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Abstract

We consider the Cauchy problem for systems of nonlinear wave equations with different
propagation speeds in three space dimensions. We prove global existence of small amplitude
solutions for systems with some nonresonant nonlinearities which may depend on both of the
unknowns and their derivatives. Our method here can be also adopted to treat the null forms.
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1. Introduction
This paper is devoted to the study of the Cauchy problem for systems of nonlinear

wave equations in three space dimensions. We consider the system of nonlinear wave
equations

Oiu; = Fi(u, du, Vidu) in (0,00) x R®  (1<i<m), (1.1)
with initial data
ui (0, x) = ef; (x), Qu;(0,x)=egi(x) for x e R® (1<i<m), (1.2)
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whereu = (u,-)’j’?:l, andJ; = 6? — cizAx with some positive given constants. We
use the notatiordg = ¢, and ¢y = dy, for 1<k <3 throughout this paper. In the above
system {.1), du and V, du stand for the first and second derivativesupfrespectively.
More precisely,du = (J,u;) with 0<a <3 and 1< j <m, and V,du = (0x0,u ;) with
1<k <3, 0<a<g<3 and I<j <m.

We suppose thaF (u, v, w) = (Fj(u, v, w))jl:l is a function of (u, v, w) € R™ x

R*" x R¥?" satisfying

F(u,v,w) = O(Jul® + [v|* + |w|?) near (u, v, w) = (0, 0, 0). (1.3)

We write the elements of the vectorse RY" and w € R?" as vjq and w; i, with

1<j<m, 1<k <3 and 0Ka <3, respectively, where; , corresponds ta,u;, and
Wjkq 10 5kaauj.
To assure the hyperbolicity of the system, we always assume

-~

OF,'
(u, v, w) = —
awj,ka OWj ka

i

(u, v, w) (1.4)

for anyi, j € {1,...,m}, 1<k<3 and 0<a <3. Because only classical solutions are
considered in this paper, we may also assume

A

F; i

(u,v,w) = (u, v, w) for any 1<i, j<m and 1<k, [<3. (1.5)

6wj’k1 Wi lk

For simplicity, we suppose that = (fj)y’:l and g = (gj);flzl in (1.2 belong to
C8°(R3; R™). ¢ in (1.2 is a positive parameter which is always supposed to be small.
Without loss of generality, we may assume that the spgeih the definition of J;

satisfies
O<c1<er< - <y (1.6)

We are interested in the condition to assure global existence of classical solutions
for (1.1) and (.2) with small . Since there are examples of quadratic nonlinearity
for which some solution blows up in finite time no matter how smalk, we need
some restriction on the quadratic nonlinearity to get global solutions. Such a condition is
known as the “Null Condition”. The Null Condition was first introduced by Klainerman
[14], for the single speed case, thatds = --- = ¢, to show the global existence
of solutions for small data (see also Christodou[6l; for the corresponding results
in two space dimensions, s¢2], [3], [6], [7], [10] and [11]). The Null Condition is
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closely connected to the following null forms (see the discussion after Definition 1.1
below):

3
Qo(. Vi i) = () (@) — 2 Y (D) (@), (1.7)
j=1
Qab(h. ) = (Cad) (@) — (D) (Cal)) (0<a < b<3). (1.8)

Now we consider the case where the propagation speeds not necessarily coin-
cide with each other. We refer to this case as the multiple speeds case.

The global existence for the multiple speeds case with the nonlineaRetepending
only on derivatives ofy, i.e., F = F(du, V,du) is studied in[16], [1], [21] and[20] (see
[8] for the two space dimensional case). The multiple speeds casd-witipending on
both of u and its derivatives is considered in Kubota — Yokoyajhd] and the author
[12] and [13].

Before we describe the results jh2] and [13], we introduce our Null Condition.

For non-negative integgr and a smooth functio® (u, v, w), we write G (u, v, w)
for the pth degree term of the Taylor expansion @faround the origin, that is

oL AR AY
0.0 0 G(0,0,0 N
GP(u,v, w) = Z %% w'[f'( ' )u“vﬁw'. (1.9
ol B!
ol +1Bl+IyI=p /

Here we have used the standard notation of multi-indices; for exa@jple,d,. - - - 0;,"

Um?
ol = ol o!, u* =uit- - u," and so on.

Givency, ..., cn, We classify the indices by their corresponding speeds. We define
I(i):{je{l,...,m};cjzci} for 1<i<m. (1.10)
To state our Null Condition, we introduce
Y'={y=01....ym) € R"; y;=0forall j ¢ (i)} (1.112)

and

3
A= {X = (Xo, X1, X2, Xa) € R XF — 2y x2 = 0] (1.12)
k=1
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fori=1,....m. Fory=(y)7_; € R" andX = (X,)3_g € R* we defineV(y, X) €
R*" and W(y, X) € R*" by

V(y, X) = ( ]a(y, X))l<]<mO<a<3 (y]X )1<]<m 0<a<3;s (113)

W(% X) = (Wj,ka(y’ X>)l<j<m,l<k<3,0<a<3

= (Vi Xk Xa)1<j<m1<k<30<a<3- (1.14)
Now we can state our Null Condition.

Definition 1.1. We say thatF (u, v, w) = (F;(u, v, w)) ", satisfies the Null Condition
(of degree 2), if both of the following two conditions are fulfilled:
(i) For eachi € {1, ..., m},

F@ (2, V(w, X), W, X)) =0 (1.15)

holds for anyZ, u,v € Y* and anyX € ./";, whereV andW are given by {.13 and
(1.14), respectively.
(i) F@(u,0,0) =0 holds for anyu € R™.

Remark. The above Null Condition coincides with that of Klainerman[i#] when
c1 = --- = ¢y, (the above expression of the condition is motivated[B)), and with
the condition in[1], [21] and [20] when F = F(0u, V,du).

To simplify our exposition, we use the following notation throughout this paper: For

a given function¢ and a given family{y/;},c4 of functions, we write¢p = Z/ v, if
reA
there exists a family{C,},.4 of constants such that =3",_, C,y;.
Now we want to derive the explicit representation of nonlinearities satisfying the

Null Condition. We can easily check thé&t satisfies the Null Condition (of degree 2)
if and only if Fi(z) has the form

2
F® = N; + R} + R?, (1.16)

where

/

Ni = Z {Qo(aau], aﬁuk, Ci) + Z Qab(aaujv aﬂuk)}v (117)
I ‘j,k‘iﬂlii())l 0<a<b<3

R} = RM+ R? R? = R?' + R, (1.18)
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R =3 Z @ u@u), R2= > Z (0 up), (1.19)

j=1 k¢I()) Jj=1 k¢1(j)
o], |B1=1,2 Jol=1.2
’ ’
21 o B 22 o
R =" Y @up@w), RP= D" Y u;j@w). (1.20)
/ 1 kel(j) 1 i) kel(j)
JEI) kel0) J#L) k)

Here Q¢ and Q. are null forms given byX.7) and (L.8), respectively. We have used
also the notatiord” = 0g°01"05°03°. We refer to nonresonant terms likg" and R? as
the “resonance forms”, following the terminology ff], [21] and [17].

