

a12 a22 �
C1
C2

a13 0 0
2o
C2r3

a13 �
C1
C2

a13 a33 0 0 0

2
666666666666666666664

3
777777777777777777775

;

where

a12 ¼
9m1m2m3

4M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m21 þ m1m2 þ m22

q 1

r3
; a13 ¼

3
ffiffiffi
3

p
m1m2m3ðm1 � m2Þ

4M2=3ðm1 þ m2Þ
2

1

r2
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and

a33 ¼
9m1m2m3

4M1=3ðm1 þ m2Þ
1

r
:

The coefficients aij; i; j 2 f1; 2g satisfy the important relation

1

C1M1
ðC1a11 þ C2a12Þ ¼

1

C2M2
ðC1a12 þ C2a22Þ ¼ �

3o2

r4
þ
2

r3
: ð9Þ

3.2. Decoupling the linear system

A linear, time-dependent periodic Hamiltonian system is one of the form

’xx ¼ JD2H ðtÞx; ð10Þ

where J is the canonical matrix

J ¼
0 I

�I 0

" #

and D2H ðt þ T Þ ¼ D2H ðtÞ:
When such a system results from linearizing about a periodic solution, there
are at least two þ1 characteristic multipliers. One of these is attributable to
the periodic orbit and another arises from the existence of an integral, which
in this case is the Hamiltonian H : This fact is easily proven via
differentiation (see [6] for example). Indeed, given a periodic solution gðtÞ
to a Hamiltonian system ’xx ¼ JrH ðxÞ; plugging in gðtÞ and differentiating
with respect to t yields

.gg ¼ JD2H ðgðtÞÞ’gg: ð11Þ

Thus, ’gg is a solution of the associated linear system. Since gðtÞ is periodic, so
is its derivative. If we choose coordinates so that ’gð0Þgð0Þ ¼ ð1; 0; . . . ; 0Þ; the first
column of the monodromy matrix is ð1; 0; . . . ; 0Þ and þ1 is an eigenvalue.
But relation (11) is important for another reason: It suggests a useful change
of coordinates. Choosing variables so that the periodic orbit is easily
represented helps decouple the system. This follows from a standard result
in the theory of Hamiltonian systems.
Define the skew-inner product of two vectors v;w 2 C

4n as

Oðv;wÞ ¼ vT Jw:

Note that JT ¼ �J ¼ J�1 so that J is orthogonal and skew-symmetric. A
key trait of linear Hamiltonian systems is that the skew-orthogonal
complement of an invariant subspace is also invariant.
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Lemma 3.1. Suppose W is an invariant subspace of the matrix

JD2H ðtÞ; then the skew-orthogonal complement of W ; defined as W ? ¼
fv 2 C

4n : Oðv;wÞ ¼ 0 8w 2 W g; is also an invariant subspace of JD2H ðtÞ:

Proof. Suppose v 2 W ?: Then, for any w 2 W we have

OðJD2H ðtÞv;wÞ ¼ vTD2H ðtÞJT Jw

¼ vTD2H ðtÞw

¼ � vT J #ww

¼ 0;

where #ww ¼ JD2H ðtÞw 2 W : Thus, JD2H ðtÞv 2 W ?: ]

Given an invariant subspace, Lemma 3.1 shows that a simple linear
change of variables will decouple the system. Specifically, suppose that W is
an invariant subspace for JD2H ðtÞ with basis B1 and let B2 be a basis for W ?:
Denote S ¼ ½B1 B2� as the matrix whose columns are the elements of the two
bases. Making the linear change of variables x ¼ Sz in (10) yields a
decoupled linear system of the form

’zz ¼
S1 0

0 S2

" #
z;

where S1 and S2 are the restrictions of JD2H ðtÞ to W and W ?; respectively.
The characteristic multipliers remain the same since the transformation is
linear.
To apply these ideas to our problem, we need to find an invariant

subspace for J3 D2H ðgðtÞÞ: As mentioned before, the periodic orbit itself
provides an excellent suggestion. We make use of the fact that the Kepler
solution rðtÞ satisfies

