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Global existence for systems of wave equations with
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Abstract

We consider the Cauchy problem for systems of nonlinear wave equations with different
propagation speeds in three space dimensions. We prove global existence of small amplitude
solutions for systems with some nonresonant nonlinearities which may depend on both of the
unknowns and their derivatives. Our method here can be also adopted to treat the null forms.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is devoted to the study of the Cauchy problem for systems of nonlinear
wave equations in three space dimensions. We consider the system of nonlinear wave
equations

�iui = Fi(u, �u,∇x�u) in (0,∞)× R3 (1� i�m), (1.1)

with initial data

ui(0, x) = εfi(x), �t ui(0, x) = εgi(x) for x ∈ R3 (1� i�m), (1.2)
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where u = (uj )
m
j=1, and �i = �2

t − c2
i �x with some positive given constantsci . We

use the notation�0 = �t and�k = �xk for 1�k�3 throughout this paper. In the above
system (1.1), �u and ∇x�u stand for the first and second derivatives ofu, respectively.
More precisely,�u = (�auj ) with 0�a�3 and 1�j�m, and ∇x�u = (�k�auj ) with
1�k�3, 0�a�3 and 1�j�m.

We suppose thatF(u, v,w) = (
Fj (u, v,w)

)m
j=1 is a function of(u, v,w) ∈ Rm ×

R4m × R12m satisfying

F(u, v,w) = O(|u|2 + |v|2 + |w|2) near (u, v,w) = (0,0,0). (1.3)

We write the elements of the vectorsv ∈ R4m andw ∈ R12m as vj,a andwj,ka with
1�j�m, 1�k�3 and 0�a�3, respectively, wherevj,a corresponds to�auj , and
wj,ka to �k�auj .

To assure the hyperbolicity of the system, we always assume

�Fi
�wj,ka

(u, v,w) = �Fj
�wi,ka

(u, v,w) (1.4)

for any i, j ∈ {1, . . . , m}, 1�k�3 and 0�a�3. Because only classical solutions are
considered in this paper, we may also assume

�Fi
�wj,kl

(u, v,w) = �Fi
�wj,lk

(u, v,w) for any 1� i, j�m and 1�k, l�3. (1.5)

For simplicity, we suppose thatf = (fj )
m
j=1 and g = (gj )

m
j=1 in (1.2) belong to

C∞
0 (R3; Rm). ε in (1.2) is a positive parameter which is always supposed to be small.

Without loss of generality, we may assume that the speedci in the definition of�i

satisfies

0 < c1�c2� · · · �cm. (1.6)

We are interested in the condition to assure global existence of classical solutions
for (1.1) and (1.2) with small ε. Since there are examples of quadratic nonlinearity
for which some solution blows up in finite time no matter how smallε is, we need
some restriction on the quadratic nonlinearity to get global solutions. Such a condition is
known as the “Null Condition”. The Null Condition was first introduced by Klainerman
[14], for the single speed case, that isc1 = · · · = cm, to show the global existence
of solutions for small data (see also Christodoulou[5]; for the corresponding results
in two space dimensions, see[2], [3], [6], [7], [10] and [11]). The Null Condition is
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closely connected to the following null forms (see the discussion after Definition 1.1
below):

Q0(�,�; ci) = (�t�)(�t�)− c2
i

3∑
j=1

(�j�)(�j�), (1.7)

Qab(�,�) = (�a�)(�b�)− (�b�)(�a�) (0�a < b�3). (1.8)

Now we consider the case where the propagation speedsci do not necessarily coin-
cide with each other. We refer to this case as the multiple speeds case.

The global existence for the multiple speeds case with the nonlinear termF depending
only on derivatives ofu, i.e.,F = F(�u,∇x�u) is studied in[16], [1], [21] and[20] (see
[8] for the two space dimensional case). The multiple speeds case withF depending on
both of u and its derivatives is considered in Kubota – Yokoyama[17] and the author
[12] and [13].

Before we describe the results in[12] and [13], we introduce our Null Condition.
For non-negative integerp and a smooth functionG(u, v,w), we writeG(p)(u, v,w)

for the pth degree term of the Taylor expansion ofG around the origin, that is

G(p)(u, v,w) =
∑

|�|+|�|+|�|=p

��
u�

�
v�

�
wG(0,0,0)

�!�!�! u�v�w�. (1.9)

Here we have used the standard notation of multi-indices; for example,��
u = ��1

u1
· · · ��m

um
,

�! = �1! · · · �m!, u� = u
�1
1 · · · u�m

m and so on.
Given c1, . . . , cm, we classify the indices by their corresponding speeds. We define

I (i) = {
j ∈ {1, . . . , m}; cj = ci

}
for 1� i�m. (1.10)

To state our Null Condition, we introduce

Ymi = {
y = (y1, . . . , ym) ∈ Rm; yj = 0 for all j �∈ I (i)

}
(1.11)

and

Ni =
{
X = (X0, X1, X2, X3) ∈ R4;X2

0 − c2
i

3∑
k=1

X2
k = 0

}
(1.12)
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for i = 1, . . . , m. For y = (yj )
m
j=1 ∈ Rm andX = (Xa)

3
a=0 ∈ R4, we defineV (y,X) ∈

R4m andW(y,X) ∈ R12m by

V (y,X) = (
Vj,a(y,X)

)
1� j �m,0�a�3 = (yjXa)1� j �m,0�a�3, (1.13)

W(y,X) = (
Wj,ka(y,X)

)
1� j �m,1�k�3,0�a�3

= (yjXkXa)1� j �m,1�k�3,0�a�3. (1.14)

Now we can state our Null Condition.

Definition 1.1. We say thatF(u, v,w) = (
Fi(u, v,w)

)m
i=1 satisfies the Null Condition

(of degree 2), if both of the following two conditions are fulfilled:
(i) For eachi ∈ {1, . . . , m},

F
(2)
i

(
�, V (�, X),W(	, X)

) = 0 (1.15)

holds for any�,�, 	 ∈ Ymi and anyX ∈ Ni , whereV andW are given by (1.13) and
(1.14), respectively.
(ii) F (2)(u,0,0) = 0 holds for anyu ∈ Rm.

Remark. The above Null Condition coincides with that of Klainerman in[14] when
c1 = · · · = cm (the above expression of the condition is motivated by[5]), and with
the condition in[1], [21] and [20] whenF = F(�u,∇x�u).

To simplify our exposition, we use the following notation throughout this paper: For
a given function� and a given family{��}�∈
 of functions, we write� = ∑′

�∈

��, if

there exists a family{C�}�∈
 of constants such that� = ∑
�∈
 C���.

Now we want to derive the explicit representation of nonlinearities satisfying the
Null Condition. We can easily check thatF satisfies the Null Condition (of degree 2)
if and only if F (2)

i has the form

F
(2)
i = Ni + R1

i + R2
i , (1.16)

where

Ni =
∑′

j,k∈I (i)
|�|, |�|=0,1

{
Q0(�

�
uj , �

�
uk; ci)+

∑′

0�a<b�3

Qab(�
�
uj , �

�
uk)

}
, (1.17)

R1
i = R11

i + R12
i , R

2
i = R21

i + R22
i , (1.18)
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R11
i =

m∑
j=1

∑′

k �∈I (j)
|�|,|�|=1,2

(��
uj )(�

�
uk), R

12
i =

m∑
j=1

∑′

k �∈I (j)
|�|=1,2

uj (�
�
uk), (1.19)

R21
i =

∑
j �∈I (i)

∑′

k∈I (j)
|�|,|�|=1,2

(��
uj )(�

�
uk), R

22
i =

∑
j �∈I (i)

∑′

k∈I (j)
|�|=1,2

uj (�
�
uk). (1.20)

HereQ0 andQab are null forms given by (1.7) and (1.8), respectively. We have used
also the notation�� = ��0

0 ��1
1 ��2

2 ��3
3 . We refer to nonresonant terms likeR1

i andR2
i as

the “resonance forms”, following the terminology in[1], [21] and [17].

