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Abstract

In this work, we study the existence and multiplicity of solutions for a class of elliptic
problems in exterior domains d&2 with Neumann boundary conditions and nonlinearity with
critical growth.
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1. Introduction

In this paper, we are concerned with the existence and multiplicity of solutions for
the following class of elliptic problem with Neumann conditions:

—Au4u=0x)fu inR>\Q,

0 (P)
@ 0 on 09Q,
an
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whereQ c R? is a bounded domain with smooth bounda®yjs a continuous function
satisfying

0(x)>0 in R’>\Q and Hlim 0x)=0 >0, (01)

and the nonlinearityf : R — R is a C! function satisfying the following hypotheses:

f has critical growth at both-co and —oo, that is, it behaves like®* as |s| — oo
for somea, > 0. More precisely,

0 Vo> o,, lim /Gl =400 Vo< o.

ls|>00  ets?

@I

2

lim

[s|>o00 S
Moreover, we assume that
If()|<Ce*™® forall s € R. (f1)
There isf > 2 verifying
0<O0F(s)<sf(s) forall seR. (f2)

There existsy > 1 such that

lim sup'ﬂs)| < 00. (f3)
Is]—-0 Is|9
h ) S .. .
e functions — is increasing in(0, +00). (fa)

N

There are constants > 2 andC), such that
f()=CpsP™t for all s € [0, +00), (f5)

where

(p—2)/2
o o[22,
! p(0—2) r

(Jrz(| Vu |2 +u?) dx)Y/?
weHL®N0) (g2 O lu |P dx)V/r

Sp =
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and ¢ > 0 is a positive constant such that the extension operatorH(R? \ Q) —
HY(R?) satisfies

1Eull a2y < Elull yrgevy Vo € HY R\ Q).

We recall thatE exists because the s@t has smooth bounded boundary (§&p.

In [6], Benci and Cerami studied proble®) assumingV >3, 0 =1 and f () =
lu|"1u with 1 < #n < ¥£2. They showed thatP), with Dirichlet condition, has not a
ground state solutignthat is, a solution of P) with minima energy. However, Esteban
in [10] proved that the same problem with Neumann condition hagoand state
solution

In [8], Cao also studied problerP) for N >3, f(u) = |u|"lu and Q satisfying
condition (Q1). He showed that this problem has at least two solutions, a positive
solution and a nodal solution, that is, a solution (&f) that changes of sign. I{8],
Alves et al. showed that the results found[&}, also hold for the p-Laplacian operator
and also for a larger class of nonlinearity.

Motivated by paperd3,8] and by some ideas developed [#,7], we prove the
existence ofground stateand nodal solutions to(P). We used variational methods
such as the Mountain Pass Theorem without Palais—Smale condition5(d€d to
obtain a positive ground state solution. In relation to nodal solution, we apply the
implicit function Theorem. An important point in our work is that the nonlinearity has
critical growth in R?, this fact implies that some estimates and arguments explored in
[3,8] cannot be used. To overcome these difficulties, we used a version of a result due
to Lions for the critical growth case if? proved by Alves et al. if4].

Concerning the existence gfound state solutiorwe will prove the following result:

Theorem 1.1. Suppose that f satisfigs1)—(f5), Q satisfies(Q1) and
Q(x)=>0—Ce™ |x|>R,, (02)

where C, R, are positive constants ana@ > 2. Then (P) has a positive ground state
solution.

In order to get nodal solution, it is necessary the following additional conditions on
f: There existss >2 such that

f/(s)s% — f(s)s=Cls|° Vs eR (fo)
and
£/ (s)s| <Ce*™” Vs e R, (f7)

for some positive constarg.
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Theorem 1.2. Suppose that f satisfigs1)—(f7), Q satisfies(Q1) and

0x)=0+ Ce ™l vx e RV, (03)

where C is a positive constant and< q—il Then (P) has a nodal solution.

This paper is organized as follows: in Section 2, we recall some results involving
the limit problem. In Section 3, we state some lemmas and propositions used in the
proof of the main results. In Section 4, we prove the main results. In Section 5 we
prove some technical lemmas and propositions stated in the Section 3.