.rr ¼
o2

r3
�
1

r2
: ð12Þ

Differentiating this with respect to t yields

r
���
¼ �

3o2

r4
þ
2

r3


 �
’rr: ð13Þ
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From this we have

’gg ¼

C1 ’rr

C2 ’rr

0

M1C1 .rr

M2C2 .rr

0

0
BBBBBBBBB@

1
CCCCCCCCCA

and .gg ¼

C1 .rr

C2 .rr

0

M1C1 �
3o2

r4
þ
2

r3


 �
’rr

M2C2 �
3o2

r4
þ
2

r3


 �
’rr

0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

as expressions for the first and second derivatives of the periodic orbit.
Using relation (9), it is clear that

J3D2H ðgðtÞÞ’gg ¼ .gg;

J3D2H ðgðtÞÞ.gg ¼ �
3o2

r4
þ
2

r3


 �
’gg:

Then, the vectors w1 ¼ ðC1;C2; 0; 0; 0; 0Þ and w2 ¼ ð0; 0; 0;M1C1;M2C2; 0Þ
will span an invariant subspace W for J3D2H ðgðtÞÞ:
Consider the change of variables determined by

r1
r2
f

R1
R2
F

0
BBBBBBBBB@

1
CCCCCCCCCA

¼

C1 0 oC2M2=c 0 0 0

C2 0 �oC1M1=c 0 0 0

0 0 0 0 1 0

0 M1C1 0 oC2=c 0 0

0 M2C2 0 �oC1=c 0 0

0 0 0 0 0 1

2
6666666664

3
7777777775

x

X

y

Y

z

Z

0
BBBBBBBBB@

1
CCCCCCCCCA

ð14Þ

(recall that c ¼ oðM1C21 þM2C22Þ). The last four columns of the above
matrix are chosen to form a basis for the skew-orthogonal complement of
W : Consequently, by the remark after Lemma 3.1, this change of variables
will decouple our linear system into a 2
 2 and a 4
 4 system. The new
coordinates are

x ¼
o
c
ðM1C1r1 þM2C2r2Þ; X ¼

o
c
ðC1R1 þ C2R2Þ;

y ¼ C2r1 � C1r2; Y ¼ M2C2R1 �M1C1R2;

z ¼ f; Z ¼ F:
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Note that along the periodic orbit gðtÞ; x ¼ r; X ¼ R while y ¼ Y ¼ 0:
Thus, we expect the 2
 2 system in the x and X variables to identify the two
remaining þ1 multipliers, leaving the remaining four variables to decide the
linear stability of the relative periodic solution.
The equations for the x and X variables give a simple 2
 2 periodic, linear

Hamiltonian system:

’xx ¼ X ;

’XX ¼ �
3o2

r4
þ
2

r3


 �
x:

For the initial condition xð0Þ ¼ 0; X ð0Þ ¼ 1; making use of (13), we have as
a solution x ¼ k ’rr; X ¼ k .rr; where k ¼ o4=ðeð1þ eÞ2Þ is chosen so that X ð0Þ ¼
1: Since this is a periodic solution with the same period as the system itself,
the second column of the monodromy matrix for this system will be ð0; 1Þ:
Since we have a Hamiltonian system, the monodromy matrix is symplectic,
with a determinant one, and must have the form

1 0

* 1

" #
:

As expected, this yields the remaining two þ1 characteristic multipliers.
The equations for the remaining four variables come from computing the

restriction of J3 D2H ðgðtÞÞ to the space spanned by the last four columns of
the matrix in (14). Using relation (9), this gives

