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Abstract

In this work, we study the existence and multiplicity of solutions for a class of elliptic
problems in exterior domains ofR2 with Neumann boundary conditions and nonlinearity with
critical growth.
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1. Introduction

In this paper, we are concerned with the existence and multiplicity of solutions for
the following class of elliptic problem with Neumann conditions:


−�u + u = Q(x)f (u) in R2 \ �,

�u
��

= 0 on ��,
(P )
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where� ⊂ R2 is a bounded domain with smooth boundary,Q is a continuous function
satisfying

Q(x) > 0 in R2 \ � and lim|x|→∞ Q(x) = Q̄ > 0, (Q1)

and the nonlinearityf : R → R is a C1 function satisfying the following hypotheses:
f has critical growth at both+∞ and−∞, that is, it behaves likee�os2 as |s| → ∞

for some�o > 0. More precisely,

lim|s|→∞
|f (s)|
e�s2

= 0 ∀� > �o, lim|s|→∞
|f (s)|
e�s2

= +∞ ∀� < �o.

Moreover, we assume that

|f (s)|�Ce4�s
2

for all s ∈ R. (f1)

There is� > 2 verifying

0< �F(s)�sf (s) for all s ∈ R. (f2)

There existsq > 1 such that

lim sup
|s|→0

|f (s)|
|s|q < ∞. (f3)

The functions → f (s)

s
is increasing in(0,+∞). (f4)

There are constantsp > 2 andCp such that

f (s)�Cps
p−1 for all s ∈ [0,+∞), (f5)

where

Cp >

[
2�2�(p − 2)

p(� − 2)

](p−2)/2

S
p
p ,

Sp = inf
u∈H1(R2)\{0}

(
∫

R2(| ∇u |2 +u2) dx)1/2

(
∫

R2 Q̄ | u |p dx)1/p
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and � > 0 is a positive constant such that the extension operatorE : H 1(R2 \ �) →
H 1(R2) satisfies

‖Eu‖
H1(R2)

��‖u‖
H1(R2\�)

∀u ∈ H 1(R2 \ �).

We recall thatE exists because the set� has smooth bounded boundary (see[1]).
In [6], Benci and Cerami studied problem(P ) assumingN�3,Q ≡ 1 andf (u) =

|u|�−1u with 1< � < N+2
N−2. They showed that(P ), with Dirichlet condition, has not a

ground state solution, that is, a solution of(P ) with minima energy. However, Esteban
in [10] proved that the same problem with Neumann condition has aground state
solution.
In [8], Cao also studied problem(P ) for N�3, f (u) = |u|�−1u andQ satisfying

condition (Q1). He showed that this problem has at least two solutions, a positive
solution and a nodal solution, that is, a solution of(P ) that changes of sign. In[3],
Alves et al. showed that the results found in[8], also hold for the p-Laplacian operator
and also for a larger class of nonlinearity.
Motivated by papers[3,8] and by some ideas developed in[4,7], we prove the

existence ofground stateand nodal solutions to (P ). We used variational methods
such as the Mountain Pass Theorem without Palais–Smale condition (see[5,14]) to
obtain a positive ground state solution. In relation to nodal solution, we apply the
implicit function Theorem. An important point in our work is that the nonlinearity has
critical growth inR2, this fact implies that some estimates and arguments explored in
[3,8] cannot be used. To overcome these difficulties, we used a version of a result due
to Lions for the critical growth case inR2 proved by Alves et al. in[4].
Concerning the existence ofground state solution, we will prove the following result:

Theorem 1.1. Suppose that f satisfies(f1)–(f5), Q satisfies(Q1) and

Q(x)�Q̄ − Ce−m|x| |x|�Ro, (Q2)

whereC,Ro are positive constants andm > 2. Then (P ) has a positive ground state
solution.

In order to get nodal solution, it is necessary the following additional conditions on
f: There exists��2 such that

f ′(s)s2 − f (s)s�C|s|� ∀s ∈ R (f6)

and

|f ′(s)s|�Ce4�s
2 ∀s ∈ R, (f7)

for some positive constantC.
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Theorem 1.2. Suppose that f satisfies(f1)–(f7), Q satisfies(Q1) and

Q(x)�Q̄ + Ce−�|x| ∀x ∈ RN, (Q3)

where C is a positive constant and� < 1
q+1. Then (P ) has a nodal solution.

