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We study the T -periodic solutions of the forced pendulum equation u00 þ cu0 þ
a sinðuÞ ¼ lf ðtÞ; where f satisfies f ðt þ T

2
Þ ¼ �f ðtÞ: We prove that this equation

always has at least two geometrically distinct T -periodic solutions u0 and u1:We then
investigate the dependence of the set of T -periodic solutions on the forcing strength l:
We prove that under some restriction on the parameters a; c; the periodic solutions
found before can be smoothly parameterized by l; and that there are some l-intervals
for which u0ðlÞ; u1ðlÞ are the only T -periodic solutions up to geometrical

equivalence, but there are other l-intervals in which additional T -periodic solutions
bifurcate off the branches u0ðlÞ; u1ðlÞ: We characterize the global structure of the
bifurcating branches. Related to this bifurcation phenomenon is the phenomenon of

‘exchange of stability’ – in some l-intervals u0ðlÞ is dynamically stable and u1ðlÞ is
unstable, while in other l-intervals the reverse is true, a phenomenon which has
important consequences for the dynamics of the forced pendulum, as we show by

both theoretical analysis and numerical simulation. # 2002 Elsevier Science (USA)
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1. INTRODUCTION

In this work, we investigate the periodic solutions of the forced pendulum
equation with damping ðc50Þ

u00 þ cu0 þ a sinðuÞ ¼ lf ðtÞ; ð1Þ

where f : R ! R is continuous and T -periodic. By periodic solutions of (1),
we mean solutions satisfying

uðt þ T Þ ¼ uðtÞ for all t 2 R:
1
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Many studies have been devoted to the periodic solutions of (1) (see
surveys [8–11]), with various methods contributing to our (still partial)
understanding.
Here we study the periodic solutions of (1) when the forcing f is

T
2
-antiperiodic, that is

f t þ
T
2

� �
¼ �f ðtÞ for all t 2 R: ð2Þ

For example, the important special case f ðtÞ ¼ sinð2pT tÞ satisfies (2). We shall
see that under assumption (2) the problem exhibits some interesting
properties, including a striking bifurcation phenomenon, which are not
present for the case of general f :
Our main aim is to understand how the set of periodic solutions varies as

the parameter l; measuring the strength of the forcing, varies in some
interval I 	 R; all other parameters remaining fixed. We use several
methods of nonlinear analysis to piece together a description which we
unfold in the following sections.
A summary of our main results will be presented after we introduce some

notations that will serve us throughout this study.
We denote by Y the space of T -periodic functions x : R ! R which are

square-integrable on bounded intervals, with the norm

jjxjjY ¼
1

T

Z T

0

ðxðtÞÞ2 dt
� �1

2

and by X the following subspace of Y :

X ¼ fx 2 Y j xj½0;T 
 2 H2½0; T 
g:

If we assume that f is continuous, any solution u 2 X of (1) is, in fact, C2

and T -periodic, so it is a classical periodic solution of (1).
We are mainly interested in the dependence of the set of periodic solutions

on l; so we denote

S ¼ SðaÞ ¼ fðl; uÞ 2 R� X j u satisfies ð1Þg

(of course, S also depends on c and f ; but we suppress this dependence,
assuming that c and f are fixed). Many of our results may be considered as
descriptions of the set S: Of course, we cannot plot S; which is a subset of an
infinite-dimensional space, so when we wish to visualize our results, we shall
plot the set *SS 	 R2 (the ‘bifurcation diagram’) defined by

*SS ¼ *SSðaÞ ¼ fðl; jjujjY Þ j ðl; uÞ 2 Sg: ð3Þ
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We note that if u is a periodic solution of (1) then so is uþ 2pk for any
k 2 Z: We shall say that two periodic solutions of (1) are geometrically

equivalent if they differ by 2pk and geometrically distinct otherwise. It is
often convenient to identify geometrically equivalent periodic solutions,
since they correspond to the same physical motion.
We define

o ¼
2p
T
:

We now describe the picture that will emerge from the investigation to be
carried out in the following sections.
In Section 2, we show that when f satisfies (2) there always exist at least

two geometrically distinct solutions of (1) (this contrasts with the case of
general f with zero mean value, as will be discussed). In particular, it seems
that our result provides the first proof that the equation

u00 þ cu0 þ a sinðuÞ ¼ l sin
2p
T

t
� �

has at least two T -periodic solutions for any value of the parameters c; a; l;
and T :
We also prove that if a satisfies

05a5o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 þ c2

p
; ð4Þ

then there are two smooth branches of solutions u0ðlÞ; u1ðlÞ such that, for
each l 2 R; u0ðlÞ and u1ðlÞ are geometrically distinct periodic solutions of
(1) for the corresponding l: Of course together with u0ðlÞ and u1ðlÞ; we have
the periodic solutions which are geometrically equivalent to them, given by

u2jðlÞ ¼ u0ðlÞ þ 2jp; u2jþ1ðlÞ ¼ u1ðlÞ þ 2jp; j 2 Z:

The curvesSk 	 R� X defined bySk ¼ fðl; ukðlÞÞ j l 2 Rg ðk 2 ZÞ are thus
subsets of S; and will be called the curves of symmetric solutions (for a
reason which will be explained). We will see that ukð0Þ � kp; so that the
symmetric solutions ukðlÞ may be considered as the continuations of the
equilibrium solutions in the unforced case ðl ¼ 0Þ: Moreover, since
condition (4) implies that in the unforced case the only T -periodic solutions
are the equilibria (in the case c > 0 this is trivial; in the case c ¼ 0; (4) is
equivalent to 05a5o2; while the condition for nonexistence of nonconstant
T -periodic solutions is jaj4o2), a naive intuition might suggest that when
(4) holds the solutions ukðlÞ will be the only periodic solutions of (1). This,
however, is not the case. While it is true, as we show in Section 2, that there
are l-intervals for which ukðlÞ are the only periodic solutions, we show in
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Section 5 that in other l-intervals more periodic solutions bifurcate off the
curves Sk of symmetric solutions. This bifurcation phenomenon is related
to another phenomenon which we call the ‘exchange of stability’, which is
the subject of Section 4. Studying the dynamical stability of the symmetric
periodic solutions ukðlÞ (in the case c > 0), we discover that, while for l
sufficiently close to 0; ukðlÞ is stable if k is even and unstable if k is odd
(which is not surprising if we recall that ukðlÞ is the continuation of the
equilibrium ukð0Þ � kp), for larger values of l the solution curves which were
stable become unstable and vice versa. This ‘exchange of stability’ occurs
repeatedly as l increases. This phenomenon has striking dynamic
consequences, as we show by a numerical simulation of the forced
pendulum in Section 4.
In Sections 6 and 7, we make a finer analysis of the phenomena described

above, this time under the assumption that a > 0 is sufficiently small (or
in physical terms, that the pendulum is sufficiently long). Under this
assumption, we can obtain a complete description of the set of all periodic
solutions. To state these further results more precisely, we shall need to fix
some *ll (which may be arbitrarily large) and assume that l 2 I ¼ ½0; *ll
: Then,
as we shall show, there exists a0 > 0 (depending on *ll) such that when 05a
5a0; we can give a complete description of the set S\ ðI � X Þ as follows
(see Fig. 7):

(1) There exists a finite set of disjoint subintervals Ii ¼ IiðaÞ ð14i4nÞ
of I such that whenever l 2 I and l =2

Sn
i¼1 Ii; the symmetric solutions

ukðlÞ ðk 2 ZÞ are the only periodic solutions of (1) (so that there are precisely
two geometrically distinct solutions). When a tends to 0; the lengths of
the intervals IiðaÞ go to 0; and they concentrate near zeroes of an explicitly
given function.

(2) For each 14i4n; we have a curve Ci 	 Ii � X ; homeomorphic to
the real line, with Ci 	 S; such that Ci intersects each of the curves Sk

exactly once. The point of intersection of Ci andSk is a point of bifurcation
from the curve Sk and it is the unique such point for l 2 Ii: All points of
S\ ðIi � X Þ are either on Ci or on one of the Sk’s.

(3) An ‘exchange of stability’ occurs at every point of bifurcation from
Sk : Thus, if we look at the intervals forming the complement of

Sn
i¼1 Ii in I ;

then in each of them u0ðlÞ; u1ðlÞ are the only geometrically distinct solutions,
and their stability properties alternate from one interval to another.

The phenomena of exchange of stability and bifurcation were observed by
Schmitt and Sari [20] in their numerical study of the periodic solutions of the
forced pendulum in the case c ¼ 0 and f ðtÞ ¼ cosðotÞ: Our rigorous results
provide an explanation of these phenomena, give a formula for the location
of the bifurcation points in the limit of a ‘long’ pendulum, and show that
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these phenomena occur also for c > 0 and whenever the forcing term f
satisfies (2) (we note that pure harmonic forcings, as considered in [20], have
additional symmetry besides (2), which was essential for the numerical
method used there, as was the assumption that c ¼ 0).

2. EXISTENCE OF AT LEAST TWO PERIODIC SOLUTIONS

To introduce our first result, we recall the result of Mawhin and Willem
[12], who proved that when c ¼ 0; and when f satisfies

Z T

0

f ðtÞ dt ¼ 0; ð5Þ

Eq. (1) has at least two geometrically distinct periodic solutions. Note that
our assumption (2) implies (5). For some years it was an open question
whether the Mawhin–Willem result is true when c > 0; but Ortega provided
a counterexample ([14], and see also [2, 17]). We now show that if we replace
(5) by the stronger condition (2), the Mawhin–Willem result remains true for
c > 0 (of course, the method of proof is quite different}topological rather
than variational). The existence of a periodic solution when f satisfies (2)
was already proved by Mawhin [9, p. 127], so our contribution in Theorem 1
is only the fact that a second solution exists. We repeat the entire (simple)
argument, however, since it is also used in Theorem 2, which is fundamental
for the whole development that follows.

Theorem 1. If f satisfies (2) then (1) has at least two geometrically

distinct periodic solutions. In fact, it has a periodic solution u0; which is
T
2
-antiperiodic, and also a periodic solution u1 such that u1 � p is T

2
-

antiperiodic.

To prove Theorem 1, we first set up an appropriate functional–analytic
framework.
We define L : X ! Y (see the previous section for the definitions of X ; Y )

to be the linear operator

LðxÞ ¼ x00 þ cx0:

Assuming that f satisfies (5), we denote by x0 the unique periodic solution
of the linear equation

x000 þ cx00 ¼ f ðtÞ
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satisfying Z T

0

x0ðtÞ dt ¼ 0:

For example, in the case f ðtÞ ¼ sinðotÞ; we obtain

x0ðtÞ ¼
1

o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ o2

p sinðot � bÞ; ð6Þ

where b is defined by

cosðbÞ ¼ �
offiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ o2
p ; sinðbÞ ¼

cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ o2

p :

We define N : R� Y ! Y to be the nonlinear operator

N ðl; xÞðtÞ ¼ sinðlx0ðtÞ þ xÞ:

With this notation, we have that u 2 X is a periodic solution of (1) if and
only if u ¼ lx0 þ x; where x satisfies the equation

LðxÞ þ aN ðl; xÞ ¼ 0; x 2 X : ð7Þ

The study of periodic solutions of (1) is thus equivalent to the study of
solutions of Eq. (7).
We denote by Yn the subspace of Y consisting of T2-antiperiodic functions:

Yn ¼ x 2 Y j x t þ
T
2

� �
¼ �xðtÞ for all t 2 R

� �
ð8Þ

and Xn ¼ Yn \ X :
We note that LðXnÞ 	 Yn; so the restriction LjXn

is a linear operator from
Xn to Yn:Moreover, LjXn

is a Fredholm operator of index 0; and the kernel of
LjXn

is trivial, hence LjXn
is an isomorphism from Xn to Yn; so ½LjXn


�1:Yn ! Xn

is well defined. Since Xn 	 Yn; we will also view ½LjXn

�1 as an operator from

Yn to itself, and we note that as an operator from Yn to itself ½LjXn

�1 is

compact.
We now wish to consider Eq. (7), restricted to the subspace Xn: If this

restriction is made, we may rewrite the equation as

x ¼ �a½LjXn

�1ðN ðl; xÞÞ; x 2 Xn: ð9Þ

We note now that by the oddness of the sine function, and by the fact that

ð2Þ implies that x0 2 Xn; ð10Þ
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we have that x 2 Yn implies N ðl; xÞ 2 Yn: Therefore, we may define a
nonlinear operator from Yn to itself by

HlðxÞ ¼ �a½LjXn

�1ðN ðl; xÞÞ;

so that (9) is equivalent to

HlðxÞ ¼ x; x 2 Yn ð11Þ

(note that any solution x 2 Yn of (11) is automatically in Xn; so that (9) and
(11) are indeed equivalent). Moreover, by the compactness of ½LjXn


�1 : Yn !
Yn; Hl is compact. We also note that since

jjN ðl; xÞjjY41 for all l 2 R; x 2 Y ð12Þ

we have the bound

jjHlðxÞjjYn4ajj½LjXn

�1jjYn;Yn for all x 2 Yn: ð13Þ

We may, therefore, apply the Schauder fixed point theorem in a closed ball
of radius r ¼ ajj½LjXn


�1jjYn;Yn around the origin in Yn to conclude that (11) has
a solution x 2 Yn (which is in fact in Xn), so (7) has a solution x 2 Xn:Defining
u0 ¼ lx0 þ x; we have that u0 is a T

2
-antiperiodic solution of (1).