’yy

’YY

’zz

’ZZ

0
BBBB@

1
CCCCA ¼

0
1

M1M2
0 0

M1M2 �
3o2

r4
þ
2

r3


 �
�

a12c
oC1C2

0
a13c
oC2

�
2c

C1C2r3

2o
C1C2r3

0 0 d

a13
C2

0 a33 0

2
666666666664

3
777777777775

y

Y

z

Z

0
BBB@

1
CCCA:

We now make a time-dependent scaling of the variables using the
transformation #yy ¼ y=r; #YY ¼ rY ; #zz ¼ C1C2 z; #ZZ ¼ Z=ðC1C2Þ: Since this is
a linear transformation, it will not change the characteristic multipliers.
Next, we change the independent variable from t to y: In other words, use

dy
dt

¼
dy
dy

dy
dt

¼ y0 o
r2
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and similar expressions for ’YY ; ’zz; ’ZZ and ’rr: Dropping the hats off the
variables and letting 0 represent the derivative with respect to y; the new
system is

y0 ¼ �
r0

r
y þ

1

oM1M2
Y ;

Y 0 ¼
r4

o
M1M2 �

3o2

r4
þ
2

r3


 �
�

a12c
oC1C2


 �
y þ

a13cr3

o2C1C22
zþ

r0

r
Y �

2c
o

Z;

z0 ¼ 2y þ
c

o2M1M2
Z;

Z 0 ¼
a13r3

oC1C22
y þ

a33r2

oC21C
2
2

z: ð15Þ

It helps to convert the above system into two second-order equations.
Differentiating Eq. (15) with respect to y will yield terms involving ðr0Þ2 and
r00: The relation

r
o2

� 1 ¼
2ðr0Þ2 � rr00

r2

can be derived from Eq. (12). Using this, we obtain

y00 þ 2z0 ¼
3r
o2

�
a12cr4

o3M1M2C1C2


 �
y þ

a13cr3

o3M1M2C1C22
z;

z00 � 2y0 ¼
a13cr3

o3M1M2C1C22
y þ

a33cr2

o3M1M2C21C
2
2

z;

which reduces to

y00 þ 2z0 ¼
r
o2

ðð3� n1Þ y þ n2zÞ;

z00 � 2y0 ¼
r
o2

ðn2 y þ n1zÞ;

where

n1 ¼
9Kðm1 þ m2Þ

4Mðm21 þ m1m2 þ m22Þ
; n2 ¼

3
ffiffiffi
3

p
Kðm1 � m2Þ

4Mðm21 þ m1m2 þ m22Þ

and K ¼ m1m2 þ m1m3 þ m2m3:
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Our final change of variables comes from the symmetry of the previous
second-order equations. Specifically, let B be the symmetric matrix

3� n1 n2
n2 n1

" #

and let Q be its orthogonal matrix of eigenvectors so that QTBQ ¼ L is
diagonal. The change of variables

y

z

 !
¼ Q

#yy

#zz

 !

gives

#yy00

#zz00

 !
þ QT 0 2

�2 0

" #
Q

#yy0

#zz0

 !
¼

r
o2

L
#yy

#zz

 !
:

Since Q is orthogonal, it commutes with

0 2

�2 0

" #
:

The final second-order equations are then (dropping the hats)

y00 þ 2z0 ¼
r
o2

l1y;

z00 � 2y0 ¼
r
o2

l2z;

where l1;2 are the eigenvalues of B or roots of the quadratic

l2 � 3lþ
27K
4M2

¼ l2 � 3lþ
b
4
:

Recall that b ¼ 27ðm1m2 þ m1m3 þ m2m3Þ=ðm1 þ m2 þ m3Þ
2: Our final

four-dimensional system for the linearization about the relative periodic
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orbit gðtÞ is

y0

z0

Y 0

Z 0

0
BBB@

1
CCCA ¼

0 0 1 0

0 0 0 1

l1
1þ e cos y

0 0 �2

0
l2

1þ e cos y
2 0

2
66666664

3
77777775

y

z

Y

Z

0
BBB@

1
CCCA; ð16Þ

where the derivative is with respect to y: One crucial fact about this system is
that the masses only enter through l1;2 which are functions of the mass
coefficient b: Remarkably, the stability depends on one mass parameter b
rather than the three mass parameters m1;m2;m3: Moreover, since o is not
present, the angular momentum of the elliptic Kepler orbit does not affect
the linear stability.