Remark. (i) For the single speed casg = --- = ¢, only the null formsN; appear
in Fl.(z), becausel (i) = {1,...,m} for anyi € {1, ..., m}.

(i) Global existence forR!! was proved by Kovalyo{16]. The resonance formg?!
were treated for the first time in Agemi—Yokoyarf.

Now we can state the known results for systems, whose nonlinearity depends on
both of the unknowns and their derivatives, with multiple speeds. In the results known
so far, we need some assumption in addition to the Null Condition.

In [12], the author proved global existence of small solutions when the Null Condition
and the following condition (H1) are fulfilled:

(H1) There exist some polynomialS; ,(u, v) (1<i<m, 0<a<3) of degree 2 such
that

Fl.(z)(u, ou, anu) = Z aaGi,a(uv au) (A<i<m) (121)
0<a<3

holds for anyu e C?((0, 00) x R).

Under the Null Condition and (H1), none of;, R, R? R2! and R?? have to
vanish, but there is a strict restriction on the coefficients. For example, the coefficient
for the term Qo(u;, ux; ¢;) (j, k € 1(i)), which may appear invV;, must be equal to
0, because we cannot write it in the form df.Z1), no matter what term we add
to it. The coefficient ofQo(u ;, duui; ¢;) must coincide with that ofQo(duu , ux; c;)
(observe thatQo(uj, Oautr) + Qo(0attj, ux) = 04 Qo(uj, ur)). Similarly, the coefficients
of uj0q.ur anduidqu; (k & 1(j)), which may appear irRl.lz, must coincide with each
other (observed, (ujuix) = (Oquj)ui + uj(0qur)). Note thatFl.(Z) can depend oru
explicitly when the Null Condition and (H1) are assumed.

In [13], the author proved global existence of small solutions under the Null Condi-

tion and another kind of additional assumption

(H2) F(u,v,w) = O(lul® + |v|? + |w|?) near (u,v, w) = (0,0, 0). In other words,
Fl.(z)(u, v, w) does not depend oun for eachi € {1, ..., m}.
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Under the Null Condition and (H2)R? and R?? must vanish, but there is no further
restriction onN;, R and R?! because they do not depend orfrom the beginning.
This result is an extension of the result in Kubota—Yokoydfig.

Observe that either of (H1) and (H2) puts restriction Bf¥ (and also onR??).
In this paper, we give a method to treat the nonlinearity of the fdtj‘ﬁ without
any further restriction on it. Our method here works also for the null foivpsthe
resonance form&!! and higher nonlinearity of arbitrary forms, but not f8¢2 at all,
and we need some restriction aﬁfl to apply the method. More precisely, we assume
the following condition, instead of (H1) or (H2):

(H3) For eachi € {1,...,m}, (1.19 holds not only for any(4, u, v, X) € Y x Y" x
Y™ x A7, but also for any

1

m

4, v, X) € U (Y}” X YJ’." X Yj’-” x Nj).
j=1

j=
JELG)

The null condition and (H3) are satisfied if and only if eaE‘f‘F) has the form 1.16
with the following specialR?! and R?2

RV = > > 00" u;, P u; cj) + > Qw(@uy, dup) ¢, (1.22)
JEIG) kel()) 0<a<b<3
o], | 1=0,1
R? =0. (1.23)

We emphasize again that (H3) places no further restrictiorkdh R}? and N;. Our
main result is the following:

Theorem 1.1. Assume thafl.4) holds. Suppose that the Null Conditigof degree?)
and (H3) are fulfilled. Thenfor any f g € CS"(R3; R™), there exists a positive constant
€o such that for any ¢ € (0, eo], the Cauchy problenfl.1) and (1.2) admits a unique
global solutionu € C*([0, 00) x R3; R™).

Remark. The assumption that and g have compact support is not essential at all in
our result. Since the constaag in the above theorem does not depend on the size of
support of data explicitly in our proof, we can show the same result for more general
data by using the standard approximation technique.

The proof of Theorem 1.1 will be given in Section 5. The main ingredient of our
method lies in the estimate of the? norms ofu. To take advantage of the difference
of speeds in nonlinear terms containedRi;Ll1 and Rl.lz, we use the decay of the energy
of u; outside the light cone corresponding to the speedsee Lemmas 3.5 and 3.9
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below). We also need some decomposition of nonlinearity to tRfatand R %(see
Lemma 5.4 below).

The usage of the decay of the energy outside the light cone in this paper is motivated
by the methods of15], [19] and [20] in some sense. Their main purpose of using
the decay of the energy is to avoid the direct estimation of the fundamental solution,
however we need the direct estimation here because decay estimates much better than
theirs are needed in our proof to treat the nonlinearity depending itself.

2. Notations

In this section, we introduce some notations which will be used throughout this
paper.
For eachi € {1,...,m}, we write U [ f, g] for the solution to the Cauchy Problem

{DiUi*[f, glt,x)=0 in (0, 00) x R3,
U f. 810, x) = f(x), ;U*[f, gl0,x)=g(x) forxe RS,

Similarly, U;[®] stands for the solution to the Cauchy problem

O, U;[](z, x) = D(1, x) in (0, 00) x R,
U;[®](0, x) = 0,U;[®](0,x) =0 for x € R3.

