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1. Introduction

The understanding of competition between species for resources is one of the challenging aspects
of mathematical ecology. The chemostat (see, e.g., [17]) is a piece of laboratory apparatus, yet it
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plays a central role in mathematical biology. The basic chemostat consists of three vessels. The first
vessel, the feed bottle, contains all of the needed nutrients for growth. The nutrients are pumped
at a constant rate into the second, called the culture vessel or bio-reactor. The culture vessel whose
volume is constant contains microorganisms which compete for nutrient. The contents of the culture
vessel are pumped at the same constant rate into the third vessel, called the overflow vessel. It is a
model of a simple lake in which the competition is purely exploitative in the sense that organisms
simply consume the nutrient, thereby making it unavailable for competitors.

The classical Monod model of microbial growth on a single limiting resource was proposed in [14].
In this model, the basic assumption is that the nutrient uptake rate is proportional to the reproductive
rate, that is, growth is directly coupled to nutrient uptake. Since the constant of proportionality is
usually called the yield constant, the classical Monod model is sometimes referred to as the “constant-
yield model”. In phytoplankton ecology, it has long been known that the yield is not a fixed constant.
It can vary depending on the growth rate of species. This led to the formulation of the “variable-
yield model” [4]. The second extension of the Monod model is to include multiple potentially limiting
nutrients, such as nitrogen and phosphorus. When both nutrients are essential for growth, typically
the nutrient in shortest supply limits growth, known as Liebig’s law of the minimum [5].

The mathematical theory and biological implications of both modifications of the Monod model
have been studied extensively for the cases of growth of a single species and competition between
two species [12,13]. The authors in [13] investigated the following model for two phytoplankton
species with variable internal stores of two essential resources:

ds
prie (8@ =)D — fs1(S, Qs1)ur — fs2(S, Qs2)uz.
dR
i (R® —R)D — fr1(R, Qri)u1 — fr2(R. Qr2)uz,
dQs;i )

3; = fsi(S. Qsi) — min{isi(Qsi). ri(Qri) } Qs
dQp; .

P fri(R, Qri) — min{/esi(Qsi). iri(Qri) } Qi

du; .
S = [min{resi(Qs), pri(Qro)} = DJus,

50 >0, R0)=0, Qsi(0)=20, Qri(0)20, u;(0)=0, i=1,2  (11)

Here S(t) and R(t) denote the concentrations of the limiting resources in the chemostat at time t.
u;(t) denotes the concentration of species i at time t. Qs; (Qgi) represents the amount of cell quota
of resource S (R) per individual of species i at time t. usi(Qsi) and wgri(Qpg;) are the growth rates
of species i as a function of cell quota Qs; and Qgj, respectively. fsi(S, Qsi) (fri(R, Qgi)) is the per
capita uptake rate of species i as a function of resource concentration S (R) and cell quota Qs; (QRgj).
D is the dilution rate of the chemostat. Each nutrient is supplied at the rate D, and both input
concentrations are S©© and R© respectively. Qumin ni denotes threshold cell quota below which no
growth of species i occurs, where N = S, R. Growth rate for species is determined by the minimum
of two Droop functions, that is, “Liebig’s Law of the Minimum” is used to describe the dependence
of species growth on cell quotas. This law reflects that the two resources are complementary, not
substitutable.
According to [3-5], for N=S,R and i =1, 2, the growth rate w;(Qpy;) takes the forms:

wmi(Qni) = ,uoo,Ni<l - M)

Qni

or
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(QNi — Qmin,Ni)+
Kni + (Qni — Qmin, N+

Hi(QNi) = Moo, Ni (1.2)

where Qmin,n; is the minimum cell quota necessary to allow cell division and (Qn; — Qmin,ni)+ IS
the positive part of (Qn; — Qmin,ni) and Lo ni i the maximal growth rate at infinite quotas (i.e., as
Qni — o00) of the species i.

According to Grover [6], for N=S, R and i =1, 2, the uptake rate fy;i(N, Qy;) takes the form:

Ni( sQNl)_IONI(QNl)m .

where pni(Qp;i) is defined as follows

. high high low Qni — Qmin,Ni
PNi(Qni) = Prmax, Ni ('Omax Ni ~ Pmax, Nl) T 0
Qmax,Nl Qmm,N;

or

Qmax,ni — Qni

Qmax,Ni - Qmin,Ni

PoNi(QNi) = Pmax,Ni

here Qmin Ni < Qni < Qmax, ni- Cunningham and Nisbet [1,2] took pni(Qni) to be a constant.
Motivated by the above classical models, we assume that for each i=1,2 and N =S, R, un;(Qni)
is defined and continuously differentiable for Q; > Qmin,ni > 0 and satisfies

(H1) uni(Qni) >0, y;(Qni) > 0 and is continuous for Qi > Qmin,Ni» 4Ni(Qmin,ni) = 0.

We also assume that fy;(N, Qu;) is continuously differentiable for N > 0 and Qp; > Qmin,n;i and
satisfies

0 fni 0 9 fni

(Hp) fni(0,Qni) =0 aN 0 30m

<0.

Let Usi = u;Qs; and Ug; = u;Qg; be the total amount of stored nutrient at time t for S and R,
respectively, i =1, 2 (see, e.g., [13]). Then system (1.1) can be rewritten as follows

ds

E:(S(O)—S)D—fg(S —) f52<5 —2> 2,

((jj—I::(R(O) R)D — fR](R —)u1 fRZ(R LL—Z)UZ,

dUg; U
ds’z—Dus,+fsl(s, 5’)u,,
t
du U
de——DUR,Jrle(R, R’)u,,
t
dui _ min,u,-USl M<% _Dlu;
dt_ Si u; s URi u; is
S(0)>0, RO >0, Usi(0)>0, Ug(0)>0, uj0) >0, i=12  (14)

It is not hard to see that the following conservation properties hold (see, e.g., [13, Eq. (2.4)]):
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S+Usi+Us2=5P+0(e?) ast— oo,

and

R+Ugi+Upz=R® +0(e™?") ast— oo.

Thus, system (1.4) can be reduced into a limiting system which is a type-K monotone system (see,
e.g., [13, Eq. (3.1)]).

Although the chemostat above provides us a simple model for the study of microbial growth,
the assumption of “well-mixed” is often questionable, and several models have been introduced where
the environment is partially mixed. In [11], the authors considered a constant-yield model in the
unstirred chemostat, where flow enters at one boundary supplying nutrient, and exits at another, re-
moving nutrients and organisms, while diffusion transports organisms and nutrient across the habitat
domain. The specific question of how storage of nutrient resources affects competition in spatially
variable habitats is challenging and very significant for mathematical ecology. Based on this motiva-
tion, Grover [7] did numerical simulations and obtained some interesting results in this topic. Note
that Grover’s model cannot be mathematically formulated and his results are numerical, not analytic.
The authors in [9] investigated a mathematical model of two microbial species competing for a single-
limited nutrient with internal storage in an unstirred chemostat and provided the results on washout,
one species survival and the other washout and coexistence.