Remark. (i) For the single speed casec1 = · · · = cm, only the null formsNi appear
in F

(2)
i , becauseI (i) = {1, . . . , m} for any i ∈ {1, . . . , m}.

(ii) Global existence forR11
i was proved by Kovalyov[16]. The resonance formsR21

i

were treated for the first time in Agemi–Yokoyama[1].

Now we can state the known results for systems, whose nonlinearity depends on
both of the unknowns and their derivatives, with multiple speeds. In the results known
so far, we need some assumption in addition to the Null Condition.

In [12], the author proved global existence of small solutions when the Null Condition
and the following condition (H1) are fulfilled:

(H1) There exist some polynomialsGi,a(u, v) (1� i�m, 0�a�3) of degree 2 such
that

F
(2)
i (u, �u,∇x�u) =

∑
0�a�3

�aGi,a(u, �u) (1� i�m) (1.21)

holds for anyu ∈ C2
(
(0,∞)× R3).

Under the Null Condition and (H1), none ofNi , R11
i , R12

i , R21
i and R22

i have to
vanish, but there is a strict restriction on the coefficients. For example, the coefficient
for the termQ0(uj , uk; ci) (j, k ∈ I (i)), which may appear inNi , must be equal to
0, because we cannot write it in the form of (1.21), no matter what term we add
to it. The coefficient ofQ0(uj , �auk; ci) must coincide with that ofQ0(�auj , uk; ci)
(observe thatQ0(uj , �auk)+Q0(�auj , uk) = �aQ0(uj , uk)). Similarly, the coefficients
of uj�auk anduk�auj (k �∈ I (j)), which may appear inR12

i , must coincide with each

other (observe�a(ujuk) = (�auj )uk + uj (�auk)). Note thatF (2)
i can depend onu

explicitly when the Null Condition and (H1) are assumed.
In [13], the author proved global existence of small solutions under the Null Condi-

tion and another kind of additional assumption

(H2) F(u, v,w) = O(|u|3 + |v|2 + |w|2) near (u, v,w) = (0,0,0). In other words,
F
(2)
i (u, v,w) does not depend onu for eachi ∈ {1, . . . , m}.
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Under the Null Condition and (H2),R12
i andR22

i must vanish, but there is no further
restriction onNi , R11

i andR21
i because they do not depend onu from the beginning.

This result is an extension of the result in Kubota–Yokoyama[17].
Observe that either of (H1) and (H2) puts restriction onR12

i (and also onR22
i ).

In this paper, we give a method to treat the nonlinearity of the formR12
i without

any further restriction on it. Our method here works also for the null formsNi , the
resonance formsR11

i and higher nonlinearity of arbitrary forms, but not forR22
i at all,

and we need some restriction onR21
i to apply the method. More precisely, we assume

the following condition, instead of (H1) or (H2):

(H3) For eachi ∈ {1, . . . , m}, (1.15) holds not only for any(�,�, 	, X) ∈ Ymi × Ymi ×
Ymi × Ni , but also for any

(�,�, 	, X) ∈
m⋃
j=1
j �∈I (i)

(Ymj × Ymj × Ymj × Nj ).

The null condition and (H3) are satisfied if and only if eachF (2)
i has the form (1.16)

with the following specialR21
i andR22

i :

R21
i =

∑
j �∈I (i)

∑′

k∈I (j)
|�|,|�|=0,1

Q0(�
�
uj , �

�
uk; cj )+

∑′

0�a<b�3

Qab(�
�
uj , �

�
uk)

 , (1.22)

R22
i = 0. (1.23)

We emphasize again that (H3) places no further restriction onR11
i , R12

i andNi . Our
main result is the following:

Theorem 1.1. Assume that(1.4) holds. Suppose that the Null Condition(of degree2)
and (H3) are fulfilled. Then, for any f, g ∈ C∞

0 (R3; Rm), there exists a positive constant
ε0 such that, for any ε ∈ (0, ε0], the Cauchy problem(1.1) and (1.2) admits a unique
global solutionu ∈ C∞([0,∞)× R3; Rm

)
.

Remark. The assumption thatf and g have compact support is not essential at all in
our result. Since the constantε0 in the above theorem does not depend on the size of
support of data explicitly in our proof, we can show the same result for more general
data by using the standard approximation technique.

The proof of Theorem 1.1 will be given in Section 5. The main ingredient of our
method lies in the estimate of theL2 norms ofu. To take advantage of the difference
of speeds in nonlinear terms contained inR11

i andR12
i , we use the decay of the energy

of ui outside the light cone corresponding to the speedci (see Lemmas 3.5 and 3.9
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below). We also need some decomposition of nonlinearity to treatR11
i and R12

i (see
Lemma 5.4 below).

The usage of the decay of the energy outside the light cone in this paper is motivated
by the methods of[15], [19] and [20] in some sense. Their main purpose of using
the decay of the energy is to avoid the direct estimation of the fundamental solution,
however we need the direct estimation here because decay estimates much better than
theirs are needed in our proof to treat the nonlinearity depending onu itself.

2. Notations

In this section, we introduce some notations which will be used throughout this
paper.

For eachi ∈ {1, . . . , m}, we writeU∗
i [f, g] for the solution to the Cauchy Problem

{
�iU

∗
i [f, g](t, x) = 0 in (0,∞)× R3,

U∗
i [f, g](0, x) = f (x), �tU∗

i [f, g](0, x) = g(x) for x ∈ R3.

Similarly, Ui[�] stands for the solution to the Cauchy problem

{
�iUi[�](t, x) = �(t, x) in (0,∞)× R3,

Ui[�](0, x) = �tUi[�](0, x) = 0 for x ∈ R3.

We introduce vector fields

S = t�t +
3∑

j=1

xj�j and �jk = xj�k − xk�j for 1�j < k�3. (2.1)

We define also a family
 of vector fields by


0 = S, 
1 = �12, 
2 = �13, 
3 = �23, 
k = �k−4 (4�k�7). (2.2)

Using a multi-index� = (�0, . . . , �7), we write 
� for the product
�0
0 
�1

1 · · ·
�7
7 . We

also use the notation�� = ��0
0 ��1

1 ��2
2 ��3

3 and ��
x = ��1

1 ��2
2 ��3

3 .
The following property can be easily checked by direct calculation:

[S, �a] = −�a, [S,�jk] = 0,

[�jk, �a] = −�aj�k + �ak�j ,

[�jk,�pq ] = �jp�qk + �jq�kp − �kp�qj − �kq�jp,
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for 0�a�3, 1�j < k�3 and 1�p < q�3, where�ab is the Kronecker delta, and
�jk for j > k is given by�jk = −�kj . From these identities we obtain


�
�� = 
�+�� +
∑′

|�|� |�|+|�|−1


��, (2.3)

�a
�� = 
��a� +
∑′

0� b� 3
|�| � |�|−1


��b�, 
��a� = �a
�� +
∑′

0� b� 3
|�| � |�|−1

�b
�� (2.4)

for any smooth function�. We have also[�i ,
0] = 2�i and [�i ,
j ] = 0 for
1�j�7, which lead to

�i (
��) = 
�(�i�)+
∑′

|�|� |�|−1


�(�i�). (2.5)

For a non-negative integers, 1�p�∞ and a smooth function�(t, x), we define

|�(t, x)|s =
∑

|�|� s

|
��(t, x)|, and ‖�(t, ·)‖s,p = ∥∥|�(t, ·)|s
∥∥
Lp(R3)

. (2.6)

For a non-negative integers, and a smooth functionf (x), we define

‖f ‖2
Hs,1 =

∑
|�|� s

∫
R3
(1 + |x|)2|��

xf (x)|2 dx. (2.7)

For i = 1, . . . , m, we also introduce

Li,k = xk

ci
�t + ci t�k (k = 1,2,3). (2.8)

Li,k together with the vector fields belonging to
 played an important role in the
study of the single speed case, but the usage ofLi,k will be restricted here, because
[�j , Li,k] = 0 holds if and only ifcj = ci .