To finish this section, we would like to cite also the papers of Adimurthi and Yadava
[2] and de Figueiredo et aJ9] and the references therein, where elliptic problems in
R? have being considered.

2. The limit problem

In this work, we need to recall some results involving the limit problem

—Au+u=Qf@m) inR2
{ u u u (POO)

u € HY(R?).

Hereatfter, ifh is a Lebesgue integrable function aBds a measurable set, we write
Jgh for [z hdx. Moreover, ifh € HY(R?\ Q) we denote byjk|| its usual norm.
The energy functional, : H1(R?) — R associated to problertPs,) is given by

1 -
ot = 5 [ v+t = [ 0P,

where F (u) = fé‘ f(®) dt andu™(x) = max{u(x), 0}. Using the hypotheses on function
f, we have thatl,, € CY(HL(R?), R) and the weak solutions afP) are nontrivial
critical points of /.

Repeating the same arguments explored by [Zhand Alves et al[4], it is possible
to check thatl/,, verifies the Mountain Pass Geometry and that there exists a positive
function iz € B1(0) \ {0} ¢ H1(R?) verifying

Io(il) = coo and I, (u) =0,

where ¢, is the minimax level of the Mountain Pass Theorem applied/4o In
this case, the functiom is a ground state solution toP,). Moreover, we have the
following result.
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Theorem 2.1. Assume that f1) and (f3) hold. Thenany positive solutior of problem
(Pso) With Nl 1 g2y, < 1 satisfies

M lim @(x)=0

|x]—00
and
() Cire~ ™ <ii(x) < Coe ™ in R?,

where C1, C2 > 0 are positive constants anl < » < 1 < a. Moreover we can be
chosena =1+6,b=1—¢ for 6 > 0.

Proof. Using conditions( f1) and ( f3), for eacht > 1 ande > 0, there exist, > 0
such that

£ )s], 1F () <els|? + Co(e®™* = Ds| Vs € R. (2.1)

Using the fact tha11|ﬁ||H1(Rz) < 1 and arguments found ii,7], there existq) near 1,
g > 1 such that

h(x) = f(@(x)) € L(R?).
By bootstrap arguments, for € R2 and R > 0, it follows thati € W24(Bg(x)) with
el w2y < CURILI (B (x)) + UL (Bor(x))}
which implies,
Nl wea ey < CURILI(Bor(x)) T 18] L2(Bog )}
Since the imbeddingv24(Bg(x)) < C(Bg(x)) is continuous,
il oo (B )y S CURILa (Bog () + 1] L2(Byp () }-
The last inequality implies thai e L®(R?) and liMy—oo #(x) =0.

The inequalities in (ll) involving the exponential functions follow with the same
arguments found in Li and Yafill]. O

Remark 2.1. (i) Theorem 2.1 completes the result proved1d], because our nonlin-
earity has a different behavior at infinity.

(i) With the same arguments used in the proof of Theorem 2.1, we can show that
all positive weak solutions of (P), with |u1] < % has exponential decaying.
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3. Statement of lemmas and propositions

In this section we state some necessary results to prove Theorems 1.1 and 1.2. The
proofs of some of them are in Section 5.

3.1. Technical results to get ground state solution
The first lemma can be found in Alves et &B].

Lemma 3.1. Let F € C%(R, Ry) be a convex and even function such ti&0) = 0
and f(s) = F'(s) >0 Vs € [0, 00). Then for all u,v>0

|F(u—v) — F(u) = FO)I<2(f@v + f(v)u).
The next lemma is related to the Mountain Pass Geometry and we do not make

its proof because it is well known. See for example Alves ef4jl. Hereafter, let us
denote byl : H(R? \ Q) — R the energy functional related taP), that is,

_ 1 2 2
Iw) = —/ (Vul? + u )—/ 0 F(u).
2 JrR2\Q R2\Q

Lemma 3.2. The functional | verifies the Mountain Pass Geomethat is

(i) There existr, p > 0 such thatl (u)>r, |u| = p.
(i) There existe € B;(O) such that/ (e) < 0.