The current paper is a continuation of [9] and we shall consider two complementary nutrients rather
than the single-limited nutrient. In other words, we will introduce the “spatially variable habitats” into
system (1.1). Thus, we consider the following system of partial differential equations:

U U
St =dSxx — fs1 (5, =t >u1 - fsz(S, —52>u2,
uq U

Ur1 Ugr2
Ry =dRxx — fr1 (R, —)lh — fr2 (R, —)uz,
uq up

Si
uj

U .
(Usi)e =d(Usi)xx + fsi (5, —)ui,

U .
(Uri)e =d(URgi)xx + fri (R, %)Ui,

(ui)e =dUi)xx + min{ﬂs;‘ (%) LR <%> ]ui, i=1,2 (1.5)

1 1

in (0,1) x (0, co) with boundary conditions

Sx(0,)=—S9  S,1,6)+yS1,t)=0,
Rx(0,)=—R©,  Ry(1,t)+yR(,t) =0,
(Usi)x(0,£) =0, WUsix(1,) + yUsi(1,£) =0,
(Uri)x(0,t) =0, (Urix(1,6) + yUri(1,£) =0,

(ui)x(0,t) =0, Ww)x1, ) +yui(l,t)=0, i=1,2 (1.6)

and initial conditions
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Sx0=S"x>0, Rx 0 =R°%x >0,
Usi(x,0)=U%;(x) 20,  Ug(x) #0,
Uri(x,0) =UR;() >0,  UR;(x) #0,
uix, 0 =ul(x >0, ux)£0, i=12. (1.7)

Here the functions wy; and fy; satisfy (Hy) and (Hy) respectively, for N =S, R; i =1, 2. The constants
d and y represent the diffusion coefficient and the washout constant, respectively. S and R©® are
the nutrient flux.

Let

1 1
Z5(x) == s<°><ﬂ —x), ZR(X) := R<°><ﬂ —x), 0<x<1. (1.8)
Y 14
Introducing the new variable

ANX, ) =N+ Un1 +Upnz2, YN=S,R
into (1.5)-(1.7), one shall have the following linear equation with boundary condition:

IAN _ 02Ap

—at = —8x2 , X€(0,1),t>0,

0A A
EN0.n=-NO  ZNaq +paya.n=o.
ax 0x

Thus Apn(x,t) satisfies lim;— oo An(X,t) = zy(X) uniformly in x € [0, 1], N =S, R. Therefore, we con-
clude that the limiting system for (1.5)-(1.7) takes the form

) Us; Ugi
(ui)e =d(u)xx + mln{/LSi(u—sf’), Mm(%’) }ui,
1 1

U .
(Usi)t =dUsi)xx + fsi (Zs(x) —Us1 — Us2, %)Uiy

1

Upi .
(Ugi)e :d(URi)xx+fRi<ZR(x) — Ug1 — Uga, u—&)“u i=1,2 (1.9)

1

in (0, 1) x (0, c0) with boundary conditions

(ui)x(0,t) =0, (upx(1,t) +yu;i(1,t) =0,
(Usi)x(0,8) =0, (Usi)x(1,0) + y Usi(1,1) =0,
(Uri)x(0,t) =0, (Urix(1,0) + yUri(1,£) =0, i=1,2 (1.10)

and initial conditions
ui(x,0) =ud(®) >0,  ul(x) #0,

Usi(x,0) =Ugi(x) >0,  Ug;(0) #0,
Uri(x,00=U%x >0, U{x)#£0, i=1,2. (111)
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In this paper, we will determine the global dynamics of the system (1.9)-(1.11). Since Uu—'lv' with
Uni =0 and u; = 0 produces a singularity in the reaction terms, this makes the analysis more dif-
ficult and we are unable to do the bifurcation analysis and linearization at the origin. To overcome
this difficulty, technical construction of suitable upper-lower solutions near the singularity is needed.
Roughly speaking, we shall construct upper-lower solutions with those components sufficiently small,
each of which has singularity at zero, and replace the linearization tool by the combination of the
constructed upper-lower solutions, maximum principle and the theory of monotone dynamical sys-
tem. These upper-lower solutions play a role of eigenfunctions in some extent.

The organization of the paper is as follows. In Section 2, we consider two invariant subsystems
which describe the single population growth corresponding to the system (1.9)-(1.11). We can show
uniqueness of the positive steady state. The results for the single population are almost sharp: either
washout of the organism or survival of the organism occurs, as expected. We determine the conditions
for both of the washout and survival of the organisms. Section 3 is devoted to the study of two
competing species model. It is remarkable that some extinction results can be established based on
the previous results in [9] and the comparison principle. We also prove the existence of coexistence
for the model of two competing species. The main result is given in case both organisms are viable
(able to survive in absence of competition) and this is a persistence result requiring that each single-
species population can be invaded by its competitor. In this case, almost all solutions converge to
a positive steady state although there may be several such steady states. What is achieved strongly
depends on the construction of upper-lower solutions, the maximum principle and the theory of
monotone dynamical systems. The routine proof about “the invariance of the feasible domain” is
collected in Appendix A.

2. Single population growth
The system (1.9)-(1.11) has two invariant subsystems with respect to (ui,Usi,Ug1) and

(uz, Usa, Ug2), respectively, which describe the growth of a single species on two essential resources
based on internal storage. Both invariant subsystems have the following form:

. U U
U = duyy + mm{us(f)#;e(f) }U,

(Us)t =d(Us)xx+fs<Zs(X) —Us, %)U x€(0,1), t>0,

U
(UR)t:d(UR)xx+fR<ZR(X)—URsTR>U (2.1)

with boundary conditions

ux(0,6) =0,  uy(1,t)+yu(1,t)=0,
Us)x(0,6)=0,  (Us)x(1,6) +yUs(1,) =0,
(Up)x(0,6)=0,  (Up)x(1,t) +yUgr(1,t)=0 (2.2)
and initial conditions
ux 0 =u’® >0, u’X#0,
Us(x,0)=U%(x) >0, U2(x) #0,
Ur(x,00=U%x) >0, U%x) 0. (2.3)

Here uy and fy satisfy (Hqy) and (Hy) respectively, N =S, R.
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The feasible domain for initial value functions should be

A= {(uo, U2, u%) € (c(10,11)* | 1’ > 0, 0 < U (W) < zn (),

U
uo(x)

2 Qmin,yon[0,1], N=§S, R},

which is our phase space. It is easy to check by definition that A is convex. Denote by @; the solution
semiflow generated by (2.1)-(2.3). Then we have

Proposition 2.1. The phase space A is positively invariant under the semiflow &;.

The proof of this proposition is contained in Appendix A.