3. Energy inequalities and decay of the energy

We start this section with the standard energy inequalities.

Lemma 3.1. Let f ∈ H 1(R3), g ∈ L2(R3) and� ∈ L1
([0, T );L2(R3)

)
. Then we have

‖�U∗
i [f, g](t, ·)‖

L2(R3)
� C

(
‖∇xf ‖

L2(R3)
+ ‖g‖

L2(R3)

)
, (3.1)
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‖�Ui[�](t, ·)‖
L2(R3)

� C

∫ t

0
‖�(�, ·)‖

L2(R3)
d� (3.2)

for any t ∈ [0, T ), where C is a constant independent of T.

From the classical theory for symmetric hyperbolic systems, we also have

Lemma 3.2. Let � = (�i )
m
i=1 be a smooth solution to

�2
t �i (t, x)−

m∑
j=1

∑
1� k� 3
0� a� 3

G
i,j
k,a(t, x)�k�a�j (t, x) = �i (t, x) in (0, T )× R3

for i = 1, . . . , m. We suppose thatGi,j
k,a = G

j,i
k,a and Gi,j

k,l = G
i,j
l,k hold for any i, j ∈

{1, . . . , m}, 1�k, l�3 and 0�a�3. We assume also that there exists a positive and
uniform constant M such that

M−1|�|2�
m∑

i,j=1

3∑
k,l=1

G
i,j
k,l (t, x)�i,k�j,l�M|�|2

holds for any� = (�i,k) 1� i�m
1� k� 3

∈ R3m, where |�|2 = ∑m
i=1

∑3
k=1 �2

i,k.

Then we have

‖��(t, ·)‖
L2(R3)

� C‖��(0, ·)‖
L2(R3)

+ C

∫ t

0
‖�G(�, ·)‖

L∞(R3)
‖��(�, ·)‖

L2(R3)
d�

+ C

∫ t

0
‖�(�, ·)‖

L2(R3)
d�, (3.3)

whereG = (G
i,j
k,a) and � = (�i ). Here the constant C depends only on the above

constant M.

The following conformal energy, which was used also in Klainerman[14], plays an
extremely important role in our proof, since it also provides us with the control for
decay of the energy (see Lemma3.5 below). Notice that following Lemma3.3 and
the proof of Lemma3.5 are the only points where the vector fieldsLi,j enter in our
proof.

Lemma 3.3. Let 1� i�m. Suppose� to be a smooth solution of

(�2
t − c2

i �x)�(t, x) = �(t, x) in (0, T )× R3 (3.4)

with initial data � = f and �t� = g at t = 0.
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Assume that� vanishes sufficiently fast at spatial infinity. Then we have

∑
|�|�1

‖
��(t, ·)‖L2 +
3∑

j=1

‖Li,j�(t, ·)‖L2

�C
(‖f ‖H1,1 + ‖g‖H0,1

) + C

∫ t

0
‖w+(�, | · |)�(�, ·)‖L2 d�, (3.5)

wherew+(t, |x|) = 1 + t + |x|.

Proof. Using a certain change of variables, we may assumeci = 1. For simplicity of
exposition, we writeLj for Li,j with ci = 1, i.e.,Lj = xj�t + t�j . We introduce

|�(t, x)|2
,L,1 =
∑

|�|�1

|
��(t, x)|2 +
3∑

j=1

|Lj�(t, x)|2.

We also define

K = (1 + t2 + |x|2)�t + 2tx · ∇x + 2t = �t + t (S + 2)+
3∑

j=1

xjLj .

Multiplying (3.4) by K�, and then doing integration by parts, we obtain

d

dt

∫
R3
E[�](t, x) dx =

∫
R3
(K�)(t, x)�(t, x) dx, (3.6)

where

E[�](t, x) = 1

2
(1 + t2 + |x|2)

{
(�t�)2 +

3∑
j=1

(�j�)2
}

+
3∑

j=1

2txj (�j�)(�t�)

+ 2t�(�t�)− �2 (3.7)

(see Klainerman[14] for the details).
We see that there exists a constantC such that we have

1

C

∫
R3

|�(t, x)|2
,L,1 dx�
∫

R3
E[�](t, x) dx�C

∫
R3

|�(t, x)|2
,L,1 dx (3.8)
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for any smooth functionv. In fact, using vector fields belonging to
, we can rewrite
E[�] as

2E[�] = (�t�)2 +
3∑

j=1

(�j�)2 + (S�)2 +
3∑

j=1

(Lj�)2 +
∑

1� j<k�3

(�jk�)2

+ 4t�(�t�)− 2�2. (3.9)

By writing t�t� = S� −
3∑

j=1
xj (�j�), and then using integration by parts, we obtain

∫
R3
t�(�t�) dx =

∫
R3

�(S�) dx + 3

2

∫
R3

�2 dx. (3.10)

Set �r =
3∑

j=1
(xj /|x|)�j andLr = ∑3

j=1(xj /|x|)Lj = |x|�t + t�r . By writing t�t� =
(t/|x|)Lr� − (t2/|x|)�r� and integrating by parts, we also get

∫
R3
t�(�t�) dx =

∫
R3

t

|x|�(Lr�) dx + 1

2

∫
R3

t2

|x|2 �2 dx. (3.11)

By (3.9) and (3.10), we can easily show the second half of (3.8).
From (3.10) and (3.11), we see∫

{4t�(�t�)− 2�2} dx = 3
∫

�(S�) dx + 5

2

∫
�2 dx

+
∫

t

|x|�(Lr�) dx + 1

2

∫
t2

|x|2 �2 dx

� −�2
∫
(S�)2 dx +

(
5

2
− 9

4�2

)∫
�2 dx

−1

2

∫
(Lr�)2 dx (3.12)

for any � > 0. Since we have(Lr�)2�
3∑

j=1
(Lj�)2, we obtain the first half of (3.8)

from (3.9) and (3.12) by choosing� close to 1 so that we have910 < �2 < 1.
Now, we define‖�(t)‖2

E = ∫
E[�](t, x) dx. Since we have

|K�(t, x)|�C(1 + t + |x|)|�(t, x)|
,L,1,
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from (3.6) and (3.8) we see

d

dt
‖�(t)‖2

E � C

∫
w+(t, |x|)|�(t, x)| |�(t, x)|
,L,1 dx

� C‖w+(t, | · |)�(t, ·)‖L2‖�(t)‖E. (3.13)

Gronwall’s lemma applied to (3.13) implies

‖�(t)‖E�‖�(0)‖E + C

∫ t

0
‖w+(�, | · |)�(�, ·)‖L2 d�. (3.14)

In view of (3.8), this completes the proof. �

As an apparent consequence of Lemma3.3, we have the following:

Corollary 3.4. Let i ∈ {1, . . . , m}. Then we have

‖Ui[�](t, ·)‖1,2 � C

∫ t

0
‖w+(�, | · |)�(�, ·)‖

L2(R3)
d�, (3.15)∥∥U∗

i [f, g](t, ·)∥∥1,2 � C
(‖f ‖H1,1 + ‖g‖H0,1

)
. (3.16)

wherew+(t, |x|) = 1 + t + |x| for t > 0 and x ∈ R3.

To treat R11
i and R12

i , we need to estimate the decay of the energy outside the
corresponding light cone. This also can be done through Lemma3.3.