Using a version of Mountain Pass Theorem without Palais—Smale conditiofil&ee
Theorem 1.19]and (f4), there existsr, € HL(R? \ Q) satisfying

I(u,) - c1 and I'(u,) > 0 asn — oo,

where

c1=inf {supI(tu);u € HY(R?>\ Q)\ {0} } . (3.1)

>0

The next result establishes a relation between the levebnd c..

Proposition 3.1. Assume that Q satisfig91)—(Q2). Then

0<c1 < cCoo-
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Proof. See Section 5.
The following result may be proved in much the same way as in L[&@%

Lemma 3.3. Let {u,} ¢ HY(R?\ Q) be a bounded sequence such that

lim sup lun|? =0,
n—oo ye[R{Z Ur.y

for someR > 0 and Ug , = Br(y) N (R?\ Q) with Ug , # #. Then

n—00

lim / lup)9*t =0 for all g > 1.
R2\Q

Proposition 3.2. Let {u,} ¢ H}(R?\ Q) be a sequence with, — 0 and

lim sup lunll?<m <

n—00 252

If there existsR > 0 such that

and (f1)—(fs) hold, we have

A@Z\QF(W)’/RZ\Q flup)u, — 0 as n — oo.

Proof. See Section 5.

Proposition 3.3. If {u,} c HY(R?\ Q) satisfies
I(up) — c1 and I'(u,) — 0,

we have thatlimsup,_, o ||u,,||R2\Q < Moreover the weak limitug of {u,} in

1
NAS
H(R? \ Q) is a nontrivial critical point of | with7(u1) = c1.

Proof. See Section 5.
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3.2. Technical results to get nodal solutions
Consider the closed set
M:={ue H R\ Q) | ut £0, I'wHu® =0}
and¢ the following real number
= ulen/{/t I1(u).

The proof of the next lemma follows by similar arguments explored3jnand we
omit it.

Lemma 3.4. Assume that /1), (f3), (fs) and (f7) hold. Then there exists a sequence
(u,) C M satisfying

I(uy,) — ¢ and I'(u,) — 0.

The next proposition is a key point in our arguments to find nodal solution, because
it gives a good estimate fo.

Proposition 3.4. Suppose that Q satisfi€$)1)—(Q3). Then

0<C<c1+Coo- (3.2)

Proof. See Section 5.

4. Proof of the main theorems

Proof of Theorem 1.1. First of all, to find a positive ground state solution we will
assume that

f(t) =0 Vt<0.

By Proposition 3.3 and the Mountain Pass Theorem [sdel]), | has a critical point:y
at the levelc1. We claim thatu; is nonnegative. Indeed, we know th&{u1)u;~ = 0,
thus [u~|] = 0 andu; = 0. Using the maximum principle, we haue; > 0 in
R2\ Q. O
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Proof of Theorem 1.2. Let (u,) C M be the sequence obtained in Lem®d. Then,

the weak limitu of {u,} in HY(R?\ Q) is a nontrivial critical point ofl and u* = 0.
To check the above claim, remember that

I(u,) —<¢ and I'(u,) — 0.

Then
0—2) .
0-2 lim sup [lun 12 <e1 + coo <2600
n—oo
which gives
40c¢
lim sup [[u, | <o = ——.
n_mpll nll =05

From (f1)—(f5) (see[4]), it follows that

-2
4820

Coo < s

then

lim sup lvnll g1 (w2 <VJoié <1, for v, = Eu,.

n—o00

Using an inequality of Trudinger—Moser type showed by Cad7inand repeating the
same arguments used in the proof of Proposition 3.3, we can concludel tlsat
critical point of I. Now, we will prove thatu® # 0.

We have three cases to consider:

) ut=u"=0.
(1) ut #0 andu~ =0.
() ut =0 andu~ # 0.

We will prove that the above cases do not hold, therefofe# 0. In what follows,
we will prove only (I) because the other cases follow with the same type of arguments.

Analysis of(l): Applying Proposition 3.2 to the sequencgs} and{u;, }, there exist
n, R > 0 and sequencelyl} and {y?} in R? with |y}|, |y?| — oo verifying
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and

Defining w, (x) = u, (x + y}) and z,(x) = u, (x + y?), there existw, z € H(R?) \ {0}
such thatw, — w and z, — z in HL.(R?), with w* # 0 andz~ # 0. Since
Il (w) = I,(z) = 0, we have

LwHwt =0 and I (z7)z” =0.

