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entropy sub- and super-solution, which immediately deduces the
L' contractivity and therefore, uniqueness of entropy solutions. The

giygfﬁgj‘te parabolic equation method used here is based upon the kinetic formulation and the
Anisotropic kinetic techniques developed by Lions, Perthame and Tadmor. By
Dirichlet boundary problem adapting and modifying those methods to the case of Dirichlet
Kinetic formulation boundary problems for degenerate parabolic equations we can
Comparison theorem establish a comparison property. Moreover, in the quasi-isotropic
Uniqueness and existence case the existence of entropy solutions is proved.
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1. Introduction

Let 2 be an open and bounded rectangle of RY and T > 0. Let Q denote the set (0, T) x £2,
952 the boundary of £ and X the set (0,T) x 352. We deal with the uniqueness and existence of
solutions of anisotropic degenerate parabolic equation

d
deu+divAu) — Yy a,fl,xjﬁ,-j(u) =g inQ (11)
i,j=1
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with the initial condition

u(0,x) =up(x) in 2 (1.2)

and the boundary condition

u(t,x) =up(t,x) on X, (1.3)

where u(t,x) : Q — R is the unknown function and ug(x) : 2 — R and up(t,x) : ¥ — R are given
functions. A(u) = (A1(u), ..., Ag(u)(u)) is the flux and B(u) = (B;j(u)) is the diffusion matrix. It is

assumed that A;(u) and g;j(u) are functions in Wllo'cOO (R). The precise assumption on data ug, up and
g will be stated later.

Since (1.1) is allowed to be completely degenerate, global solutions are in general discontinuous
and some weak solutions must be considered. Moreover the boundary condition (1.3) is not nec-
essarily satisfied in the classical sense that a trace of the solution exists and equals the datum uy
on X. In the completely degenerate case Eq. (1.1) becomes a first order hyperbolic equation and it
is well known that a smooth solution of (1.1) is constant along the maximal segment of the charac-
teristic line in Q. Now suppose that this segment intersects both {0} x §2 and X. Then the problem
(1.1)-(1.3) would be overdetermined if (1.3) were assumed in the classical sense. Thus one needs
to work within a suitable framework of entropy solutions and entropy boundary conditions to obtain
uniqueness and existence results. In the BV setting Bardos, LeRoux and Nédélec [4] first gave an in-
terpretation of the boundary condition (1.3) as an “entropy” inequality on X', which is the so-called
BLN condition. However, since the trace of solutions is involved in the formulation of the BLN con-
dition, it makes no sense if the solution is merely in L°°. Otto [25] extended the Dirichlet problem
for hyperbolic equations to the L° setting and proved a unique entropy solution by introducing an
integral formulation of the boundary condition.

For degenerate parabolic equations (in which the diffusion matrix B(u) is merely symmetric and
nonnegative) the isotropic diffusion case first has been developed in recent years. The isotropic case
means that B takes the form

B(u) = pw)l

for some nondecreasing function B(u), where I denotes the d x d identity matrix. In such a case
Carrillo [7] succeeded in proving uniqueness and existence of entropy solutions under the homo-
geneous boundary condition up = 0 by mainly using the doubling variable technique developed by
Kruzkov [20]. Mascia, Porretta and Terracina [23] and Michel and Vovelle [24] extended those results
to the case of nonhomogeneous boundary condition by using also the doubling variable technique.
On the other hand the uniqueness were proved in [19] by using the kinetic formulation which were
introduced in [22] (also see [15]), without relying on the doubling variable technique. We also refer
to [3,8,14,16,17] for the corresponding results on the isotropic case.

The anisotropic case was successfully treated by Chen and Perthame [12] for the Cauchy problem
via the kinetic formulation and the regularization by convolution (see [26]). In their notions of solu-
tion the parabolic dissipative measure is explicitly included in the entropy inequality. In contract with
anisotropic case a particular form of the parabolic dissipative measure is constructed in [7] (also see
[19]) from the KruZkov entropy inequality. For the Cauchy problem in the anisotropic case we refer to
[5,6,10-12,27]. The initial-boundary value problem of the anisotropic case is more delicate and has
been treated in more recent years. Bendahmane and Karlsen treated in [6] (also see [1,2]) a class of
doubly nonlinear degenerate parabolic equations with homogeneous Dirichlet boundary conditions. In
particular, in [6] they proved the uniqueness of entropy solutions but did not give any proof of the
existence. As far as the authors know, in the L* setting there are few papers which treat nonhomo-
geneous Dirichlet problems for the anisotropic case and the existence of solutions seems to remain
open even in the quasi-isotropic case (i.e. Bjj(u) =0 whenever i # j).
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In this paper we shall consider the nonhomogeneous Dirichlet problem for anisotropic equations
only on rectangular domains. Motivated by [24] and [12], we introduce a notion of entropy solution
of (1.1)-(1.3) and prove the uniqueness of the entropy solution via the kinetic techniques extended
to initial-boundary value problems. The reason why restricting to rectangular domains is as follows:
In the isotropic case the diffusion matrix B(u) is invariant under changes of coordinates represented
by orthogonal matrices. Hence, by such a change of coordinates we may consider an epigraph in
RY of a function defined on an appropriate open set in RY~! as a neighborhood in £2 of a point
of the boundary 942. This fact, together with a partition of unity, enables us to treat more general
domains than rectangular domains (see [19]). However, in the anisotropic case, in fact even in the
quasi-isotropic case (i.e. Bjj(u) =0 whenever i # j), a change of coordinates would lead to a violation
of the conditions imposed on B(u) in the definition of entropy solutions, more precisely, conditions
(i) and (iii) in Definition 2.1 below. Thus we could not “rectify” the boundary of more general domains
by local charts.