We introduce vector fields

3
S=10,+) xj0; and Q. = x;0x — x0; for 1<j < k<3. (2.1)
j=1

We define also a family™ of vector fields by

Fo=3S8, I'n=Qup, I'p=Qu3, I's=Q23, I'y =04 (4<k<T). (2.2)
Using a multi-indexx = (oo, ..., a7), we write I'* for the productl'g°I';* - - - I'7’. We
also use the notatiod” = af0ol1al2al and o = a2,

The following property can be easily checked by direct calculation:

[Sv a(l] - _aa’ [Sv Q]k] - 05
[Qjk, 0a] = —04jOk + 0ak 0,
[Qjk, 2pq] = 5./quk + 5jq9kp - 5kaq./ - 5kq9./pa
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for 0<a <3, 1<) < k<3 and I<p < ¢ <3, whered,, is the Kronecker delta, and
Qi for j >k is given by Q;, = —€;. From these identities we obtain
rrfg = rtfe+ N g, (2.3)
7] < lol+p1—1

’

Wl = T*0ap+ Y IPopp, Moap=0,0"0+ Y. ll¢ (2.4)
0<bh<3 0<h<3
Bl < Jel=1 1Bl < Jol=1

for any smooth functiong. We have also[lJ;, I'0] = 2[J; and [[J;, I';] = O for
1< j <7, which lead to

D) =" Cipy+ Y TF@ig). (2.5)

IBI< ol =1

For a non-negative integex 1< p<oo and a smooth functiop(z, x), we define

. )= Y 1.0l and ¢t lp = |16 s | o3, (2.6)

lo] <s

For a non-negative integex and a smooth functiorf (x), we define

11 = 3 [ @+ xpPeis el 27)
luf<s VR
Fori =1,...,m, we also introduce
Xk
Liy=—0 +citdy (k=1,2,3). (2.8)
Ci

L together with the vector fields belonging 0 played an important role in the
study of the single speed case, but the usagé;qf will be restricted here, because
[0}, Li k] = 0 holds if and only ifc; = c;.

3. Energy inequalities and decay of the energy
We start this section with the standard energy inequalities.

Lemma 3.1. Let f € HY(R®), g € L?(R%) and ® € LY([0, T); L?(R%)). Then we have

10U7 L1 810 M gty < € (19l gy + gl 2g2)) (3.1)
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t
I0UADI Mz, < € [ 19z, d (3.2)

for anyt € [0, T), where C is a constant independent of T
From the classical theory for symmetric hyperbolic systems, we also have
Lemma 3.2. Let ¢ = (¢;)!_; be a smooth solution to
m

Fhit.0) =3 Y Gl )ada; (1, x) = Bi(t.x) in (0,T) x B®

j=11<k<3
0<a<3

fori =1,...,m. We suppose that;};’il = G,{:fl and G}cfl = Gﬁ:i hold for anyi, j €
{1,...,m}, 1<k, <3 and 0<a <3. We assume also that there exists a positive and
uniform constant M such that

m 3

M7HEPS DT Y Gl )& < MIEP
i,j=1k,I=1

holds for any¢ = (éi*k)ii'}(i'ﬁ e R¥, where|é]2 = Yoty Zle éfk.
Then we have

13
||a¢(t’ .)||L2(R3) < C||a¢(07 ')”LZ(RE‘) + C,/(; ||6G(T, ')”LDC([Ra) “6(]5(7:, ')||L2(R3) dt
t
+C /(; |P(z, -) ||L2(|R3) dr, (33)

where G = (G};’f;) and @ = (®;). Here the constant C depends only on the above
constant M

The following conformal energy, which was used also in Klainerrfiagt], plays an
extremely important role in our proof, since it also provides us with the control for
decay of the energy (see Lemn3s5 below). Notice that following Lemm&.3 and
the proof of Lemma3.5 are the only points where the vector fields; enter in our
proof.

Lemma 3.3. Let 1<i <m. Supposep to be a smooth solution of
(@ — At x) = B(t,x) in (0.T) x R3 (3.4)

with initial data ¢ = f and d,¢p = g at t = 0.
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Assume thatp vanishes sufficiently fast at spatial infinity. Then we have

3
DG gz + D ILi . )2

ol <1 j=1

t
<C(1f N gra + glgor) + C/O lwy(z, |- DP(z, )l 2d7, (3.5)

wherew, (¢, |x|) = 1+ + |x|.

Proof. Using a certain change of variables, we may assame 1. For simplicity of
exposition, we writeL ; for L; ; with ¢; =1, i.e.,L; = x;0, +tJ;. We introduce

3
9. 0)IF 1= D I )2+ D ILjp(t. x)I%
lo] <1 j=1

We also define

3
K=@0++x))0 +2x Ve +20=0,+1(S+2) + > _x;Lj.
j=1

Multiplying (3.4) by K ¢, and then doing integration by parts, we obtain

d
dt Jp3

E[¢](t, x)dx = /S(Kq,'))(t,x)@(t,x) dx, (3.6)
R

where

3 3
1
E)t.x) = SA+2+ 1P| @d? + Y007} + Y 2051000 )
j=1 j=1

+204(0,) — P? 3.7)

(see Klainermarj14] for the details).
We see that there exists a const@hsuch that we have

1
—/ |¢<r,x>|%“dx</ E[¢]<t,x>dx<cf B0 1 dx  (38)
C RS T RS Rg
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for any smooth function. In fact, using vector fields belonging 6, we can rewrite
El¢] as

3 3
2E[D] = (i)° + ) (097 + (SO + D (Lid)*+ Y Q)
j=1 j=1 1<j<k<3

+ 4t (8;p) — 292, (3.9)

3
By writing 10;¢ = S¢ — >~ x;(0;¢), and then using integration by parts, we obtain
j=1

_ 3 2
/Rsm(ald)) dx = /R?’ b(SP) dx + 2/Rs¢ dx. (3.10)

3
Setd, = Y. (x;/IxDd; and L, = Y3_y(x;/Ix))L; = [x]d; + 1d,. By writing 13, =
j=1 '
(t/1x)L,¢ — (?/|1x])0,¢ and integrating by parts, we also get
t 1 ?
/ t¢(6,¢)dx:/ —qb(er))dx—i-—/ —5 ¢ dx. (3.11)
R3 R3 | x| 2 Jge x|

By (3.9 and @.10, we can easily show the second half 8tg).
From 3.10 and @.11), we see

2 _ 5 2
/{4t¢(at¢)—2¢ tdx = 3/¢(S¢)dx+§f¢ dx
1 2
+/|;—|¢(Lr¢>)dx+§/#¢zdx

2 2 5 9 2
> —0 /(S¢) dx-l—(E—E)/d) dx

-3 / (L) dx (3.12)

3
for any 6 > 0. Since we haveL,¢)?< " (L;¢)?, we obtain the first half of3.8)
j=1
from (3.9) and @.12 by choosingd close to 1 so that we hav% <& <1.

Now, we define||¢(t)||% = [ E[](z, x)dx. Since we have

|Kp@t, x)|<SCA+1+ |xDIp, 0)Ir L1,
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from (3.6) and 3.8) we see

d
EII(ﬁ(t)II% < C/w+(t, IxDI@@, )], )| ,1dx
< Cllwg @, [- DO I 2llg@ e (3.13)

Gronwall's lemma applied to3(13 implies

t
lpOIEe<IPOE + C/o lwy(z, |- DOz, ) 2d7. (3.14)

In view of (3.8), this completes the proof. [J

As an apparent consequence of Lem&3 we have the following:

Corollary 3.4. Leti € {1,...,m}. Then we have
1
NUi[®1(t, 12 < C/o lwy (7, 1 - DP(T, I 2g3) dT. (3.15)
|UFLF. 81 )1, < C1F s+ N1l oa).- (3.16)

wherew, (¢, [x|) =1+ + |x| for t > 0 and x € R®.