In order to prove the existence of a second periodic solution, we consider
the equation

x ¼ �HlðxÞ; x 2 Yn: ð14Þ

Applying the Schauder fixed point theorem as before, we obtain the
existence of a solution x 2 Xn:We now define %xx ¼ xþ p:We claim that %xx is a
solution of (7). Indeed,

Lð %xxÞ þ aN ðl; %xxÞ ¼ LðxÞ � aN ðl; xÞ ¼ Lðx� a½LjXn

�1 8 N ðl; xÞÞ

¼ Lðxþ HlðxÞÞ ¼ 0:

Therefore, u1 ¼ lx0 þ %xx is a periodic solution of (1), and u1 � p ¼ lx0 þ x is
T
2
-antiperiodic.
We note that u0 and u1 are indeed geometrically distinct, since if we had

u0 � u1 ¼ 2pk for some integer k then it would be impossible for both u0 and
u1 � p to be T

2
-antiperiodic. We have thus proven Theorem 1.

The Schauder fixed point theorem does not guarantee uniqueness of the
fixed point, but if we assume that a is sufficiently small then we may show
that Hl is a contraction (for any l), so we may apply the Banach fixed point
theorem to (11) and (14) in order to conclude that each of them has a unique

solution. Moreover, in this case we can apply the analytic implicit function
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theorem to conclude that these solutions depend analytically on
the parameters a and l: To obtain the conditions under which Hl is a
contraction, we shall need an upper estimate for jj½LjXn


�1jjYn;Yn ; which will
follow from the following inequality, which can be found in [5].

Lemma 1. If x 2 X satisfies
R T
0 xðtÞ dt ¼ 0 and y ¼ LðxÞ; then

jjxjjY4
1

o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 þ c2

p jjyjjY : ð15Þ

From Lemma 1, we conclude that

jj½LjXn

�1jjYn ;Yn4s ¼ sðT ; cÞ ¼

1

o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 þ c2

p : ð16Þ

For all x; y 2 Y ; we have

jjN ðl; xÞ � N ðl; yÞjjY ¼
1

T

Z T

0

j sinðlx0ðtÞ þ xðtÞÞ � sinðlx0ðtÞ þ yðtÞÞj2 dt
� �1

2

4
1

T

Z T

0

jxðtÞ � yðtÞj2
� �1

2

¼ jjx� yjjY : ð17Þ

Using (16) and (17) we conclude that, for all x; y 2 Yn;

jjHlðxÞ � HlðyÞjjYn4asjjx� yjjYn :

Therefore, the condition as51 implies that Hl is a contraction, so we obtain

Theorem 2. Assume f satisfies (2). If a satisfies

04a5
1

s
¼ o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 þ c2

p
; ð18Þ

then, for any l 2 R; there exists a unique periodic solution u0 ¼ u0ða; lÞ of (1)
which is also T

2
-antiperiodic, and a unique periodic solution u1 ¼ u1ða; lÞ of (1)

such that u1 � p is T
2
-antiperiodic. The mappings uk:½0; 1sÞ � R ! X ðk ¼ 0; 1Þ

are real analytic.

In the above theorem, we interpreted restriction (18) as a smallness
condition on a; and since a is inversely proportional to the length of the
pendulum, we may say that the theorem holds for a sufficiently long
pendulum. It would be equally possible to regard (18) as a condition on c;
ensuring that the damping is sufficiently large, or as a condition on T ;
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ensuring that the frequency of the forcing be sufficiently large. Later in this
work, we shall meet conditions similar to (18), and we shall continue to
regard them as smallness conditions on a:
We note that using (9) and the fact that ½LjXn


�1 is bounded as an operator
from Yn to the space C0 of continuous T -periodic functions with the
maximum norm, we have

jju0ða; lÞ � lx0jjC0 ¼ jja½LjXn

�1 8 N ðl; u0ða; lÞ � lx0ÞjjC04ajj½LjXn


�1jjYn;C0 ;

jju1ða; lÞ � lx0 � pjjC0 ¼ jja½LjXn

�1 8 N ðl; u1ða; lÞ � lx0 � pÞjjC0

4ajj½LjXn

�1jjYn;C0 ;

so that

jju0ða; lÞ � lx0jjC0 ¼ OðaÞ as a ! 0; ð19Þ

jju1ða; lÞ � lx0 � pjjC0 ¼ OðaÞ as a ! 0 ð20Þ

uniformly in l 2 R; and in particular u0ð0; lÞ ¼ lx0; u1ð0; lÞ ¼ lx0 þ p: We
note also that since when l ¼ 0 and a satisfies (18) the only T -periodic
solutions of (1) are u � 0 and u � p; we have u0ða; 0Þ � 0; u1ða; 0Þ � p for all
a satisfying (18).
We introduce the following notation for the periodic solutions that are

geometrically equivalent to u0ða; lÞ and u1ða; lÞ:

ukða; lÞ ¼
u0ða; lÞ þ pk k 2 Z even;

u1ða; lÞ þ pðk � 1Þ k 2 Z odd:

8<
:

Before proceeding, we would like to remark on a certain symmetry of
Eq. (1) under assumption (2). We define the linear mapping T:Y ! Y by

TðxÞðtÞ ¼ �x t þ
T
2

� �
: ð21Þ

It is easy to check that L and N ðl; �Þ both commute with T (for N ðl; �Þ this
follows from the fact that x0 2 Xn; which follows by (10)). This implies that if
u is a periodic solution of (1) then so is TðuÞ:
Let us call a periodic solution u of (1) symmetric if TðuÞ and u are

geometrically equivalent. We note that Tðukða; lÞÞ ¼ ukða; lÞ while Tðu1
ða; lÞÞ ¼ u1ða; lÞ � 2p; so all the ukða; lÞ ðk 2 ZÞ are symmetric in the above
sense. We would like to show that, when (18) holds, u0ða; lÞ and u1ða; lÞ are
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the only symmetric periodic solutions up to geometric equivalence. Indeed,
assume u is a symmetric periodic solution so that

TðuÞ � u ¼ 2pk

for some integer k: If k is even then %uu ¼ uþ pk is a periodic solution
satisfying

Tð %uuÞ ¼ TðuÞ � pk ¼ uþ 2pk � pk ¼ %uu;

that is, %uu is T
2
-antiperiodic, hence, by Theorem 2, %uu ¼ u0ða; lÞ; so

u is geometrically equivalent to u0ða; lÞ: Similarly, if k is odd then %uu ¼
uþ ðk þ 1Þp is a periodic solution satisfying Tð %uu � pÞ ¼ %uu � p; so %uu � p
is T

2
-antiperiodic, hence, by Theorem 2, %uu ¼ u1ða; lÞ; so u ¼ u1ða; lÞ�

ðk þ 1Þp is geometrically equivalent to u1: We have therefore proved

Theorem 3. Assume f satisfies (2) and a satisfies (18). Then the only

symmetric periodic solutions of (1) are ukða; lÞ ðk 2 ZÞ:

Since in our further investigations we shall assume that (18) holds, we can
refer to ukða; lÞ ðk 2 ZÞ as the symmetric periodic solutions. We note that
u0ða; lÞ; u1ða; lÞ are also symmetric in the geometrical sense that u0ða; lÞ is
symmetric about the downward position of the pendulum, and u1ðlÞ is
symmetric about the vertical position.
Condition (18) appearing in Theorems 2 and 3 is not merely an artifact of

our method of proof: indeed when c ¼ 0; f � 0; and a > o2; there is a
nonconstant periodic solution of (1) which is T

2
-antiperiodic, so the

conclusions of these theorems fail to hold. However, some information
may be obtained for arbitrary a and for sufficiently large values of l: Indeed,
by using the method which was developed in [7] one may prove the
following: assuming the set of critical points of x0 is of measure 0 and
denoting by C1ap the space of functions in Yn which are also C

1 with the norm
jjxjjC1ap ¼ maxt2R jx0ðtÞj (note that C1ap is invariant under Hl), we have that for
any r > 0;

lim
l!1

sup
jjxjjC1ap

4r
jjDHlðxÞjC1ap jjC1ap ;C1ap ¼ 0: ð22Þ

Since the range of HljC1ap is bounded in C1ap; we may choose r0 > 0 such that
the ball of radius r0 around the origin in C1ap is invariant under Hl (for all l),
and all solutions of (11) and (14) are in this ball. Equation (22) implies that
for sufficiently large l; HljC1ap is a contraction in this ball, so that we may

conclude that the result of Theorem 2 holds. We thus have
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Theorem 4. Assume f satisfies (2) and the set of critical points of x0 has

measure 0 (which happens, for example, if f is real analytic and not identically

0). Then for any a > 0 there exists a lcðaÞ50 such that when l5lcðaÞ
there exists a unique periodic solution u0 ¼ u0ða; lÞ of (1) which is also
T
2
-antiperiodic, and a unique periodic solution u1 ¼ u1ða; lÞ of (1) such that

u1 � p is T
2
-antiperiodic.

Theorem 4 will not be used in our further investigations, and we will
henceforth assume that (18) does hold so that we have precisely two
geometrically distinct symmetric solutions for all values of l:

3. l-INTERVALS FOR WHICH THERE EXIST PRECISELY TWO
GEOMETRICALLY DISTINCT PERIODIC SOLUTIONS

It is important to note that Theorem 3 does not imply that ukða; lÞ ðk 2 ZÞ
are the only periodic solutions of (1), but merely that they are the only
symmetric ones. Indeed, we shall later see that as l varies, more periodic
solutions of (1) bifurcate off the curves of symmetric solutions that we have
found. However, as we shall now show, if we fix a compact interval I 	 R;
then as a approaches 0 the set of values of l 2 I for which there exist other
periodic solutions of (1) besides the two we have found becomes smaller and
smaller, and concentrates near a discrete set of values of l: This discrete set
is the set of zeroes of the function h: R ! R; defined by

hðlÞ ¼
1

T

Z T

0

cosðlx0ðtÞÞ dt:

We denote the set of zeroes of h by Z: Since h is real analytic and not
identically zero ðhð0Þ ¼ 1Þ; the set Z is discrete. We note also that it may be
shown that for generic forcing f Z is infinite (see the arguments in
[4, p. 182]).
We note that in the case f ðtÞ ¼ sinðotÞ we get, using (6),

hðlÞ ¼
Z T

0

cos
l

o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ o2

p sinðot � bÞ

 !
dt ¼ J0

l

o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ o2

p
 !

; ð23Þ

where J0 is the 0th-order Bessel function of the first kind.
Theorem 5 below shows the significance of the function h for our

problem.
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Theorem 5. Assume f satisfies (2), a > 0 satisfies (18) and l satisfies

jhðlÞj > as 1þ
2� as
1� as

� �2" #1
2

: ð24Þ

Then (1) has precisely two geometrically distinct periodic solutions, the

solutions u0ða; lÞ; u1ða; lÞ given by Theorem 2. These solutions are nondegene-

rate.