For existence of entropy solutions it has been proved by Wu and Zhao [29] that a generalized
solution in a space BV exists for anisotropic equations with homogeneous Dirichlet problems. We
see that the generalized solution u coincides with our entropy solution introduced herein except
for the condition that 3xx,- Bii(u) € L2(Q). But, we will use this condition to ensure a trace of Sj;(u)
on X for solutions in a space L*°. In order to obtain the condition we will restrict ourselves to
the quasi-isotropic case in the existence result. Finally, it would be interesting to prove the unique-
ness result (Theorem 2.2 stated below) via the doubling variable techniques by KruZkov as was done
in [24]. Unfortunately, to the best of our knowledge, we do not know whether those techniques can be
adapted to the problem (1.1)-(1.3). It would be also interesting to remove the “additional” condition
O Bii () € L*(Q).

The paper is organized as follows. In Section 2 we will give some notations and the notions of
entropy solutions and state the main comparison theorem (Theorem 2.2) for entropy solutions. Sec-
tion 3 is devoted to the proof of the theorem. In Section 4 the existence of entropy solution will be
proved in the quasi-isotropic case.

2. Notions of solutions and a comparison theorem

We now give some notations and the notion of weak entropy solutions. Define

1 ifr>0 -1 ifr<o0
+ 9 —_ 9
sgn' (r) = and sgn (r) =
gn(n :O ifr<o, gn- (1) iO ifr >0,
and r* =rvO0, r~ = —(rA0) with avb =max{a, b} and a Ab = min{a, b}. The semi-KruZkov entropies

nki are the convex functions defined by
nEmn =r—k* keR,
while the corresponding entropy fluxes are functions defined by
FE(r, k) = sgn®(r — k) (A(r) — A(k)).

We assume that 2 = ]_[?Zl(ai‘ , a;“) is an open bounded rectangle of R? with 2d faces

O ={(X1, -, Xi1, 0}, Xig1, . Xa); @] <X; <a}r forj=1,2,....d, j#i}
and the outward normals n;« to §2 along (082);+ for i € {1, 2,...,d}, where the super-index * denotes
the symbol + or —. We set S = (0, T) x (382)=. Set J = {1+, ....d*,17,...,d"} and Jo={0}U J.

For v >0 and i* € ] we set Uj, (02)5., 21, fz; and A}, as follows: U}, is the open subset of all
X € £2 such that dist(x, (0£2);+) < v and dist(x, (0£2);+) < dist(x, (32)+) for all j e {1,2,...,d} with
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j#1i. (852)}, is the subset of all x € (9£2);+ such that x — smj« € Uy for all s € (0,v). 25 ={x—
smjx; x € (52)}, s € (0, v)}, the largest cylinder generated by n;« included in Uy.. Qi‘i ={x—snixe
02)},se(=v,v)}. AL =UpL\2}. We have meas(Uj«c AL) < Const. v2. Moreover, we set i* =0 if
i=0 2=U5= -Q\Ui*e] Ul and 2V = Ui*e]o £} Since the family {U%,f)i‘ﬂr, Qi‘i}?:1 is an open
cover of 22V, we can choose a partition {)Lo,)w,}\r}f:l of unity on £22" subordinate to the open
cover. For x € (x1,...,xq) we denote X; = (X1,...,Xi—1,Xit+1,-..,Xq) and write (x;,x;) for x. We also
denote Q) =(0,T) x 2%, X\ =(0,T) x (3§2)}, IT = {xi:x e supp(A+) N 2} and OF = (0, T) x [T,
Q" =Ujreyp Qv and TV =Ujie; 7.