To treat R and R1?, we need to estimate the decay of the energy outside the
corresponding light cone. This also can be done through Le@u&a

Lemma 3.5. Definew (¢,7r) =1+ +r and w;(¢t,r) = 1+ |¢;t — r|. Then we have
13
wi. |- DoUi@1¢. )| ,2 < C/O lwe(r, |- NPT, )2 de,  (3.17)

[wie. |- DU g1, ) 2 < C(If Il gre + ligllgor) (3.18)

for 1<i <m.

Proof. Egs. .17 and (.18 are immediate consequences of Lem@& and the
following inequality which is essentially due to Lindbl4d8]:

Ja|=1 j=1

3
wi (7, [xDI0g(z, )| <C (Z g, )|+ Y ILi o, x>|> (3.19)

for any sufficiently smooth functiorp. Here we give a proof of3.19.
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If |c,-t — |x| |>1, (3.19 is shown by the following identities which can be checked
easily:

3
(Z® = xPP)ai¢ = () —ci Yy xjLi b,

j=1

(cPr? = 1x2)0j¢ = cit(Lijd) — x;(SP) + > xx(Qjr¢)  (j =1.2,3).
k#j

On the other hand, ifc;r — |x||<1, (3.19 is a triviality because the operatofs
(0<a<3) are included inf. O

We turn our attention to the inhomogeneous wave equations with force terms written
in the form of divergence.

Lemma 3.6. For 0<a <3, we have

t
IIUi[aaT](t,-)II1.,2<C‘/O ¥ (2, )llr2dt + CII¥(O, )l go1. (3.20)

Proof. The following identity can be checked easily:
Uil0a W1 = 04 Ui [¥] — 002 U;[0, ¥(0, 1)1, (3.21)

where dqg, is the Kronecker delta.
By Corollary 3.4, we have

U710, (0, )1(t, ) ll1,2< ClI¥(O, )|l you. (3.22)

Set¢ = U;[P]. By (2.5, we getl;(I'*¢) = . I'PW for |¢/<1. It is easy to
IB1<1
see*¢(0, x) = 0, while 3,I*¢(0, x) is equal to either 0 o’ (0, x). Therefore the
standard energy inequality implies

t
o) (t, )l 2<C (IIT(O, M2 +/0 ¥ (z, -)|I1,2df) for o <1. (3.23)

Since we have||0¢(r, H12< Y. 10T, )| 2 from (2.4), we obtain the result
o] <1

from (3.21), (3.22 and @3.23. O

For w;dU;[0, %], we have a better estimate than Lem@& We begin with two
lemmas which can be found in Klainerman-Sidg(iS].
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Lemma 3.7. Define 6;(t,r) = /1+ |cjt — |2 Let ¢ € C?((0, 00) x IR3). Then we
have

01 (1. 12D AG (1, x)| < c(z |ar°‘¢<r,x>|+r|Di¢<r,x>|), (3.24)

lo] <1

o1 (¢, [KDIGZ (. )] < C(Z |ar°‘¢<z,x>|+|x||Di¢<r,x>|), (3.25)

lo] <1

01 (¢, [xDIVedrp(t, x)] < C(Z |ar°‘¢<z,x)|+r|Di¢(t,x)|). (3.26)

lo] <1

Proof. By using an appropriate change of variables, we can assymel, and the
above result for; = 1 is exactly Lemma 2.3 ofl5]. O

Lemma 3.8. Let g; be defined as before. Lét be a smooth function decaying suffi-
ciently fast at spatial infinity. Then we have

loi(r,1-1)Vx0(z, ~)||L2<C( D ert e, iz + D e, ')”LZ)’ (3.27)

o] <1

loi(t., | - DaF b, ~)||L2<C< D or g, iz + Ir OO, ')”L2>’ (3.28)

o] <1
wherer(x) = |x|.
Proof. Eq. 3.28 is a direct consequence 08.25. Similarly, from 3.24) and 3.26),
we can easily see thdv; A¢| ;2 and|lo; V.0, |2 are bounded by the right-hand side
of (3.27). On the other hand, with the help of integration by parts, we get
3

> 010,012, <€ (100 1 10612, + o 41122 )

Jok=1

and Z?,k:l loi0;0kll 2 turns out to be dominated by the right-hand side &R27).
See the proof of Lemma 3.1 if15] for the details. (I

Now we get the decay estimate of the energy.
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Lemma 3.9. For 0<a <3, we have
|| wi(t, |- NOU; [0, P(t, ')”Lz

1
SC'/o 1P (T, M2 dt+ Clllwe @, |- D@, )2 + 1P, )] o ).

(3.29)

Proof. Set¢ = U;[¥] and ¢y = U;[0, ¥(0)]. Then, as in the proof of Lemma.6,
we haveU;[0, V] = 0,¢ — doahg. Therefore we get

lw; dU;i [0 Pl 2 < lwi @l 12 + llwi doll 2. (3.30)

Sincew; <Co;, Lemma3.8 yields

lwid®pll2< Y 1M Bllz + wi(c. |- DT )]l e (3.31)

e <1

Now, using 8.23 to estimate|dI*¢||;2 in (3.31), and B.18 to estimate||w; d¢pgll; 2
in (3.30, we obtain the result. [J

4. Weighted L*° — L* decay estimates

In this section, we give a brief description &f° — L>° decay estimates.
Recall the definitions ofv, andw;: wy(z,7) = 1+t +r andw; (¢, r) = 1+ |cit — 7|
fori =1,...,m. First we consider homogeneous wave equations.