The nondegeneracy statement above means that for all k 2 Z; the
linearized equation

v00 þ cv0 þ a cosðukða; lÞÞv ¼ 0

has no nontrivial periodic solutions.
To understand the implications of Theorem 5 let us define, for each a > 0;

the ‘good’ set

Ga ¼ l 2 R j jhðlÞj > as 1þ
2� as
1� as

� �2" #1
2

8><
>:

9>=
>;:

Theorem 5 tells us that if a > 0 satisfies (18), then whenever l 2 Ga; the only
periodic solutions of (1) are the symmetric ones ukða; lÞ ðk 2 ZÞ: We note
that if we fix a compact interval I 	 R satisfying I \Z ¼ |; then for a > 0
sufficiently small we will have I 	 Ga so that (1) has precisely two
geometrically distinct solutions for all l 2 I : More generally, if we fix any

compact interval I 	 R; then Ga \ I is the union of a finite number of
intervals, the sum of whose lengths tends to the length of I as a tends to 0;
that is, we have

lim
a!0

measðGa \ IÞ ¼ measðIÞ

and note also that

a05a implies Ga 	 Ga0 ; ð25Þ

which follows from the fact that the right-hand side of (24) is monotonically
increasing with respect to a: We also have

S
a>0 Ga ¼ R�Z: It is to be

noted, however, that since we have limjlj!1 hðlÞ ¼ 0; the set Ga is always
bounded for each a > 0: Thus, if we restrict l to a finite interval, we may say
that, when a > 0 is sufficiently small, then, for most values of l; (1) has
precisely two geometrically distinct periodic solutions.
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Theorem 5 will follow from the following more general theorem which is
valid for any forcing f ; not necessarily satisfying (2).

Theorem 6. Assume f satisfies (5) and a > 0 satisfies (18). Define

%hhðlÞ ¼
1

T

Z T

0

cosðlx0ðtÞÞ dt
� �2

þ
Z T

0

sinðlx0ðtÞÞ dt
� �2" #1

2

and assume that l satisfies

%hhðlÞ > as 1þ
2� as
1� as

� �2" #1
2

: ð26Þ

Then (1) has precisely two geometrically distinct periodic solutions. These

solutions are nondegenerate.

To see that Theorem 5 follows from Theorem 6, note that if f satisfies (2)
then by (10) x0 2 Xn; from which it follows that the second integral in the
definition of %hh vanishes, hence we conclude that %hh ¼ jhj:
The quantity %hhðlÞ already appears in the work of Fournier and Mawhin

[5]. Theorem 3 of that paper implies that, for f satisfying (5), the condition

%hhðlÞ5as ð27Þ

is sufficient to ensure that there exist at least two geometrically distinct
periodic solutions of (1). Here we see that by somewhat strengthening (27),
we obtain the existence of precisely two periodic solutions. It would be of
interest to know whether some strengthening of (27) is really necessary in
order to obtain the existence of precisely two periodic solutions, or whether,
on the contrary, one may replace (26) by (27) in the statement of Theorem 6.
Conditions ensuring that the number of geometrically distinct periodic

solutions of (1) is precisely two have already been obtained by Tarantello
[21] (see also [3]), but the conditions obtained here are different in that here
we do not impose any restriction on the norm of f :
To prove Theorem 6, we use a Lyapunov–Schmidt reduction. The kernel

of L is the set of constant functions, which we identify with R:We denote by
*YY the subspace of Y consisting of functions x 2 Y that satisfyZ T

0

xðtÞ dt ¼ 0

and we denote *XX ¼ X \ *YY : We have X ¼ R� *XX ; Y ¼ R� *YY : The range
of L is equal to *YY : We denote by Q:Y ! Y the orthogonal projection onto
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*YY given by

QðxÞ ¼ x�
1

T

Z T

0

xðtÞ dt:

Setting x ¼ sþ *xx with s 2 R; *xx 2 *XX ; we see that, for a > 0; (7) is equivalent
to the pair of equations

Lð *xxÞ þ aQðN ðl; sþ *xxÞÞ ¼ 0; ð28Þ

ðI � QÞðN ðl; sþ *xxÞÞ ¼ 0: ð29Þ

Since Lj *XX is invertible, (28) may be rewritten as

*xx ¼ �a½Lj *XX 

�1

8QðN ðl; sþ *xxÞÞ: ð30Þ

Fixing s 2 R; the right-hand side of (30) defines a nonlinear mapping from *YY

to itself, which we want to show is a contraction.
We shall need

Lemma 2.

jj½Lj *XX 

�1

8QjjY ;Y4sðT ; cÞ: ð31Þ

Proof. Assume y 2 Y ; *xx ¼ ½Lj *XX 

�1

8QðyÞ: Then QðyÞ ¼ Lð *xxÞ; so by (15)

jj *xxjjY4sjjQðyÞjjY :

Clearly jjQðyÞjjY4jjyjjY ; so

jj½Lj *XX 

�1

8QðyÞjjY ¼ jj *xxjjY4sjjQðyÞjjY4sjjyjjY :

This gives the desired result. ]

Using (31) and (17), we have

jja½Lj *XX 

�1

8QðN ðl; sþ *xxÞÞ � a½Lj *XX 

�1

8QðN ðl; sþ *yyÞÞjj *YY4asjj *xx � *yyjj *YY

for all *xx; *yy 2 *YY : Therefore, if jaj51
s; the mapping defined by the right-hand

side of (30) is a contraction in *YY (for any ðl; sÞ 2 R� R). This implies that
(30), considered as an equation for *xx; has a unique solution *xx ¼ Sðl; a; sÞ 2
*XX ; and S is real analytic in all three variables. S: R� ð�1s;

1
sÞ � R ! *XX is a

mapping satisfying

Sðl; a; sÞ ¼ �a½Lj *XX 

�1

8Q½N ðl; sþ Sðl; a; sÞÞ
: ð32Þ
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Moreover, using (12) and (31), we have

jjSðl; a; sÞjjY ¼ jj � a½Lj *XX 

�1

8Q½N ðl; sþ Sðl; a; sÞÞ
jjY

�jaj jj½Lj *XX 

�1

8Qjj *YY ; *YY4jajs ð33Þ

for all ðl; a; sÞ 2 R� ð�1s;
1
sÞ � R:

Substituting *xx ¼ Sðl; a; sÞ into (29), we obtain that, when 05jaj51
s; (7) is

equivalent to

Bðl; a; sÞ ¼ ðI � QÞ½N ðl; sþ Sðl; a; sÞÞ
 ¼ 0; s 2 R ð34Þ

in the sense that there is a one-to-one correspondence between solutions s of
(34) and solutions x of (7), given by s ! sþ Sðl; a; sÞ: It should be noted that
S is 2p-periodic with respect to s: Indeed, using (32) and the fact that
N ðl; xþ 2pÞ ¼ N ðl; xÞ; we have

Sðl; a; sþ 2pÞ ¼ � a½Lj *XX 

�1

8Q½N ðl; sþ 2pþ Sðl; a; sþ 2pÞÞ


¼ � a½Lj *XX 

�1

8Q½N ðl; sþ Sðl; a; sþ 2pÞÞ
;

but since *xx ¼ Sðl; a; sÞ is the unique solution of (30), we must have

Sðl; a; sþ 2pÞ ¼ Sðl; a; sÞ: ð35Þ

This implies that B is also 2p-periodic with respect to s: We note
that solutions of (34), which differ by a multiple of 2p; correspond
to geometrically equivalent periodic solutions of (1), hence the number
of geometrically distinct periodic solutions of (1) is equal to the number
of solutions of (34) in ½�p;pÞ; and we want to show that, when (26) holds,
this number is two. Moreover, it is an easy matter to show that
nondegeneracy of a solution s of (34) implies nondegeneracy of the
corresponding solution u ¼ lx0 þ sþ Sðl; a; sÞ of (1), hence what we need to
show is

Lemma 3. If jaj5o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 þ c2

p
and l satisfies

%hhðlÞ > jajs 1þ
2� jajs
1� jajs

� �2" #1
2

; ð36Þ

then (34) has precisely two solutions s 2 ½�p;pÞ; and they are nondegenerate in

the sense that if s is a solution of (34) then DsBðl; a; sÞ=0:

Once we have proven Lemma 3, we will have completed the
proof of Theorem 5. To prove Lemma 3, we begin by writing B more
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explicitly as

Bðl; a; sÞ ¼
1

T

Z T

0

sinðsþ lx0ðtÞ þ Sðl; a; sÞðtÞÞ dt:

In particular, since, by (32),

Sðl; 0; sÞ ¼ 0; ð37Þ

we have

Bðl; 0; sÞ ¼
1

T

Z T

0

sinðsþ lx0ðtÞÞ dt

¼ sinðsÞ
1

T

Z T

0

cosðlx0ðtÞÞ dt þ cosðsÞ
1

T

Z T

0

sinðlx0ðtÞÞ dt; ð38Þ

or, defining a by

cosðaÞ ¼
1

%hhðlÞ

1

T

Z T

0

cosðlx0ðtÞÞ dt; sinðaÞ ¼
1

%hhðlÞ

1

T

Z T

0

sinðlx0ðtÞÞ dt;

we have

Bðl; 0; sÞ ¼ %hhðlÞ sinðsþ aÞ: ð39Þ

We note for future use that when (2) holds then, as was noted before, the
second integral on the right-hand side of (38) vanishes, so (38) reduces to

Bðl; 0; sÞ ¼ hðlÞ sinðsÞ: ð40Þ

We will use the following lemma, which provides a sufficient condition for
two functions to have the same number of zeroes in an interval, and was
already used in [6].

Lemma 4. Suppose g1; g2 : R ! R are C1 and 2p-periodic, and

jg2ðsÞ � g1ðsÞj4b1; ð41Þ

jg02ðsÞ � g01ðsÞj4b2 ð42Þ

for all s 2 R: Suppose also that g1 satisfies

jg1ðsÞj4b1 implies jg01ðsÞj > b2: ð43Þ
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Then g1 and g2 have the same number of zeroes in the interval ½�p;pÞ; and the

zeroes of g2 are nondegenerate (that is: g2ðsÞ ¼ 0 implies g02ðsÞ=0).

Returning to the proof of Lemma 3, We will use Lemma 4 to prove that
when (26) holds, (34) has the same number of solutions in ½�p;pÞ as

Bðl; 0; sÞ ¼ 0; s 2 R ð44Þ

and since, by (39), (44) has exactly two solutions in ½�p; pÞ; we then conclude
that (34) has exactly two solutions in ½�p;pÞ; which will complete the proof
of Lemma 3.
To apply Lemma 4, we set g1ðsÞ ¼ Bðl; 0; sÞ; g2ðsÞ ¼ Bðl; a; sÞ: Using (33),

(17), and the fact that jjI � QjjY ;Y ¼ 1; we have

jg2ðsÞ � g1ðsÞj ¼ jðI � QÞ½N ðl; sþ Sðl; a; sÞÞ � N ðl; sÞ
j

� jjSðl; a; sÞjjY4jajs; ð45Þ

hence (41) holds with

b1 ¼ jajs: ð46Þ

Differentiating Bðl; a; sÞ with respect to s; we have

DsBðl; a; sÞ ¼ ðI � QÞ 8DxN ðl; sþ Sðl; a; sÞÞð1þ DsSðl; a; sÞÞ ð47Þ

(note that in the above 1 denotes the constant function with value 1). To
compute DsSðl; a; sÞ; we differentiate relation (32) with respect to s;
obtaining