4. LINEAR STABILITY ANALYSIS

In this section, we analyze the linear stability of the Lagrange equilateral
triangle solutions in terms of the parameters e and b: This entails computing
the fundamental matrix solution X ðyÞ to system (16) with initial conditions
X ð0Þ ¼ I4: The monodromy matrix, subsequently denoted by C; is then X ð
2pÞ and the eigenvalues of this matrix are the characteristic multipliers. The
map x/Cx can be interpreted as the linearization of the Poincare map on
our reduced space. Since system (16) has been derived from a Hamiltonian
system with coordinate changes which do not alter the multipliers, the
characteristic polynomial of C will be reciprocal [6]. In other words, l is an
eigenvalue of C if and only if 1=l is also an eigenvalue. Thus, to have linear
stability, we require that the eigenvalues reside on the unit circle.
The characteristic polynomial of C has the form

l4 þ al3 þ bl2 þ alþ 1; ð17Þ

where

a ¼ �trðCÞ and b ¼ 1
2
ððtrðCÞÞ2 � trðC2ÞÞ: ð18Þ

Given that the multipliers are on the unit circle, there are three ways in
which stability can be lost:

* period-doubling bifurcation (two �1 eigenvalues), occurring when
b ¼ 2a� 2;
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* two þ1 eigenvalues, occurring when b ¼ �2a� 2;
* Krein collision (repeated eigenvalues on the unit circle), occurring

when b ¼ a2=4þ 2:

In the first two cases, a pair of eigenvalues meets and then breaks off onto
the real line yielding an eigenvalue with modulus greater than one and an
eigenvalue with modulus less than one. Eigenvalues experiencing a Krein
collision lose stability when two pairs meet on the unit circle and then split
off into a complex quartet ðl; 1=l; %ll; 1=%llÞ: In terms of a and b; a
straightforward calculation shows that the stability region for quartic (17)
is given by the four conditions b52a� 2; b5� 2a� 2; b4a2=4þ 2 and
�44a44 (see Fig. 1).
We begin by analyzing the behavior of the multipliers for the circular

case e ¼ 0: In this case, the matrix in system (16) is constant and therefore,
the multipliers can be explicitly computed. The characteristic polynomial
FIG. 1. Stability region for l4 þ al3 þ bl2 þ alþ 1 in the ab-plane. The period-doubling
boundary is b ¼ 2a� 2 and the Krein collision curve is the parabola b ¼ a2=4þ 2:
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of the matrix

0 0 1 0

0 0 0 1

l1 0 0 �2

0 l2 2 0

2
6664

3
7775

is given by

r4 þ r2 þ b=4: ð19Þ

If r is a root of this polynomial, then e2pr is a characteristic multiplier. We
follow the behavior of these multipliers as b varies. In order to have
stability, the roots of (19) must be purely imaginary. It is easy to see that this
occurs only when 04b41:
Let qðkÞ ¼ k2 þ kþ b=4 and denote the two roots of qðkÞ as k1 and k2

where k24k140: As b increases from 0 to 1; k1 decreases monotonically
from 0 to 1=2 and k2 increases monotonically from �1 to 1=2: In the interval
b 2 ½0; 1�; the four multipliers occur in pairs e�iy1 and e�iy2 ; where y1 ¼
2p

ffiffiffiffiffiffiffiffiffi
�k1

p
and y2 ¼ 2p

ffiffiffiffiffiffiffiffiffi
�k2

p
: There are three important values of b:

* b ¼ 0) y1 ¼ 0 and y2 ¼ 2p (four þ1 multipliers),
* b ¼ 3=4) y1 ¼ p and y2 ¼

ffiffiffi
3

p
p (period doubling),

* b ¼ 1) y1 ¼ y2 ¼
ffiffiffi
2

p
p (Krein collision).