Lemma 4.1. For a smooth function h ofit3, a non-negative integer s and a positive
constantv, we define

Moalhl = sup 37 |+ x> ainc)| .

xeRamgs
Then for v > 0, we have
w (1, [xDw; (¢, [xD|UFLS, g1, x)| < C (M1y[f1+ Mo,lg]), (4.1)
w (¢, [xDwi (r, [x)'|OUFLf, g1(t, )| < C (M2,,[ f1+ M1,[g]) (4.2)

for any (z, x) € (0, c0) x R3, where the constant C depends only on
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Proof. See Asakurg4] (see also Proposition 3.3 and the subsequent remark in Kubota—
Yokoyama[17]). [

To describe the result for inhomogeneous wave equations, we introduce several no-
tations. For given constants (1<i <m) satisfyingc1< --- <c¢;, We setcg and ¢, 41
by

co =0, (4.3)

Cmtl = %rjneip(cj —cj_1) with I = {J e{l,....m}cj—cj1# O}. (4.4)
For (¢, r) € [0, 00) x [0, 00), we define
wo(t,r) =1+ |cot —r|=21+r. (4.5)

We also introduce subset$; (1<i<m) of [0, co) x [0, o) by

Ai = {(t,2) € [1,00) x [1,00); |¢;T — 2 S cmrat) (4.6)
and Ag by
Ao = {[0, 00) x [0, 00)} \ | J 4. 4.7)
i=1
For a non-negative integex v>0 andi € {1, ..., m}, we define

1 x _1 .
) = | e (L4100 SR g0l r=0. g
’ wa (t, [xDw; (e, [x) |, x)s, if v>o0,

[, 01, = wolt, [xDwit, |x)"|$, )]s (4.9)

The weight functions,(t, 2) andz,(t, 2) on [0, co) x [0, o0) are defined by

2u(t,2) = wy (r, Y Mwie, YT i (r, ) e 4; 0<i<m),  (4.10)

Zu(t, ) = wy(t, Hwi(r, Y if (1, 2) € 4; 0<i<m). (4.11)

Now we are in a position to describe the result due to Kubota—Yokoyafa
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Lemma 4.2. (i) For u > 0 and v, p>0, we have

wo(t, [x) P[P, x) ) < € sgp|y|w+(r,|y|)“—ﬂz#<r,|y|>|¢<r, s
7€[0,7]
yER3

+C Y Mo,[I"®(0, )], (4.12)

o] <s—1

w(, [x)77 [GU;[<P](I,X)]<1[J)FH <C sup Iylws (T, [yD" ™ Pzu(z, [yDID(2, ¥)]s+1
’ 1€[0,1]
)'E[R3

+C Y Mo, )], (4.13)

o] <s—1

where M; , is defined in Lemmd.1.
(i) For £ >0 andv > 0, we have

(Ui, x)) < € s{tgq|y|w+(z—, IyD'Zu(z, IyDID(z, ¥
en3

+C ) Mo, [I"®(0, ). (4.14)

o <s—1

Proof. Part (i) of the above lemma is nothing but Corollary 3.6[d7]. Hence we
only give a sketch of the proof for4(14), which in fact is also proved implicitly in
the proof of Theorem 3.7 ifl7]. It suffices to prove the case= 0, because414
for generals can be obtained by applying Lemma 4.1 add1f) with s = O to the
equation of "*U;[@] with |a| <s.

Setr = |x|. Without loss of generality, we may assumg = 1. By the explicit
representation formula of the solution due to J§8h(see alsq17] for instance), we
have

|Ui[®@](t, x)|<CI(t,r) sup Iylwy (T, [yD"Zu(t, [yDID(T, ¥, (4.15)
7€[0,7]
yER3

where

1 t r+t—1 - )
I(t,r) = ;./o / w4 (T, )7 "Zu(r, A)_ldidr.
|

r—t+1|
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From the definition ofZ,, we get

mo1 gt oprte-T m
I(t,r)<2—// wi (1, )" (n )T M didt =) ). (4.16)

—rJo J

j=0

r—t+1| =0

For each/;, introducing new variables by =7+ 4 andg = 1 — ¢;t, we obtain

! " =y [T 1w 4.17
Li(t,r)= ——— ~vq ~hdg, :
0=y /;r|( +p) 7 dp [ +1gD q (4.17)

pj
where 2, = (1—cj)p+ (14 ¢;)(r —1). Since we have: > 0, we get
u —1- * —1- 2
/ A+1gD ”dq</ A+1gh T dg = 2,
p; —o0 u
which implies
C t+r
I, r)g—/ A+ p)~Vdp. (4.18)
rJ

t—r|

By explicit calculation, 4.18 leads to
Li(t, ) <Cr i@+ —r))7" (4.19)

If r>¢/2 andr >1/2, then we have > (14+1+4r)/5 and @.19 implies I; (¢, 7) <C(1+
t+r) T A=)

On the other hand, since the integrand 4nl@) is less than(1+ |z —r|)—V‘1, (4.18
leads to

t — |t — —
1;(t,7) gcw(pr It —r)"t<2c@+ |t — )L (4.20)
r

If we have either <r/2 orr<1/2, then we get & |t —r|>(1+ 1 +r)/4. Therefore
(4.20 implies I;(t,r) <C(1+1t + r)~ Y1+ |t — r|)~" for sucht andr. Summing up,
we have proved (1, 1) <C(L+1+r)" 1A+t —r|)~" for all (¢, r) € [0, 00) x [0, 00),
and in view of 4.15, this completes the proof o#(14 for s =0. O

5. Proof of the main theorem

First of all, we recall the estimates for the null forms.
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Lemma 5.1. Leti € {1, ..., m}, and s be a positive integer. Then we have

|Qo(¢1. bai ) (b, )]s < Cwg . [xD) ™ wi (e, 1x D10l 57109
+wi (@ D (1018 | lert + D1 3142100L). (5.1)
|Qab(¢1. $2) (1. 0)ls < wielt, XD TH100 571 Plss1 + Il[salO0ls)  (5:2)

for any (z, x) with (¢, |x|) € 4;, and for any smooth function

o, x) = ((,‘bl(t, x), Po(t, x)).

For the proof, see the authft3] (see alsd21] and [20]).

From now on, we suppose that the assumptions in Theorem 1.1 are fulfilled. Let
u(t,x) be a local solution of .1) — (1.2) for 0<t < T with someT > 0. We fix
some integeK and three positive constants v; and v, satisfying

K29 0<p<1/2, O<vi<va<l1l-—2p.

We define

8
E(T)= sup Zek(t), (5.3)

0<t<T k=1

where

e1(t) = sup Z(’/H (, x)>(1i,)1<+2a

xeR® i=1

m m
ea(t) = sup Y [0ui(t. )1, ok g €3(t) = Sup Y (ui(t, 1))\ p s,

xeR3 i=1 X€R3[:l

m
ea(t) = sup > w (¢, 1x)) "2 [0u; (1. )1 iy
xeR® i=1

m

es(t) = SUp > w (. 1x]) 2 (uit. x))g o -
xeR® i=1

e6(t) = (L+0)7" > [Jwie, |- DIowi (¢, 2k -1 2.
i=1

e7(t) = A+ 07 llu, k2, est) = L+ [0ult, )2k 2.
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Here, as beforew, and w; for 0<j<m are given byw,(t,r) = 1+t +r and
w;(t,r) = 14 |c;jt —r|, respectively. Also remember that we have ggt= 0.