From now on, we restrict our attention to the system (2.1)-(2.3) with initial condition in the
feasible set A. We show next that the system (2.1)-(2.3) is monotone. It is well known that [16] if
A is convex, a sufficient condition for this to happen is that the system satisfies the Kamke condition.
Denote the reaction terms in (2.1) by

H(u,Us,Ug) = (H1(u, Us, Ug), Ha(u, Us, Ug), H3(u, Us, Ug)),

where

. Us Ur
Hi(u,Us,Ug) =minj us o , R o u,

Us
Hy(u,Us,Ug) = fs(Zs(X) - Us, 7)%

Ur
H3(u,Us, Ug) = fr <ZR(X) — Ug, T)H-

By the monotonicity assumptions (H;) and (Hy), H; satisfies Kamke condition for each i. The Jacobian
matrix of H at almost all points in the phase space A is cooperative, and irreducible at almost all
interior points of A. Thus

Proposition 2.2. The solution semiflow ®; is monotone on A, and strongly monotone in the interior of A.
Let 19 > 0 be the principal eigenvalue of the problem
dpy (%) +nog1(x) =0, x€(0,1),
$1(0)=¢1(1) +y¢1(1) =0 (24)

with the corresponding positive eigenfunction ¢1(x) uniquely determined by the normalization
max(o,1]¢1(x) = 1. Suppose that there exists a unique constant number Q¢ s = Qmin,s» Qc,R = Qmin,r
satisfying

1s(Qc,s) = wr(Qc,R) = No- (2.5)
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Remark 2.1. As in [9, Remark 2.1], if we choose the following functions ((Qn) = oo, N(1 — %) as
defined in (1.2), it is easy to see that (2.5) holds provided that the asymptotic growth rate (oo n is
large enough, for either N =S, R.

In order to give a sufficient condition for the non-existence of a nontrivial steady state for
(2.1)-(2.3), we need some results in [9]. In [9, Section 2], the authors considered the following sys-
tem:

U
U =duxy + MN(TN)U, x€(0,1), t>0,
Un
Un)e=dUn)xx+ fN (ZN(X) —Un, 7>u, x€(0,1),t>0 (2.6)
with boundary conditions
ux(0,t) =0, ux(1,6) +yu(l,t) =0,
(Un)x(0,8) =0, Un)x(1,6) +yUn(,t) =0 (2.7)
and initial conditions
ux,0=u’(x) >0, u’(x) #£0,
Un(x,0)=Ug(x) >0,  UR(X) #0, (2.8)
where zy(x) = N(O)(HTV —X).

Lemma 2.1. (See [9, Theorem 2.1].) Suppose 1o is defined in (2.4) and (tn(Qc,n) = no. Then:

(i) If minkepo, 17 fN(zn(X), Qc,n) > N0 Qc,N, then the system (2.6)-(2.8) has a unique positive steady state
which is globally asymptotically stable in its feasible set.

(ii) If maxxefo,11 fN(Zn(X), Qc,N) < 10 Qc, N, then there is no steady state in its feasible set and every solution
of the system (2.6)-(2.8) with initial condition in the feasible set satisfies (u(-,t), Un(-,t)) — (0, 0) as
t — oo.

Theorem 2.1. Let maxye(o0,1] fs(zs(x), Qc,s) < NoQc,s 0r Maxxepo.1] fr(Zr (X), Qc.R) < M0 Qc.r- Then there
is no steady state in A and every solution of the system (2.1)-(2.3) with initial condition in A satisfies
W, 6),Us(, ), Ur(-, t)) — (0,0,0) as t — oo.

Proof. Without loss of generality, one may assume that maxyeqo,1] fs(zs(x), Qc,s) < 170Qc,s. From
(2.1)-(2.3), we have the following inequalities

. U U U
Uy = dUyxy +m1n{us<75>, MR(TR) }u < duxy +,u5<75)u,

U
(Us) =d(Us)sx + fs (Zs (x) —Us, f)u

U
(UR)e =d(URp)xx + fr <ZR(X) — Ug, TR)U-
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By comparison theorem [16, p. 130, Theorem 3.4] and Lemma 2.1(ii) with N = S, we have
lim;— oo (u(x, t), Us(x, t)) = (0, 0) uniformly in x € [0, 1]. Therefore, the limiting equation for the third
equation in (2.1) becomes

(Ur)e =d(Ur)xx

with the usual boundary condition (2.2) and initial condition (2.3). Hence,
lim Ur(x,t) =0
t—o00

uniformly in x € [0, 1]. We complete the proof. O

In the following, we shall construct upper and lower solutions for the elliptic equations associated
with (2.1)-(2.3).

Lemma 2.2. Suppose (ii, Us, Ug) = (min{ Qs@s’ QR(,O)R}(HTV — X),zs5(x), zZr(x)). Then (i, Us, Ug) is a

strict upper solution for the elliptic equations associated with the system (2.1)-(2.3), where zs(x) and zg(x)
are defined in (1.8).

. Us _ 5(0) ) Ugp _ RO ) .
Proof. ObVlOUSly, T = W > len,s and T = W > Qmqu. This proves
Qmin.s ’ Qmin,R Qmin,s ’ Qmin,R
that
(@1, Us, Ug) € A.
Clearly,
SO RO

—'(0) = min{ —_—

,—}>O, ' (1) +yi(1) =0,
min, S Qmin,R

—Up0)=NO® >0,  0y1)+yUy(1)=0, YN=S,R

where u’(0) is the outer normal derivative for u at 0, u’(1) et al. being similar. We note that if

s© RO s© RO Us _ . Ur __ . . - Us
Umins S 2ok (s 2 Qg then T = Qumins (5 = Qmin g)- This shows that min{ss(F),

pr(Z&)} = 0. By calculation, we have

i -
dﬂ”—}-minius(%),/m(%)}ﬂ:0+0:O,

and

_ 0 0
doy, +f~<z~(x) — U, TN)u =o+fN<0, TN)u =0, YN=S.R,

which proves our lemma. O
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Lemma 2.3. Let minyeo, 1] fN(Zn(X), Qc,n) > NoQ¢,ny with N =S, R. Then for € sufficiently small,
(u,Us,UR) = (€¢1,€Qc,5¢1. €Qc,rP1)
is a strict lower solution for the elliptic equations associated with the system (2.1)-(2.3).

Proof. Obviously, (u,Us,Ug) € A satisfies the boundary conditions (2.2). It remains to show the

following inequalities:
Us Ur
dg”+min{us(—7) <_7>}g20, (2.9a)

Uy
§+m(mm)lm;—>u>q VN =S,R. (2.9b)

By calculation, we have

U U
du” + min{us <_TS> s R (?R) }H = ed¢y +min{s(Qc,s). Ur(Qc.R) j€d1
= €[d¢{ (%) + nog1 (x)] =0,

and

U
duy + fn <ZN(X) —Un, _TN>1_1 =€QcNdg] + € fn(zn(X) — €Qene1. Qen)d1

=€Qc,N(—10¢1) + € fn(zn(x) — €Qe.nd1, Qen)P1
=€[—Qenmo + fn(zn(®) — €Qe N1, Qen) b1 > 0,

provided that mingejo,1] fn(Zn(X), Qc,N) > NoQc,n and € > 0 is small enough, for N = S, R. This
proves (2.9a) and (2.9b). O

Theorem 2.2. The system (2.1)-(2.3) has at most one nontrivial steady state in the phase space A which is
globally asymptotically stable if it exists, otherwise, the origin is globally attractive. A sufficient condition for
the existence of a nontrivial steady state is that

min fyx(zn(x), Qc,n) > N0Qc,n, for N=S,R.
x€[0,1]
Proof. Let V = (u, Us, Ug) and rewrite the system (2.1)-(2.3) in vector form:
G(V):=(G1(V),G2(V), G3(V))
. Us Ur Us Ug
= (mm{ﬂs (—) MR(—) }U, fs (ZS(X) - Us, —)LI, Ir (ZR(X) — Uk, —>u>
u u u u
Then (2.1)-(2.3) takes the form

Vt:dex“r‘G(V), O<x<1,t>0,
Ve(0,6)=0,  Vy(1,0)+yV(1,0) =0
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Next, we verify the following sublinear property of G: for any 0 <« < 1,

G(@V) >aG(V).
By calculation, we have

. aUs alUgr
Gi(aV)= mm{us (W) /,LR(W> }(au) =aGq(V),

U U
Ga(@V) = fs (ZS(X) —aUs, %)(au) > fs (ZS(X) —Us, f)(au) =aGy(V),
and

G3(aV) > aGs(V).