This paper is organized as follows: in Section 2, we recall some results involving
the limit problem. In Section 3, we state some lemmas and propositions used in the
proof of the main results. In Section 4, we prove the main results. In Section 5 we
prove some technical lemmas and propositions stated in the Section 3.
To finish this section, we would like to cite also the papers of Adimurthi and Yadava

[2] and de Figueiredo et al.[9] and the references therein, where elliptic problems in
R2 have being considered.

2. The limit problem

In this work, we need to recall some results involving the limit problem

{−�u + u = Q̄f (u) in R2,

u ∈ H 1(R2).
(P∞)

Hereafter, ifh is a Lebesgue integrable function andB is a measurable set, we write∫
B
h for

∫
B
h dx. Moreover, if h ∈ H 1(R2 \ �) we denote by‖h‖ its usual norm.

The energy functionalI∞ : H 1(R2) → R associated to problem(P∞) is given by

I∞(u) = 1

2

∫
R2
(|∇u|2 + u2) −

∫
R2

Q̄F (u+),

whereF(u) = ∫ u

0 f (t) dt andu+(x) = max{u(x),0}. Using the hypotheses on function
f, we have thatI∞ ∈ C1(H 1(R2),R) and the weak solutions of(P∞) are nontrivial
critical points ofI∞.
Repeating the same arguments explored by Cao[7] and Alves et al.[4], it is possible

to check thatI∞ verifies the Mountain Pass Geometry and that there exists a positive
function ū ∈ B1(0) \ {0} ⊂ H 1(R2) verifying

I∞(ū) = c∞ and I ′∞(ū) = 0,

where c∞ is the minimax level of the Mountain Pass Theorem applied toI∞. In
this case, the function̄u is a ground state solution to(P∞). Moreover, we have the
following result.
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Theorem 2.1. Assume that(f1) and (f3) hold. Then, any positive solution̄u of problem
(P∞) with ‖ū‖

H1(R2)
< 1 satisfies:

(I) lim|x|→∞ ū(x) = 0

and

(II ) C1e
−a|x| � ū(x)�C2e

−b|x| in R2,

whereC1, C2 > 0 are positive constants and0 < b < 1 < a. Moreover, we can be
chosena = 1+ 	, b = 1− 	 for 	 > 0.

Proof. Using conditions(f1) and (f3), for each
 > 1 and � > 0, there existsC� > 0
such that

|f (s)s|, |F(s)|��|s|2 + C�(e
4�
s2 − 1)|s| ∀s ∈ R. (2.1)

Using the fact that‖ū‖
H1(R2)

< 1 and arguments found in[4,7], there existsq near 1,
q > 1 such that

h(x) = f (ū(x)) ∈ Lq(R2).

By bootstrap arguments, forx ∈ R2 andR > 0, it follows that ū ∈ W2,q(BR(x)) with

‖ū‖W2,q (BR(x))
�C{|h|Lq(B2R(x)) + |ū|Lq(B2R(x))}

which implies,

‖ū‖W2,q (BR(x))
�C{|h|Lq(B2R(x)) + |ū|L2(B2R(x))

}.

Since the imbeddingW2,q(BR(x)) ↪→ C(B̄R(x)) is continuous,

‖ū‖L∞(BR(x))�C{|h|Lq(B2R(x)) + |ū|L2(B2R(x))
}.

The last inequality implies that̄u ∈ L∞(R2) and lim|x|→∞ ū(x) = 0.
The inequalities in (II) involving the exponential functions follow with the same

arguments found in Li and Yan[11]. �

Remark 2.1. (i) Theorem 2.1 completes the result proved in[11], because our nonlin-
earity has a different behavior at infinity.
(ii) With the same arguments used in the proof of Theorem 2.1, we can show that

all positive weak solutionsu1 of (P ), with ‖u1‖ < 1
� , has exponential decaying.
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3. Statement of lemmas and propositions

In this section we state some necessary results to prove Theorems 1.1 and 1.2. The
proofs of some of them are in Section 5.

3.1. Technical results to get ground state solution

The first lemma can be found in Alves et al.[3].