The value b ¼ 3=4 is especially significant as it represents a possible
location where we may lose stability for e=0: Indeed, we will show that
although the circular orbit is stable, the orbits with eccentricity nonzero are
linearly unstable. In contrast, as b passes through the Krein collision value
1; stability is lost in the circular case, but is actually preserved in the elliptic
case. In other words, at b ¼ 1; the multipliers pass through each other and
remain on the unit circle as the eccentricity increases from e ¼ 0: This yields
values of masses where the truly elliptic orbits are linearly stable even
though the circular orbits are not.
The above b values are the only place where bifurcations can occur. The

angle y1 increases from 0 to p as b increases from 0 to 3=4; while the angle y2
decreases from 2p to

ffiffiffi
3

p
p for the same b values. There are no Krein

collisions for b 2 ð0; 3=4Þ because y1 increases away from 0 faster than y2
decreases away from 2p: (Alternatively, the equation 2p ¼ 2pð

ffiffiffiffiffiffiffiffiffi
�k1

p
þffiffiffiffiffiffiffiffiffi

�k2
p

Þ is only satisfied when b ¼ 0:) After passing through the period-
doubling point at b ¼ 3=4; y1 increases from p to

ffiffiffi
2

p
p while y2 decreases

from
ffiffiffi
3

p
p to

ffiffiffi
2

p
p; ending in the Krein collision at b ¼ 1: The orbit is

linearly stable for 05b51 but only spectrally stable at b ¼ 0; 1: For values
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of b > 1; Eq. (19) has four complex roots and thus there will be a complex
quartet of multipliers leading to instability. This agrees with the classical
result of Gascheau mentioned in the introduction [3].
For e ¼ 0; we visualize the characteristic multipliers in Fig. 2 by sketching

the eigenvalue curve (dashed) in the ab-plane for different values of b; where
a and b are the coefficients of the quartic (17). For b 2 ½0; 1�; the values of a
and b are given by

a ¼ �2ðcos y1 þ cos y2Þ and b ¼ 2þ 4 cos y1 cos y2:

Note that the eigenvalue curve is tangent to the period-doubling boundary
at b ¼ 3=4 and crosses the Krein collision curve at b ¼ 1:
We now investigate the linear stability of the periodic orbits which are

truly elliptic (e=0). We accomplish this by numerically integrating
system (16) and calculating the eigenvalues of the monodromy matrix C:
FIG. 2. Stability diagram for the case e ¼ 0: The dashed curve describes the characteristic
multipliers. Two key b values are b ¼ 3=4; where two multipliers are �1 and b ¼ 1; where the
two pairs of multipliers meet on the unit circle. Stability is lost for b > 1:
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For a fixed b value, we start with e ¼ 0 and increase e; watching the
multipliers move around the unit circle. Stability is lost through a period-
doubling bifurcation, when two eigenvalues meet at �1 and then break off
onto the real axis. At this precise point, the orbit is spectrally stable but not
linearly stable. This was determined numerically by following the
eigenvectors as the period-doubling point was approached. To numerically
locate the bifurcation value, a simple bisection method was used in the
equation for period doubling, b ¼ 2a� 2: Specifically, for a fixed b; we
think of a and b as functions of e and consider the quantity b� 2aþ 2:
If this quantity is positive, we are below the period-doubling curve and
thus choose to average the current value of e with a larger one for which
b� 2aþ 2 is negative. This gives us a new e value. If b� 2aþ 2 is negative,
then we are above the curve and average with the previous value found
below the curve. Since b� 2aþ 2 is positive for e ¼ 0 (except for the key
value b ¼ 3=4) and is negative for e ¼ 1; we can always apply this numerical
method. One advantage of this method is that it is easy to obtain a bound
on the error of the final approximation. Using MATLAB, a simple
program was written to obtain the period-doubling bifurcation curve in the
be-plane. This curve is shown in Fig. 3 and is given with a relative error less
than 5
 10�7:
Note that for b ¼ 0; when two of the masses necessarily vanish, we obtain

four eigenvalues of þ1 for any value of the eccentricity e: This follows
because the problem decouples into two Kepler problems, one for each of
the infinitesimal masses. The multipliers for linearizing the two-dimensional
Kepler problem about a periodic orbit are all þ1 (two coming from the
angular momentum integral and SOð2Þ action, and two coming from the
period orbit and the Hamiltonian). Consequently, for b ¼ 0; aðeÞ ¼ �4 and
bðeÞ ¼ 6 are constant functions of the eccentricity.
Surprisingly, for b51 there exist regions of stability for the elliptic orbits,