To regularize functions, for small p,s > 0 let us consider a smooth function 6,5 : R — Ry
such that suppé, s C [%, A+ p)s], Ops(r) = s for r e [ps,s] and fR 0y s(r)dr = 1. Then, for

€=(€9,€1,...,64) € Ri“ we set ygqé(x) =TI, Op.e; (%) and vy ¢ (t, %) = Qp.go(t)y/?’e(x).
We will make the following assumptions throughout the paper:

(A1) 2 =T1%,(a;,a}) is an open bounded rectangle of RY.

i

(A2) For i,j=1,2,...,d, Aj(u) and B;j(u) are functions in Wl’oo(]R). The d x d matrix DB(u) =

loc
(DBij(u)) is symmetric and nonnegative so that we can always write

K

Dij(u) = Y op()oj(w), oy € Lig(R)
k=1

with some index K, where Dgj; denotes the derivative of g;; with respect to u.
(A3) ug € L®(£2), up € L(X) with gij(up) € WI1(X) and g e L®(Q).

According to [12,24] we introduce the definition of entropy sub- and super-solutions. To this end
we use the notations sj,(u) and s;/l’((u) for ¥ € C(R):

Dsik(u) = o),  Dsl(u) =¥ Woy(u).

Definition 2.1. Let u € L°°(Q) and set

M = sup{|DA®); Ir] < l[ullz(q) V lupllres) }-

(1) u is said to be an entropy sub-solution of problem (1.1)-(1.3) if it satisfies:
(i) 2L, ysu(u) € L2(Q) for k=1,2,...., K.
(i) 20 Bsh (W) = ¥ (w) Y0, By sik(u) for any ¥ € C(R) and k=1,2, ..., K.
(iii) (Parabolic boundary condition) For i =1,2,...,d, 9y Bii(u) € L%(Q) and Bii(u) = Bii(up) on X
in the sense that

o1
lim —
s—>0+ S

// |Bii (u(t. xi, af — %)) —ﬂii(ub(t,&i))|2dtd?cidr=0,

0 Zjx
where r* =r if x=+ and r* = —r if x = —.

(iv)

/(u — )T+ FT(u, k) Vo
Q
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d
— Y oy (sen™ (u — k) (Bij () — Bij(K))) By @ + sgn (u — k) g dxdt
i,j=1

+ f(uo — k)T (0, x)dx + M/(ub — ) pdo dt
2 X

K / d 2
2/8(/( _“)Z<Zaxx-5ik(”)> @dxdt (2.1)

Q k=1 \i=1

in D'(Ry) for any ¢ € C2°([0, T) x RY) with ¢ > 0 such that Z?Zl sgn™ (Bii (up) — Bii(k))p =0
a.e. on X. Here do denotes the (d — 1)-dimensional area element in d§2 and &(x) the Dirac
measure concentrated at k = 0.

(2) u is said to be an entropy super-solution of (1.1)-(1.3) if (2.1) is replaced by

/(u )+ F (k) - Ve
Q

d
— Y dy;(sen™ (u — k) (Bij (W) — Bij(0))) By @ + sgn” (u — k) g dxdt
i,j=1

+ /(uo — k) @(0,x)dx + M/(ub — k) @dodt
Q x

K d 2
2/5(/( —u)Z(ZE)Xis,-k(u)) @dxdt (2.2)

Q k=1 \i=1

in D' (Ry).
(3) The function u is said to be an entropy solution of (1.1)-(1.3) if it is both an entropy weak sub-
and super-solution.

Remark 2.1. In (2.1) and (2.2) we notice that the equality Z?:l dx, (sgn*(u — ) (Bij(w) — Bij(Kk))) =
sgnT(u — K)Z§:1 dx; (Bij(u) — Bij(x)) holds and it belongs to L%2(Q) under the assumptions (i), (ii)
and (iii) in Definition 2.1. Indeed, since Dg;j = Z,Ile OikOjk, it follows that DB;; > 0 and that Dg;; =0
implies Dpg;; = 0. Therefore, if u >k and Bjj(u) — Bjj(k) =0, then the monotonicity of 8j; implies
that DBj; vanishes on the interval («,u) and so does Dp;;, and hence B;jj(u) — Bij(k) = 0. Thus,

d
Z dx; (sgn+(u - ’C)(ﬁij(u) - /3,']'(/()))

j=1

d
= Z x; (sgnt (Bjj(w) — Bjj (k) (Bij(w) — Bij(k)))
j=1

d
=Y sgnt (B () — Bjj (1)) dx; (Bij (W) — Bij (k)

j=1
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and

d d 00
Zaxjﬁij(u)zzaxj / DBij(€) sgn™ (u — &) d&
= = e
K d o0
=330y [ DsE@sentw- e
IR e

K d K d
=D AW =)o) Y 3y Sje(w).
k=1 j=1 k=1 j=1

Therefore we obtain the assertion.