Lemma 3.5. Definew+(t, r) = 1 + t + r and wi(t, r) = 1 + |ci t − r|. Then we have

∥∥wi(t, | · |)�Ui[�](t, ·)∥∥
L2 � C

∫ t

0
‖w+(�, | · |)�(�, ·)‖L2 d�, (3.17)∥∥wi(t, | · |)�U∗

i [f, g](t, ·)∥∥
L2 � C

(‖f ‖H1,1 + ‖g‖H0,1
)

(3.18)

for 1� i�m.

Proof. Eqs. (3.17) and (3.18) are immediate consequences of Lemma3.3 and the
following inequality which is essentially due to Lindblad[18]:

wi(t, |x|)|��(t, x)|�C

∑
|�|=1

|
��(t, x)| +
3∑

j=1

|Li,j�(t, x)|
 (3.19)

for any sufficiently smooth function�. Here we give a proof of (3.19).
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If
∣∣ci t − |x| ∣∣�1, (3.19) is shown by the following identities which can be checked

easily:

(
c2
i t

2 − |x|2)�t� = c2
i t (S�)− ci

3∑
j=1

xjLi,j�,

(
c2
i t

2 − |x|2)�j� = ci t (Li,j�)− xj (S�)+
∑
k �=j

xk(�jk�) (j = 1,2,3).

On the other hand, if
∣∣ci t − |x| ∣∣�1, (3.19) is a triviality because the operators�a

(0�a�3) are included in
. �

We turn our attention to the inhomogeneous wave equations with force terms written
in the form of divergence.

Lemma 3.6. For 0�a�3, we have

‖Ui[�a�](t, ·)‖1,2�C

∫ t

0
‖�(�, ·)‖1,2 d� + C‖�(0, ·)‖H0,1. (3.20)

Proof. The following identity can be checked easily:

Ui[�a�] = �aUi[�] − �0aU
∗
i [0,�(0, ·)], (3.21)

where�0a is the Kronecker delta.
By Corollary 3.4, we have

‖U∗
i [0,�(0, ·)](t, ·)‖1,2�C‖�(0, ·)‖H0,1. (3.22)

Set � = Ui[�]. By (2.5), we get �i (
��) = ∑′

|�|�1

�� for |�|�1. It is easy to

see
��(0, x) = 0, while �t
��(0, x) is equal to either 0 or�(0, x). Therefore the
standard energy inequality implies

‖�(
��)(t, ·)‖L2 �C

(
‖�(0, ·)‖L2 +

∫ t

0
‖�(�, ·)‖1,2 d�

)
for |�|�1. (3.23)

Since we have‖��(t, ·)‖1,2� ∑
|�|�1

‖�
��(t, ·)‖L2 from (2.4), we obtain the result

from (3.21), (3.22) and (3.23). �

For wi�Ui[�a�], we have a better estimate than Lemma3.5. We begin with two
lemmas which can be found in Klainerman–Sideris[15].
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Lemma 3.7. Define �i (t, r) = √
1 + |ci t − r|2. Let � ∈ C2

(
(0,∞) × R3). Then we

have

�i (t, |x|)|��(t, x)| � C

( ∑
|�|�1

|�
��(t, x)| + t |�i�(t, x)|
)
, (3.24)

�i (t, |x|)|�2
t �(t, x)| � C

( ∑
|�|�1

|�
��(t, x)| + |x| |�i�(t, x)|
)
, (3.25)

�i (t, |x|)|∇x�t�(t, x)| � C

( ∑
|�|�1

|�
��(t, x)| + t |�i�(t, x)|
)
. (3.26)

Proof. By using an appropriate change of variables, we can assumeci = 1, and the
above result forci = 1 is exactly Lemma 2.3 of[15]. �

Lemma 3.8. Let �i be defined as before. Let� be a smooth function decaying suffi-
ciently fast at spatial infinity. Then we have

‖�i
(
t, | · |)∇x��(t, ·)‖L2 �C

( ∑
|�|�1

‖�
��(t, ·)‖L2 + t‖�i�(t, ·)‖L2

)
, (3.27)

‖�i (t, | · |)�2
t �(t, ·)‖L2 �C

( ∑
|�|�1

‖�
��(t, ·)‖L2 + ‖r(·)�i�(t, ·)‖L2

)
, (3.28)

where r(x) = |x|.

Proof. Eq. (3.28) is a direct consequence of (3.25). Similarly, from (3.24) and (3.26),
we can easily see that‖�i��‖L2 and‖�i∇x�t�‖L2 are bounded by the right-hand side
of (3.27). On the other hand, with the help of integration by parts, we get

3∑
j,k=1

‖�i�j�k�‖2
L2 �C

(
‖��i‖2

L∞‖��‖2
L2 + ‖�i��‖2

L2

)
,

and
∑3

j,k=1 ‖�i�j�k�‖L2 turns out to be dominated by the right-hand side of (3.27).
See the proof of Lemma 3.1 in[15] for the details. �

Now we get the decay estimate of the energy.
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Lemma 3.9. For 0�a�3, we have

∥∥wi(t, | · |)�Ui[�a�](t, ·)∥∥
L2

�C

∫ t

0
‖�(�, ·)‖1,2 d� + C

{‖w+(t, | · |)�(t, ·)‖L2 + ‖�(0, ·)‖H0,1
}
.

(3.29)

Proof. Set � = Ui[�] and �0 = U∗
i [0,�(0)]. Then, as in the proof of Lemma3.6,

we haveUi[�a�] = �a� − �0a�0. Therefore we get

‖wi�Ui[�a�]‖L2 �‖wi�
2�‖L2 + ‖wi��0‖L2. (3.30)

Sincewi�C�i , Lemma3.8 yields

‖wi�
2�‖L2 �

∑
|�|�1

‖�
��‖L2 + ‖w+(t, | · |)�(t, ·)‖L2. (3.31)

Now, using (3.23) to estimate‖�
��‖L2 in (3.31), and (3.18) to estimate‖wi��0‖L2

in (3.30), we obtain the result. �

4. Weighted L∞ – L∞ decay estimates

In this section, we give a brief description ofL∞ – L∞ decay estimates.
Recall the definitions ofw+ andwi : w+(t, r) = 1+ t+ r andwi(t, r) = 1+|ci t− r|

for i = 1, . . . , m. First we consider homogeneous wave equations.

Lemma 4.1. For a smooth function h onR3, a non-negative integer s and a positive
constant	, we define

Ms,	[h] = sup
x∈R3

∑
|�|� s

∣∣∣(1 + |x|)2+	��
xh(x)

∣∣∣ .
Then, for 	 > 0, we have

w+(t, |x|)wi(t, |x|)	|U∗
i [f, g](t, x)|�C

(
M1,	[f ] +M0,	[g]

)
, (4.1)

w+(t, |x|)wi(t, |x|)	|�U∗
i [f, g](t, x)|�C

(
M2,	[f ] +M1,	[g]

)
(4.2)

for any (t, x) ∈ (0,∞)× R3, where the constant C depends only on	.
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Proof. See Asakura[4] (see also Proposition 3.3 and the subsequent remark in Kubota–
Yokoyama[17]). �

To describe the result for inhomogeneous wave equations, we introduce several no-
tations. For given constantsci (1� i�m) satisfyingc1� · · · �cm, we setc0 and cm+1
by

c0 = 0, (4.3)

cm+1 = 1
3 min
j∈I (cj − cj−1) with I = {

j ∈ {1, . . . , m}; cj − cj−1 �= 0
}
. (4.4)

For (t, r) ∈ [0,∞)× [0,∞), we define

w0(t, r) = 1 + |c0t − r| = 1 + r. (4.5)

We also introduce subsets
i (1� i�m) of [0,∞)× [0,∞) by


i = {
(�, �) ∈ [1,∞)× [1,∞); |ci� − �|�cm+1�

}
(4.6)

and 
0 by


0 = {[0,∞)× [0,∞)} \
m⋃
i=1


i . (4.7)