This shows that G(a¢V) > aG(V) forany 0 <o < 1.
One can use the same arguments in [9] to show that the solution semiflow &; has the property:

®(@P)>ad(P) forO<a<1 and P:=(u’ U, U})eA. (2.10)

(2.10) is a so-called sublinear property. Therefore, the system (2.1)-(2.3) has at most one positive
steady-state solution (see, e.g., the proof of [9, Theorem 2.1]).

We note that the upper solution (ii, Us, Ug) in Lemma 2.2 is the greatest point in A with respect
to the order <. So by the invariance of the solution semiflow, & (P) < (i1, Us, Ug) for any t > 0 and
P € A. Thus all solutions are bounded. Thus, P* is globally asymptotically stable in A if a positive
steady state P* exists (see [10, Theorem D]). Otherwise, suppose that there is no steady state in A.
Then we claim that every omega set from initial point in A is the origin. Let P € A and w(P) be its
w-limit set. Suppose that w(P) # {0}. Then since A is conveXx, w(P) has the least upper bound Q € A.
Thus &¢(w(P)) < &:(Q) for all t and w(P) < &:(Q) by the invariance of w-limit set. It follows that
Q < @:(Q). Therefore, by Convergence Criterion (see [16, p. 3, Theorem 2.1]), &;(Q) converges to a
steady state P* > 0, contradicting the fact that there is no steady state in A.

Suppose that the conditions are true in the theorem. Then by Lemma 2.3, the system (2.1)-(2.3)
has a lower solution P(€) = (u,Us, Ugr) = (€¢1,€Qc,5¢1,€Qc rp1) for sufficiently small €. Thus
@ (P(€)) increasingly tends to a unique steady state P*. This completes the proof. O

Remark 2.2. Since ZN(x)zN(O)(HTy —x) and f(N, Q) satisfies (Hp), it follows that mineo.1] f (zn (%),
Qc,n) = f(zn(1), Qc,n) and maxyeo,1] f (Zn (%), Qe,N) = f(2n(0), Qe N)-

Remark 2.3 (Biological interpretation for Theorems 2.1-2.2). As in [9, Remark 2.3], it is easy to see that
no :=no(d, y) is increasing in d and y respectively and 7o(d, y) — 0 as d — 0 or y — 0. From (1.3),
we assume f(zy(x), Qn) takes the form

Qmax,N — QN ZN (%)
Qmax,N — Qmin,N kn + zn (%) '

f(zn®), QN) = Pmax.N

Since zy(X) = N(0>(1+7V — x), it follows from Remark 2.2 that

NO
Qmax,N - QC,N v

Qmax,N — Qmin,N kn +

N©)

min f(zn(x), =
xe[0,1jf( N(X) QC,N) Pmax,N NO
Y
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and

(0) Ity
Qmax.N - QC,N N Y

Qmax,N — Qmin,N kn + N(O)HTV )

xg}g,)l(] f(ZN *), QC,N) = Pmax,N

Thus, the condition for the existence of a nontrivial steady state in Theorem 2.2 is equivalent to

NO
Qmax,N - QC,N y

Pmax,N > no(d, ¥)Qc,N, for N=S,R,

0
Qmax,N — Qmin,N kn + %

it means that if the maximal uptake rates pmax,s and pmax,r are both larger, the diffusion coefficient
d is smaller, the washout constant y is smaller then the species survives.
Since maxyeqo,1] fn(ZN(X), Qc,N) < N0Qc,n is equivalent to

(0) 1+y
Qmax,N - QC,N N Y

Qmax,N — Qmin,N kn + N(O)HT)/

Pmax,N < ﬂO(d7 ¥)Qc,N,

and hence, Theorem 2.1 means that if one of the maximal uptake rates Pmax,s and pmax g is smaller,
one of the nutrient fluxes S and R© is smaller, one of the half-saturation constants ks and kg is
larger then the species goes to extinction.

3. Two species competition

The feasible domain for initial value functions of (1.9)-(1.11) is

r= {(u?(x), U2, (0, U (), ud), UL (), U% (0) € (€ (10, 11))° [ ul(0) > 0, U%; (0 > 0,

Ui

URy (0 + UR, () < zn(x), —3
u; (%)

2 Qmin,Ni>» on[0,1], N=S,R, i=1»2}-

It is not difficult to examine by definition that X is convex. Denote by ¥; the solution semiflow
generated by (1.9)-(1.11). Then we have

Proposition 3.1. X is positively invariant under the semiflow ¥;.

The proof of Proposition 3.1 is collected in Appendix A.

The assumptions (Hi) and (Hy) imply the Kamke condition holds for the system (1.9)-(1.11)
in the sense of type-K order below. The Jacobian matrix of reaction terms at almost all points in
the phase space A is cooperative, and irreducible at almost all interior points of A due to min{-,-}
functions. The Jacobian of reaction terms in (1.9) with respect to (uy, Us1, Ug1, U2, Us2, Ug2) in X (if
it exists) has the form

* 4+ 4+ 0 0 O

as7; * 0 0 — O
laxn 0 x 0 0 -
/= 0 0 0 x + +
0 — 0 as x* O

0 0o - agr2 0 =%
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Note that for each i=1,2 and N = S, R, there holds

Uni Uni 9fni Uni
aNi=fNi<ZN(X)—UN1 _UNZ’_I> l “zvx) — Un1 — Ung, —
uj uj 0Qn;j Ui

Un;i
2fNi<ZN(X)—UN1 Un2, >>0
1

Obviously, J has the block structure characteristic of type K monotone system [16], consisting of
diagonal 3 x 3 blocks with nonnegative off-diagonal entries and off-diagonal 3 x 3 non-positive
blocks, where K = {(u{,U%,,U%;,u3,U%,,U%,) € (C([0,11)8 [ul >0, U, >0, U}, >0; u <o,

ng <0, ng < 0}. Thus, the semiflow generated by the system (1.9)-(1.11) is monotone [16] under

the partial order <g. Furthermore, if
Usi+Us2 <zs(x) and Ugi+Ug2 <zr(x) forxel0,1],

then J is irreducible (there is a simple test to show ] is irreducible (see, e.g., [17, p. 256])), which
implies that such a semiflow is strongly monotone in the interior of X'. Thus, we have

Lemma 3.1. X' is convex, and ¥; : ¥ — X is strongly monotone in the type K-order.