Let j € {0,1,...,m}. Then, from the definition of1; given by @.6) and @.7), we
get

Crwi(r, ) <w;t, r)<Cwy(t,r) for any (t,r) & A;. (5.4)
Consequently we also have
wy(t, r)<Cw;j(t,r) for any (¢,r) € Ay, (5.5)

where j,k €{0,1, ..., m}.
The main result in this section is the following proposition:

Proposition 5.2. Let u € C*°([0, T); R™) be a solution to the Cauchy proble(i.1)
and (1.2) with someT > 0, and E(T) be given by(5.3). Suppose that the assumptions
in Theorem1.1 are fulfilled. Then there exist positive constants@ and e1, which
are independent of ,Tsuch thatE(T) < B implies

E(T)<Co(e + E(T)?), (5.6)

provided e < &1.

From Proposition5.2, using the standard bootstrap argument, we see that there exist
positive constantsg and M, which are independent &, such thatE(T)< Me holds
for e <eg. Theorem 1.1 follows immediately from thé priori bound forE(T) in view
of the local existence theorem. Therefore the remainder of this section will be devoted
to the proof of Propositiors.2 We suppose << 1 and E(T) << 1 in the following.

5.1. Estimate foreg(r)

Let |«| <2K, and setg,’ = ”ik (u, u, V0u). By (2.5, we have

A
owj,

Oi (i) — Y gph koM uj) = Fig, (5.7)
ji.k,a

where

Fiy=T"F =) gilod."uj+ Y. TPF.
Jsk.a IBl<2K -1
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By (2.4), we have

| Fi o < Clulgt2(Jul2x + 10ul2k).

It is easy to seeégi‘j

(5.8)
k,a

| <Clulg42. Since we have
CYoullzk 2< Y 100l 2 < Clldullk 2
o] <2K

by virtue of 2.4), Lemma3.2 applied to 6.7) yields

t
l0u(t, Hli2k,2 < C8+Cf 1+ 1) Fe1(r) fer(0) + eg(v)} dt
0

< C(e+ @A +0PE(T)?) for 0<t < T. (5.9)
Here we have used als.8). As an immediate consequence 6f9), we obtain
eg(t) <C(e + E(T)?) for 0<r < T.

(5.10)
5.2. Estimate forg(r) and e7(r)

Set H; (u, v, w) = Fi(u, v, w) — F2(u, v, w) for 1<i<m. Then we have
Hi(u,v, w) = O(|lu]® + [v|® + |w|®) near (u, v, w) = (0,0, 0). (5.11)
F@

Since F satisfies the Null Condition and (H3), using the decompositibrig of
, we get
Fi = N; + R+ R}? + RZ + H;,

(5.12)
where N; is given by (.17, R} and R1? by (1.19, while R?! satisfies {.22.
First we claim

Lemma 5.3. Setu; = (u;)jeri)- Then we have

INi (1, )| < Cw(t, [x) " w;(z, |x]) |0

[5]+1 |aﬁi|s+1
+ Cwy (1, x| 0w

[%]+1 |gl |s+1 + |ﬁl|[%]+2 |a’lzl |s+l} (513)
for (z,x) € (0, 00) x R3 satisfying(z, |x|) € A4;. We also have

IN; (¢, )|, < C |0;

for any (¢, x) € (0, 00) x RS.
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Proof. Eq. 6.13 is a consequence of Lemntal On the other hand,5(14) follows
from the fact thatV; is a quadratic function ofd™%;) with 1<|«|<2. O

By Lemmab.3 we have
[N (2, %) 2k —1 < Cw (e, IxDea(r) (lu(t, x)|2k + |0u(t, x)|2k) (5.15)
for any (¢, x) € [0, T) x RS, In fact, if (z, |x]) € 4;, (5.13 implies
INilok—1 < Cwitw; || g 2 (Iulok + 10ul2k ) Swi2er(lulzg + 10ul2k).
On the other hand, ifz, |x]) € 4;, (5.14 and 6.4) lead to
INil2x 1< C il 42 10ul2x <wZe1(n)]0ulox.
BecauseRl.21 has the same structure a8, we also have
|REN(1, )2k ~1 < Cwi (1, [x ) "2ea (@) (Ju(t, )2k + 10ut, ©)|2x)- (5.16)
As for H;, it is easy to see
|Hi (1, %) |2k -1 < Cw (1, [x)“2ea()?(|ut, ¥)|2x -1 + 10u(t, )2k )- (5.17)

To treatR} (= RM + R}?), we need some decomposition. This decomposition is one
of the main idea in our proof.

Lemma 5.4. Let |«| <2K — 1. Define R = {(j, k); 1< j, k<m, cj # c}. Then there
exist some function®?, . and R}, , such that

1,00,%

3
r*rR} =R}, + Z 0aR?, 4 (5.18)
a=0



162 S. Katayama / J. Differential Equations 209 (2005) 140-171

IRE, (0. 01<SC Y fuj(t, ) k+2ldur(, )2k -1, (5.19)
(j,k)eR

IR, o 0<C Y gt ) k2l (b ) 2 + [Oug(t, )2k ). (5.20)
(j,k)ER

Proof. From the definition ofR?, it suffices to prove the result fat} = (Opu ;) (Ocur),
(Opu j)(0c0auy), (Op0Ocutj)(0q0eutr), uj(Opur) andu;(0p0cur) With ¢; # cy.
First we consider the casei1 = uj(Jpux). Since we have

rrt= > (dPup o).
|BI-+ly1=lad

it suffices to find the decomposition for eacﬁﬁuj)(l“"/abuk). If 181<|yl, we have

IPISK —1 and|y|<2K — 1. Therefore,|(Fﬂuj)(l""/(’)bukﬂ itself is dominated by the
right-hand side of§.19. If || >|y|, using @.4), we can write

(FPupyopmy = Y Puy) (@ I ur)
0<p <3
1<
> (w {dPupauo) — @ rtupdarun)  .20)
o<y <3
1 1< 1

= Z, Oy {(F/juj)(Fy,Mk)] + Z/ (Fﬁ/ﬁbnu,-)(ﬂ/uk).