Remark 2.2. If u is an entropy solution of (1.1)-(1.3), then as will be seen in the proof of Lemma 3.2
below we have for every i, j=1,2,...,d,

o1
lim —
s—>0+ S

/ﬁ,-j (u(t, X, af —r*))dr = Bij(up(t, %)) inL'((0, T) x (382);+).
0

Therefore if in addition to (A1)-(A3) the assumptions that du, € L'(X), Vu, € L>(¥) and
Zﬁjﬂ 8,%ixjﬂ,-j(ub) € L%2(X) are further assumed, then by a slight modification the proof of Propo-

sition 4.1 of [24] still works well in our anisotropic case and obtains for all ¥ € R, all nonnegative
Y eCP([0,T) x RY), all i=1,2,...,d,

S
lim 1/ / Fi(u(t, X, af — 1)k, up(t, X)) ¥ (t, X, af ) dt dx; dr <0,
0 (992)

where

Fi(u,k,w) =gi(u, k) + g, o) — gik, w)

and
d
i(u, k) = sgn(u — k) (Ai(w) — Ai(ie)) = > x| Bij () — Bij (k)]
j=1

This inequality is a generalization of the boundary condition formulated by Otto [25] to the case of
degenerate parabolic equations. In this way a boundary condition is included in the entropy solution
defined by Definition 2.1.

In the definition of entropy solutions we have assumed the existence of the trace of ;;(u) on the
boundary (9£2); in the sense of the condition (iii), which is assured from the following lemma.
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Lemma 2.1. Let u(t, x) be an entropy sub-/super-solution and let a; < x? < ai+. Fora.e.t € (0, T) we have

I (i =20 (Bii (u€. %)) = Bii (6. ) | 2 < 2] B0 (W E %)) 2 -
where x = (x;, x;) and X = (%;, x?).

Proof. By Hardy's inequality (see [28, Lemma 13.5]) we have

(xi — x?)_1 / Ay Bii (u(t, X, 1)) dr
0

Xi

(i = )" (Bii (u(t, 0) — Bii (u(t. x°))) |20y =

12(2)
<20 Bii (u(€. %) [ 2 -
Since 9, Bii(u) € L%(Q) by the condition (iii), the desired inequality holds for a.e. t € (0, T). O
We are now in a position to state the comparison theorem for entropy solutions.

Theorem 2.2. Assume that (A1), (A2) and (A3) hold. Let u be an entropy sub-solution of (1.1)-(1.3) associ-
ated to data (uo, up, g) and u an entropy super-solution of (1.1)-(1.3) associated to data (iig, Uiy, g). Then
we have fora.e.t € (0, T)

[(u(t, X) —u(t, x))Jr dx

2
< /(uo(x) —fio)) " dx — Z/ Oy (sgn™ (up — 1ip) (Bij (up) — Bij(lp))) dsdo
Q i#i 5,
+ M/(ub(s, x) — ﬂb(s,x))+dsdo + /(g(s, X) — fg(s,x))+dsdx, (2.3)
Py Q¢

where Xy = (0,t) x 982, Q¢ = (0,t) x 22, M = sup{|DA(r)|; Ir| < L} with L the maximum of ||u||r=(q),
(@), upliie(s), llupllies) I8llecq). I8llLecq), and 3 ;.; denotes the summation over i, j €
{1,2,...,d} withi # j.

Remark 2.3. The diagonal boundary terms f 5 (Bii (up) — Bii(lip)) T dtdo disappear on the right-hand
side of (2.3). This is due to the flatness of the boundaries (d2);«. By contrast, the boundary term
%f}: (B(up) — B(i1p)) T dt do appears in the comparison inequality obtained in [19] which discusses the

Dirichlet problem on a general C2 bounded open subset £2 of RY in the isotropic case B(u) = B(u)I,
where L is the maximum of the mean curvatures on the boundary 952.

3. Proof of the comparison theorem

To prove Theorem 2.2 let u(t,x) be an entropy sub-solution of (1.1)-(1.3) with data (ug, up, g).
The parabolic defect measure n(t,x, &) on Q x R is given by

K d 2
(n(t.x. &), )= / 8(&—u)2<zaxis,-k<u>> @dtdxdg 3.1)

QxR k=1 \i=1
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for ¢ € C2°(Q x R). The entropy defect measures m.(t,x, &) and m_(t,x, &) on Q x R are defined by
(ms(t,x, &), 9)

= f {(u — &)+ FF . £) Vo
Q xR
d
— Y dy(sgn®( — £)(Bij(w) — Bij (§))) o0 + sgn* (u — S)gq)} dt dxdg

i j=1
_<n(t7x7 g)? §0> (3'2)

for ¢ € C°(Q x R). Indeed, m belong to M*(Q x R), the nonnegative Radon measures on Q x R,
since (2.1) and (2.2) give (m+, @) >0 for any ¢ € C°(Q x R) with ¢ > 0. We also see that

ms +n € C(Rg; w-MT(Q)), (3.3)
Sgrjgoo(mi(-,éf)+n(-,’<§)) =0 inw-M"(Q), (34)

where w-M™(Q) denotes the space M*(Q) equipped with weak topology. We define the semi-
equilibrium functions f; associated to an entropy sub-solution u and f_ associated to an entropy
super-solution u by

fe(t,x,8) =sgn* (u(t,x) —&).