DsSðl; a; sÞ ¼ �a½Lj *XX 

�1

8Q 8DxN ðl; sþ Sðl; a; sÞÞð1þ DsSðl; a; sÞÞ; ð48Þ

which may be rewritten as

½I � A
 8DsSðl; a; sÞ ¼ Að1Þ; ð49Þ

where A:Y ! Y is the linear operator defined by

A ¼ �a½Lj *XX 

�1

8Q 8DxN ðl; sþ Sðl; a; sÞÞ: ð50Þ

We have

DxN ðl; xÞðvÞ ¼ cosðlx0ðtÞ þ xðtÞÞvðtÞ for all x; v 2 Y ; ð51Þ

hence jjDxN ðl; xÞjjY ;Y41 for all x 2 Y ; and in particular

jjDxN ðl; sþ Sðl; a; sÞÞjjY ;Y41: ð52Þ
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From (31), (52) and the assumption that jaj5o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 þ c2

p
; we obtain

jjAjjY ;Y4jaj jj½Lj *XX 

�1

8QjjY ;Y4jajs51; ð53Þ

which implies that I � A is invertible and

jj½I � A
�1jjY ;Y4
1

1� jjAjjY ;Y
4

1

1� jajs
: ð54Þ

Since I � A is invertible, we may rewrite (49) as

DsSðl; a; sÞ ¼ ½I � A
�1 8 Að1Þ: ð55Þ

Using (53)–(55), we obtain

jjDsSðl; a; sÞjjY4jj½I � A
�1jjY ;Y jjAjjY ;Y4
jajs

1� jajs
: ð56Þ

We note, also, that by (51),

jjDxN ðl; xÞ � DxN ðl; yÞjjY ;Y4jjx� yjjY for all x; y 2 Y : ð57Þ

Therefore, using (33), (47), (52), (56) and (57),

jg02ðsÞ � g01ðsÞj ¼ jDsBðl; a; sÞ � DsBðl; 0; sÞj

¼ jðI � QÞ 8 ½DxN ðl; sþ Sðl; a; sÞÞð1þ DsSðl; a; sÞÞ

� DxN ðl; sÞð1Þ
j

4 jjDxN ðl; sþ Sðl; a; sÞÞð1þ DsSðl; a; sÞÞ � DxN ðl; sÞð1ÞjjY

4 jj½DxN ðl; sþ Sðl; a; sÞÞ � DxN ðl; sÞ
ð1ÞjjY

þ jjDxN ðl; sþ Sðl; a; sÞÞðDsSðl; a; sÞÞjjY

4 jjSðl; a; sÞjjY þ jjDsSðl; a; sÞjjY4jajs

þ
jajs

1� jajs
¼ jajs

2� jajs
1� jajs

: ð58Þ

Therefore, (42) holds with

b2 ¼ jajs
2� jajs
1� jajs

: ð59Þ
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To see that condition (43) of Lemma 4 holds, we assume by way of
contradiction that it does not, so there exists some s 2 ½�p;pÞ for which
jg1ðsÞj4b1 and jg01ðsÞj4b2; that is, using (39), (46) and (59)

%hhðlÞ j sinðsþ aÞj4as; %hhðlÞ j cosðsþ aÞj4as
2� as
1� as

:

Squaring these two inequalities and adding them, we obtain

%hhðlÞ4as 1þ
2� as
1� as

� �2" #1
2

;

which contradicts assumption (24). Hence the conditions of Lemma 4 hold,
and it yields the desired result.
At this point in our investigation one may wonder whether the ‘good’ set

Ga is not merely an artifact of our method of proof, that is, whether it may
not, in fact, be true that fixing a compact interval I 	 R; for a > 0
sufficiently small there are precisely two geometrically distinct periodic
solutions of (1) for all l 2 I : We shall later show that this is not the case: if
Z\ I=| then for any a > 0 sufficiently small there are certain subintervals
of I such that for l in those intervals (1) has four geometrically distinct
periodic solutions.

4. THE EXCHANGE OF STABILITY

In this section, we investigate the dynamical stability of the
symmetric periodic solutions. We first recall the definition of asymptotic
stability.
We define the Poincar!ee mapping Pa;l corresponding to (1) as follows. For

y; y0 2 R; let u be the solution of Eq. (1) with initial conditions

uð0Þ ¼ y; u0ð0Þ ¼ y0 ð60Þ

and set

Pa;lðy; y
0Þ ¼ ðuðT Þ; u0ðT ÞÞ:

Pa;l: R2 ! R2 is a diffeomorphism, and its fixed points are in one-to-one
correspondence with the periodic solutions of (1). A periodic solution %uu of
(1) is asymptotically stable iff

(i) For any neighborhood U 	 R2 of ð %uuð0Þ; %uu0ð0ÞÞ there exists a
neighborhood V 	 U of ð %uuð0Þ; %uu0ð0ÞÞ such that Pn

a;lðV Þ 	 U for all n51;
where Pn

a;l denotes the n-fold composition of Pa;l with itself.
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(ii) There exists a neighborhood W of ð %uuð0Þ; %uu0ð0ÞÞ such that for any
ðy; y0Þ 2 W ; we have

lim
n!1

Pn
a;lðy; y

0Þ ¼ ð %uuð0Þ; %uu0ð0ÞÞ:

A periodic solution which is not asymptotically stable will be called
unstable.
We now discuss the stability of the uk’s in the case c > 0; revealing the

following phenomenon, which we call the ‘exchange of stability’: when a > 0
is sufficiently small, there are l-intervals in which u0ða; lÞ is asymptotically
stable while u1ða; lÞ is unstable, and l-intervals for which the reverse is true.

Theorem 7. Assume f satisfies (2), c > 0; a > 0 satisfy (18) and

a4
1

4
ðo2 þ c2Þ: ð61Þ

Then whenever l 2 Ga; the only periodic solutions of (1) are the symmetric

solutions ukða; lÞ ðk 2 ZÞ; and

(i) If hðlÞ > 0; ukða; lÞ is asymptotically stable for k even, and unstable

for k odd.

(ii) If hðlÞ50; ukða; lÞ is unstable for k even and asymptotically stable

for k odd.

Fig. 1 represents the information one obtains from Theorem 7. We plot
three of the branches of symmetric periodic solutions and indicate their
stability. The question marks indicate that when l =2 Ga we do not, at this
point in our investigation, know anything about the stability of ukða; lÞ:
Since it is only the stable periodic solutions which are observable in an

experiment (or computer simulation), this ‘exchange of stability’ will result
in an interesting dynamical phenomenon. Assume that we fix a > 0; and start
with l ¼ 0; increasing l very slowly. For l small the solution u0 will be
stable (since hð0Þ ¼ 1), so that after an initial transient, the behavior of the
pendulum will be described by u0 (or one of the periodic solutions
geometrically equivalent to it, depending on the initial conditions). As l
increases, it will eventually leave the set Ga; and when it reenters Ga we shall
have hðlÞ50; so that u0 will become unstable, while u1 will become stable,
and thus the behavior of the pendulum will be described by u1 (or one of the
periodic solutions geometrically equivalent to it). For l still larger, u0 will
become stable again, so that once again the motion of the pendulum will be
described by u0; and so on. We note that, since when a is small the intervals
of the ‘bad’ set R� Ga become very narrow, we shall observe, when a is
small, very rapid transitions from u0 to u1 and vice versa take place, which



FIG. 1. The exchange of stability, as given by Theorem 7.
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look like jumps. The precise nature of these transitions (that is the behavior
when l passes through the ‘bad’ set) will be illuminated in the following
sections. Results of numerical simulation exhibiting this phenomenon will
be discussed below.
In the above heuristic description, we have glossed over the possibility

that after u0 loses stability we might observe subharmonic or chaotic
behavior, rather than asymptotic approach to u1: In fact, if we restrict a
further, we can use the results of [13] to exclude subharmonic or chaotic
behavior, so that the behavior of the pendulum for l 2 Ga is indeed
described by u0 or u1; depending on the sign of hðlÞ: Indeed the results of
[13], after a suitable rescaling, tell us that if

a5
c2

4
; ð62Þ

then there is a curve in R2 which is invariant under the Poincar!ee mapping
Pa;l; and which attracts all orbits. Moreover, from Theorems 2.5 and 2.6 of
[13] it follows that in our case (in which we know that fixed points of Pa;l
exist), almost all orbits are attracted to the set of fixed points of Pa;l:
Therefore, combining the results of [13] and Theorem 7, we obtain

Theorem 8. Assume f satisfies (2), c > 0; and a > 0 satisfy (18) and (62).
Let l 2 Ga; and assume hðlÞ > 0 ðhðlÞ50Þ: Then for almost all initial
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conditions ðy; y0Þ 2 R2; we have, defining u to be the solution of (1) satisfying

(60), that there exists k 2 Z even (odd) such that

lim
t!1

ðjuðtÞ � ukða; lÞðtÞj þ ju0ðtÞ � u0kða; lÞðtÞjÞ ¼ 0:

We thus have, under the stated assumptions, a practically complete
description of the dynamic behavior of the forced pendulum.
Fig. 2 presents the results of a numerical simulation of the forced

pendulum which demonstrates the results of Theorem 8 (it is interesting to
note that these computations were performed only after the phenomenon
was discovered by the theoretical analysis to be presented in this section).
We numerically solved (using MAPLE) Eq. (1) with initial conditions

uð0Þ ¼ u0ð0Þ ¼ 0; ð63Þ
FIG. 2. Numerical solution of (1) with initial conditions (63), taking a ¼ 1
2
; c ¼ 3; and

l ¼ 4; 12:
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taking f ðtÞ ¼ sinðtÞ; a ¼ 1
2
; c ¼ 3: The figure displays the solutions for

two values of l:l ¼ 4 and 12. We note that the parameters were chosen
so that all the assumptions of Theorem 8 are satisfied. In this case, we
have (see (23))

hðlÞ ¼ J0
lffiffiffiffiffi
10

p
 !

;

so that we have hð4Þ > 0 and hð12Þ50: Theorem 8 thus tells us that when
l ¼ 4 almost all solutions will be attracted to one of the periodic solutions uk
with k even, and indeed we see that our solution is attracted to u0ð12; 4Þ
(whose mean value is 0; the horizontal lines in the figure indicate multiples
of p), and similarly the theorem tells us that when l ¼ 12 almost all
solutions will be attracted to some uk with k odd, and we see that our
solution is attracted to u1ð12; 12Þ (whose mean value is p). Further
computations for intermediate values of l show that when l 2 ½4; 7:5
; the
solution is attracted to u0ð12; lÞ; while for l 2 ½7:8; 12
 the solution is attracted
to u1ð12; lÞ; so that the exchange of stability occurs in the interval (7.5,7.8).
We note that our theorems show that in the limit of a > 0 small the exchange
of stability will occur at a l which is a root of h; and the only root of h in the
interval [4, 12] is %ll ¼ 7:6047; which is in good agreement with what we
found, even though a here is not so small.
We now present the results of another type of numerical simulation which

demonstrates the exchange of stability in a striking way. Here, instead of
solving (1) for various values of l; we increase l very slowly during the
simulation. In Fig. 3, we plot the numerically computed solution of the
equation

u00 þ u0 þ sinðuÞ ¼
t
100

sinðtÞ ð64Þ

(with initial conditions (63)). Note that the strength of the forcing increases
very slowly in comparison with the period 2p of the oscillations. As t
increases, starting at t ¼ 0; the amplitude of the oscillations of the pendulum
increases but their mean value remains 0; until the first ‘jump’ point at which
the mean value of the oscillations becomes p: This jump is caused by the fact
that u0 loses stability while u1 becomes stable. As t increases, we have a series
of jumps, where at each one we have a transition to behavior described by
a different uk ; so that the mean value of the oscillations is always a multiple
of p:
In Fig. 4, we present the result of computing the same solution of the

same equation, but with a small change in the integration step, and here we
see that we obtain a different picture: the transitions from one uk to another



FIG. 3. Numerical solution of (64), with integration step ¼ 0:21:
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occur at precisely the same values of t; but whereas in the first computation
the sequence of transitions was u0 ! u1 ! u2 ! u3; in the second
computation it was u0 ! u1 ! u0 ! u�1: Slight changes in the integration
steps will lead to various other sequences of transition, but the transition is
always from uk to ukþ1 or to uk�1: The explanation of this phenomenon is
that when uk loses stability, the system may jump to either ukþ1 or uk�1; and
which way the jump will occur depends on ‘noise’, which in the numerical
simulation is provided by the integration error (in an ideal situation –
impossible both physically and computationally – with no noise, transition
to another solution would not occur). Thus the precise sequence of
transitions is unpredictable, although their time of occurrence is!
We now turn to the proof of Theorem 7. We will use some results of

Ortega, together with the following perturbational result (we note that the



FIG. 4. Numerical solution of (64), with integration step ¼ 0:20:
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following lemma is in fact a corollary of Theorem 7, but here we use it to
prove Theorem 7).