For a non-negative integers, 	�0 and i ∈ {1, . . . , m}, we define

〈�(t, x)〉(i)	,s =
{
w+(t, |x|)

(
1 + log w+(ci t,|x|)

wi(t,|x|)
)−1 |�(t, x)|s , if 	 = 0,

w+(t, |x|)wi(t, |x|)	|�(t, x)|s , if 	 > 0,
(4.8)

[�(t, x)](i)	,s = w0(t, |x|)wi(t, |x|)	|�(t, x)|s . (4.9)

The weight functionsz�(�, �) and z̃�(�, �) on [0,∞)× [0,∞) are defined by

z�(�, �) = w+(�, �)1+�wi(�, �)1−� if (�, �) ∈ 
i (0� i�m), (4.10)

z̃�(�, �) = w+(�, �)wi(�, �)1+� if (�, �) ∈ 
i (0� i�m). (4.11)

Now we are in a position to describe the result due to Kubota–Yokoyama[17].
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Lemma 4.2. (i) For � > 0 and 	,��0, we have

w+(t, |x|)−�〈Ui[�](t, x)〉(i)	,s � C sup
�∈[0,t]
y∈R3

|y|w+(�, |y|)	−�z�(�, |y|)|�(�, y)|s

+ C
∑

|�|� s−1

M0,	[
��(0, ·)], (4.12)

w+(t, |x|)−� [
�Ui[�](t, x)](i)1+	,s � C sup

�∈[0,t]
y∈R3

|y|w+(�, |y|)	−�z�(�, |y|)|�(�, y)|s+1

+ C
∑

|�|� s−1

M1,	[
��(0, ·)], (4.13)

whereMs,	 is defined in Lemma4.1.
(ii) For � > 0 and 	 > 0, we have

〈Ui[�](t, x)〉(i)	,s � C sup
�∈[0,t]
y∈R3

|y|w+(�, |y|)	̃z�(�, |y|)|�(�, y)|s

+ C
∑

|�|� s−1

M0,	[
��(0, ·)]. (4.14)

Proof. Part (i) of the above lemma is nothing but Corollary 3.6 of[17]. Hence we
only give a sketch of the proof for (4.14), which in fact is also proved implicitly in
the proof of Theorem 3.7 in[17]. It suffices to prove the cases = 0, because (4.14)
for generals can be obtained by applying Lemma 4.1 and (4.14) with s = 0 to the
equation of
�Ui[�] with |�|�s.

Set r = |x|. Without loss of generality, we may assumeci = 1. By the explicit
representation formula of the solution due to John[9] (see also[17] for instance), we
have

|Ui[�](t, x)|�CI (t, r) sup
�∈[0,t]
y∈R3

|y|w+(�, |y|)	̃z�(�, |y|)|�(�, y)|, (4.15)

where

I (t, r) = 1

r

∫ t

0

∫ r+t−�

|r−t+�|
w+(�, �)−	̃z�(�, �)−1 d� d�.
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From the definition of̃z�, we get

I (t, r)�
m∑
j=0

1

r

∫ t

0

∫ r+t−�

|r−t+�|
w+(�, �)−1−	wj(�, �)−1−� d� d� ≡

m∑
j=0

Ij (t, r). (4.16)

For eachIj , introducing new variables byp = � + � and q = � − cj�, we obtain

Ij (t, r) = 1

(cj + 1)r

∫ t+r

|t−r|
(1 + p)−1−	 dp

∫ p

pj

(1 + |q|)−1−� dq, (4.17)

where 2pj = (1 − cj )p + (1 + cj )(r − t). Since we have� > 0, we get

∫ p

pj

(1 + |q|)−1−�dq�
∫ ∞

−∞
(1 + |q|)−1−�dq = 2

�
,

which implies

Ij (t, r)�
C

r

∫ t+r

|t−r|
(1 + p)−1−	 dp. (4.18)

By explicit calculation, (4.18) leads to

Ij (t, r)�Cr−1(1 + |t − r|)−	. (4.19)

If r� t/2 andr�1/2, then we haver�(1+t+r)/5 and (4.19) implies Ij (t, r)�C(1+
t + r)−1(1 + |t − r|)−	.

On the other hand, since the integrand in (4.18) is less than(1+|t − r|)−	−1, (4.18)
leads to

Ij (t, r)�C
(t + r)− |t − r|

r
(1 + |t − r|)−	−1�2C(1 + |t − r|)−	−1. (4.20)

If we have eitherr� t/2 or r�1/2, then we get 1+ |t − r|�(1 + t + r)/4. Therefore
(4.20) implies Ij (t, r)�C(1 + t + r)−1(1 + |t − r|)−	 for such t and r. Summing up,
we have provedI (t, r)�C(1+ t + r)−1(1+ |t − r|)−	 for all (t, r) ∈ [0,∞)× [0,∞),
and in view of (4.15), this completes the proof of (4.14) for s = 0. �

5. Proof of the main theorem

First of all, we recall the estimates for the null forms.
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Lemma 5.1. Let i ∈ {1, . . . , m}, and s be a positive integer. Then we have

|Q0(�1,�2; ci)(t, x)|s � Cw+(t, |x|)−1wi(t, |x|)|��|[ s
2

]|��|s
+ w+(t, |x|)−1(|��|[ s

2

]|�|s+1 + |�|[ s
2

]+1|��|s
)
, (5.1)

|Qab(�1,�2)(t, x)|s � w+(t, |x|)−1(|��|[ s
2

]|�|s+1 + |�|[ s
2

]+1|��|s
)

(5.2)

for any (t, x) with (t, |x|) ∈ 
i , and for any smooth function

�(t, x) = (
�1(t, x),�2(t, x)

)
.

For the proof, see the author[13] (see also[21] and [20]).
From now on, we suppose that the assumptions in Theorem 1.1 are fulfilled. Let

u(t, x) be a local solution of (1.1) – (1.2) for 0� t < T with someT > 0. We fix
some integerK and three positive constants�, 	1 and 	2 satisfying

K�9, 0 < � < 1/2, 0 < 	1 < 	2 < 1 − 2�.

We define

E(T ) = sup
0� t<T

8∑
k=1

ek(t), (5.3)

where

e1(t) = sup
x∈R3

m∑
i=1

〈ui(t, x)〉(i)1,K+2,

e2(t) = sup
x∈R3

m∑
i=1

[�ui(t, x)](i)1+	1,2K−6, e3(t) = sup
x∈R3

m∑
i=1

〈ui(t, x)〉(i)	2,2K−5,

e4(t) = sup
x∈R3

m∑
i=1

w+(t, |x|)−2�[�ui(t, x)](i)1,2K−4,

e5(t) = sup
x∈R3

m∑
i=1

w+(t, |x|)−2�〈ui(t, x)〉(i)0,2K−3,

e6(t) = (1 + t)−�
m∑
i=1

∥∥wi(t, | · |)|�ui(t, ·)|2K−1
∥∥
L2,

e7(t) = (1 + t)−�‖u(t, ·)‖2K,2, e8(t) = (1 + t)−�‖�u(t, ·)‖2K,2.
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Here, as before,w+ and wj for 0�j�m are given byw+(t, r) = 1 + t + r and
wj(t, r) = 1 + |cj t − r|, respectively. Also remember that we have setc0 = 0.