even though their circular counterparts are linearly unstable. For these
cases, the eigenvalues are initially off the unit circle for e ¼ 0 but then return
in the form of a Krein collision at a value e ¼ ekc: Stability is then lost
through a period-doubling bifurcation at e ¼ epd : The Krein collision curve
was calculated using the same numerical method as for the period-doubling
curve, but with the quantity a2=4þ 2� b instead (see Fig. 3). As for the case
b51; the periodic orbit is only spectrally stable at parameter values along
the Krein collision curve and period-doubling curve. This was checked
numerically by examining the corresponding eigenvectors along these
curves. It should be pointed out that the stability diagram for the elliptic
restricted problem in [1] does resemble the one found here for the full
problem.
Note that the period-doubling curve reaches e ¼ 0 at b ¼ 3=4; in

agreement with our calculation of the eigenvalues in the circular case. This



FIG. 3. The linear stability diagram in terms of the parameters b and e: There are two
regions of linear stability labeled S. The period-doubling curve (pd) reaches the b-axis at
b ¼ 3=4: The Krein collision curve (kc) begins at b ¼ 1 and is tangent to the period-doubling
curve at the point ð1:209133; 0:314508Þ; where all four multipliers are �1:
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point is significant as it divides the stability region into two components, one
for b53=4 and one for b > 3=4:We can interpret Fig. 3 for fixed values of e;
moving horizontally across the graph rather than vertically. In the circular
case, we have linear stability for the interval 05b51: However, because of
the two stability components, we have two intervals of stability whenever
05e50:314508 and one interval of stability only when e50:314508: For
example, when e ¼ 0:1; we have linear stability for b 2 ð0; 0:61Þ and b 2
ð0:895; 1:02Þ:
We now prove analytically that the picture is accurate near the key

values b ¼ 3=4 and 1: We show that when b ¼ 3=4 perturbing in the
positive e direction leads to instability, while for b ¼ 1 perturbing in the
positive e direction leads to stability. This means that the linear system
at b ¼ 3=4; e ¼ 0 is stable under a constant Hamiltonian perturbation
(as b increases the multipliers pass through �1 without moving off
onto the real axis) but unstable under a time-dependent Hamiltonian
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perturbation (increasing e pushes the multipliers onto the real axis). In
complete contrast, the linear system at b ¼ 1; e ¼ 0 is unstable under
a constant Hamiltonian perturbation (increasing b pushes the multipliers
off the unit circle) yet stable under a time-dependent Hamiltonian
perturbation (as e increases, the multipliers pass through each other on
the unit circle).

Theorem 4.1. For b ¼ 3=4; two of the characteristic multipliers move off

the unit circle as the eccentricity e is increased away from 0; while for b ¼ 1;
all of the multipliers remain on the unit circle as e increases away from 0:
Consequently, there exist mass values b > 1 where the elliptic periodic orbits

are linearly stable although the circular orbits are not.

Proof. The last statement follows directly from the first. We will
show that the multipliers are on the unit circle for b ¼ 1 and e slightly
positive. Since they are not at a Krein collision or period doubling, they
cannot move off the unit circle under any small perturbation in the be-plane.
Thus, linear stability is guaranteed for b slightly larger than 1 and e slightly
larger than 0:
To prove the theorem, we use a perturbation method to expand the

coefficients of the monodromy matrix in powers of the eccentricity e: Since
we know the criterion for stability in terms of a and b; we do not need to
calculate the eigenvalues explicitly. Moreover, since a and b can be written
in terms of the trace of C; we can obtain expansions for a and b by
expanding the solution X ðyÞ to system (16) in powers of e:
Writing system (16) in powers of e yields