U 0

Proof. From the above discussion, it suffices to show that for any initial data P = (u], U9 R1>U3s

S1°
U2, U%,) € ¥ with U2, (xo) + U2, (x0) = zs(xo) for some xg € [0, 1], we have

Us1(x,t, P) + Usa(x,t, P) <zs(x) foranyt>0, x<[0,1].
If not, then there is a t > 0, and x € [0, 1] such that
Us1(X,t, P) + Usa(x, t, P) = z5(X).

Let Ys(x,t) =zs(x) — Us1(x,t, P) — Usa(x,t, P). Then

U t u ,t
d(ys)XX - (Ys)t = fSl (YS(Xv t)5 %’,‘t)))l’“(){’ t) + f52 (YS(Xv t)7 %)uz(x’ t)

on £2;, where 2 £ (0, 1) x (0, t]. Denote

1
dfs1 Us1 / 0 fs2 Usz
h(x,t) =u — | 1tYs, dt TYs, drt.
(x,t) 1/ 55 S T+up 39S S
0 0
Then h(x,t) > 0. By the invariance of the solution semiflow on X (see Proposition 3.1), zero is the
minimum value for Ys(x,t) on £ at (&, t), and
d(Ys)xx — (Ys)r —h(x,t)Ys =0 on £2;.

Applying maximum principle, we obtain a contradiction. Similarly, for any initial data P = (ul, U(5)1,
U%,. ud, U, UY)) € X with U, (%) + U, (Ro) = zg (Xo) for some Xq € [0, 1], we have

Ur1(x,t, P) + Upa(x,t, P) < zg(x) foranyxe[0,1]andt > 0.

Thus we conclude that ¥; : ¥ — X is strongly monotone.
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Suppose that there exists a unique constant number Q¢ si 2> Qmin,si,» Qc,ri = Qmin,ri satisfying

Msi(Qcsi) = URi(Qcri) =no, i=1,2,

where 1 > 0 is the principal eigenvalue of the problem (2.4). In order to state our results, we require
the following conditions:

A min Zs(X), > and min Zr (%), > ;
(A) xe[O,l]fSl( s(X), Qe,51) > 1M0Qc.s1 xe[O,l]fR]( R(), Qc.r1) > 1M0Qc.r1

A max zs(x), < or max zZr (%), < ;
(A) xe[O,l]f51( s(), Qc,s1) <M0Qc,s1 xe[O,l]fR]( R(%), Qc.r1) < 10Qc,R1

B min Zs(X), > and min Zr (%), > ;
(B) XE[O,Hfsz( s(X), Qc,52) > 1M0Qc.s2 xe[O,ﬂfRz( R(%), Qc.r2) > 1M0Qc.r2
(B) max fsz(zs(x), Qc,s2) <NM0Qcs2 or max fri(zr(X), Qc,r2) < N0Qcr2. O

x€[0,1] x€[0,1]

Let the condition (A) hold. Then from Theorem 2.2, the system (2.1)-(2.3) with uy = un1 and
fn = fn1 for N=S,R has a unique positive steady state (u}, Ug;, Uk,) which is globally asymptot-
ically stable in its feasible region. Similarly, if the condition (B) holds, then the system (2.1)-(2.3)
with uy = un2 and fy = fy2 for N =S, R has a unique positive steady state (u3, U%,, Ug,) which
is globally asymptotically stable in its feasible region. In the following, we will use the notations for
both steady states.

Theorem 3.1. The following statements hold:

(i) if the conditions (A’) and (B") hold, then every solution (uq,Us1, Ug1, uz, Usz, Uga) for the system
(1.9)-(1.11) with initial data in X' satisfies

tlim (ur(x, ), Us1(x, 1), Ur1 (X, t), uz(x, 1), Usz(x, ), Upa (x, 1)) = (0,0, 0, 0,0, 0)
— 00

uniformly in x € [0, 1];

(ii) if the conditions (A) and (B') hold, then there is a semi-trivial solution (u}, U%,,Ug;.0,0,0) for the
system (1.9)-(1.11) which is globally attractive in X';

(iii) if the conditions (A") and (B) hold, then there is a semi-trivial solution (0,0, 0, u3, U%,, U%,) for the
system (1.9)-(1.11) which is globally attractive in X.

Proof. (i) Suppose that the condition (B") holds. From (1.9), we have the following inequalities
. Us2 Ur2
(u2)r =d(u2)xx + mln{Msz (—) UR2 (—) }uz,
U U
Us2
(Us2)t =d(Us2)xx + fs2| zs(x) — Us1 — Us2, o i
Us2
<dUs)xx + fs2| zs(x) — Usa, 0 u,
Ur2
(Ur2)t =d(URr2)xx + fr2| Zr(X) — Ug1 — Uga, gl L

Ur2
<dUgr2)xx + fr2| zr(X) — Ug2, u—2>uz-
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By comparison theorem and Theorem 2.1, lim;_ oo (U2 (x,t), Us2(x, t), Ug2(x,t)) = 0 uniformly in x €
[0, 1]. Similarly, lim¢— oo (u1(x,t), Us1 (X, t), Ur1(x, t)) = (0, 0, 0) uniformly in x € [0, 1] if the condition
(A") holds.

(ii) Obviously, from the condition (B") and the proof of (i), (uz, Usz, Ug2) goes to extinction, and
therefore, the limiting equations for the first three equations in (1.9) become

. U U
(up)e =d(uy)xx + mln[ﬂm (—51 ) HR1 (_m ) }Ul,
uq uq

Us1
(Us1)e =dUs1)xx + fs1 <ZS(X) —Ust, ?>u1, xe(0,1), t>0,

u
(Ur1)t =d(UR1)xx + fr1 (ZR(x) — Ug1. u_R;l)Ul

with the usual boundary conditions and initial conditions. By the condition (A) and Theorem 2.2,
the above system has a unique steady state (uj,Ug;,U%,) which is globally asymptotically stable
in its feasible domain. Thus, (uj,U%,Ug;,0,0,0) is a semi-trivial solution for system (1.9)-(1.11).
The global attraction for the semi-trivial steady state (u7, U§1, Uk;,0,0,0) follows from the limiting
equation theory.

(iii) The proof for (iii) is similar. O

In order to present our final result on coexistence or persistence, we need some notations and
preliminary results.

Set C := (C([0, 11))8. For P, Q € C with P <« Q, define type-K order intervals

[P,Qlx ={ReC|P <k R<kQ},
and
[[P.Q]], ={ReC|P <k R<k Q}.
Let P*=(0,0,0,u}, ULy, Uk, and Q* = (u¥, U%,, U%,,0,0,0). Then
Lemma 3.2. w(P) C [P*, Q*]k forany P € X.

Proof. Fix a point P = (u9,U?,, U

0 70 0
510 Upp Uy, Ugy, Upy) € X, Let

@ (P) = (u1(.,t, P), Us1(.,t, P), URi (., t, P),uz(., t, P), Us2(., t, P), Ua(.. t, P))

be the solution with initial data P. For i =1, 2, it follows that

(uiC.,t, P), Usi(.,t, P), Ui (.. t, P))

. Us;j Uri
(ui)e =d(ui)xx + mm{/LSi (u—51> URi (u—Rl) }ui,
1 1

U .
(Usie <d(Usi)xx + fsi <ZS(X) —Usi, %)WH xe(0,1), t>0,

1

satisfies
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(Uri)e <dUgi)xx + fri (ZR(X) — Uri, Uu—lji>ui,
@px(0,6) =0,  (u)x(1,6) +yui(1,t) =0,
(Usx(0,)=0,  (Usx(1,0) + yUsi(1,) =0,
(WUrx(0,6) =0,  (Ugix(1,) + yUri(1,t) =0,

ui(,0)=u?,  Us(,00=U%  Ugi(,00=UY.