Let j ∈ {0,1, . . . , m}. Then, from the definition of
j given by (4.6) and (4.7), we
get

C−1w+(t, r)�wj(t, r)�Cw+(t, r) for any (t, r) �∈ 
j . (5.4)

Consequently we also have

wk(t, r)�Cwj(t, r) for any (t, r) ∈ 
k, (5.5)

wherej, k ∈ {0,1, . . . , m}.
The main result in this section is the following proposition:

Proposition 5.2. Let u ∈ C∞([0, T ); Rm) be a solution to the Cauchy problem(1.1)
and (1.2) with someT > 0, andE(T ) be given by(5.3). Suppose that the assumptions
in Theorem1.1 are fulfilled. Then there exist positive constants B, C0 and ε1, which
are independent of T, such thatE(T )�B implies

E(T )�C0
(
ε + E(T )2), (5.6)

providedε�ε1.

From Proposition5.2, using the standard bootstrap argument, we see that there exist
positive constantsε0 andM, which are independent ofT, such thatE(T )�Mε holds
for ε�ε0. Theorem 1.1 follows immediately from thisa priori bound forE(T ) in view
of the local existence theorem. Therefore the remainder of this section will be devoted
to the proof of Proposition5.2. We supposeε << 1 andE(T ) << 1 in the following.

5.1. Estimate fore8(t)

Let |�|�2K, and setgi,jk,a = �Fi
�wj,ka

(u, �u,∇x�u). By (2.5), we have

�i (
�ui)−
∑
j,k,a

g
i,j
k,a�k�a(


�uj ) = F̃i,�, (5.7)

where

F̃i,� = 
�Fi −
∑
j,k,a

g
i,j
k,a�k�a(


�uj )+
∑′

|�|�2K−1


�F.



160 S. Katayama / J. Differential Equations 209 (2005) 140–171

By (2.4), we have ∣∣F̃i,�∣∣�C|u|K+2
(|u|2K + |�u|2K). (5.8)

It is easy to see|�gi,jk,a|�C|u|K+2. Since we have

C−1‖�u‖2K,2�
∑

|�|�2K

‖�
�u‖L2 �C‖�u‖2K,2

by virtue of (2.4), Lemma3.2 applied to (5.7) yields

‖�u(t, ·)‖2K,2 � Cε + C

∫ t

0
(1 + �)�−1e1(�) {e7(�)+ e8(�)} d�

� C
(
ε + (1 + t)�E(T )2) for 0� t < T . (5.9)

Here we have used also (5.8). As an immediate consequence of (5.9), we obtain

e8(t)�C
(
ε + E(T )2) for 0� t < T . (5.10)

5.2. Estimate fore6(t) and e7(t)

SetHi(u, v,w) = Fi(u, v,w)− F
(2)
i (u, v,w) for 1� i�m. Then we have

Hi(u, v,w) = O(|u|3 + |v|3 + |w|3) near (u, v,w) = (0,0,0). (5.11)

Since F satisfies the Null Condition and (H3), using the decomposition (1.16) of
F
(2)
i , we get

Fi = Ni + R11
i + R12

i + R21
i +Hi, (5.12)

whereNi is given by (1.17), R11
i andR12

i by (1.19), while R21
i satisfies (1.22).

First we claim

Lemma 5.3. Set ũi = (uj )j∈I (i). Then we have

|Ni(t, x)|s � Cw+(t, |x|)−1wi(t, |x|)
∣∣�ũi∣∣[ s

2

]+1

∣∣�ũi∣∣s+1

+ Cw+(t, |x|)−1{∣∣�ũi∣∣[ s
2

]+1 |̃ui |s+1 + |̃ui |[ s
2

]+2

∣∣�ũi∣∣s+1

}
(5.13)

for (t, x) ∈ (0,∞)× R3 satisfying(t, |x|) ∈ 
i . We also have

|Ni(t, x)|s�C
∣∣�ũi∣∣[ s

2

]+1

∣∣�ũi∣∣s+1 (5.14)

for any (t, x) ∈ (0,∞)× R3.
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Proof. Eq. (5.13) is a consequence of Lemma5.1. On the other hand, (5.14) follows
from the fact thatNi is a quadratic function of(��

ũi ) with 1� |�|�2. �

By Lemma 5.3, we have

|Ni(t, x)|2K−1�Cw−2+ (t, |x|)e1(t)
(|u(t, x)|2K + |�u(t, x)|2K

)
(5.15)

for any (t, x) ∈ [0, T )× R3. In fact, if (t, |x|) ∈ 
i , (5.13) implies

|Ni |2K−1�Cw−1+ wi |̃ui |K+2
(|u|2K + |�u|2K

)
�w−2+ e1

(|u|2K + |�u|2K
)
.

On the other hand, if(t, |x|) �∈ 
i , (5.14) and (5.4) lead to

|Ni |2K−1�C |̃ui |K+2 |�u|2K �w−2+ e1(t)|�u|2K.

BecauseR21
i has the same structure asNi , we also have

|R21
i (t, x)|2K−1�Cw+(t, |x|)−2e1(t)

(|u(t, x)|2K + |�u(t, x)|2K
)
. (5.16)

As for Hi , it is easy to see

|Hi(t, x)|2K−1�Cw+(t, |x|)−2e1(t)
2(|u(t, x)|2K−1 + |�u(t, x)|2K

)
. (5.17)

To treatR1
i

(= R11
i + R12

i

)
, we need some decomposition. This decomposition is one

of the main idea in our proof.

Lemma 5.4. Let |�|�2K − 1. DefineR = {(j, k); 1�j, k�m, cj �= ck}. Then, there
exist some functionsR1

i,�,∗ and R1
i,�,a such that


�R1
i = R1

i,�,∗ +
3∑

a=0

�aR1
i,�,a, (5.18)
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|R1
i,�,∗(t, x)|�C

∑
(j,k)∈R

|uj (t, x)|K+2|�uk(t, x)|2K−1, (5.19)

|R1
i,�,a(t, x)|1�C

∑
(j,k)∈R

|uj (t, x)|K+2
(|uk(t, x)|2K + |�uk(t, x)|2K

)
. (5.20)

Proof. From the definition ofR1
i , it suffices to prove the result forR1

i = (�buj )(�cuk),
(�buj )(�c�duk), (�b�cuj )(�d�euk), uj (�buk) and uj (�b�cuk) with cj �= ck.

First we consider the caseR1
i = uj (�buk). Since we have


�R1
i =

∑′

|�|+|�|=|�|
(
�uj )(
��buk),

it suffices to find the decomposition for each(
�uj )(
��buk). If |�|� |�|, we have
|�|�K − 1 and |�|�2K − 1. Therefore,|(
�uj )(
��buk)| itself is dominated by the
right-hand side of (5.19). If |�|� |�|, using (2.4), we can write

(
�uj )(
��buk) =
∑′

0� b′ � 3
|�′| � |�|

(
�uj )(�b′
�′
uk)

=
∑′

0� b′ � 3
|�′| � |�|

(
�b′

{
(
�uj )(
�′

uk)
}

− (�b′
�uj )(
�′
uk)

)
(5.21)

=
∑′

0� b′ � 3
|�′| � |�|

�b′
{
(
�uj )(
�′

uk)
}

+
∑′

0�b′′ �3

|�′|� |�|
|�′|� |�|

(
�′
�b′′uj )(
�′

uk).

Since we have|�′|� |�|�2K − 1 and |�′|� |�|�K − 1, we get

|(
�uj )(
�′
uk)|1 � C|uk|K |uj |2K, (5.22)

|(
�′
�b′′uj )(
�′

uk)| � C|uk|K−1|�uj |2K−1. (5.23)

The above two inequalities imply the desired result.
Next, we consider the caseR1

i = uj (�b�cuk). As before, it suffices to consider

(
�uj )(
��b�cuk) with |�| + |�|�2K − 1. If |�|� |�|, we decompose it as

(
�uj )(
��b�cuk) =
(
(
�uj )(
��b�cuk)− �b

{
(
�uj )(
��cuk)

})
+ �b

{
(
�uj )(
��cuk)

}
. (5.24)
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Noting that (2.4) implies

|
��b�cuk − �b
��cuk|�C|�2
uk||�|−1,

we can easily check the estimates corresponding to (5.19) and (5.20). Observing that
(5.21), (5.22) and (5.23) are still valid if we replaceuk by �cuk, we obtain the desired
result also for|�|� |�|.