The functions f4 satisfy: For any ¢ € CZ°(Q x R)

d
/ fi(at+a<s>~V+ 3 Dﬂi,»@)axiaxj)w(u — £)gpdedxds
R

Qx i,j=1

==+ / dspd(my +n). (3.5)
Q xR

Lemma 3.1. Let u be an entropy sub- (resp. super-)solution. Then there exists a function ffro (resp. f™) e
L*°(£2 x R) such that

. (} / fi(r,x,s>dt)¢dxds= [ rpeepdnd (36)
2 xR 0 2 xR

forany ¢ € C°(£2 x R).

Proof. By weak™ compactness there exist a sequence {s¢} | 0 and a function ff’ € L*®°(£2 x R) such
that

Sk
1
. / frt.x,&)dt — f{° inw*-L(2 x R).
k

0
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One has to show that ffr" does not depend on the sequence {si}. In order to do so, let us consider

the vector-valued function F; = (F}, F?) defined on Q with ¢ € C2®(R),

Flen= [ Fuex o de
R

FZ(t,%) = /(a(é) — DB(§) Vi) f4(t, X, §)5 (5) dé.

R

Notice that F2(t, x) exists by (3.5). Since [ a(§) f4 (¢, X, &) (§) d& is finite, 50 is [ DB(§)x f4(t, X, £) x
¢ (&) dg. It follows from (3.5) that

divie Fe (6,0 = f {00+ + div(a() — DBE)Vy) f4 )£ (6) de

R
_ / S(u —£)ge (&) d — f D¢ (&) +n)de. (37)
R R

Let h=3 .., A+ and let £2" be a €2 open subset of R? such that 2 Nsupp(h) C £2’ C £2. Note that
h vanishes on a subset of the boundary 92’ except the set U;-izl(ﬂi‘i x {aj'}). By applying the result of
Chen and Frid [9] to (3.7) in the domain Q' = (0, T) x §2/, there exists 7 € W*%’z(apQ/) +M(8,Q")

such that
(T,¥)=— lim [ / (1/f+dt>whdxdg
s—>0+ S

2’ xR 0

S

1
| (; [ 0 - @)~ DBEIY)

Felouxr 0
fe @ xe )P (L, xr)kf*(xr)dr) dt dx; ds} (3.8)

for any ¢ € C° (R4t1), where x, stands for the point (X, af —r*), 3,Q’ denotes the parabolic bound-
ary of Q’ and ¥ is the restriction of ¥ to 3,Q’. In particular, choosing a test function ¢ satisfying
¥ (0,x) = ¢ (x) € C°(£22) and ¥ =0 on (0,T) x dQ’, one has

(T ) =— / ¢ g dxd.
£2'xR

This means that ff’ is independent of the sequences {si} and proves the lemma for the case of an
entropy sub-solution. For an entropy super-solution the lemma is similarly proved. O

In what follows y** stands for A with a function v (t, x, £) defined on R*2 and an element
Ajx of the partition of unity {A;«}j«cj,. We sometimes denote A+ by A if there is no confusion.



146 K. Kobayasi, H. Ohwa / J. Differential Equations 252 (2012) 137-167
Lemma 3.2. For any ¢ € C° (R%2), any v > 0 and any i* € ] we have

d
f Fe(@+a@) - V)Y = Y DB(E)dy, frdn ¥ + 8 — £)gy™ dtdxdg

QU xR k.j=1

= [ Sosu@a st ddds + [ 200w 0.1 duds
oL xR 71 2%R

1 -
+ lim [;/(—ni*(xo) -a(§) — DB;i(§)dy) fa ™ (faxr,é)dr} dtdx; d§

s—0+
(»3)1.‘; xR 0

deyrd(ms +n), (3.9)

v
e xR

where x; = (xi,af — 1), f2(t, y, &) = sgnF(up(t, y) — &) for (t,y) € X, £ e R and _jxi Stands for the
summation over j € {1,2,...,d} with j #1i.

Remark 3.1. Notice that f., fi and my + n vanish as § — £oo. Therefore (3.9) for fy (resp. f_) is
still valid for each bounded test function v such that the support of v with respect to & is contained
only in [«, 00) (resp. (—oo, k]) for some x € R.