0<p' <3

1<pi 0sb<3
IB1<IBI
1<yl

Since we havgp'|<|f|<2K — 1 and|y'|<|y|<K — 1, we get
((FPup) (M )l < Cluglglujlzx. (5.22)
(P Gpru ) (I wp)| < Cluel—110u |2k 1. (5.23)
The above two inequalities imply the desired result.
Next, we consider the casRl.1 = u;(0p0cux). As before, it suffices to consider
(FPu ) (170, 0.ur) with |B] + |y|<2K — 1. If |f|<[7], we decompose it as

(P dpden) = ((TPup) I 8p0cu) — 05 | (Pup) 7o) })

TR {(rﬁu,-)(r“/acuk)} . (5.24)
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Noting that @.4) implies
|7 0p0cu — OpI" Ocug <C|02“k|l~/|71,

we can easily check the estimates correspondingid9( and 6.20. Observing that
(5.21), 6.22 and 6.23 are still valid if we replaces; by d.uy, we obtain the desired
result also for|f| >y

The remaining cases are easier.Rl} = (Opuj)(Ocur), thenI'*R; itself enjoys the
estimate 5.19 by virtue of the Leibniz formula. FoRi1 = (Opu;)(0:0qur), the desired
result can be obtained by using the following decomposition which is similas. &)

FaRil = (F“Ril — 0, {(6bu.,')(F“6duk)}) + 0, {(abuj)([‘aaduk)} = Rlla* + 65Ri1yw.

We can treat the casEi1 = (Op0cu j)(0q0.ux) in @ similar manner. This completes the
proof. [

If (j,k) € R, since we have; # ¢, (5.4 implies
wa (2, Jx )" rw; @, e )T rwg e, (xS Cwo @, [x)) 72

for any (z, x) € [0, T) x R®. Therefore 5.19 leads to
IRE, (6, )| < Cwi(t, [x)"Pen(t) Y wi(t, x])|0uk(, x)|2x 1 (5.25)
k=1

for |o| <2K — 1. By (56.20), we also obtain
IR, (6, )1 < Cwy (1, [x)) " Ler () (lut, )|k + |0u(t, x)|2k ) - (5.26)

Now we are in a position to estimatg(r) and e7(z). For |¢|<2K — 1, (2.5 and
Lemma5.4 imply

> P+ R+ R+ H))
Bl<2K -1

/ , 3
)R LIRS R S I S SE N
IBI<2K-1 Bl <2K—1a=0

O (I uy)
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We setF; g = I'(N; + R? + H;) + R}, . Then we have

’ ! 3
Cui = Ul fio gial+ Y, UlFigl+ Y D Uildu(Rig )1, (5.27)

Bl <2K -1 Bl < 2K —1a=0

where f; , = I'u;(0) and g; 5 = 0, "u; (0).
From Corollary3.4 and Lemma3.5, we get

WU fias 81,01t )12 + lwi (e, |- DOUS fi s 8i,a)(t, )l 2 < Ce. (5.28)
(5.19, (5.16), (5.17 and 6.29 lead to

|Fi p(t, x)| < Cwi(z, IXI)_Zel(t)(Iu(t,x)lzx + [Ou(t, x) |2k

Y w0 DI, (1, )2k 1)

j=1
for any § with |f|<2K — 1. Therefore we obtain
lwi(t, [-DF; g, ll2<C(L+ t)pflel(t)(ee(l) + e7(t) + es(1)). (5.29)
By virtue of (5.29, Corollary 3.4 and Lemma3.5 yield
Ui LF; p1(t, 2 + llwit, |- DOUHLF; gl(t, )l 2 <C(1+ 1) E(T)? (5.30)

for 0<r < T.
From (.26, we have

IR (1, )2 < C L+ 0P ter(t) (e7(r) + es)),
lwi (2, IR gt )2 < CA+1)Per(r)(e7(t) + es(r))
and therefore Lemma3.6 and 3.9 lead to
1Uil0a R} 5 11, D2 + wiUi[0a R} 3 12, )2 <C (62 + (L+DPE(T)?)  (5.31)

for 0<r < T.
From 6.27), (5.28, (5.30 and 6.31), we obtain

170 (¢, a2+ llwi ¢, |- DOT ui (¢, ) 2 < C (e + (L+ 1P E(T)?) (5.32)
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for |o|<2K — 1. Since we have |u;(t, )l2x2<C Zla‘gzpl 1 T%u; (2, )12
and ” wim“i(t, ‘)|2K71”L2<C Z|oc|<2K—1 ||wi6F“ui(t, ')||L21 (5-33 implies

es(t) + e7(1) <C(e + E(T)?) for 0<r < T. (5.33)
5.3. Estimate fors(r) and es(r)
Let j €{0,1,...,m}. Then 6.5 implies
lu(t, %) k42 < Cw (¢, [x )" w; e, x)) " tea(®) (5.34)

for any (¢, x) satisfying (¢, |x|) € 4;.
Since F; = O(Ju|? + |0u|? + |V, 0u|?), using the Sobolev-type inequality

IXHp s S CsllPlls+2,2

which holds for any$ € & (R%) and a non-negative integsr(see Klainerman-Sideris
[15] for the proof), we obtain

IYHFi(t, Yl2g -3 < Clu(t, y)|k 20y (Ju(T, )2k -3+ |0u(t, y)|2k-2)
< CA+0)P|u(t, y)lk+2(e7(t) + es(t)). (5.35)

(5.34 and 6.35 lead to

Iylwa (T, 1Y) ™2z, [yDIFi (T, )2k -3
SCwi(t, [yDHPwj(x, |y) Her(r)(e7(r) + es(r))

<CE(T)? (5.36)

for any (r, y) satisfying (z,|y]) € 4; (j = 0,1,...,m), provided u<p. Therefore
Lemmas4.1 and 4.2 (i) lead to

ea(t) + es(t) < C(e + E(T)?) for 0<t < T. (5.37)

5.4. Estimate forey (1), ex(t) and e3(r)

In this subsection, we will prove

e1(t) + ea(t) + e3(t) <C(e + E(T)?) for 0<1 < T, (5.38)



166 S. Katayama / J. Differential Equations 209 (2005) 140-171

which completes the proof of Propositidn2 together with $.10, (5.33 and 6.37).
We use Lemmas 4.1 and 4.2 (i) to estima€r), and Lemma 4.2 (i), instead of (i),
to get control ofe1(¢) andes(r). Then it turns out that our task is to show

sup  {L[F1(t, )} SCE(T)% (5.39)
(1.y)€[0,T)x R3

for sufficiently smallu, where, for a smooth functiod, I,[®] is given by
Ll @](t, y) = InulP1(T, y) + L2 W[ P1(T, y) + 13,,[P](z, ¥)
with

I [P(z, y) = |ylwi (T, [yDZu(, [yDIP(T, y)|k 42,
L[ @](T, y) = |ylwy(z, [yD ™ zu(z, [yDIP(T, ¥)2k -5

and
I3[ @17, y) = [ylw (T, [yD"?Zu(z, [YDIP(T, ¥) |2k —5.
Observing that we can write
I ([ @1(@, y) = w (z, |y =02V (2, |y) " 13 [ @] (x, y)
for (z, |y]) € 4;, we see
I [ P(z, y) < I3[ PI(1, y), (5.40)

provided O< u< vy — vy. Therefore the bounds adh ,[®] and I3 ,[P] give the bound
of 1,[®] for small p.
Now we are going to estimatg,[N;]. To start with, we note that

Jui (¢, ) |2k —3 < Cw(t, [x) 20w, (2, |x]) es(1) (5.41)
holds for anyo > 0, since
wa (t. (XD 0w (e, XD ui (. 1) |2x —3 < Clui (1. )I5x_g0-

For simplicity of exposition, we abbreviate, (z, |y|) andw;(z, |y|) asw andwj,
respectively in what follows. Note that2— 6> K + 3 for K >9.
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We defined; r for j € {0,...,m} by
Ajr={(1.y) €0, T) x R (z, |y]) € 4;}.