Lemma 3.1. Let F ∈ C2(R,R+) be a convex and even function such thatF(0) = 0
and f (s) = F ′(s)�0 ∀s ∈ [0,∞). Then, for all u, v�0

|F(u − v) − F(u) − F(v)|�2(f (u)v + f (v)u).

The next lemma is related to the Mountain Pass Geometry and we do not make
its proof because it is well known. See for example Alves et al.[4]. Hereafter, let us
denote byI : H 1(R2 \ �) → R the energy functional related to(P ), that is,

I (u) = 1

2

∫
R2\�

(|∇u|2 + u2) −
∫

R2\�
Q(x)F (u).

Lemma 3.2. The functional I verifies the Mountain Pass Geometry, that is,

(i) There existr, � > 0 such thatI (u)�r, ‖u‖ = �.
(ii) There existse ∈ Bc

�(0) such thatI (e) < 0.

Using a version of Mountain Pass Theorem without Palais–Smale condition (see[14,
Theorem 1.15]) and (f4), there existsun ∈ H 1(R2 \ �) satisfying

I (un) → c1 and I ′(un) → 0 asn → ∞,

where

c1 = inf

{
sup
t �0

I (tu); u ∈ H 1(R2 \ �) \ {0}
}
. (3.1)

The next result establishes a relation between the levelsc1 and c∞.

Proposition 3.1. Assume that Q satisfies(Q1)–(Q2). Then

0< c1 < c∞.
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Proof. See Section 5.

The following result may be proved in much the same way as in Lions[12].

Lemma 3.3. Let {un} ⊂ H 1(R2 \ �) be a bounded sequence such that

lim
n→∞ sup

y∈R2

∫
UR,y

|un|2 = 0,

for someR > 0 and UR,y = BR(y) ∩ (R2 \ �) with UR,y �= ∅. Then,

lim
n→∞

∫
R2\�

|un|q+1 = 0 f or all q > 1.

Proposition 3.2. Let {un} ⊂ H 1(R2 \ �) be a sequence withun ⇀ 0 and

lim sup
n→∞

‖un‖2�m <
1

2�2
.

If there existsR > 0 such that

lim
n→∞ sup

y∈R2

∫
UR,y

|un|2 = 0,

and (f1)–(f5) hold, we have

∫
R2\�

F(un),

∫
R2\�

f (un)un → 0 as n → ∞.

Proof. See Section 5.

Proposition 3.3. If {un} ⊂ H 1(R2 \ �) satisfies

I (un) → c1 and I ′(un) → 0,

we have thatlim supn→∞ ‖un‖R2\� < 1√
2�
. Moreover, the weak limitu1 of {un} in

H 1(R2 \ �) is a nontrivial critical point of I withI (u1) = c1.

Proof. See Section 5.
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3.2. Technical results to get nodal solutions

Consider the closed set

M := {u ∈ H 1(R2 \ �) | u± �≡ 0, I ′(u±)u± = 0}

and ĉ the following real number

ĉ = inf
u∈M

I (u).

The proof of the next lemma follows by similar arguments explored in[3] and we
omit it.

Lemma 3.4. Assume that(f1), (f3), (f6) and (f7) hold. Then, there exists a sequence
(un) ⊂ M satisfying

I (un) → ĉ and I ′(un) → 0.

The next proposition is a key point in our arguments to find nodal solution, because
it gives a good estimate tôc.

Proposition 3.4. Suppose that Q satisfies(Q1)–(Q3). Then

0< ĉ < c1 + c∞. (3.2)

Proof. See Section 5.

4. Proof of the main theorems

Proof of Theorem 1.1. First of all, to find a positive ground state solution we will
assume that

f (t) = 0 ∀t�0.

By Proposition 3.3 and the Mountain Pass Theorem (see[5,14]), I has a critical pointu1
at the levelc1. We claim thatu1 is nonnegative. Indeed, we know thatI ′(u1)u1− = 0,
thus ‖u−‖ = 0 and u−

1 = 0. Using the maximum principle, we haveu1 > 0 in
R2 \ �. �



28 C.O. Alves / J. Differential Equations 219 (2005) 20–39

Proof of Theorem 1.2. Let (un) ⊂ M be the sequence obtained in Lemma3.4. Then,
the weak limitu of {un} in H 1(R2 \ �) is a nontrivial critical point ofI and u± �= 0.
To check the above claim, remember that

I (un) → ĉ and I ′(un) → 0.