From [16, p. 130, Theorem 3.4] it follows that for any t > 0
(ui(.,t, P), Usi(. t, P), Ui, t, P)) < 9P (ud, U, US,),

Si*
and fy = fni, for N=S, R. Thus, applying Theorem 2.2, we obtain that

where lI/t(i)(u?, U2, U%) (i=1,2) is the solutions for (2.1)-(2.3) resulting from putting jy = [un;

POw(P) < (uf, Ug;. Ugy).
where
i)(,0 110 70 0 1;0 [0 0 110 170 :
PO (U, US;, Uy, u3, Ug,, Upy) = (u, US;, Ugy), i=1,2
are projection mappings, that is,
w(P)C[P*.Q*],. ©

Lemma 3.3. The following statements hold.

(i) Suppose that the condition (B) holds, minyefo,1) fn1(Zn(X) — U5, Qe,n1) > 10Qc N1 for N =S, R and
let

P(e):=(u1,Us1, Ugi, U2, Usz, Ug2) = (€1, €Qc 5161, € Qe r1¢1, U3, Uy, Uky).

Then for & > 0 sufficiently small, P(€) is a strict lower solution for the elliptic system associated with
(1.9)-(1.11) in the type K -order.

(ii) Suppose that the condition (A) holds, minefo,1] fn2(zn(X) — Uy, Qe,n2) > 10Qc,N2 for N =S, R and
let

Q€)= (1, Us1, Ur1,u2, Usz, Uga) = (u}, U%;, Uy, €61, € Qe 5261, € Qe r2601)-

Then for & > 0 sufficiently small, Q (€) is a strict upper solution for the elliptic system associated with
(1.9)-(1.11) in the type K -order.

Proof. It is not difficult to show that P(¢) € X for € > 0 sufficiently small. Obviously, P(¢) satisfies
the boundary conditions. It remains to show the following inequalities:
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U Urq
du1+m1n{u51( Sl) ,LLR1< Rl )}u =020,
Uy Uy

_ U
dUy; + fa1 <ZN(X) —Un1 — Una, _u—[;”>21 >0, VYN=S,R,

Us U _
d”2+mm{ﬂsz< 2>,MR2<£>}112=0<07
uz U

- Uw).
d ;\/Jz-l-sz(ZN(X)—QN]—UNz,#)u2<0, VN=S,R. 3.1)
2

By calculation, we have

U U
duf +m1n{Ms1( usll)ltm(_u—l:l)} = €[de] + min{us1(Qc,51), r1(Qc.r1)}P1] =

and

- Un
dUy; + fh1 (ZN(X) —Un1 — Ung, T)ul

=€Qc,n1de] + fn1(zn®) — €QeN11 — Ung. Qen1)€dr
= €1 fn1(zn(x) — €Qen1d1 — Uy, Qent) — 10Qe,N1] > 0,

provided that fn1(zn(X) — Uy, Qe,N1) > 10Qc,n1 and € > 0 is small enough for N = S, R. Further-
more,

Usz U Ui, U*
dujy +mm{ﬂsz< ) MR2< Rz)}uzzd(uﬁ)//+min{usz< = ) MR2 ( RZ)}U§=0,
uz [75)] u2 u2

and

) O Ux
dUp, + fie (ZN(X) —Un1 = Un2, L-%z)uz <d(Uy)" + fra <ZN(X) U%,, %)uﬁ -0
2

for either N = S, R. Thus, P(¢€) is a strict lower solution for the elliptic system associated with (1.9)-
(1.11) in the type K-order. We have proved (3.1) and then complete the proof of part (i). Part (ii) can
be proved in a similar way and we omit it. O

The following results show that coexistence of two competing species occurs if each can be in-
vaded by its competitor.

Theorem 3.2. Suppose that the conditions (A), (B) and
Xg?(i)n]]fwi(lw(x) —Ugj> Qeni) > moQenis  fori#j, i,j=1,2; N=S,R

hold. Then there are a minimal steady state E~ € X which is lower asymptotically stable and a maximal steady
state ET € X which is upper asymptotically stable such that

w(P) C[E".E*] ,NX foranyPe X.
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The system (1.9)-(1.11) is uniformly persistent and W;(P) tends to a steady state for P in an open and dense
subsetin X.

Proof. Combining Lemma 3.3, [16, Theorem 3.4], Lemma 3.2 and strong monotonicity for ¥;, one gets
the results from the theory of strongly monotone dynamical systems (see, e.g., [16] and the proof of
[9, Theorem 3.2]). O

Remark 3.1. We note that one can use the similar argument as that in [9, Theorem 3.3] to lift the
dynamics of the limiting system (1.9)-(1.11) to the full system (1.5)-(1.7).
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Appendix A. The invariance on the feasible domains

In this appendix, we will prove the positive invariance for the solution semiflows of (2.1)-(2.3)
and (1.9)-(1.11) on their feasible domains. Because the proofs of both positive invariance results are
exactly the same, we only give the proof of Proposition 3.1 which is more complicated.

In order to give rigorous proof of the positive invariance, we need to extend definition for related
functions involving in (1.9)-(1.11).

Fori=1,2 and N = S, R, define

Fni(N, Qi) for N > 0, Qni = Qmin,Nis
—fni(| N |, i for N <0, P> in.Nis
FNi(Na QNi) _ fN1(| | QNz) QNl lel’l,Nl
Ini(N, Qmin,Ni) for N >0, Qni < Qmin,Nis
—fNi(I NI, Qmin,ni) for N <0, Qn < Qmin,Ni
and
. MNi(Qni) for Qi = Qmin,Ni>
UNi(QND) =1,
Wi (Qmin,Ni) (QNi — Qmin,Ni)  for Qni < Qmin,Ni-
Hence,

Ani(Qni) = Gni(QNi) (QNi — Qmin,Ni),

where Gyi(Qni) = [y flj;(T Qni + (1 = ) Qmin,ni) dT > 0.
Fori=1,2 and N =S, R, we introduce

Wi = Uni — Qmin,Nilli,

and we get that

~ (Uni Uni \ Whi
mni\ — ) =Gni| — | —
ui ui ui
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Now, we consider the extended system

U - Uri
(ui)e =d(uj)xx + mm{ﬂ&( us'l >’ MRi (u_Rl> }uh
i i

Us;
(USi)t:d(USi)xx+FSi(ZS(X)_U51 Usa, ” )uz, xe€(0,1), t>0,
1
Ui .
(Uri)t =d(URi)xx + Fri| zZr(x) —Ugr1 — Ug2, — s i=1,2 (A1)
1

with the usual boundary conditions (1.10) and initial conditions (1.11).
Without causing confusion, we drop the notation tilde in the following. Furthermore, we introduce

YN =2zn(Xx) —Un1 —Un2, N=S,R.