In this way,

2000 <Ioo(wT) + Ino(z7) = [Ioo(wﬂ - %I;O(wﬂwﬂ + [loo<z‘) - %I;O(z‘)z‘} .

By Fatou’s Lemma

1
lim inf f (Vi P+ wh? + 2 / (Fwhwf — Fwh) | >n
n—00 R2\ QL 0 RZ\Q,%

n

and

- —2 2y, L -y, - -
I|'[1|Qof [/RZ\QZ(Wan +(z,)9) + E/RZ\QE(f(z” )z, — F(z, ))} =1,

n

whereQ; = Q — yl, Q7 = Q— y2, I1 = Io(wh) — 51, (wHw™ and Ir = Io(z7) —
#1,,(z7)z~. Consequently

2coo < iMinf (I (u,") + I ()} = lim I(u,) =¢ < c1+ oo
n— o0 n— oo
which is an absurd. (0
5. Proof of lemmas and propositions

In this section, we will prove some lemmas and propositions used in Section 3.

Proof of Proposition 3.1 Let i be a positive ground state solution of probl€®,,)
and defineu,(x) = i(x — x,), x, = (0,...,n). By the characterization ot;
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given in 3.1),
<max ! (tuy).
Cc1 =0 (tuy)
Let y, € (0, 00) such that

1 =max I (t
(Yatn) 150 (tuy),

then
Cl g I(Vnun)
_1 2 2 _ ;
- (|anun| + |Vn“n| ) Q(x)F())nun)
2 Jr2\Q R2\Q
1 2 - —_
= looc(Vpttn) — stayy + | OF (ypun) + (O — O)YF (y,un), (5.1)
2 Q R2\Q
where

by =/Q(|wn|2+|un|2).

Now, notice that/ (y,u,) = max oI (tu,) if and only if

/ (Vtn|? + |un)?) = / Q(X)Mu5~ (5.2)
R2\Q R2\Q (Vnun)

It is not difficult to see that the sequengg,) is bounded and that, — 1, for some
subsequence still denoted Ioy,). By (2.1) and (5.1)

y2 _

+/2 (Q — QF (yutn) dx
RA\Q
thus,

c1 <o (it) — Cty + sp,
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whereC is a positive constant and
Sp = C/ un(e4rm/”‘m5 - 1)de +/ (Q - Q)F(Vnun)
Q R2\Q

We claim that

Indeed, by Theorem 2.1

rn=f9(|wn|"+|un|">>/Q|un|">Ce—2“".

Estimate ofs,,:
Fix R > 0 such thatQ c Bg(0) and observe that

2 _ by 2
/ un(e47ry”run —1)dx = / u(e4n,n‘m — 1) dx,
Q Qn

where 2, = Q + x,. Consequently,

b

N 2 —2n
/ Uy (e4nynmn —1dx< Cefbn (e4n11e -1,
Q

wherey,t<t1 Vn € N. Note that,

f (Q — QF (y,un) = / (Q — Q)F (y,un)
R%\Q (RN |x|>r}

+f (0 — Q)F (,un),
(RADN(|x| < 7w

wherer, = (1 —r)n with r > 0 andr near 0. From(Q>), it follows that

/RZ oty @ OF i) Ce™
(RADN|x[>ry

From conditions( f1) and ( f3), it follows that

|F(s)| <els|9 + Co(e®™* — 1)ls| Vs e R,

31

(5.3)
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then

(0 — Q)F(jyun) < Cie / |7+

(RADN{|x| < ru)

+ Cz/ u,,(e4m1”'2' —1)dx.
(RADN{|x| <7}

/<R2\Qm{|x|<rn}

Therefore,

/<R2\Q)m{|x|<rn}@ ~ Q) F () SCe M2 4 Cmbra(efmae ™ —
By the estimates obtained above
Sn _ Ce—bn(e47rrle—2nb 1) Cemm N Ce=b@+Dmy2  co—bra (e4mle—zmh 2
th e~ 2na e—2an o—2na o2 ;

and sincej — 1 asé — 0 ( see Theoren2.1), we obtain

Sn

— =0 0O

In
From (5.3), it follows thatc; < c.