Then

(� − 2)

2�
lim sup
n→∞

‖un‖2�c1 + c∞ �2c∞

which gives

lim sup
n→∞

‖un‖2��∗ = 4�c∞
� − 2

.

From (f1)–(f5) (see[4]), it follows that

c∞ <
(� − 2)

4�2�
,

then

lim sup
n→∞

‖vn‖H1(R2)
�√

�∗� < 1, for vn = Eun.

Using an inequality of Trudinger–Moser type showed by Cao in[7] and repeating the
same arguments used in the proof of Proposition 3.3, we can conclude thatu is a
critical point of I. Now, we will prove thatu± �= 0.
We have three cases to consider:

(I) u+ = u− = 0.
(II) u+ �= 0 andu− = 0.
(III) u+ = 0 andu− �= 0.

We will prove that the above cases do not hold, thereforeu± �= 0. In what follows,
we will prove only (I) because the other cases follow with the same type of arguments.

Analysis of(I): Applying Proposition 3.2 to the sequences{u+
n } and {u−

n }, there exist
�, R > 0 and sequences{y1n} and {y2n} in R2 with |y1n|, |y2n| → ∞ verifying

lim inf
n→∞

∫
U
R,y1n

|u+
n |2��
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and

lim inf
n→∞

∫
U
R,y2n

|u−
n |2��.

Definingwn(x) = un(x + y1n) and zn(x) = un(x + y2n), there existw, z ∈ H 1(R2) \ {0}
such thatwn → w and zn → z in H 1

loc(R
2), with w+ �= 0 and z− �= 0. Since

I ′∞(w) = I ′∞(z) = 0, we have

I ′∞(w+)w+ = 0 and I ′∞(z−)z− = 0.

In this way,

2c∞ �I∞(w+) + I∞(z−) =
[
I∞(w+) − 1

�
I ′∞(w+)w+

]
+
[
I∞(z−) − 1

�
I ′∞(z−)z−

]
.

By Fatou’s Lemma

lim inf
n→∞

[∫
R2\�1

n

(|∇w+
n |2 + (w+

n )
2) + 1

�

∫
R2\�1

n

(f (w+
n )w

+
n − F(w+

n ))

]
�I1

and

lim inf
n→∞

[∫
R2\�2

n

(|∇z−
n |2 + (z−

n )
2) + 1

�

∫
R2\�2

n

(f (z−
n )z

−
n − F(z−

n ))

]
�I2,

where�1
n = � − y1n, �2

n = � − y2n, I1 = I∞(w+) − 1
�I

′∞(w+)w+ and I2 = I∞(z−) −
1
�I

′∞(z−)z−. Consequently

2c∞ � lim inf
n→∞ {I (u+

n ) + I (u−
n )} = lim

n→∞ I (un) = ĉ < c1 + c∞

which is an absurd. �

5. Proof of lemmas and propositions

In this section, we will prove some lemmas and propositions used in Section 3.

Proof of Proposition 3.1. Let ū be a positive ground state solution of problem(P∞)

and defineun(x) = ū(x − xn), xn = (0, . . . , n). By the characterization ofc1
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given in (3.1),

c1� max
t �0

I (tun).

Let 
n ∈ (0,∞) such that

I (
nun) = max
t �0

I (tun),

then

c1 � I (
nun)

= 1

2

∫
R2\�

(|
n∇un|2 + |
nun|2) −
∫

R2\�
Q(x)F (
nun)

= I∞(
nun) − 1

2
tn


2
n +

∫
�
Q̄F (
nun) +

∫
R2\�

(Q̄ − Q)F(
nun), (5.1)

where

tn =
∫
�
(|∇un|2 + |un|2).