Proof of Lemma 3.2. By the similarity we may prove the case of an entropy sub-solution and i* =i".
To simplify the notation we will drop the super-index v. For ¢ € CZ°((0, T) x RY) and ¢ € C(R)

N

f |}/ni -DB(S)Vf+(t,)_q,ai_+r,5)1V(t,)'c,-,ai_+r)dr:|§(§)dtd)‘qd.§

O-xR - 0

d s
== / |:%/Dﬂij(s)axjf+1/~/)‘dr:|{dtd)_c,'dg

=g xrb 0

=— / [1 / Dﬂii(é)axifupdf}“dtd’?id‘?
0;- xR 0

N

1 . .
-2 / |:§/Dﬂij(f)ax}'f+\”/\dr:|§dtdxid§~ (3.10)

Fe xrbt o
Notice that DB;; > 0 and |Dﬁij\2 < DB;iiDBjj. If j#1i, then we have

1 S ~ ~ _
/ Dﬂij(é)[; f axjf+x/ﬂ(~,r>dr—axjf.’;wk(-)}c(s)dsdtdxi

Q,’* xR 0
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1 ; - - _
/ Dﬂij@)[; / f+ax,-w*(-,r>dr—fiaij(-)}(s)dsdrdxi
Q;- xR 0

1 )
<;/ / DBii(€)2 DBy ()2 {| f — 2|3, 0 (1)

0 Q;— xR
+ 2o 0 (or) — By, 0|} € 8) | dr dg de d;
1] ) 3
<C(;/ / Dﬁif($)|f+—f3|2|§(§)|drdgdrdx,->
0 Qi*XR
+§f/|3xj&)\('sr)_alep}‘(')|drdtdk,~
0 Q-

1

p 3
<C<%[/ |/3ii(u)—ﬂii(ub)fdfdfd>_<i)

0 Q-

+§f/|ax}«ﬁ*(-,r>—ax,.W(->|drardk,-,
0 Q-

which tends to 0 as s — 0+ by (iii) of Definition 2.1. Thus (3.8) with 2’ replaced by £ together
with (3.10) and Lemma 3.1 ensure that the following limits exist:

S

1ir51+ E f n;- - (—a&) + DBEV) [y’ (t. X a; +1,§) dr:| dt dx; d&
;- xR 0

s—0+
.- xR

= lim E /(—n,»f -a(&) — DBii(&)dx, f+ )V (t. ki ay +71,§) dr:| dtdx; d&
0

-> / DBij(§)dx; 2y dt dx; d& (3.11)

J#i 0;- xR

for any ¥ € C2°((0, T) x R4+,
We set

r

Wy s(r) :/QP,s(r)dt
0

for r € R and small p,s > 0. Let ¢ € C°([0, T) x 2 xR) and take Wp,s(t)ffsli* (t,x, &) as a test function
in (3.5). Then
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/ W5 (®) f1 (3 +a(€) - V)" +0,.5(0) f " dt dxde
Q; xR

d
- / Wps(t) Y DPi(&)dy, fy 05, $" dt dxdg
Q;- xR k,j=1

+ f Wps(05(u — &)g¢* dt dxde
Q;—- xR

= f Wp.s()d: d(my +n).
Q.— xR

Passing p — 0+ and then s — 0+, by Lemma 3.1 and the Lebesgue convergence theorem we have

d
Fr(d+a@) V)" — > DB (E)dy, f10x " + 8(u — §)g” dt dxds
Q;— xR k,j=1

+ / (x, £)3* (0, x, &) dxds

2xR
= / deprd(my +n). (312)
Q;— xR
Next we set
Xi—a;
Wy s(x) = / 0p,s(r)dT forx=(x1,...,xq) € 2.
0

Let ¥ (t,x,&) € C2([0,T) x R¥*1) and put ¢ = W, sy in (3.12). Noting that VW, s = —0, s(x; —
a; )n;-, we obtain

Wp.sf+ (3 + (a€) — DBE)V) fy - V)Y* +8(u — £) gy’ dtdxde
Q;— xR

= [ sl =) ) ~ DBEV) S mi- v dedd
Q;— xR

+ / fy*(0,x, &) dxdg
2 xR

= / W59 yd(my +n).
Q;— xR

Hence, letting p — 0+ and s — 0+ and using (3.11), one immediately obtains (3.9). O
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Lemma 3.3. Let u(t, x) be an entropy sub- or super-solution of (1.1)-(1.3). Then, forany ¢ € CZ°([0, T) x RY
with¢ >0,any ¢ € C°(R) with¢ > 0,any v >0andanyie{1,2,...,d},

S
liminf / [1/13/3”(5)3&, fa(t X af —r*,&) - @' (t,)‘a,a?‘—r*)z(é)dr} dtdx;dé > 0.
s—0+ N