’xx ¼ ðA0 þ eA1ðyÞ þ e2A2ðyÞ þ � � �Þ x; ð20Þ

where

A0 ¼

0 0 1 0

0 0 0 1

l1 0 0 �2

0 l2 2 0

2
6664

3
7775; A1ðyÞ ¼

0 0 0 0

0 0 0 0

�l1 cos y 0 0 0

0 �l2 cos y 0 0

2
6664

3
7775

and

A2ðyÞ ¼

0 0 0 0

0 0 0 0

l1 cos2 y 0 0 0

0 l2 cos2 y 0 0

2
6664

3
7775:
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If we expand a solution to (16) in powers of e; xðyÞ ¼ x0ðyÞ þ ex1ðyÞ þ
e2x2ðyÞ þ � � � ; and substitute this into (20), we obtain

’x0x0 ¼ A0x0;

’x1x1 ¼ A0x1 þ A1ðyÞx0;

’x2x2 ¼ A0x2 þ A1ðyÞx1 þ A2ðyÞx0 ð21Þ

as equations for each term. Writing the fundamental matrix solution as
X ðyÞ ¼ X0ðyÞ þ eX1ðyÞ þ e2X2ðyÞ þ � � � ; where X0ð0Þ ¼ I4; X1ð0Þ ¼ 0; X2ð0Þ
¼ 0; . . . ; and solving the three differential equations above in succession
yields the following expansion:

X0ðyÞ ¼ eA0y; X1ðyÞ ¼ eA0y
Z y

0

e�A0sA1ðsÞeA0s ds

and

X2ðyÞ ¼ eA0y
Z y

0

e�A0sðA1ðsÞX1ðsÞ þ A2ðsÞeA0sÞ ds:

From the formulas for a and b in (18) and using the fact that X ðyþ 2pÞ ¼
X ðyÞX ð2pÞ; we have

a ¼ �tr X ð2pÞ and b ¼
1

2
ððtr X ð2pÞÞ2 � tr X ð4pÞÞ:

Using these formulas we can expand a and b in powers of e: One
important fact is that the trace of X1ð2pÞ and the trace of X1ð4pÞ both
vanish. This eliminates the first-order terms in the expansion for a and b;
forcing us to consider the X2 term. To see that these traces vanish, we
make use of the fact that trðP1P2Þ ¼ trðP2P1Þ for any two square matrices
P1; P2: We have

tr X1ð2pÞ ¼
Z 2p

0

trðeA0ð2p�sÞA1ðsÞeA0sÞ ds

¼
Z 2p

0

trðeA02pA1ðsÞÞ ds

¼ tr eA02p
Z 2p

0

A1ðsÞ ds

 �

¼ 0:
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An identical argument works to show that the trace of X1ð4pÞ also vanishes.
We therefore have a ¼ a0 þ e2a2 þ � � � and b ¼ b0 þ e2b2 þ � � � with

a0 ¼ �tr X0ð2pÞ; b0 ¼ 1
2
ððtr X0ð2pÞÞ

2 � tr X0ð4pÞÞ;

a2 ¼ �tr X2ð2pÞ; b2 ¼ tr X0ð2pÞtr X2ð2pÞ � 1
2
tr X2ð4pÞ:

When b ¼ 3=4; we obtain

a0 ¼ �2ðcos pþ cos
ffiffiffi
3

p
pÞ ¼ 0:667738;

b0 ¼ 2þ 4 cos p cos
ffiffiffi
3

p
p ¼ �0:6645237:

As expected, since b ¼ 2a� 2 at b ¼ 3=4; e ¼ 0; we have b0 ¼ 2a0 � 2:
Finding X2ðyÞ involves double integration since one integral is first needed to
calculate X1ðyÞ: Using Mathematica, we found that a2 ¼ 19:0878 and b2 ¼
�29:6561: These calculations were checked by numerically integrating the
three equations in system (21) and computing the traces directly. Therefore,
at b ¼ 3=4; we obtain

b� 2aþ 2 ¼ �67:8317e2 þ Oðe3Þ:

It follows that b52a� 2 for e sufficiently small and stability is lost when the
eccentricity is made nonzero.
When b ¼ 1; we have

a0 ¼ �4 cos
ffiffiffi
2

p
p ¼ 1:065021;

b0 ¼ 2þ 4 cos2
ffiffiffi
2

p
p ¼ 2:283568:

As expected, since b ¼ a2=4þ 2 at b ¼ 1; e ¼ 0; we have b0 ¼ a20=4þ 2:
Again using Mathematica, we found that a2 ¼ 22:5806 and b2 ¼ �24:6553:
These calculations were also checked by numerically integrating the three
equations in system (21) and computing the traces directly. Therefore, at
b ¼ 1; we have

b� a2=4� 2 ¼ �152:1262 e2 þ Oðe3Þ:

Thus, b5a2=4þ 2 for e sufficiently small and stability is preserved when the
eccentricity is made nonzero. This completes the proof of the theorem. ]

We visualize the result of the theorem in Fig. 4. Beginning on the dashed
curve corresponding to e ¼ 0; we fix b ¼ 3=4 and calculate the values a and
b as functions of e: The calculations in the theorem show that the curve
initially moves to the right and down, hence out of the stability region. In
contrast, when b ¼ 1; we begin on the Krein collision curve. We then move



FIG. 4. Examining the multiplier curves for fixed b and increasing eccentricity e in the
ab-plane. Remarkably, the curves are almost linear.
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to the right and down, but this pushes us into the stability region.
Eventually, the curve must cross the period-doubling curve and stability is
lost. Note that a similar phenomenon happens for b values larger than 1.
Here, however, we begin outside the stability region and as e increases, head
towards it. Thus, stability begins with a Krein collision and ends with a
period-doubling bifurcation (see Fig. 4).

Remark. (1) Surprisingly, if we fix b and treat e as a variable, then the
relationship between aðeÞ and bðeÞ appears to be linear in Fig. 4. Denote
F ðb; eÞ ¼ ðaðb; eÞ; bðb; eÞÞ as the map which sends the parameters b and e to
the coefficients of the quartic of the monodromy matrix. Then F would send
vertical lines in the be-plane to lines with negative slope in the ab-plane. A
careful examination of the data, however, reveals that this is actually not the
case although it appears so in the figure.

(2) In Fig. 3, the period-doubling curve does not look smooth at b ¼
3=4; e ¼ 0: This is correct and can be rigorously justified by considering the
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defining function Gðb; eÞ ¼ bðb; eÞ � 2aðb; eÞ þ 2 in the entire be-plane.
(Even though negative eccentricity is physically meaningless, it is perfectly
defined in system (16). In fact, as functions of eccentricity, a and b are both
symmetric with respect to the b-axis.) The period-doubling curve is given by
the level curve G ¼ 0 which contains the point b ¼ 3=4; e ¼ 0: From the
proof of Theorem 4.1, we know that @G=@e vanishes along the b-axis. It is a
straightforward calculation to show that @G=@b also vanishes at b ¼
3=4; e ¼ 0: In other words, ð3=4; 0Þ is a critical point of G: Computing the
Hessian of G at ð3=4; 0Þ shows it to be a saddle point. It follows that the level
curve G ¼ 0 is locally an X at b ¼ 3=4; e ¼ 0:

(3) In an attempt to generalize his work on the elliptic restricted problem,
Danby studied the linear stability of the elliptic triangle orbits in the full
three-body problem in [2]. However, the analysis there is incomplete. Danby
states in his abstract that, ‘‘this configuration is stable (against infinitesimal
displacements) if ðm1m2 þ m1m3 þ m2m3Þ=ðm1 þ m2 þ m3Þ

2 is less than some
quantity that depends only on the eccentricity of the Keplerian orbit’’. This
is incorrect since there are two regimes of stability for small values of the
eccentricity. When the eccentricity e is zero, we have linear stability for b51:
But for e 2 ð0; 0:314508Þ; we obtain two intervals of stability. This essential
dichotomy between the circular case and the elliptic case is overlooked by
Danby. This paper completes and corrects his work in the full three-body
problem.
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