Lemma 5. Assume f satisfies (2). Assume c > 0: Fix l 2 R: If hðlÞ > 0 then

for a > 0 sufficiently small ukða; lÞ is asymptotically stable for k even and

unstable for k odd. If hðlÞ50 then for a > 0 sufficiently small ukða; lÞ is

asymptotically stable for k odd and unstable for k even.

To prove Lemma 5, we recall that in order to investigate the asymptotic
stability of uk we must determine whether the characteristic multipliers of
the linearized equation

v00 þ cv0 þ a cosðukða; lÞðtÞÞv ¼ 0 ð65Þ
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lie inside the unit circle of the complex plane when a is small. Since, by (19)
and (20), we have

a cosðukða; lÞðtÞÞ ¼ að�1Þk cosðlx0ðtÞÞ þ Oða2Þ as a ! 0 ð66Þ

uniformly with respect to t 2 R; it will suffice to use the following lemma:

Lemma 6. Assume q : ½0;1Þ � R ! R is continuous and T-periodic with

respect to the second variable, and satisfies

qða; tÞ ¼ aq0ðtÞ þ Oða2Þ as a ! 0

uniformly with respect to t 2 R: Assume c > 0: If
R T
0 q0ðtÞ dt > 0; then the

characteristic multipliers of the linear equation

v00 þ cv0 þ qða; tÞv ¼ 0 ð67Þ

are inside the unit circle for a > 0 sufficiently small. If
R T
0
q0ðtÞ dt50; then one

of the characteristic multipliers of (67) is outside the unit circle for a > 0
sufficiently small.

We postpone the proof of Lemma 6 to the end of this section. Returning
to the proof of Lemma 5 we now see, by (66) and Lemma 6, that ukða; lÞ is
asymptotically stable for small a > 0 if

Z T

0

ð�1Þk cosðlx0ðtÞÞ dt > 0

and unstable if the reverse inequality holds. But the last integral is equal to
ð�1ÞkhðlÞ; from which Lemma 5 follows.
We now return to the proof of Theorem 7. We recall that for each isolated

periodic solution u of (1) there is associated an integer index gT ðuÞ which is
defined by

gT ðuÞ ¼ ind½Pa;l; ðuð0Þ; u
0ð0ÞÞ
;

where Pa;l is the Poincar!ee mapping associated with (1), as defined above, and
ind is the standard fixed-point index. When ðuð0Þ; u0ð0ÞÞ is a nondegenerate
fixed point of Pa;l; we have

gT ðuÞ ¼ sign½det½I � DPa;lðuð0Þ; u0ð0ÞÞ



(equivalently, gT ðuÞ can be defined as the degree of a mapping between
Banach spaces associated with (1), see [16]). This index has the standard
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homotopy-invariance property. We shall use the following results of Ortega
(for c > 0Þ:

(1) If (61) holds then a nondegenerate periodic solution u of (1) is
asymptotically stable if and only if gT ðuÞ ¼ 1 ([15, Theorem 1.1]).

(2) If the number of geometrically distinct periodic solutions of (1) is
finite, then the sum of the gT ðuÞ over all the geometrically distinct solutions is
0 ([16, Chap. 3, Proposition 2]).

Theorem 7 follows from result (1) of Ortega together with the following
‘exchange of index’ theorem, which holds without assumption (61), and also
for c ¼ 0:

Theorem 9. Assume f satisfies (2) and a > 0 satisfies (18). Then, whenever

l 2 Ga;

(i) If hðlÞ > 0 then gT ðukða; lÞÞ ¼ ð�1Þk for all k 2 Z:

(ii) If hðlÞ50 then gT ðukða; lÞÞ ¼ ð�1Þkþ1 for all k 2 Z:

We note that in the numerical work of Schmitt and Sari [20] which was
mentioned in the introduction, in which the periodic solutions of (1) with
c ¼ 0 and f ðtÞ ¼ cosðotÞ were computed and the phenomenon of exchange
of stability was observed, the condition gT ðuÞ ¼ 1 was taken as the definition

of stability, rather than the stricter notion of asymptotic stability which we
use here (which of course can never occur for the conservative case c ¼ 0Þ:
Hence it is Theorem 9 which provides an explanation for the observations
in [20].

Proof of Theorem 9. We will assume c > 0: The case c ¼ 0 follows by
going to the limit c ! 0: We fix l0 and a0 satisfying the conditions of the
theorem. Assume hðl0Þ > 0 (the proof in case hðl0Þ50 is analogous). Since
a0 satisfies (18), we have that (18) holds for any a 2 ð0; a0Þ: The conditions
l0 2 Ga0 and (25) imply that l0 2 Ga for all a 2 ð0; a0Þ: Therefore by Theorem
5, we know that (1) with l ¼ l0 has precisely two geometrically distinct
periodic solutions, which are nondegenerate, for any a 2 ð0; a0Þ; namely
u0ða; l0Þ; u1ða; l0Þ: Also, from Lemma 5, we know that when a is very
small u0ða; l0Þ is stable and u1ða; l0Þ is unstable. Moreover, if a is very small
then (61) holds, so from result (1) of Ortega quoted above we conclude that
for a > 0 very small

gT ðu0ða; l0ÞÞ ¼ 1: ð68Þ
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By the homotopy invariance of the index and the fact that u0ða; l0Þ
is nondegenerate for a 2 ð0; a0
; we conclude that (68) remains true for
a 2 ð0; a0
; and in particular, we have

gT ðu0ða0; l0ÞÞ ¼ 1: ð69Þ

By (69), result (2) of Ortega and the fact that u0ða0; l0Þ; u1ða0; l0Þ are the only
periodic solutions up to geometric equivalence, we conclude that

gT ðu1ða0; l0ÞÞ ¼ �1: ð70Þ

Since clearly gT ðukða; lÞÞ is equal to gT ðu0ða; lÞÞ when k is even and to
gT ðu1ða; lÞÞ when k is odd, this concludes the proof of Theorem 9. ]

We now give the

Proof of Lemma 6. We denote by v1ða; tÞ; v2ða; tÞ the solutions of (67)
satisfying the initial conditions

v1ða; 0Þ ¼ 1;
dv1
dt

ða; 0Þ ¼ 0;

v2ða; 0Þ ¼ 0;
dv2
dt

ða; 0Þ ¼ 1:

A standard computation shows that

v1ða; tÞ ¼ 1þ
a
c

Z t

0

ðecðs�tÞ � 1Þq0ðsÞ dsþ Oða2Þ;

dv1
dt

ða; tÞ ¼ �a
Z t

0

ecðs�tÞq0ðsÞ dsþ Oða2Þ;

v2ða; tÞ ¼
1

c
ð1� e�ctÞ þ

a
c2

e�ct
Z t

0

ðecs � 1Þq0ðsÞ dsþ
Z t

0

ðe�cs � 1Þq0ðsÞ ds
� �

þ Oða2Þ;

dv2
dt

ða; tÞ ¼ e�ct �
a
c
e�ct

Z t

0

ðecs � 1Þq0ðsÞ dsþ Oða2Þ:
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The characteristic multipliers of (67) are the eigenvalues of the monodromy
matrix:

MðaÞ ¼

v1ða; T Þ v2ða; T Þ

dv1
dt

ða; T Þ
dv2
dt

ða; T Þ

0
B@

1
CA:

Computing the characteristic polynomial of MðaÞ; we obtain

pða; nÞ ¼ n2 � 1þ e�cT þ
a
c
ðe�cT � 1Þ

Z T

0

q0ðsÞ ds
� �

nþ e�cT þ Oða2Þ:

When a ¼ 0 the roots of pð0; nÞ are n1 ¼ 1 and n2 ¼ e�cT51: For a > 0 small,
n2 will remain smaller than 1; so we are interested in the direction in which n1
moves, that is we are interested in the curve nðaÞ satisfying nð0Þ ¼ 1 and

pða; nðaÞÞ ¼ 0 ð71Þ

for a sufficiently small. Differentiating (71) and setting a ¼ 0; we obtain

n0ð0Þ ¼ �
Dapð0; 1Þ
Dnpð0; 1Þ

¼ �
1

c

Z T

0

q0ðtÞ dt:

Therefore, if
R T
0 q0ðtÞ dt > 0 then for a > 0 small jnðaÞj51; and if

R T
0 q0ðtÞ dt50

then for a > 0 small nðaÞ > 1; as we wanted to show. ]

5. BIFURCATION FROM THE SYMMETRIC SOLUTIONS

As we have seen in Theorem 7, if we fix c > 0; a > 0 satisfying (18) and
(61), and vary l in an interval ½ln; l

n
; where ln; l
n 2 Ga and

hðlnÞhðl
nÞ50; ð72Þ

the periodic solutions u0 and u1 ‘exchange’ their stability. Our aim now is to
understand how this exchange of stability takes place. A well-known
heuristic principle says that loss of stability is related to bifurcation. Note
also that by (72), the interval ½ln; l

n
 intersects the ‘bad’ set R� Ga;
concerning which Theorem 5 tells us nothing, so at least, in principle, it is
possible that when l passes through R� Ga; we will have periodic solutions
other than the uk’s. This suspicion can be justified by using the Index Jump
Principle (see [22, Theorem 15.A]), from which we obtain Theorem 10 below
(in fact, we only need the exchange of index, given by Theorem 9, and not
the exchange of stability, so conditions (61) and c > 0 are not needed).
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We first precisely define the notion of bifurcation from the symmetric
solutions. We denote bySkðaÞ 	 S ðk 2 ZÞ the curves of symmetric periodic
solutions:

Sk ¼ SkðaÞ ¼ fðl; ukða; lÞÞ j l 2 Rg:

We set

S ¼ SðaÞ ¼
[
k2Z

SkðaÞ:

For given a; we shall say that a bifurcation fromSk occurs at l ¼ lk if in
every neighborhood of ðlk ; ukða; lkÞÞ in R� X there exists a point ðl0; uÞ =2 S
such that ðl0; uÞ 2 S:
From the Index Jump Principle we obtain:

Theorem 10. Assume f satisfies (2) and a > 0 satisfies (18). Assume that

ln; l
n 2 Ga with ln5ln and that (72) holds. Then, for each k 2 Z; there exists

lk 2 ðln; l
nÞ such that a bifurcation from Sk occurs at l ¼ lk :

We note that the formulation of the Index Jump Principle in [22, Theorem
15.A], is for bifurcation from a trivial branch of solutions, while here we use
it for bifurcation from a smooth nontrivial branch Sk ; but a more general
formulation of the Index Jump Principle valid for bifurcation from smooth
branches is an easy consequence of the Index Jump Principle for bifurcation
from trivial branches.
Using arguments of the type appearing in the proof of the Rabinowitz

global bifurcation theorem [19, 22, Theorem 15.C], one can obtain some
information about the global structure of the bifurcating branches (the
Rabinowitz theorem itself cannot be used here, since we are dealing with a
bifurcation from a curve of solutions for which we do not have an explicit
representation). However, we shall use a different approach to study the
bifurcation that we have just shown to occur. In fact, we shall rederive
Theorem 10 by a different approach, and also obtain additional information
which cannot be derived from general bifurcation theory. We shall show, for
example, that for each k 2 Z the branch of solutions bifurcating from Sk

and the branch bifurcating from Skþ1 meet, so in fact there is a single
branch of solutions lying in ðln; l

nÞ � X and connecting Sk and Skþ1:
We refer to Fig. 5 for a representation of the contents of the following

theorem, obtained by plotting the set *SS; defined by (3).

Theorem 11. Assume f satisfies (2) and a > 0 satisfies (18). Assume

that ln; l
n 2 Ga with ln5ln and that (72) holds. Then, for each k 2 Z; there



FIG. 5. Bifurcation from the symmetric solutions, as described by Theorem 11.
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exists a connected set Kk ¼ KkðaÞ 	 SðaÞ \ ððln; l
nÞ � X Þ such that, for

each k 2 Z;

(i) %KKk \Sk ¼ %KKk�1 \Sk=|:

(ii) If ðl; uÞ 2 Kk then 1
T

R T
0
uðtÞ dt 2 ðkp; ðk þ 1ÞpÞ (this implies that Kj

\Kk ¼ | for j=kÞ:

(iii) Kkþ2 ¼ fðl; uþ 2pÞ j ðl; uÞ 2 Kkg:

Thus if we define C ¼
S

k2Z Kk then C is a connected subset of S; and it
intersects all theSk’s. We may call it the ‘bifurcating continuum’ of periodic
solutions.