Now, notice thatI (
nun) = maxt �0 I (tun) if and only if

∫
R2\�

(|∇un|2 + |un|2) =
∫

R2\�
Q(x)

f (
nun)

(
nun)
u2n. (5.2)

It is not difficult to see that the sequence(
n) is bounded and that
n → 1, for some
subsequence still denoted by(
n). By (2.1) and (5.1)

c1 � I∞(ū) − tn

(

2n
2

− O(�)

)
+ C�

∫
�


nun(e
4�
n
u

2
n − 1)Q̄ dx

+
∫

R2\�
(Q̄ − Q)F(
nun) dx

thus,

c1�I∞(ū) − Ctn + sn,



C.O. Alves / J. Differential Equations 219 (2005) 20–39 31

whereC is a positive constant and

sn = C

∫
�
un(e

4�
n
u
2
n − 1)Q̄ dx +

∫
R2\�

(Q̄ − Q)F(
nun).

We claim that

sn

tn
→ 0. (5.3)

Indeed, by Theorem 2.1

tn =
∫
�
(|∇un|p + |un|p)�

∫
�

|un|p�Ce−2an.

Estimate ofsn:
Fix R > 0 such that� ⊂ BR(0) and observe that∫

�
un(e

4�
n
u
2
n − 1) dx =

∫
�n

ū(e4�
n
ū
2 − 1) dx,

where�n = � + xn. Consequently,∫
�
un(e

4�
n
u
2
n − 1) dx�Ce−bn(e4�
1e−2nb − 1),

where
n
�
1 ∀n ∈ N. Note that,∫
R2\�

(Q̄ − Q)F(
nun) =
∫
(R2\�)∩{|x|>rn}

(Q̄ − Q)F(
nun)

+
∫
(R2\�)∩{|x|� rn}

(Q̄ − Q)F(
nun),

where rn = (1− r)n with r > 0 and r near 0. From(Q2), it follows that∫
(R2\�)∩{|x|>rn}

(Q̄ − Q)F(
nun)�Ce−mrn .

From conditions(f1) and (f3), it follows that

|F(s)|��|s|q+1 + C�(e
4�
s2 − 1)|s| ∀s ∈ R,



32 C.O. Alves / J. Differential Equations 219 (2005) 20–39

then∫
(R2\�)∩{|x|� rn}

(Q̄ − Q)F(
nun) � C1�
∫
(R2\�)∩{|x|� rn}

|un|q+1

+C2

∫
(R2\�)∩{|x|� rn}

un(e
4�
1u2n − 1) dx.

Therefore,∫
(R2\�)∩{|x|� rn}

(Q̄ − Q)F(
nun)�Ce−b(q+1)rnn2 + Ce−brn(e4�
1e−2brn − 1)n2.

By the estimates obtained above

sn

tn
� Ce−bn(e4�
1e−2nb − 1)

e−2na + Ce−mrn

e−2an + Ce−b(q+1)rnn2

e−2na + Ce−brn(e4�
1e−2rnb − 1)n2

e−2na ,

and sincea
b

→ 1 as	 → 0 ( see Theorem2.1), we obtain

sn

tn
→ 0. �

From (5.3), it follows thatc1 < c∞.

Proof of Proposition 3.2. By hypotheses

lim
n→∞ sup

y∈R2

∫
UR,y

|un|2 = 0,

together with Lemma 2.4, we get

un → 0 in Lq ′
(R2 \ �) for all q ′ ∈ (2,+∞).

Denotingvn = Eun, it follows that

‖vn‖H1(R2)
��‖un‖ <

1√
2
< 1

and by an inequality of Trudinger–Moser type found in[7], there exist
, q > 1,
sufficiently close to 1 such that the sequence

fn(x) = e4�
v2n − 1 ∀x ∈ R2
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belongs toLq(R2) and there existsC > 0 such that|fn|q �C for all n ∈ N. Therefore,
the sequence

hn(x) = e4�
u2n−1 x ∈ R2 \ �

belongs toLq(R2 \ �) and there existsC > 0 such that|hn|q �C for all n ∈ N. On
the other hand, we have

∫
R2\�

f (un)un��
∫

R2\�
u2n + C�

∫
R2\�

un(e
4�
u2n − 1)

which implies that

∫
R2\�

f (un)un��C + C

{∫
R2\�

|un|q ′
}q ′

,
1

q
+ 1

q ′ = 1.

From this, we infer that

lim
n→∞

∫
R2\�

f (un)un = 0.