O xR 0

Proof. We will prove only the case where u is an entropy sub-solution and af —r* = a;” +r. Define the
function ¢_(7) by ¢_(7r) = ¢(&-) with &_ =inf{§; T = B;;(£)}. We notice that {_(7) is left continuous
and sgn™(u — &) = sgn™(B;; (1) — Bii(§)) whenever DB;;i(£) > 0, because B;; is nondecreasing. We set
Sgn* (r) =1 —sgn* (—r), sgnf (r) =sin(3= (r* A €)) and Sgn} (r) =sin(L ((r + €)™ A€)) for reR and
€ > 0. Clearly, Sgn{ (r) and sgn/ (r) converge to Sgn™(r) and sgn* (r), respectively, as € — 0+. Setting
Ii = (Bii(—00), Bii(00)) and using the condition d, Bji(u) € L%(Q) in Definition 2.1 we have for a.e.
(t,x)

f DB;i (), f4(t. Xi,a; +1,E)¢ ()" d&

R

_ f By, st (Bii(u) — Bit(®))¢ (&) dBi(€)

R

= lim [ oy sgn® (Bii(w) — 7)Sgng (v — Bii(up))¢— ()¢” d
Ij

+ lim dysgn™ (Bii(w) — T) sgnt (Bii(up) — T)¢— (D) dT
Ii

lim [ d sgn (Bii(u) — 7)Sgnd (T — Bii(up))¢— (1) dT
Ii

+ lim / Ay sen™ (Bii(u) — T) sgnf (Bii(w) A Bii(up) — T)¢_(T)p* dT
Ii
= El_ingr/S(ﬂii(u) — T)dy Bii(w)Sgn (T — Bii(up))¢—(T)¢* dt
I
+ lim / 8(Bii () — T)dy Bis() sgn (Bi(u) A Brs(up) — T)¢_ (1) d
Ii

= EE}& A Biiw)Sgnd (Bii(w) — Bii(up)) - (Bii(w)) ™
+ GE)I& A Bii (W) sgng (Bii(w) A Bii(up) — Bii(w))s— (Bii(w)) o™
= 3 Biw)Sgn™ (Bii(u) — Bii(up)) - (Bii (W)™
+ 9 Bii (W) sgn ™ (Bii (u) A Bii(up) — Bii (W) ¢—(Bii(w))p*
= Ox; Bii (W)Sgn™ (Bii(u) — Bii(up))¢— (/311(u))¢A
> (9x,Bii (W) A 0) sgnt (Bii(w) — Bii (up) ) t— (Bii () ™.
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Here we used the fact that 9y, 8;;(u) =0 a.e. on the set {(t,x) € Q; Bii(u(t, x)) = Bii(up(t, X;))} (see e.g.
[18, p. 53]). Moreover, the left continuity of the functions sgn™ and ¢_ ensures that on every point
(t,x) where 9y, B; (u(t,x)) <0 we have

Bii (u)
A Bii () sgn™ (Bii () — Bii(up))¢— (Bii (w))p™ = b, / sgn™ (7 — Bii(up))¢— () dT ¢™.
Bii(up)

Therefore, integration by parts yields the estimate

N

1 _ _
5 / /Dﬁii(-f)ax,-ﬂ(t,xi,af+T,§)§(5)¢’\d5drdtdxi

;- xR 0
Bii(u)
> sgn* (T — Buu(up)) - (1) dr ¢* de di;
O;— {0y, Bii (W) <0} Bii(up)
s Bii(u)
- % f / f sgn™ (7 — Bii(up))¢—(7) dT dy, ¢ drdt d;

;- N{0y; Bii (W)<0} 0 Bii(up)

1 ; =
>t [ [ 1e e ~ putun) 0y dr e s
O_ 0

&)

By virtue of condition (iii) of Definition 2.1 the above estimates immediately deduce the desired
inequality. O

Lemma 3.4. Under the assumptions of Theorem 2.2 there exist families of Young measures {v5°}xe and
(D30} xes2 supported in (—oo, ||ullr=] and [—||ii| 1o, 00), respectively, and nonnegative functions mi(x, &)
and M2 (x, &) defined on 2 x Ry such that
m%,m? e C(Rg; w-M*(2)),
lim mi(x,;—‘) = lim M (x,£&)=0 aexe,
E—>—+00 E——00
%, £) = 1°([€, 00)) = d:m . (x, &) + sgn™ (uo(x) — £),
T (x, &) = — D" ((—00, £]) = 8:m° (x, &) + sgn™ (o (x) — &), (3.13)

where ug and iig are the initial data associated with entropy solutions u and ii, respectively.

Proof. For s > 0 we set

S

1
vi(§) = E/é(s —u(t,x))dt.

0



K. Kobayasi, H. Ohwa / J. Differential Equations 252 (2012) 137-167 151

Note that v;(R) = 1. Hence, for each x € §2 there exist a positive sequence {s’]‘.} J0as j— oo and a
Radon measure v;° on R such that v°(R) =1 and

X

(v, ¢)= lim (v;j, ¢) forany ¢ € C(R).
]—>00
(See [13, p. 54].) Since v;(§) = —ag(% fg fi(t,x,&)dt), it follows from Lemma 3.1 that

V() = =9 f(x,§) in M(R).
This implies that v;° does not depend on the choice of subsequences. Integrating over [£, c0) and
noting that limg_« f1°(x, &) =0, we obtain v°([&, 00)) = f°(x, £).