To prove Theorem 11, we will exploit the fact that (18) implies the
existence of a Lyapunov–Schmidt reduction, as we showed in the proof of
Theorem 6, which implies a one-to-one correspondence between periodic
solutions of (1) and the solutions of (34). In other words, if we define, for

jaj5o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 þ c2

p
; Fa: R� R ! R by

Faðl; sÞ ¼ Bðl; a; sÞ;
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then for a > 0 satisfying (18) there is a one-to-one correspondence between
the zeroes of Fa in the ðl; sÞ-plane and the set SðaÞ: defining Fa : R� R !
R� X by

Faðl; sÞ ¼ ðl; sþ Sðl; a; sÞ þ lx0Þ:

We have

SðaÞ ¼ FaðF �1
a ð0ÞÞ; ð73Þ

so our problem reduces to that of studying the set F �1
a ð0Þ 	 R� R:

We first derive some properties of the function Fa:

Lemma 7. Assume f satisfies (2) and jaj5o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 þ c2

p
: Then

(i) Faðl; sÞ is 2p-periodic with respect to s.

(ii) Faðl; sÞ is odd with respect to s.

(iii) Faðl;pkÞ ¼ 0 for all l 2 R; k 2 Z:

(iv) If l satisfies

jhðlÞj > jajs 1þ
2� jajs
1� jajs

� �2" #1=2
ð74Þ

and k 2 Z; then ð�1ÞkhðlÞFaðl; sÞ > 0 for all s 2 ðkp; ðk þ 1ÞpÞ:

Proof. Part (i) was already proved in Section 3 (we showed that B is 2p-
periodic with respect to sÞ: Part (ii) follows from the fact that T; as defined
by (21), commutes with L; N ðl; �Þ; and Q; so that, using (32), we have

TðSðl; a; sÞÞ ¼ �a½Lj *XX 

�1

8Q½N ðl;�sþTðSðl; a; sÞÞÞ


and since *xx ¼ Sðl; a;�sÞ is the unique solution of the equation

*xx ¼ �a½Lj *XX 

�1

8QðN ðl;�sþ *xxÞÞ;

we must have Sðl; a;�sÞ ¼ TðSðl; a; sÞÞ: Therefore,

Faðl;�sÞ ¼ ðI � QÞ½N ðl;�sþ Sðl; a;�sÞÞ
 ¼ ðI � QÞ½N ðl;�sþTðSðl; a; sÞÞÞ


¼TððI � QÞ½N ðl; sþ Sðl; a; sÞÞ
Þ ¼ �Faðl; sÞ:

Part (iii) follows from (i) and (ii).
We now prove part (iv). We note that it suffices to prove it for k ¼ 0; since

the general statement follows from the case k ¼ 0 by parts (i) and (ii). We
assume hðlÞ > 0 and show that Faðl; sÞ > 0 for s 2 ð0;pÞ (the proof in the case
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hðlÞ50 is analogous). By Lemma 3 (which may be invoked since by (74) l
satisfies (36)), Faðl; �Þ vanishes exactly twice in the interval ½�p;pÞ; and since,
by part (iii) of our lemma, it vanishes at 0 and at p; it does not vanish in
ð0;pÞ: This is also true when a is replaced by any a0 2 ð0; aÞ; so the sign of
Faðl; sÞ for s 2 ð0; pÞ is equal to the sign of F0ðl; sÞ for s 2 ð0;pÞ; and since,
by (40),

F0ðl; sÞ ¼ Bðl; 0; sÞ ¼ hðlÞ sinðsÞ; ð75Þ

we conclude that Faðl; sÞ is positive for s 2 ð0;pÞ: ]

We remark that part (iii) of Lemma 7 and (73) imply that, for all l 2 R

and k 2 Z; Faðl; pkÞ 2 S: However, we have not thereby found any new
periodic solutions; in fact we claim that

Lemma 8. Assume f satisfies (2) and a > 0 satisfies (18). Then

Faðl;pkÞ ¼ ðl; ukða; lÞÞ for all k 2 Z; l 2 R ð76Þ

so that

FaðR� fkpgÞ ¼ Sk :

Proof. We shall show this for k even (the proof for k odd is similar).
Since u0ða; lÞ is a solution of (1), so that, defining x ¼ u0ða; lÞ � lx0; x is a
solution of (7), we have, by the properties of the Lyapunov–Schmidt

reduction, defining s ¼ ðI � QÞðxÞ ¼ 1
T

R T
0 xðtÞ dt;

x ¼ sþ Sðl; a; sÞ;

but since x 2 Xn we have s ¼ 0; hence u0ða; lÞ � lx0 ¼ x ¼ Sðl; a; 0Þ; so
u0ða; lÞ ¼ Sðl; a; 0Þ þ lx0: The result for k even follows from this since when
k is even (using (35))

Faðl;pkÞ ¼ ðl;pk þ Sðl; a; pkÞ þ lx0Þ ¼ ðl;pk þ Sðl; a; 0Þ þ lx0Þ

¼ ðl;pk þ u0ða; lÞÞ ¼ ðl; ukða; lÞÞ: ]

Returning to the proof of Theorem 11, let D be the rectangle in the ðl; sÞ-
plane defined by

D ¼ fðl; sÞ j l 2 ðln; l
nÞ; s 2 ð0;pÞg:
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We have @D ¼ I1 [ I2 [ I3 [ I4; where

I1 ¼ fðln; sÞ j s 2 ð0; pÞg; I2 ¼ fðln; sÞ j s 2 ð0; pÞg;

I3 ¼ fðl; 0Þ j l 2 ½ln; l
n
g; I4 ¼ fðl;pÞ j l 2 ½ln; l

n
g:

We shall now assume, for definiteness, that hðlnÞ > 0 and hðlnÞ50: From
part (iv) of Lemma 7 we have that Fa is positive on I1 and negative on I2:We
now apply the following topological result.

Lemma 9. Let D ¼ ða1; a2Þ � ðb1; b2Þ be an open rectangle in the plane,
F : %DD ! R a continuous function which is positive on the left side fa1g � ðb1; b2Þ
of %DD and negative on the right side fa2g � ðb1; b2Þ: Then there exists a

connected set K 	 D such that F jK ¼ 0 and %KK intersects both the lower side

½a1; a2
 � fb1g and the upper side ½a1; a2
 � fb2g of %DD:

In the case when F is, in fact, positive on fa1g � ½b1; b2
 and negative on
fa2g � ½b1; b2
; this lemma is a very special case of Lemma A.5 in [18]. The
general case where F can vanish at the vertices of %DD requires a simple
additional limiting argument, of the type found in [1].
From Lemma 9 it follows that there exists a connected set

K0 	 D\ F �1
a ð0Þ ð77Þ

with

%KK0 \ I3=|; %KK0 \ I4=|: ð78Þ

We define

K�1 ¼ fðl;�sÞ j ðl; sÞ 2 K0g: ð79Þ

By (77) and part (ii) of Lemma 7,

K�1 	 F �1
a ð0Þ: ð80Þ

We now define Kk for k 2 Z by

Kk ¼
fðl; sÞ j ðl; s� kpÞ 2 K0g k 2 Z even;

fðl; sÞ j ðl; s� ðk þ 1ÞpÞ 2 K�1g k 2 Z odd:

(
ð81Þ

By (77), (80) and part (i) of Lemma 7, Kk 	 F �1
a ð0Þ for all k: Therefore,

defining Kk ðk 2 ZÞ by

Kk ¼ fFaðl; sÞ j ðl; sÞ 2 Kkg
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and using (73) we haveKk 	 S\ ððln; l
nÞ � X Þ: The fact thatKk satisfies

(ii) and (iii) of Theorem 11 follows immediately from the definition ofKk :
To show that (i) of Theorem 11 holds, it suffices, in view of Lemma 8, to
show that

%KKk \ ðR� fkpgÞ ¼ %KKk�1 \ ðR� fkpgÞ=|: ð82Þ

For k ¼ 0; the equality in (82) is immediate from (79), and the fact that the
set is nonempty follows from (78). We show that (82) holds when k is even
(the argument for k odd is similar). Indeed, using (81) and the fact that (82)
holds for k ¼ 0; we obtain

%KKk \ ðR� fkpgÞ ¼ fðl; kpÞ j ðl; kpÞ 2 %KKkg

¼ fðl; kpÞ j ðl; 0Þ 2 %KK0g ¼ fðl; kpÞ j ðl; 0Þ 2 %KK�1g

¼ fðl; ððk � 1Þ þ 1ÞpÞ j ðl; 0Þ 2 %KK�1g

¼ fðl; ððk � 1Þ þ 1ÞpÞ j ðl; kpÞ 2 %KKk�1g

¼ fðl; kpÞ j ðl; kpÞ 2 %KKk�1g ¼ %KKk�1 \ ðR� fkpgÞ;

so we have the equality in (82). To see that the set is nonempty, note that by
(78), the set %KKk \ ðR� fkpgÞ ¼ fðl; kpÞ j ðl; 0Þ 2 %KK0g is nonempty.

6. EXISTENCE OF BIFURCATING CURVES

Since we have used a general topological result, Lemma 9, in our proof of
Theorem 11, we could not obtain much information on the structure of the
bifurcating continuum C ¼

S
k2Z Kk : In particular, we do not know that it

is a curve rather than a more complicated set (for example ‘secondary
bifurcations’ might occur). Moreover, there may be other periodic solutions
for l 2 ½ln; l

n
 besides the symmetric ones and those lying on the set C:
A more refined analysis, which we undertake now, will yield further

information. We will show that in fact, when a > 0 is sufficiently small (‘long
pendulum’), the set C is a smooth curve and all nonsymmetric periodic
solutions in ½ln; l

n
 � X are on C: In contrast to the theorems presented in
the previous sections, in which we obtained explicit expressions for the range
of parameters for which the results were valid, in this section the results are
of a perturbational nature, in that we prove that certain statements are true
for sufficiently small a > 0 without giving an explicit value of a below which
the statements are true. It should be noted, however, that while the results to
be proved are perturbational with respect to a; for those values of a for
which they are valid they give global descriptions of the set of periodic
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solutions of (1) for all l in a fixed bounded interval, so these results are of a
rather different nature than those of local bifurcation theory.
We continue to investigate the set F �1

a ð0Þ: We will prove the following:

Lemma 10. Assume f satisfies (2). Assume ln5ln satisfy (72) and

jh0ðlÞj > 0 for all l 2 ½ln; l
n
: ð83Þ

Then there exists a0 > 0 such that when 05a5a0 there exists a smooth curve

C in the ðl; sÞ-plane,

C ¼ CðaÞ ¼ fðlaðsÞ; sÞ j s 2 Rg;

where la: R ! R is a 2p-periodic, even, and real-analytic function, such that

F �1
a ð0Þ \ ð½ln; l

n
 � RÞ ¼ CðaÞ [ fðl; pkÞ j l 2 ½ln; l
n
; k 2 Zg:

The proof of Lemma 10 will be presented later in this section. We then
define waðsÞ ¼ FaðlaðsÞ; sÞ; and obtain the following:

Theorem 12. Assume f satisfies (2), ln5ln satisfies (72) and (83). Then

there exists an a0 > 0 such that when 05a5a0 there exists a smooth curve

CðaÞ 	 R� X :

C ¼ CðaÞ ¼ fðlaðsÞ;waðsÞÞ j s 2 Rg;

where la: R ! R; wa: R ! X are real-analytic, la is 2p-periodic and even,
such that

(i) S\ ð½ln; l
n
 � X Þ ¼ C[ ðS\ ð½ln; l

n
 � X ÞÞ:

(ii) For all k 2 Z; l ¼ laðkpÞ is the unique point of bifurcation from the

curve Sk in ½ln; l
n
; and we have waðkpÞ ¼ ukða; laðkpÞÞ (since laðsÞ is 2p-

periodic, if we define lk ¼ laðkpÞ; we have lk ¼ l0 for k even and lk ¼ l1 for k

odd).