By similar arguments,

lim
n→∞

∫
R2\�

F(un) = 0. �

Proof of Proposition 3.3. Using analogous arguments explored in[4], we get

c∞ <
(� − 2)

4�2�
.

On the other hand, using the hypotheses involving the sequence{un}, we have

(� − 2)

2�
lim sup
n→∞

‖un‖2�c1.

Thus, there existsno ∈ N such that

‖un‖ <
1√
2�

∀n�no.
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Denotingvn = Eun, we have that

‖vn‖H1(R2)
��‖un‖

and then,

‖vn‖H1(R2)
<

1√
2
< 1 ∀n�no.

Using similar arguments explored in[4], it follows that

∫
R2\�

f (un)v →
∫

R2\�
f (u)v ∀v ∈ H 1(R2 \ �),

whereu is the weak limit of{un}. The last limit implies thatu is a critical point of
I. Now, let us show thatu is nonzero. Assuming by contradiction thatu = 0, we have
two situations to consider:

(I) lim
n→∞ sup

y∈R2

∫
UR,y

|un|2 = 0

or

(II ) There exist� > 0 andyn ∈ R2 such that lim inf
n→∞

∫
UR,yn

|un|2��.

We will show that the aforementioned cases (I) and (II) do not hold, thus we can
conclude thatu �= 0.
Analysis of(I): If (I) holds, by Proposition 2.2, we get

lim
n→∞

∫
R2\�

f (un)un = 0.

This fact implies that‖un‖ → 0, which is an absurd, becauseI (un) → c1 > 0.
Therefore, (I) does not hold.
Analysis of(II): Let wn(x) = un(x + yn) for x ∈ R2 \ �n where�n = � − yn. From

Sobolev imbedding, we have that|yn| → ∞. Hence the limit set related toR2 \ �n as
n goes to infinity isR2. Notice also that{wn} is bounded inH 1

loc(R
2) and its weak

limit w is different from zero. Denotinĝwn = Ewn, it follows that

‖ŵn‖H1(R2)
��‖wn‖�n

,



C.O. Alves / J. Differential Equations 219 (2005) 20–39 35

where�n = R2 \ �n. Then,

‖ŵn‖H1(R2)
��‖un‖ <

1√
2

∀n ∈ N.

Using similar arguments explored in the previous results, we conclude thatw is a
critical point of the functionalI∞ andwn → w in H 1

loc(R
2). Thus, by Fatou’s lemma

c∞ �I∞(w) = I∞(w) − 1

�
I ′∞(w)w� lim inf

n→∞ I (un) = c1 < c∞

which is an absurd, and (II) also does not hold.
The equalityI (u1) = c1 follows from definition ofc1 and of limit

lim inf
n→∞ I (un)�c1. �

Proof of Proposition 3.4. Let ū be a ground state solution of(P∞) andu1 is a positive
ground state of(P ). Let us defineūn(x) = ū(x − xn), wherexn = (0, . . . ,0, n) and
for �, � > 0

h±(�, �, n) =
∫

R2\�
|∇(�u1 − �ūn)

±|2 + |(�u1 − �ūn)
±|2

−
∫

R2\�
Qf ((�u1 − �ūn)

±)(�u1 − �ūn)
±.

Since

∫
R2\�

(|∇u1|2 + u21) −
∫

R2\�
Qf (u1)u1 = 0,

by (f3) it yields that

∫
R2\�

(∣∣∣∣12∇u1

∣∣∣∣2 +
∣∣∣∣12u1

∣∣∣∣2
)

−
∫

R2\�
Qf

(
1

2
u1

)
1

2
u1

=
∫

R2\�
Q

(
f (u1)

(u1)
− f (12u1)

(12u1)

)(u1
2

)2
> 0,
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and ∫
R2\�

(|2∇u1|2 + |2u1|2) −
∫

R2\�
Qf (2u1)2u1

=
∫

R2\�
Q

(
f (u1)

(u1)
− f (2u1)

(2u1)

)
(2u1)

2 < 0.

Thus, forn large enough we get

∫
R2\�

(∣∣∣∣12∇ūn

∣∣∣∣2 +
∣∣∣∣12ūn

∣∣∣∣2
)

−
∫

R2\�
Q(x)f

(
1

2
ūn

)
1

2
ūn > 0,

and ∫
R2\�

(|2∇ūn|2 + |2ūn|2) −
∫

R2\�
Q(x)f (2ūn)2ūn < 0.