Since we havavg<Cwi' in A; 7 by (5.4, Lemma5.3 implies

2p-2 —1—

) 2p—-24+6  —1-v1—0
IVIINi (2, Yok -5 < Cwl “w; " ezeq + Cwyf S

w, ezes

+ C11)_2|f_2u)lfzelea,<Cw_ZF’D_ZJr(;wi_l_vlE(T)2 (5.42)

for any (z, y) € A; r. Therefore we get
I3 0[N 1(z, y) < Cur, 02092k i p (102 < C R (T2 in Ay

for sufficiently smallu and 6, because we have 9 v1 < vo < 1— 2p.
Similarly to (6.42, from Lemma5.3 we get

2 12 DY 2 2y
Iy[INi (T, Vlk+2 < C(wfwi eger + witw; T 2eges + witw; ”elez)

< Cw 2w TET)? in Ay,

l

which leads to
I[Nz, ) SCwl ™2 E(TY2<CE(T)? in Az

for u < 2vs.
On the other hand, if € 1(i), (5.14) implies

—2-2v; — —2-2v  —
YHINi (5 Mk < Cwi® Mwgtea(n)? < Cw® “Mw tE(T)?,
2p—2-v1  — 2p—2—v1  —
¥ INi (2, Y25 < Cwy ™ Mwgtea(t)eat) <Cwy ™ Mw T E(T)?

for any (t, y) € 4; 7, since we havew; > Cwy and alsowo>Cw; in A;. Therefore
we obtain

LN y) < Cw Ml E(N)2< Cuw MM E(T)? < CE(T)?,

13,#[Ni](‘[7 y) g Cw;(l_zp)+"2_vlw§lE(T)2 < Cw;(l_zp)‘f‘VZ_Vl"‘,uE(T)Z < CE(T)Z

for any (t, y) € Aj 7 with j & I(i), providedu is small enough.
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Summing up, we have proved

sup  I,[Ni1(z, y) <CE(T)? for small . (5.43)
(1.y)e[0,T)x R3

Similarly we can get

sup  I[R*Y(z, y) <CE(T)? for small . (5.44)
(1,y)€[0,T)x R®

Next we considertl,[H;]. Assume(t, y) € A; 7 with somej € {0,...,m}. Since
we havelu; (t, y) |2 < Cwy (7, [y) "tw; (7, [y]) " tea(r), we get

|H; (1, V)ls < Clu(t, )% o(1u(@, y)ls + 10u(z, y)ls+1)

< CwPwiPer(n?(Ju(t, y)s + 10u(x, y)ls11) (5.45)
for s <2K. (5.49H leads to

— — _ S
Y1 Hi(, lkr2 < CwPw;Zer(m?(w)ten(m) + w; ' ea(n),

Tzel(f)z(w,_vzeg('c) + Wipw;1€4(T))

Iy 1H; (2, )2k 5 < CwPw; ;

for any (z, y) € A; 7. Therefore, ifu is small enough, we obtain

-2
IulHi(x y) < Cw; " MET)R<CE(T)?,

vt p 3 < CE(T)?

—(1-2p)+
3 ulHil(x, y) < Cw} 22y

for (7, y) € Aj 7. These estimates imply

sup  I[H;l(t, y) SCE(T)? for small p. (5.46)
(1,y)€[0,T)x R3

Finally we will prove

sup  I[RI(z, y) <CE(T)? for small p. (5.47)
(1.y)e[0,T)x R3
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It suffices to prove §.47) for Rl.1 = (3°‘uk6ﬁuz, where 0< o) <2, 1<|f| <2 and, most
importantly, ¢, # ¢;. Suppose(z, |y|) € A; for somej € {0, ..., m}. Then we have

VIR T, »ks2 < Clyl(uklk 2 + |0ur | k+3)|0ur k +3
1

N

Cwitwiter(t) + wytwy T eat)w; T ea(r),  (5.48)

B 3
Clyl(laaule—3|5/ w2k -5+ 10" ur |k —310"ux |2k —5)

/N

IV IR}z, y)l2k -5

< Cw? M wtw e (nea(r)
+ Cwl_l_vlez(t)(w;lwk_vzes(t) + wipwalwk_lezl(t))_
(5.49)

Since we havavg>Cwy and wy > Cwy in A; by (5.4), from (5.48 and 6.49 we
get

I [RH(z, y) < Cwl ™™ E(T)?><CE(T)?,
I3 [RM(.y) < C (w T2z ey w[”*“) E(T)?
< C(w;(lfzp)+v2+ﬂ + 1)E(T)2 < CE(T)2

for any (z, y) € A; r and sufficiently smallu.
Similarly, for (z, y) € Ag 7, we obtain

Lu[RH(y) < CwMwiE(T)?<Cw T "E(T)?<CE(T)?,
I3[R, y) < C (w;”*z‘”*”w,ﬁ‘ +w Vzw,f”z*”) E(T)?
< Cu O Ly Y (T2 CE(T),
provided i is sufficiently small.

Now supposg ¢ I (k)UI(1). Then 6.4) implieswy > Cw,, w; > Cw4 andwg > Cw;
in 4;. Hence $.48 and 6.49 lead to

1oy 1+ 2
ILu[RN(,y) < C (w+ wi wl ‘1w§.‘> E(T)?
< C'™" + w' P E(T)2 < CE(T)?,
—(1-2 -1 1 —1— 1
IR, y) < C (w+( )+ w ™+ wy ”1wj+") E(T)?

T Cu R (2
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< C(w;(l—zﬂ)-‘-\’z-hu + wJ—r"l-Hl + wJ—r(l—ZP)+"2—V1+/1)E(T)Z
< CE(T)?

for (z,y) € Aj 7 with j & I(k) U I(l), provided thatu is small enough.
Summing up, we have prove®.d47), and this completes the proof 05.89. O
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