(iii) For all k 2 Z;

gT ðukða; lÞÞ ¼
signðhðlnÞÞð�1Þ

k for all l 2 ½ln; lkÞ;

signðhðlnÞÞð�1Þ
kþ1 for all l 2 ðlk ; l

n
:

8<
:

(iv) If, in addition, we have c > 0 and (61) holds, and hðlnÞ > 0 ðhðlnÞ50Þ;
then for k even ukða; lÞ is stable (unstable) when l 2 ½ln; l0Þ and unstable

(stable) when l 2 ðl0; l
n
; while for k odd ukða; lÞ is unstable (stable) when

l 2 ½ln; l1Þ and stable (unstable) when l 2 ðl1; l
n
:
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(v) Each point of bifurcation from S which lies in ½ln; l
n
 � X is either

subcritical or supercritical.

In Fig. 6, we represent the information given by Theorem 12, in the case
hðlnÞ > 0: Note that in our plot the bifurcation from S0 is supercritical and
the bifurcation from S1 is subcritical, but the reverse may also be the case.
Note also that we have not determined the stability of the solutions on the
bifurcating branch C: Also, we do not yet know that there are no other
turning points on the curve C besides the points of bifurcation. These
matters will be addressed in the next section.
It is important to note that Theorem 12, together with Theorem 5,

provides a good description of the set of all periodic solutions of (1) when l
varies in a compact interval I ; for a > 0 sufficiently small. Let us assume that
the zeroes of h in I are nondegenerate (that is, l 2 Z\ I implies h0ðlÞ=0Þ;
and denote these by %lli ð14i4nÞ: This assumption is not too restrictive since
it may be proven that for generic f satisfying (2) all zeroes of h are
nondegenerate. We also note that this assumption holds in the case f ðtÞ ¼
a sinðotÞ; by (23) and known properties of J0: We assume also that h does
not vanish at the endpoints of I : Under these assumptions we can choose a
d > 0 such that the intervals ½%lli � d; %lli þ d
 ð14i4nÞ are disjoint and
FIG. 6. Representation of the information on the bifurcation diagram which is given by

Theorem 12, in the case hðlnÞ > 0:
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contained in I such that h0ðlÞ=0 for any l in one of these intervals.
Therefore for a > 0 sufficiently small the conclusions of Theorem 12 will
hold in each of these intervals, and we shall also have

I �
[n
i¼1

½%lli � d; %lli þ d
 	 Ga;

so from Theorems 5 and 12 we conclude that there exist curves Ci ¼
CiðaÞ 	 ½%lli � d; %lli þ d
 � X ð14i4nÞ; as in Theorem 12, such that

S\ ðI � X Þ ¼ ðS\ ðI � X ÞÞ [
[n
i¼1

Ci:

Note that if we define

IiðaÞ ¼ ðI � GaÞ \ ½%lli � d; %lli þ d
;

then, since by Theorem 5 each of the curves Ci must be contained in
ðI � GaÞ � X ; we shall have

CiðaÞ 	 IiðaÞ � X ; 14i4n;

so that the l-width of the curve CiðaÞ approaches 0 as a ! 0:
Thus for a sufficiently small the bifurcation diagram for l 2 I looks as in

Fig. 7 (with the qualifications made with regard to Fig. 6 – complete
justification of Fig. 7 follows from the results of the next section).

Proof of Theorem 12. Parts (i) and (ii) follow directly from Lemma 10.
Part (iv) follows from (iii) and result (1) of Ortega quoted in Section 4.
We now prove part (iii). It suffices to consider the cases k ¼ 0; 1: We
assume hðlnÞ > 0 (in the case hðlnÞ50 the proof is analogous), so that by
Theorem 9

gT ðu0ða; lnÞÞ ¼ 1: ð84Þ

We claim that (84) remains true when ln is replaced by l 2 ðln; l0Þ: Indeed,
this follows from the homotopy invariance of the index and the fact that, by
part (ii) of our theorem, l0 is the unique point of bifurcation from S0 in
½ln; l

n
; so that u0ða; lÞ is an isolated periodic solution of (1) when l 2
½ln; l0Þ:
Similarly, from Theorem 9 we have

gT ðu1ða; lnÞÞ ¼ �1



FIG. 7. Choosing a compact interval I 	 R; then for a > 0 sufficiently small the bifurcation
diagram for l 2 I looks like this.
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and the same argument as above implies that gT ðu1ða; lÞ ¼ �1 for all l 2
½ln; l1Þ:
A similar argument shows that gT ðu0ða; lÞÞ ¼ �1 for l 2 ðl0; l

n
 and that
gT ðu1ða; lÞÞ ¼ 1 for l 2 ðl1; l

n
:
To prove part (v) of the theorem we note that the fact that laðsÞ is even

implies that s ¼ 0 is either a local minimum or a local maximum point of
laðsÞ; which implies that the bifurcation point ðlað0Þ;wað0ÞÞ fromS0 is either
subcritical or supercritical. Similarly, using the fact that laðsÞ is even and 2p-
periodic, we have laðp� sÞ ¼ laðs� pÞ ¼ laðpþ sÞ so that s ¼ p is either a
local maximum or a local minimum point of laðsÞ; which implies that the
bifurcation point ðlaðpÞ;waðpÞÞ from S1 is either subcritical or super-
critical. ]

We now proceed to the proof of Lemma 10. To prove the existence of a
real-analytic function laðsÞ satisfying

laðsÞ 2 ðln; l
nÞ for all s 2 R; ð85Þ

FaðlaðsÞ; sÞ ¼ 0 for all s 2 R; ð86Þ
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we first need to ‘desingularize’ the problem by getting rid of the
known zeroes of Fa; the lines s ¼ kp ðk 2 ZÞ: We therefore define
*FF a: R ! R by

*FFaðl; sÞ ¼

Faðl;sÞ
sinðsÞ if sinðsÞ=0;

ð�1ÞkDsFaðl; sÞ if sinðsÞ ¼ 0:

8<
:

*FF a is real analytic, and F �1
a ð0Þ is the union of *FF

�1
a ð0Þ with the lines s ¼ kp

ðk 2 ZÞ; hence it suffices to prove the existence of a function laðsÞ satisfying
(85) and

*FFaðlaðsÞ; sÞ ¼ 0: ð87Þ

We assume that hðlnÞ > 0 (the proof in the case hðlnÞ50 is analogous),
which by (72) implies that hðlnÞ50; which by (83) implies

h0ðlÞ50 for all l 2 ½ln; l
n
: ð88Þ

We now assume that a is sufficiently small so that ln; l
n 2 Ga: We then

have, by part (iv) of Lemma 7, ð�1ÞkFaðln; sÞ is positive for s 2 ðkp; ðk þ 1ÞpÞ:
Therefore, *FFaðl; sÞ is positive for all s=kp: In fact, we claim that *FFa is
positive on the whole line l ¼ ln: Indeed, by the above, the only points s at
which *FFaðln; sÞ might vanish are s ¼ kp ðk 2 ZÞ: However, this would imply
that Faðln; sÞ has a degenerate zero at s ¼ kp; but it follows from Lemma 3
and the fact that ln satisfies (74) that the zeroes of Faðln; �Þ are
nondegenerate when l 2 Ga: By the same argument *FF a is negative on the
line l ¼ ln:
The existence of a function laðsÞ satisfying (85) and (86) will then follow

from the implicit function theorem if we can show that, for a > 0 sufficiently
small,

Dl *FFaðl; sÞ50 for all ðl; sÞ 2 ½ln; l
n
 � R: ð89Þ

Equation (89) also implies that, for each fixed s; l ¼ laðsÞ is the only
solution of Faðl; sÞ ¼ 0 in ½ln; l

n
: We note that by (75) we have *FF0ðl; sÞ ¼
hðlÞ; hence

Dl *FF 0ðl; sÞ ¼ h0ðlÞ:

Therefore, by (88), we have (89) for a ¼ 0: But since *FFa is continuous with
respect to a; l; s; and since we are dealing with an inequality on a compact
set ðl 2 ½ln; l

n
; *FFa is periodic with respect to sÞ; we have (89) for all a > 0
sufficiently small, as we needed.
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To see that la is even, we recall that by Lemma 7(ii), Fa is odd with
respect to s; which implies that *FF a is even with respect to s; hence,
using (87),

*FF aðlað�sÞ; sÞ ¼ *FF aðlað�sÞ;�sÞ ¼ 0;

but since, fixing s; l ¼ laðsÞ is the unique solution of the equation *FFaðl; sÞ ¼
0 in the interval ½ln; l

n
; we must have lað�sÞ ¼ laðsÞ: A similar argument,
using Lemma 7(i), shows the 2p-periodicity of la:

7. ANALYZING THE BIFURCATING CURVES

We now assume that the hypotheses of Theorem 12 hold, and wish
to study the form of the function laðsÞ (hence of the curve CðaÞÞ
for a > 0 sufficiently small. This will enable us to obtain information
on the maximal number of periodic solutions for l 2 ðln; l

nÞ; on the
nature of the bifurcations from the curves Sk (subcritical or supercritical),
and on the stability of the periodic solutions lying on the bifurcation
curve.
The basic idea now is to expand laðsÞ with respect to a: It will now be

convenient to denote

mða; sÞ ¼ laðsÞ:

By the Taylor formula, we have

mða; sÞ ¼ mð0; sÞ þ aDamð0; sÞ þ Oða2Þ ð90Þ

(by the periodicity of m with respect to s this holds uniformly with respect to
s 2 RÞ:
Substituting a ¼ 0 into the identity

Bðmða; sÞ; a; sÞ ¼ 0 ð91Þ

and using (40), we have

hðmð0; sÞÞ sinðsÞ ¼ 0 for all s 2 R;

which implies hðmð0; sÞÞ ¼ 0 for all s 2 R; and since (72) and (83) imply
that h has a unique zero in ½ln; l

n
; which we denote by %ll; we conclude
that

mð0; sÞ ¼ %ll for all s 2 R: ð92Þ
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Our aim now is to compute the derivative Damð0; sÞ: To do so we
differentiate identity (91) with respect to a; obtaining

DlBðmða; sÞ; a; sÞDamða; sÞ þ DaBðmða; sÞ; a; sÞ ¼ 0:

Setting a ¼ 0 and using (92), we get

DlBð%ll; 0; sÞDamð0; sÞ þ DaBð%ll; 0; sÞ ¼ 0; ð93Þ

so to compute Damð0; sÞ we must compute DlBð%ll; 0; sÞ and DaBð%ll; 0; sÞ: By
(40), we obtain

DlBð%ll; 0; sÞ ¼ sinðsÞh0ð%llÞ: ð94Þ

To compute DaBð%ll; 0; sÞ; we differentiate the definition of B (see (34)) with
respect to a;

DaBð%ll; a; sÞ ¼ ðI � QÞ 8DxN ðl; sþ Sð%ll; a; sÞÞðDaSð%ll; a; sÞÞ:

Substituting a ¼ 0 and using (37), we get

DaBð%ll; 0; sÞ ¼ ðI � QÞ 8DxN ð%ll; sÞðDaSð%ll; 0; sÞÞ: ð95Þ

To compute DaSð%ll; 0; sÞ; we differentiate relation (32) with respect to a and
set a ¼ 0; obtaining

DaSð%ll; 0; sÞ ¼ �½Lj *XX 

�1

8QðN ð%ll; sÞÞ:

Returning to (95), we have

DaBð%ll; 0; sÞ ¼ �ðI � QÞ 8DxN ð%ll; sÞ 8 ½Lj *XX 

�1

8QðN ð%ll; sÞÞ: ð96Þ

We now compute the right-hand side of (96) explicitly. We have

N ð%ll; sÞ ¼ sinð%llx0ðtÞ þ sÞ ¼ sinðsÞ cosð%llx0ðtÞÞ þ cosðsÞ sinð%llx0ðtÞÞ;

hence

QðN ð%ll; sÞÞ ¼ sinðsÞ cosð%llx0ðtÞÞ þ cosðsÞ sinð%llx0ðtÞÞ

� sinðsÞ
1

T

Z T

0

cosð%llx0ðtÞÞ dt � cosðsÞ
1

T

Z T

0

sinð%llx0ðtÞÞ dt: ð97Þ

Since x0 2 Xn; the second integral on the right-hand side of (97) vanishes,
and the first integral is equal to Thð%llÞ; and, since we have hð%llÞ ¼ 0; it
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vanishes too, so we have