Since, ū(x) → 0 as |x| → ∞, there existsno > 0 such that{
h+(12, �, n) > 0,

h+(2, �, n) < 0,
(5.4)

for n�no and � ∈ [12,2]. Now, for all � ∈ [12,2] we have

{
h+(�, 12, n) > 0,

h+(�,2, n) < 0.
(5.5)

By the Mean Value Theorem (see[13]), there exist�∗, �∗ such that12��∗, �∗ �2
and

h±(�∗, �∗, n) = 0 for n�no,

that is

�∗u1 − �∗ūn ∈ B for n�no.

Hence, we only need to verify that

sup
1
2 ��,��2

I (�u1 − �ūn) < c1 + c∞ for n�no.
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Indeed, since

I (�u1 − �ūn) = 1

2

∫
R2\�

|∇�u1 − �∇ūn|2 + |�u1 − �ūn|2

−
∫

R2\�
Q(x)F (�u1 − �ūn),

using Lemma3.1, we get

I (�u1 − �ūn)�
1

2

∫
R2\�

|∇(�u1) − ∇(�ūn)|2 + 1

2

∫
R2\�

|�u1 − �ūn|2 − I1,

where

I1 =
∫

R2\�
QF(�u1) +

∫
R2\�

QF(�ūn) − 2
∫

R2\�
f (�u1)�ūn + �u1f (�ūn).

Sinceu1 is a solution of(P ) and ūn depends of a ground state of(P∞), we have

I (�u1 − �ūn) � I (�u1) + I∞(�ūn) −
∫

R2\�
(Q − Q̄)F (�ūn)

+C1

∫
R2\�

(f (u1)ūn + u1f (ūn)) +
∫
�
Q̄F (�ūn).

Therefore, we conclude that

sup
1
2 ��,��2

I (�u1 − �ūn) � sup
��0

I (�u1) + sup
��0

I∞(�ūn)

−
∫

R2\�
(Q − Q̄)F

(
1

2
ūn

)
+C1

∫
R2\�

(f (�u1)�ūn + �u1f (�ūn))

+
∫
�
Q̄F (2ūn). (5.6)

Now, by (Q3), we obtain

∫
R2\�

(Q − Q̄)F

(
1

2
ūn

)
�Ce−�n, (5.7)
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and by (f1) we get

∫
�
Q̄F (ūn)�C�e

−nb
(
e4�
e−2nb − 1

)
+ �e−b(q+1)n. (5.8)

On the other hand, one has

∫
R2\�

f (u1)ūn��
∫

R2\�
|u1|q |ūn| + C�

∫
R2\�

(
e4�
u21 − 1

)
un.

Notice that ∫
R2\�

|u1|q ūn =
∫
�1

n

|u1|q ūn +
∫
�1

n

|u1|q |ūn|

and

∫
R2\�

(
e4�
u21 − 1

)
ūn =

(∫
�1

n

+
∫
�2

n

)(
e4�
u21 − 1

)
ūn,

where�1
n = (R2 \ �) ∩ {|x| < 1

q+1n} and�2
n = (R2 \ �) ∩ {|x|� 1

q+1n}. Thus
∫

R2\�
|u1|q ūn�C1e

− q
q+1bn (5.9)

and

∫
R2\�

(
e4��u21 − 1

)
ūn�Ce

− q
q+1nb + C

(
e4�
e

− 2bn
q+1 − 1

)
,

hence

∫
R2\�

f (u1)ūn�C1e
− q

q+1bn + C

(
e4�
e

− 2bn
q+1 − 1

)
. (5.10)

Using similar arguments, we get

∫
R2\�

u1f (ūn)�Ce
− bn

q+1 + C

(
e4�
e

− 2bn
q+1 − 1

)
. (5.11)
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From (5.6)–(5.11), we have forn large enough

sup
1
2 ��,��2

I (�u1 − �ūn) < sup
��0

I (�u1) + sup
��0

I∞(�ūn)

= c1 + c∞.

Consequently

ĉ < c1 + c∞,

which proves the proposition.�
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