Proof of Proposition 3.1. By the theory of semilinear parabolic differential equations (see [8]), it fol-
lows that for every initial value data

— (10 110 ;0 .0 ;10 10
PO—(”17”51’UR17”27U52’UR2)62’

the system (A.1) has a unique regular solution

(u1(x.t, Po), Us1(x,t, Po), UR1 (%, t, Po), ua(x, t, Po), Usz (X, t, Po), Ur2 (X, t, Po))

with the maximal interval of existence [0, T (Pg)) and t(Pg) = oo provided

(u1(x,t, Po), Us1(x.t, Po), UR1(x, t, Po), uz(x.t, Po), Usa(x, t, Pg), Ura(x, t, Pp))

has an L°°-bound on [0, t(Pg)). The solution semiflow is defined by

¥ (Po) = (u1(.. t, Po), Us1(.. t, Po), UR1 (.. t, Po), u2(.. t, Po), Usa(.. t, Po), Uga(.. t, Po)).

It suffices to show that X is positively invariant under the semiflow ¥; generated by the sys-
tem (A.1).

We first notice that if 'I/t(ul,Uﬂ,Ugl,uZ,Usz,URz) € ¥ (t > 0) for any initial data Py =
w?, Sl,ug1,u2,ugz,ugz) in Int> satisfying UY,(x) + U, (%) < zs(x), U, (x) + U, (%) < zg(x),
U@ o Up®
) > Qmin,si and W)
holds. Suppose not. Then there is a point Po = (u?, U2, U%,, ud, UY,, ng) € 9X so that at least one
of the above inequalities become equal and a T > 0 such that lI/T(u1, 51, Ug1,u2, USZ, URZ) ¢ X.
Thus, by the contmu1ty of solutions with respect to initial points, one can finds a point Py =
@9%,0%,,0%,,49,02,,0%,) € Int = such that ¥, (Po) goes out of X, a contradiction. Therefore, with-
out loss of generality, we may assume that P = (u9, U2, U% ., u3,U2,, UY,) eInt =

Suppose that the proposition is false. Let

> Qmin,ri for 0<x< 1 and i =1, 2 then the conclusion of Proposition 3.1

t* =sup{t | % (ul, U}, U}, ud, U, UR,) € Zon (0, 71}
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Then 0 < t* < T(Py). This implies that one of the following twelve cases must occur:

(D) Usi(x,t) >0 for all 0 <x <1, 0<t<t* with Ugi(x*,t*) =0 for some x* in [0,1], and
Uri(x,t) 20, u1(x,t) 2 0, Usa(x,t) 2 0, Upa(x,t) =0, up(x,t) 20, Ys(x,t) >0, Yr(x,8) >0,
Wsi1(x,t) 20, Wsa(x,t) >0, Wgi(x,1) >0, Wga(x,t) >0 on [0, 1] x [0, t*];

() Up1(x,t) >0 for all 0 <x <1, 0<t <t* with Ugy(x*,t*) =0 for some x* in [0, 1], and
Us1(x,t) > 0, u(x,t) 2 0, Us2(x,t) 2 0, Uga2(x,t) 2 0, uz(x,t) 20, Ys(x,t) >0, Yg(x,t) > 0,
Wsi1(x,t) 20, Wsa(x,t) >0, Wgi(x,£) >0, Wga(x,t) >0 on [0, 1] x [0, t*];

(1) up(x,t) >0 for all 0 <x<1, 0<t <t* with u;(x*,t*) =0 for some x* in [0,1], and
Usi(x,t) >0, Ur1(x,t) > 0, Us2(x,t) > 0, Ug2(x,t) =2 0, uz(x,t) >0, Ys(x,t) >0, Yg(x,t) >0,
Ws1(x,t) >0, Wsa(x,t) >0, Wei(x,t) >0, Wga(x,t) >0 on [0, 1] x [0, t*];

(IV) Usa(x,t) >0 for all 0 <x<1, 0<t<t* with Usp(x*,t*) =0 for some x* in [0, 1], and
Us1(x,t) >0, Up1(x,t) > 0, ui(x,t) >0, Upa(x,t) >0, uz(x,t) >0, Ys(x,t) >0, Yr(x,t) >0,
Wsi(x,t) >0, Wsa(x,t) >0, Wgri(x,t) >0, Wga(x,t) >0 on [0, 1] x [0, t*];

(V) Upa(x,t) >0 for all 0 < x <1, 0<t <t* with Ugp(x*,t*) =0 for some x* in [0, 1], and
Us1(x,t) >0, Up1(x,t) > 0, uy(x,t) >0, Usa(x,t) >0, ux(x,t) >0, Ys(x,t) >0, Yr(x,t) >0,
Wsi1(x,t) >0, Wsa(x,t) >0, Wgi(x,t) >0, Wga(x,t) >0 on [0, 1] x [0, t*];

(V) ua(x,t) >0 for all 0 <x<1, 0<t < t* with up(x*,t*) =0 for some x* in [0,1], and
Usi(x,t) >0, Up1(x,t) >0, ui(x,t) >0, Usa(x,t) >0, Upa(x,t) >0, Ys(x,t) >0, Yr(x,t) >0,
Wsi(x,t) 20, Wsa(x,t) >0, Wgi(x,1) >0, Wga(x,t) >0 on [0, 1] x [0, t*];

(VII) Ys(x,t) > 0 for all 0 <x <1, 0<t<t* for any t > t* sufficiently close to t* there
is a point (x,t) € [0,1] x (t*,t) such that Ys(X,f) <0, and Usy(x,t) > 0, Uri(x,t) > 0,
ui(x,t) >0, Usa(x,t) >0, Upa(x,t) >0, ux(x,t) >0, Yr(x,t) >0, Ws1(x,t) >0, Wsa(x,t) >0,
Wgr1(x,t) >0, Wga(x,t) >0 on [0,1] x [0, t*];

(VII) Yr(x,t) > 0 for all 0 < x <1, 0<¢t <t* for any t > t* sufficiently close to t* there
is a point (x,f) € [0,1] x (t*,t) such that Yr(x,f) <0, and Usq(x,t) > 0, Ugi(x,t) > O,
ui(x,t) >0, Usa(x,t) >0, Upa(x,t) >0, uz(x,t) >0, Ys(x,t) >0, Ws1(x,t) >0, Wsa(x,t) >0,
Wgri(x,t) >0, Wga(x,t) >0 on [0, 1] x [0, t*];

(IX) Wsi1(x,t) >0 for all 0 <x <1, 0<t <t* for any t > t* sufficiently close to t* there is a
point (%,t) € [0, 1] x (t*, t) such that Wsq(X,t) <0, and Usy(x,t) >0, Ugy(x,t) > 0, u1(x,t) > 0,
Usa(x,t) >0, Upa(x,t) >0, uz(x,t) >0, Ys(x,t) >0, Yr(x,t) >0, Wsa(x,t) >0, Wry(x,t) >0,
Wra(x,t) >0 on [0, 1] x [0, t*];