Proof of Proposition 3.2 By hypotheses

together with Lemma 2.4, we get
up — 0 in L9 (R?\ Q) for all ¢’ € (2, +00).

Denotingv, = Eu,, it follows that
1
lvnll g1z < Ellunll < NG <1

and by an inequality of Trudinger—Moser type found [ifi, there existr,q > 1,
sufficiently close to 1 such that the sequence

fox) = A _ 1 Yy e R?
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belongs toL4(R?) and there exist§ > 0 such that f,|, < C for all n € N. Therefore,
the sequence

hn(x) — e47I‘L'Lt£—1 x e RZ \ Q

belongs toL4(R?\ ) and there exist€ > 0 such that|z,|, <C for all n € N. On
the other hand, we have

2
\/RZ\Q f(un)unge/%Z\Q ”5 + Cg [I%Z\Q un(g4n‘[un — 1)

which implies that

09 11
/ f(un)u11<3C+C{/ |un|q} s ——|——/=1.
RA\Q RA\Q q q

From this, we infer that

lim / F(un)tn = 0.
n—o0o RZ\.Q

By similar arguments,

lim / F(u,) =0. O
n—oQ RZ\.Q
Proof of Proposition 3.3. Using analogous arguments explored[4f, we get

0-2
4820 -

Coo <

On the other hand, using the hypotheses involving the sequen¢ewe have

0—2
( 3 )Iimsup||un||2<c1-

0 n—o0

Thus, there exista, € N such that

1
lunll < — Vnz=n,.

V2¢
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Denotingv, = Eu,, we have that
lvn ”Hl(Rz) <Elunl

and then,

1
”Un”Hl(RZ) < E <1 Vnzn,.

Using similar arguments explored [4], it follows that
Lo s [ gaw e i@\ o,
RA\Q RA\Q

whereu is the weak limit of{u,}. The last limit implies thatu is a critical point of
I. Now, let us show thati is nonzero. Assuming by contradiction that= 0, we have
two situations to consider:

(1 lim sup lu,|? =0
n—00 ver?2 Jug,,
or
(1) There exist; > 0 andy, € R? such that liminf lun|? =1
n—0oo

UR syn

We will show that the aforementioned cases (I) and (lI) do not hold, thus we can
conclude that: # 0.
Analysis of(l): If (1) holds, by Proposition 2.2, we get

lim / fup)u, =0.
n—o00 RZ\Q

This fact implies that|u,|| — 0, which is an absurd, becaudéu,) — c¢1 > 0.
Therefore, (I) does not hold.

Analysis of(ll): Let w, (x) = u,(x + y,) for x € R2 \ 2, whereQ,, = Q—y,. From
Sobolev imbedding, we have that,| — co. Hence the limit set related &2\ Q, as
n goes to infinity isR2. Notice also that{w,} is bounded inHléc(lRiz) and its weak
limit w is different from zero. Denotingy,, = Ew,, it follows that

I wn ”Hl(RZ) <Ellwy ”@,, s
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where ©, = R?\ Q,. Then,
—~ 1
”wn”Hl(RZ)gf”un” < ﬁ vn € N.

Using similar arguments explored in the previous results, we concludewthat a
critical point of the functionall,, and w,, — w in Hléc(Rz). Thus, by Fatou’s lemma

1 L
Coo <oo(w) = Ino(w) — aléo(w)wg liminf I(u,) =c1 < cso
n— 00

which is an absurd, and (Il) also does not hold.
The equality/ (z1) = c¢1 follows from definition ofc1 and of limit

liminf 7(u,)<c1. O
n—oQ

Proof of Proposition 3.4. Let u be a ground state solution ¢P) andu; is a positive
ground state of(P). Let us definei, (x) = i(x — x,), wherex, = (0,...,0,n) and
for o, f >0