QðN ð%ll; sÞÞ ¼ sinðsÞ cosð%llx0ðtÞÞ þ cosðsÞsinð%llx0ðtÞÞ:

We now denote

z1 ¼ ½Lj *XX 

�1½cosð%llx0ðtÞÞ
; z2 ¼ ½Lj *XX 


�1½sinð%llx0ðtÞÞ


(by the vanishing of the integrals discussed above, we indeed have that
cosð%llx0ðtÞÞ; sinð%llx0ðtÞÞ 2 *YY ; so z1; z2 are well defined), so that we have

½Lj *XX 

�1

8QðN ð%ll; sÞÞ ¼ sinðsÞz1 þ cosðsÞz2: ð98Þ

More explicitly, z1; z2 are the unique T -periodic solutions of the linear
equations

z001 þ cz01 ¼ cosð%llx0ðtÞÞ;

z002 þ cz02 ¼ sinð%llx0ðtÞÞ

satisfying Z T

0

z1ðtÞ dt ¼
Z T

0

z2ðtÞ dt ¼ 0:

Using (51) and (98), we have

DxN ð%ll; sÞ 8 ½Lj *XX 

�1

8QðN ð%ll; sÞÞ ¼ cosð%llx0ðtÞ þ sÞ½sinðsÞz1 þ cosðsÞz2


¼ cosðsÞ sinðsÞ½cosð%llx0ðtÞÞz1 � sinð%llx0ðtÞÞz2


þ cos2ðsÞ cosð%llx0ðtÞÞz2� sin
2ðsÞ sinð%llx0ðtÞÞz1;

hence, using (96),

DaBð%ll; 0; sÞ

¼ �ðI � QÞ 8DxN ð%ll; sÞ 8 ½Lj *XX 

�1

8QðN ð%ll; sÞÞ

¼ cosðsÞ sinðsÞ
1

T

Z T

0

½sinð%llx0ðtÞÞz2ðtÞ � cosð%llx0ðtÞÞz1ðtÞ
 dt

þ sin2ðsÞ
1

T

Z T

0

sinð%llx0ðtÞÞz1ðtÞ dt � cos2ðsÞ
1

T

Z T

0

cosð%llx0ðtÞÞz2ðtÞ dt: ð99Þ
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We now note that, since x0 2 Xn; we have sinð%llx0ðtÞÞ 2 Xn; hence z2 2 Xn: On
the other hand, cosð%llx0ðtÞÞ is T2 -periodic, hence so is z1: These facts imply thatZ T

0

cosð%llx0ðtÞÞz2ðtÞ dt ¼ 0;
Z T

0

sinð%llx0ðtÞÞz1ðtÞ dt ¼ 0;

so (99) reduces to

DaBð%ll; 0; sÞ ¼ cosðsÞ sinðsÞ
1

T

Z T

0

½sinð%llx0ðtÞÞz2ðtÞ � cosð%llx0ðtÞÞz1ðtÞ
 dt:

We also note that, using the definition of z1; z2; and integrating by parts,
taking into account the periodicity, we haveZ T

0

sinð%llx0ðtÞÞz2ðtÞ dt ¼
Z T

0

ðz002ðtÞ þ cz02ðtÞÞz2ðtÞ dt ¼ �
Z T

0

ðz02ðtÞÞ
2 dt;

Z T

0

cosð%llx0ðtÞÞz1ðtÞ dt ¼
Z T

0

ðz001ðtÞ þ cz01ðtÞÞz1ðtÞ dt ¼ �
Z T

0

ðz01ðtÞÞ
2 dt:

Hence,

DaBð%ll; 0; sÞ ¼ cosðsÞ sinðsÞ
1

T

Z T

0

½ðz01ðtÞÞ
2 � ðz02ðtÞÞ

2
 dt: ð100Þ

We define

L ¼
1

T

Z T

0

½ðz02ðtÞÞ
2 � ðz01ðtÞÞ

2
 dt;

so we may write (100) as

DaBð%ll; 0; sÞ ¼ �L cosðsÞ sinðsÞ: ð101Þ

From (93), (94), and (101), we obtain

Damð0; sÞ ¼
L

h0ð%llÞ
cosðsÞ; ð102Þ

hence, from (90)

laðsÞ ¼ mða; sÞ ¼ %llþ a
L

h0ð%llÞ
cosðsÞ þ Oða2Þ: ð103Þ

We now proceed to derive some important qualitative consequences with
the aid of (103).
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Lemma 11. Assume f satisfies (2) and ln5ln satisfies (72) and (83), and

L=0: Then for a > 0 sufficiently small we have

(i) DslaðsÞ ¼ 0 if and only if s ¼ kp ðk 2 ZÞ:

(ii) If LhðlnÞ > 0 ð50Þ then s ¼ kp is a minimum (maximum) point of

laðsÞ when k is even, and a maximum (minimum) point of laðsÞ when k is odd.

Proof. (i) Since laðsÞ is even and 2p-periodic, DslaðsÞ is odd and 2p-
periodic, which implies that Dsmða; kpÞ ¼ 0 for all k 2 Z: We now wish to
show that (103) implies that, if L=0; then, for a > 0 sufficiently small, the
only values of s at which DslaðsÞ ¼ 0 are s ¼ kp: To do so we use Lemma 4,
defining

g1ðsÞ ¼ �a
L

h0ð%llÞ
sinðsÞ; g2ðsÞ ¼ DslaðsÞ:

Differentiating (103) with respect to s (which is valid due to analyticity), we
have

g2ðsÞ ¼ DslaðsÞ ¼ �a
L

h0ð%llÞ
sinðsÞ þ Oða2Þ ¼ g1ðsÞ þ Oða2Þ:

It is easy to see that this implies that for a > 0 sufficiently small, the
hypotheses of Lemma 4 will hold for g1; g2 defined as above, enabling us to
conclude that g1; g2 have the same number of zeroes in ½�p;pÞ; and since g1
has two zeroes in ½�p; pÞ; so does DslaðsÞ: But since we already know that
s ¼ �p and 0 are zeroes of DslaðsÞ; we conclude that s ¼ �p; 0 are the only
zeroes of Dslaða; sÞ in ½�p;pÞ when a is sufficiently small, from which our
claim follows.
(ii) Differentiating (103) twice with respect to s; we have

D2slaðsÞ ¼ �a
L

h0ð%llÞ
cosðsÞ þ Oða2Þ: ð104Þ

Note now that, since the sign of h0ð%llÞ is opposite to the sign of hðlnÞ; the
condition LhðlnÞ > 0 is equivalent to L

h0ð%llÞ
50; and the result follows at once

from this and (104). ]

The information we have derived is sufficient for obtaining a complete
qualitative description of the bifurcating curve CðaÞ for a > 0 sufficiently
small. The result depends on the sign of LhðlnÞ: Let us assume for now that
LhðlnÞ > 0: In this case, by part (ii) of Lemma 11, s ¼ kp ðk evenÞ are the
minimum points of laðsÞ; while s ¼ kp ðk odd) are the maximum points.



GUY KATRIEL46
Since l0 ¼ lað0Þ is the unique value of l 2 ½ln; l
n
 at which bifurcation from

the curves Sk ðk evenÞ occurs and l1 ¼ laðpÞ is the unique value at which
bifurcation from the curves Sk ðk oddÞ occurs, we conclude that the
bifurcation fromSk is supercritical for k even and subcritical for k odd, and
that l1 > l0: Additionally, by the fact that laðsÞ is monotone with respect to
s in the intervals ½0;p
 and ½p; 2p
 we see that, for l 2 ðl0; l1Þ; we have exactly
four geometrically distinct periodic solutions. We summarize the above, and
the analogous statement for the case LhðlnÞ50; in

Theorem 13. Assume f satisfies (2) and ln5ln satisfy (72) and (83). If

LhðlnÞ > 0 ð50Þ then there exists a0 > 0 such that when 05a5a0; we have

(i) The bifurcation points ðl0; ukða; l0ÞÞ are supercritical (subcritical) for

k even and the bifurcation points ðl1; ukða; l1ÞÞ is subcritical (supercritical)
for k odd.

(ii) l1 > l0 ðl0 > l1Þ:

(iii) For l 2 ðl0; l1Þ ðl 2 ðl1; l0ÞÞ; (1) has precisely four geometrically

distinct periodic solutions, and for all other l 2 ½ln; l
n
; (1) has precisely

two geometrically distinct periodic solutions.

We see that for l 2 ðl0; l1Þ in the case LhðlnÞ > 0 (and l 2 ðl1; l0Þ in the
case LhðlnÞ50Þ; we have exactly two geometrically distinct periodic
solutions besides u0ða; lÞ; u1ða; lÞ: We note that these solutions, which we
denote by v1; v2; are nonsymmetric, since Theorem 3 ensures that uk ðk 2 ZÞ
are the only symmetric solutions. We claim that the two are related to each
other by the symmetry T: Indeed, Tðv1Þ is also a periodic solution, and it
cannot be equal to one of the uk’s since this would imply that v1 is also one
of the uk’s. It also cannot be geometrically equivalent to v1; because that
would make it symmetric. Hence Tðv1Þ must be geometrically equivalent
to v2:
We now wish to determine the dynamical stability of the periodic

solutions on the bifurcating curve C in the case c > 0:We assume that a > 0
is sufficiently small so that the results of Theorem 13 hold, as well as (61).
We first assume L > 0 and hðlnÞ50: Then, by Theorem 13, we have that
l0 > l1; and the bifurcation is subcritical at ðl0; ukða; l0ÞÞ ðk evenÞ and
supercritical at ðl1; ukða; l0ÞÞ ðk oddÞ: From Theorem 12(iii) it follows that,
for all k 2 Z; gT ðukða; lÞÞ ¼ �1 for l 2 ðl1; l0Þ: Therefore, by result (2) of
Ortega quoted in Section 4, when l 2 ðl1; l0Þ we have gT ðv1Þ þ gT ðv2Þ ¼ 2;
where v1; v2 are the solutions on C: But since v1; v2 are related by the
symmetry T it is not hard to see that their indices must be equal, which
implies gT ðv1Þ ¼ gT ðv2Þ ¼ 1; so that by result (1) of Ortega, both v1 and v2 are
stable.
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An analogous analysis can be carried out for the other three cases L > 0;
hðlnÞ > 0; L50; hðlnÞ > 0; and L50; hðlnÞ50; and the results are
summarized in

Theorem 14. Assume that f satisfies (2) and ln5ln satisfies (72) and

(83), that

L > 0 ð50Þ

and that c > 0: Then there exists a0 > 0 such that when 05a5a0 the solutions

on the bifurcating branch C are stable (unstable).

Figs. 8–11 represent the information obtained from Theorems 13 and 14.
In conclusion, we see that the exchange of stability which occurs as l

varies in the interval ½ln; l
n
 can occur in two distinct ways dependent on the

sign of L: if L is positive, then we observe a continuous transition, so that in
some subinterval of ½ln; l

n
 the observable periodic solutions will be the
nonsymmetric ones, while if L50 the transition will be a genuine jump.
To compute L corresponding to some zero %ll of h; one needs to compute

some integrals. Since it is the sign of L which determines the disposition of
the corresponding curve C for a > 0 small, one may use finite-precision
FIG. 8. Information given by Theorems 13 and 14: hðlnÞ > 0; L > 0:



FIG. 9. Information given by Theorems 13 and 14: hðlnÞ > 0; L50:

FIG. 10. Information given by Theorems 13 and 14: hðlnÞ50; L > 0:
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FIG. 11. Information given by Theorems 13 and 14: hðlnÞ50; L50:
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numerical integration. We have computed the numbers Li corresponding
to several roots of h in the case of the sinusoidally forced pendulum with
c ¼ 1; T ¼ 2p:We found that the Li’s are positive for the first 20 roots of h;
so that for sufficiently small a > 0 the corresponding bifurcations are
described by Figs. 9 and 11, which means that for some l-intervals one will
observe the nonsymmetric oscillations. This is indeed borne out by numerical
simulations: for example in the simulation discussed in Section 4, with
f ðtÞ ¼ sinðtÞ; a ¼ 1

2
; c ¼ 3; for values of l in the interval (7.5,7.8) one

observes that the solution approaches a periodic motion whose mean value
is not a multiple of p; that is a nonsymmetric periodic solution.
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