The remaining cases are easier. IfR1
i = (�buj )(�cuk), then 
�Ri itself enjoys the

estimate (5.19) by virtue of the Leibniz formula. ForR1
i = (�buj )(�c�duk), the desired

result can be obtained by using the following decomposition which is similar to (5.24):


�R1
i =

(

�R1

i − �c
{
(�buj )(
��duk)

}) + �c
{
(�buj )(
��duk)

} ≡ R1
i,�,∗ + �cR1

i,�,c.

We can treat the caseR1
i = (�b�cuj )(�d�euk) in a similar manner. This completes the

proof. �

If (j, k) ∈ R, since we havecj �= ck, (5.4) implies

w+(t, |x|)−1wj(t, |x|)−1wk(t, |x|)−1�Cw+(t, |x|)−2

for any (t, x) ∈ [0, T )× R3. Therefore (5.19) leads to

|R1
i,�,∗(t, x)|�Cw+(t, |x|)−2e1(t)

m∑
k=1

wk(t, |x|)|�uk(t, x)|2K−1 (5.25)

for |�|�2K − 1. By (5.20), we also obtain

|R1
i,�,a(t, x)|1�Cw+(t, |x|)−1e1(t)

(|u(t, x)|2K + |�u(t, x)|2K
)
. (5.26)

Now we are in a position to estimatee6(t) and e7(t). For |�|�2K − 1, (2.5) and
Lemma 5.4 imply

�i (
�ui) =
∑′

|�|�2K−1


�(Ni + R1
i + R21

i +Hi)

=
∑′

|�|�2K−1

{

�(Ni + R21

i +Hi)+ R1
i,�,∗

}
+

∑′

|�|�2K−1

3∑
a=0

�aR1
i,�,a.
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We setFi,� = 
�(Ni + R21
i +Hi)+ R1

i,�,∗. Then we have


�ui = U∗
i [fi,�, gi,�] +

∑′

|�|�2K−1

Ui[Fi,�] +
∑′

|�|�2K−1

3∑
a=0

Ui[�a(R1
i,�,a)], (5.27)

wherefi,� = 
�ui(0) and gi,� = �t
�ui(0).
From Corollary3.4 and Lemma3.5, we get

‖U∗
i [fi,�, gi,�](t, ·)‖1,2 + ‖wi(t, | · |)�U∗

i [fi,�, gi,�](t, ·)‖L2 �Cε. (5.28)

(5.15), (5.16), (5.17) and (5.25) lead to

|Fi,�(t, x)| � Cw+(t, |x|)−2e1(t)
(
|u(t, x)|2K + |�u(t, x)|2K

+
m∑
j=1

wj(t, |x|)|�uj (t, x)|2K−1

)

for any � with |�|�2K − 1. Therefore we obtain

‖w+(t, | · |)Fi,�(t, ·)‖L2 �C(1 + t)�−1e1(t)
(
e6(t)+ e7(t)+ e8(t)

)
. (5.29)

By virtue of (5.29), Corollary 3.4 and Lemma3.5 yield

‖Ui[Fi,�](t, ·)‖1,2 + ‖wi(t, | · |)�Ui[Fi,�](t, ·)‖L2 �C(1 + t)�E(T )2 (5.30)

for 0� t < T .
From (5.26), we have

‖R1
i,�,a(t, ·)‖1,2�C(1 + t)�−1e1(t)

(
e7(t)+ e8(t)

)
,

‖w+(t, ·)Ri,�,a(t, ·)‖L2 �C(1 + t)�e1(t)
(
e7(t)+ e8(t)

)
and therefore Lemmas3.6 and 3.9 lead to

‖Ui[�aR1
i,�,a](t, ·)‖1,2 + ‖wi�Ui[�aR1

i,�,a](t, ·)‖L2 �C
(
ε2 + (1 + t)�E(T )2) (5.31)

for 0� t < T .
From (5.27), (5.28), (5.30) and (5.31), we obtain

‖
�ui(t, ·)‖1,2 + ‖wi(t, | · |)�
�ui(t, ·)‖L2 �C
(
ε + (1 + t)�E(T )2) (5.32)
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for |�|�2K − 1. Since we have ‖ui(t, ·)‖2K,2�C
∑

|�|�2K−1 ‖
�ui(t, ·)‖1,2

and
∥∥wi |�ui(t, ·)|2K−1

∥∥
L2 �C

∑
|�|�2K−1 ‖wi�
�ui(t, ·)‖L2, (5.32) implies

e6(t)+ e7(t)�C
(
ε + E(T )2) for 0� t < T . (5.33)

5.3. Estimate fore4(t) and e5(t)

Let j ∈ {0,1, . . . , m}. Then (5.5) implies

|u(t, x)|K+2�Cw+(t, |x|)−1wj(t, |x|)−1e1(t) (5.34)

for any (t, x) satisfying (t, |x|) ∈ 
j .
SinceFi = O(|u|2 + |�u|2 + |∇x�u|2), using the Sobolev-type inequality

|x| |�(x)|s�Cs‖�‖s+2,2

which holds for any� ∈ S(R3) and a non-negative integers (see Klainerman–Sideris
[15] for the proof), we obtain

|y| |Fi(�, y)|2K−3 � C|u(�, y)|K+2|y|
(|u(�, y)|2K−3 + |�u(�, y)|2K−2

)
� C(1 + �)�|u(�, y)|K+2

(
e7(t)+ e8(t)

)
. (5.35)

(5.34) and (5.35) lead to

|y|w+(�, |y|)−2�z�(�, |y|)|Fi(�, y)|2K−3

�Cw+(�, |y|)�−�wj(�, |y|)−�e1(t)
(
e7(t)+ e8(t)

)
�CE(T )2 (5.36)

for any (�, y) satisfying (�, |y|) ∈ 
j (j = 0,1, . . . , m), provided ���. Therefore
Lemmas4.1 and 4.2 (i) lead to

e4(t)+ e5(t)�C
(
ε + E(T )2) for 0� t < T . (5.37)

5.4. Estimate fore1(t), e2(t) and e3(t)

In this subsection, we will prove

e1(t)+ e2(t)+ e3(t)�C
(
ε + E(T )2) for 0� t < T , (5.38)
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which completes the proof of Proposition5.2 together with (5.10), (5.33) and (5.37).
We use Lemmas 4.1 and 4.2 (i) to estimatee2(t), and Lemma 4.2 (ii), instead of (i),
to get control ofe1(t) and e3(t). Then it turns out that our task is to show

sup
(�,y)∈[0,T )×R3

{
I�[Fi](�, y)

}
�CE(T )2, (5.39)

for sufficiently small�, where, for a smooth function�, I�[�] is given by

I�[�](�, y) = I1,�[�](�, y)+ I2,�[�](�, y)+ I3,�[�](�, y)

with

I1,�[�](�, y) = |y|w+(�, |y|)̃z�(�, |y|)|�(�, y)|K+2,

I2,�[�](�, y) = |y|w+(�, |y|)	1z�(�, |y|)|�(�, y)|2K−5

and

I3,�[�](�, y) = |y|w+(�, |y|)	2̃z�(�, |y|)|�(�, y)|2K−5.

Observing that we can write

I2,�[�](�, y) = w+(�, |y|)−(	2−	1)+�wj(�, |y|)−2�I3,�[�](�, y)

for (�, |y|) ∈ 
j , we see

I2,�[�](�, y)�I3,�[�](�, y), (5.40)

provided 0< ��	2 − 	1. Therefore the bounds ofI1,�[�] and I3,�[�] give the bound
of I�[�] for small �.