) = [ VG i s — ) P

- / L Of (g — Pitn) ) (ous — Pitn)™.
RA\Q

Since
/ <|Vu1|2+u%>—/ Of (up)uy = O,
R2\Q R%\Q

by (f3) it yields that

1, 2 1 \1
/[RZ\Q ‘E “ - /RZ\Q or <§M1> Eul

fuy  fGu)\ jury2
= _— — 0’
-A;{Z\Q ¢ ( (u1) (3u1) ) ( 2) g

2

+ | zu1

2
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and

/ (12Vu1 + 2u1?) — / 0f (2u1)2u1
R2\Q RA\Q

fu)  f (2u1)> >
= — 2 0.
/RZ\Q Q( (u1) (2u1) (2un)” <

Thus, forn large enough we get

/ 1V_
r2Q \|2 o

2

"

and
/ (12Vity % + |20, %) — / Q) f (2ii)2it, < O.
RA\Q R2\Q

Since,i(x) — 0 as|x| — oo, there exists:, > 0 such that

ht(k. B.n) >0,
(z.5.n) (5.4)
h*(2,B,n) <0,
for n>n, and g € 3, 2]. Now, for all « € [3, 2] we have
W, 3,n) >0,
(5.5)
ht (o, 2,n) <O.

By the Mean Value Theorem (sd#3]), there existx*, f* such thatl <o*, p*<2
and

W@, pf,n) =0 for n>=n,,
that is

o*uy — i, € B for n>n,.
Hence, we only need to verify that

sup  I(aug — Piy) < c1+ coo fOr n=n,.
3<ap<2
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Indeed, since
T o 2 a2
I(auy — Puy) = [Vouy — BVit, |« + loug — Pidy|
2 Jr2\Q
—/2 Q(x)F (omy — Pity),
R2\Q

using Lemma3.1, we get

B 1 _ 1 _
I (g — Pity) < —/ IV (ou1) — V(Bitn)|? + = / |owy — Pity|* — I,
2 Jr2\Q 2 Jr\Q

where
=, oFGu+ [ oFGE) -2 [ fGunpi, +ousf (B,
R2\Q R2\Q R2\Q
Sinceus is a solution of(P) and i, depends of a ground state @P,), we have
oy = i) < 1ou) + LBin) = [ (0= O)F (B
R2\Q
JrC1/2 (f(ul)ﬁnJrulf(ﬁn))-F/ QF (Bitn).
R2\Q Q

Therefore, we conclude that

sup  I(omy — Puy) < sup f (o) + SUp oo (Pity)
I<ap<2 x>0 p=0

_ 1_
- /RZ\Q(Q ~ Q)F <§u>
1 [, (B, + ous (B
R%\Q
+/QQF(2L2,1). (5.6)

Now, by (Q3), we obtain

/R 0@ OF (%u) >Ce ", (5.7)
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and by (f1) we get
/;) QF(ﬁn)<Cge_nb (6471’5672”[’ _ 1) + ge_b(q"!‘l)n. (58)
On the other hand, one has

/ fuy)uy, g%‘/ |u1|q|1,_¢n| + Cs/ (64711:14% . 1) i
RZ\Q RZ\Q IRZ\Q

Notice that

f |u1|qﬁn=f |u1|qﬁn+/ a | iin|
RA\Q ol ol

n n

and
/[REZ\Q <e47rwf - l) iy = (/;9% +/@5) (6471114{ _ 1) i,
where 0, = (R\ @) N {lx| < q_il”} and @2 = (R*\ Q)N {|X|>q_~]ﬁn}. Thus
/RZ\Q sty < Cae” 7" (5.9)
and

/2 (647[“”% _ 1) I/_ln gce_ﬁ"b + C <e47'c‘[e q+1 _ 1> i
R2\Q

hence
_ 2bn
/2 F(un)iiy <Cre~ a1 4 C <e4m o 1) . (5.10)
R2\Q

Using similar arguments, we get

bn _ 2bn
/RZ Qulf(a,,)gcam +C <e4’"f o 1). (5.11)
\



C.O. Alves / J. Differential Equations 219 (2005) 20-39 39

From (5.6)—(5.11), we have far large enough

sup  I(om — Puy) < sup I (oua) + sSup I (Bity)
i<ap<2 @20 =0

= 1+ Co-

Consequently
¢ <1+ Coos

which proves the proposition.[
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