(X) Wsa(x,t) >0 for all 0 <x<1, 0<t <t for any t > t* sufficiently close to t* there is a
point (%,t) € [0, 1] x (t*, t) such that Ws>(X,1) <0, and Usy(x,t) >0, Ugy(x,t) > 0, u1(x,t) > 0,
Usa(x,t) >0, Upa(x,t) >0, ua(x,t) >0, Ys(x,t) >0, Yr(x,t) >0, Ws1(x,t) >0, Wry(x,t) >0,
Wga(x,£) >0 on [0, 1] x [0, t*];

(XI) Wgri(x,t) >0 for all 0 <x<1, 0<t <t¥ for any t > t* sufficiently close to t* there is a
point (x,t) € [0, 1] x (t*, t) such that Wg1(X,t) <0, and Usy(x,t) >0, Up1(x,t) > 0, u1(x,t) > 0,
Usa(x,t) >0, Upa(x,t) >0, uy(x,t) >0, Ys(x,t) >0, Yr(X,t) >0, Wgs1(x,t) >0, Wsa(x,t) >0,
Wra(x,t) >0 on [0, 1] x [0, t*];

(XII) Wga(x,t) >0 for all 0 <x<1, 0<t<t* for any t > t* sufficiently close to t* there is a
point (x,t) € [0, 1] x (t*, t) such that Wgo(X,t) <0, and Us1(x,t) > 0, Up1(x,t) > 0, uy(x,t) > 0,
Usa(x,t) >0, Upa(x,t) >0, up(x,t) >0, Ys(x,t) >0, YR(X,t) >0, Ws1(x,t) >0, Wsa(x,t) >0,
Wg1(x, ) > 0 on [0, 1] x [0, t*].

Let £2; = (0,1) x (0, t]. In each case, we shall deduce a contradiction via various maximum princi-
ples as follows.
Suppose that the case I occurs. Then

Ys(x,t) = zs(x) — Us1(x,t) — Usa(x,£) >0 in 2,

and
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Us1
d(Us1)xx — (Us1)t = —Fs1| zs(x) — Usy _USLT ui(x,t)

Us1(x,1)

=—Fs (YS(X» t), m

>u1(x, t) <0 on 2.

If 0 < x* < 1, then from the strong maximum principle (see [15, pp. 168-169, Theorem 2]), we obtain
that Usq(x,t) =0 on $2+ which is impossible because Us1(x,0) = U‘S)](x) >0 on [0,1]. Thus x* =0
or 1. If x* =0, then (Us1)x(0,t*) > 0 [15, p. 170, Theorem 3], contradicting the boundary condi-
tion (1.10). If x* =1, that is, Us1(1,t*) =0, then (Us1)x(1,t*) <0 by the same theorem in [15]. How-
ever, from the boundary condition (Us1)x(1,t*) + yUs1(1,t*) =0, we deduce that (Us1)x(1,t*) =0,
a contradiction. The cases II, IV, V can be treated analogously.

Suppose the case III occurs. Then

Us1(x,1) Uri(x,t)

2 Umin,S1>» 2 Qmin,R1  ON ¢+,
u1(x,t) ui(x,t)

and

U ,t U ,t
d(ul)xx—(Ul)tZ—min{Mﬂ(Lx)) (LX)

u](X7 t) u](x’ t) )}U](X, t) <0 on Qt*~

From the strong maximum principle and Hopf boundary lemma, one obtains contradictions again.
The case VI can be treated analogously.
Suppose the case VII occurs. Then

d(Ys)x — (Ys)e = [-d(Us1)xx + (Us1)e] + [-d(Us2)xx + (Us2)e]

Us1(x,t)
ui(x, t)

Usa(x, 1)

= Fg; (Ys(x, 0, Us(x, 1)

>U1(X, f)+F52<Ys(X, t), >u2(x, t)

1 1

dFsq Us1 fanz Us2
=|u —(tYs,— )dt +u —— | tYs,— )dt |Ys on £2:.
[1/85<5u1)+2 35<SUz)}S '
0 0

Let h(x,t) 2 uy fy 2st(zys, Ytydr +uy fy 22 (z¥s, Y2)dr. Then h(x.t) >0 on £ and Ys(x.t)
satisfies

d(Ys)xx — (Ys)r —h(x,t)Ys =0 on £;.

Suppose Ys(x,t) gets the minimum at the point P = (%, f) on ;. If 0 <X <1, then the maxi-
mum principle in [15, p. 172, Theorem 4] implies that Ys(x,t) = Ys(P) for t <f and x € [0, 1],
which contradicts the boundary condition of Us; and Usy at x = 0. If x =0, then by the bound-
ary conditions (1.10), (Y5)x(0,t) = —S©@ — (Us1)x(0,) — (Us2)x(0,F) = —S© < 0. Therefore, Ys(x, )
is strictly decreasing as 0 < x < 1, contradicting that Ys attains a minimum at (0,f). If X =1,
then (Ys)x(1,£) = =S© — (Usi)x(1,8) — Us2)x(1,5) = =S© + yUs1(1,6) + yUs2(1,6) < 0. But
0>Ys(1,t) = % — Us1(1,) — Usa(1, 1), equivalently, —S© + yUs(1,F) + yUs2(1,1) > 0, a con-
tradiction the above inequality. The case VIII can be treated analogously.

We consider the case IX. From the assumptions of case IX, we may assume that Ys(x,t) > 0 on
[0, 1] x [0, t* + €] with € > 0 sufficiently small. We fix t* <t < t* +¢€ and the corresponding ¢ is given
in the assumptions. By calculation,
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d(Ws1)xx — (Wsr)t
Us1(x, 1) . Us1\ Ws1 Urt \ Wr1
=—Fs1 (YS(X, t), 4>u1(x, t) + Qmin,s1 mm{Gs1 (—)— Gri1 <—>—}u1

ui(x,t) uq uq uq
Us1(x,1)

< —F Ys(x,t),
Sl( s.0 ui(x,t)

Us1
)ul *, ) + Qmin,s1Gs1 (W) Ws1 on £,

that is,

Us1
d(Ws1)xx — (Ws1)t — Qmin,s1Gs1 0 Wsq

Us1(x,1)

< -F Ys(x,t),
s1< s, t) LD

>u1(x, t) <0 on £,
with the boundary conditions

(Ws1)x(0,8) =0, Wsx(1,0) +yWs1(1,1) =0.

The assumptions for case IX imply that Wsi(x, ) attains a negative minimum at a point P=®&0
on ;. If 0 <X <1, then due to h = —Qmin’g1651(l{1—511) < 0 by assumptions in case IX, a maximum
principle in [15, p. 174, Theorem 7] is applied to this case to conclude that

Wsi(x,t) = Ws1(P) <0 on s

which leads to a contradiction that

Ws1(x,0) = U (x) — Qmins1ul(x) >0 on[0,1].

If X =0, then again using [15, p. 174, Theorem 7], we have (Ws1)x(0,f) > 0, contradicting to
the boundary condition (Wgq)x(0,t) = 0. If X = 1, then [15, p. 174, Theorem 7] implies that
(Ws1)x(1,8) < 0. But Wsy(1,t) <0, it follows from the boundary condition for Ws; that

(Wsx(1,8) = —yWs1(1,£) > 0,

a contradiction. The cases X, XI, XII can be treated analogously. Thus we complete the proof of Propo-
sition 3.1. O
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