Now we are going to estimateI�[Ni]. To start with, we note that

|ui(t, x)|2K−3�Cw+(t, |x|)−1+2�+�wi(t, |x|)−�e5(t) (5.41)

holds for any� > 0, since

w+(t, |x|)1−�wi(t, |x|)�|ui(t, x)|2K−3�C[ui(t, ·)](i)2K−3,0.

For simplicity of exposition, we abbreviatew+(�, |y|) andwj(�, |y|) asw+ andwj ,
respectively in what follows. Note that 2K − 6�K + 3 for K�9.
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We define
j,T for j ∈ {0, . . . , m} by


j,T = {
(�, y) ∈ [0, T )× R3; (�, |y|) ∈ 
j

}
.

Since we havew−1
0 �Cw−1+ in 
i,T by (5.4), Lemma5.3 implies

|y| |Ni(�, y)|2K−5 � Cw
2�−2
+ w

−1−	1
i e2e4 + Cw

2�−2+�
+ w

−1−	1−�
i e2e5

+ Cw
2�−2
+ w−2

i e1e4�Cw
2�−2+�
+ w

−1−	1
i E(T )2 (5.42)

for any (�, y) ∈ 
i,T . Therefore we get

I3,�[Ni](�, y)�Cw
−(1−2�)+	2+�
+ w

−	1+�
i E(T )2�CE(T )2 in 
i,T

for sufficiently small� and �, because we have 0< 	1 < 	2 < 1 − 2�.
Similarly to (5.42), from Lemma5.3 we get

|y| |Ni(�, y)|K+2 � C
(
w−2+ w

−1−2	1
i e2e2 + w−2+ w

−1−	1−	2
i e2e3 + w−2+ w

−2−	1
i e1e2

)
� Cw−2+ w

−1−2	1
i E(T )2 in 
i,T ,

which leads to

I1,�[Ni](�, y)�Cw
�−2	1
i E(T )2�CE(T )2 in 
i,T

for � < 2	1.
On the other hand, ifj �∈ I (i), (5.14) implies

|y| |Ni(�, y)|K+2 � Cw
−2−2	1+ w−1

0 e2(t)
2�Cw

−2−2	1+ w−1
j E(T )2,

|y| |Ni(�, y)|2K−5 � Cw
2�−2−	1+ w−1

0 e2(t)e4(t)�Cw
2�−2−	1+ w−1

j E(T )2

for any (�, y) ∈ 
j,T , since we havewi�Cw+ and alsow0�Cwj in 
j . Therefore
we obtain

I1,�[Ni](�, y) � Cw
−2	1+ w

�
j E(T )

2�Cw
−2	1+�
+ E(T )2�CE(T )2,

I3,�[Ni](�, y) � Cw
−(1−2�)+	2−	1+ w

�
j E(T )

2�Cw
−(1−2�)+	2−	1+�
+ E(T )2�CE(T )2

for any (�, y) ∈ 
j,T with j �∈ I (i), provided� is small enough.
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Summing up, we have proved

sup
(�,y)∈[0,T )×R3

I�[Ni](�, y)�CE(T )2 for small �. (5.43)

Similarly we can get

sup
(�,y)∈[0,T )×R3

I�[R21
i ](�, y)�CE(T )2 for small �. (5.44)

Next we considerI�[Hi]. Assume(�, y) ∈ 
j,T with somej ∈ {0, . . . , m}. Since
we have|ui(�, y)|k+2�Cw+(�, |y|)−1wj(�, |y|)−1e1(�), we get

|Hi(�, y)|s � C|u(�, y)|2K+2

(|u(�, y)|s + |�u(�, y)|s+1
)

� Cw−2+ w−2
j e1(�)2(|u(�, y)|s + |�u(�, y)|s+1

)
(5.45)

for s�2K. (5.45) leads to

|y| |Hi(�, y)|K+2 � Cw−2+ w−2
j e1(�)2(w−1

j e1(�)+ w
−1−	1
j e2(�)

)
,

|y| |Hi(�, y)|2K−5 � Cw−2+ w−2
j e1(�)2(w−	2

j e3(�)+ w
2�
+ w−1

j e4(�)
)

for any (�, y) ∈ 
j,T . Therefore, if� is small enough, we obtain

I1,�[Hi](�, y) � Cw
−2+�
j E(T )3�CE(T )2,

I3,�[Hi](�, y) � Cw
−(1−2�)+	2+ w

−1−	2+�
j E(T )3�CE(T )2

for (�, y) ∈ 
j,T . These estimates imply

sup
(�,y)∈[0,T )×R3

I�[Hi](�, y)�CE(T )2 for small �. (5.46)

Finally we will prove

sup
(�,y)∈[0,T )×R3

I�[R1
i ](�, y)�CE(T )2 for small �. (5.47)
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It suffices to prove (5.47) for R1
i = ��

uk�
�
ul , where 0� |�|�2, 1� |�|�2 and, most

importantly, ck �= cl . Suppose(�, |y|) ∈ 
j for somej ∈ {0, . . . , m}. Then we have

|y| |R1
i (�, y)|K+2 � C|y|(|uk|K+2 + |�uk|K+3)|�ul |K+3

� C(w−1+ w−1
k e1(t)+ w−1

0 w
−1−	1
k e2(t))w

−1−	1
l e2(t), (5.48)

|y| |R1
i (�, y)|2K−5 � C|y|(|��

uk|K−3|��
ul |2K−5 + |��

ul |K−3|��
uk|2K−5

)
� Cw

2�−1
+ w−1

k w−1
l e1(t)e4(t)

+ Cw
−1−	1
l e2(t)

(
w−1+ w

−	2
k e3(t)+ w

2�
+ w−1

0 w−1
k e4(t)

)
.

(5.49)

Since we havew0�Cw+ andwk�Cw+ in 
l by (5.4), from (5.48) and (5.49) we
get

I1,�[R1
i ](�, y) � Cw

�−	1
l E(T )2�CE(T )2,

I3,�[R1
i ](�, y) � C

(
w

−(1−2�)+	2+ w
�
l + w

−	1+�
l

)
E(T )2

� C(w
−(1−2�)+	2+�
+ + 1)E(T )2�CE(T )2

for any (�, y) ∈ 
l,T and sufficiently small�.
Similarly, for (�, y) ∈ 
k,T , we obtain

I1,�[R1
i ](�, y) � Cw

−	1+ w
�
k E(T )

2�Cw
�−	1+ E(T )2�CE(T )2,

I3,�[R1
i ](�, y) � C

(
w

−(1−2�)+	2+ w
�
k + w

−1−	1+	2+ w
1−	2+�
k

)
E(T )2

� C(w
−(1−2�)+	2+�
+ + w

−	1+�
+ )E(T )2�CE(T )2,

provided� is sufficiently small.
Now supposej �∈ I (k)∪I (l). Then (5.4) implieswk�Cw+, wl�Cw+ andw0�Cwj

in 
j . Hence (5.48) and (5.49) lead to

I1,�[R1
i ](�, y) � C

(
w

−1−	1+ w
1+�
j + w

−2	1+ w
�
j

)
E(T )2

� C(w
�−	1+ + w

�−2	1+ )E(T )2�CE(T )2,

I3,�[R1
i ](�, y) � C

(
w

−(1−2�)+	2−1
+ w

1+�
j + w

−1−	1+ w
1+�
j

)
E(T )2

+ Cw
−(1−2�)+	2−	1+ w

�
j E(T )

2
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� C(w
−(1−2�)+	2+�
+ + w

−	1+�
+ + w

−(1−2�)+	2−	1+�
+ )E(T )2

� CE(T )2

for (�, y) ∈ 
j,T with j �∈ I (k) ∪ I (l), provided that� is small enough.
Summing up, we have proved (5.47), and this completes the proof of (5.38). �
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