Next, use (3.9) with the test function ¢ = sgn* (& — xk)e(t, x), where ¢ € C2°([0, T) x R%) and
k € R. Then

d
f W= K)o + F (U, k) - Vo — 3 sgnt (u — i) (B ) — Bij () dy "

[oFS k.j=1

+sgn' (u — k) g de dx + / Z O, g (up — ) (Bij (up) — Bij (k) @™ dt dX;
O JF

/(ff (x,&)sgn™ (& —K)d‘s‘)so (0,x)dx

+ lim / / “ni-a(8) — DBii(E)dy ) fr dr}drdx,ds

s—0+
Op xR

= / @ d(my (k) +n(k)). (3.14)
Qi

Since u is an entropy sub-solution, (3.14) implies

/(uo—K)Wf dX+/</ °(x, 5)5gn+(S—K)dS>1ﬁ dx < / ¥ dm (k)

(0,T) x 24

for any ¢ € C2°(£2) with ¥ >0, any « € R and any T > 0. Thus, the arbitrariness of T yields that for
ae xe§2,

/f (x, &) < (uox) — k)"

Define the function m(}r(x, &) defined on 2 x R by

2 (x, £) = (o (x) — / °(x, ) .

It is easy to see that limg_mom(i =0 and (3.13) holds. O
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Lemma 3.5. Let 1 <i <d. Let fi(t, Xi, &) and f, (t, Xi, &) be weak* cluster points of

N N
%/er(t,)"q,a;‘—r*,S)dr and %/f_(t,)'q,af—r*,s)dr,
0 0

respectively, as s — 0+ in L°(Oj= x R). There exist Young measures {v{ , }.y)e s and {Vf , }(t.y)e 5, supported

in (—oo, |[u|[g]and [—||t| =, 00), respectively, and functions mi(t, y, &) andmP (¢, y, &) defined on ¥ x R
such that

lim mt(¢,y,&)= lim mP(t,y,6)=0 ae (t,y)eX
£—o00 E—>—00
and for each & € R it holds that

it y. ) =vf ([E.00).  Fi(t.y. &) =—Pf,((—00,£]),
—a(§) -y fL = 9em’, + Msgn™ (up — &),
—a(€) - fT = 9:m® + Msgn™ (il — &),

fmi(t,xi,af,g)w*f* (t, %, a})dtdx; >0 (3.15)
O

forany ¢ € C(X), ¢ > 0, satisfying sgn™ (Bii (up) — Bii(€))9 =0 a.e.on X, and

/ b (6,5 af £)@H (¢, %, af) ded > 0
@i*

forany ¢ € C(X), ¢ > 0, satisfying sgn™ (B;i (Ulp) — Bii(€))¢ =0 a.e.on X.

Proof. We will again prove only the case of an entropy sub-solution and i* =i~. By a similar argu-
ment as in the proof of Lemma 3.4 we can obtain a family of Young measures {v{y}(t,y)eg on R such
that (¢, y,&) = vf ,([§, 00)).

We show the following inequality holds:

-M / (up — k)T dtdx; + / (—a(€) -m;-) fLsgn™ (& — k)" dtdx; d
;- ©;- xR
< / @ d(m (k) +n(k)) (3.16)
O,-
for any k € R, any ¢ € C°((0,T) x RY) satisfying sgn™ (B (up) — Bii(k))p =0 ae. on X and for
any weak* cluster point f}(t,X;,&) of %fos fy(t X,a; +1,&)dr as s — 0+. To this end let «; =
sup ﬁl{] (Bii(k)) and k_ = infﬂilfl(ﬂ,-i(/c)). If k4 < oo, then the function p on [0, co) defined by p(¢§) =
Bii (€ + k+) — Bii(k4) is strictly increasing on [0, €p] for some €p > 0. For each € € (0, 9] we set

(G A1 ifs>0,

sE(E k) = .
0 ifé <0.
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Then we define the function ST (&,k) by SH(E, k) =sT(E —k,k1)st (& — kil ky) if ki < oo and

ST, k) = (@) AT if Ky = 0o. We use (3.9) with ¥ (t,x, &) replaced by SF(&, k)p* (see Re-
mark 3.1) to obtain

d
[ rsteaotera - v)et - siEr Y Dby @ g’
xR

Qo kj=1

o £ Guogtdeaxds [ DAy©) 15! 600y dedde
0 v i

+ lim E /(—nr -a(§) — DB;i(§)dy,) f+ S (&, k)¢ dfj| dt dx; d&

s—>—+0
0;,- xR 0
= / 3 ST(E, k)@ d(my 4 n). (317)
Q;- xR

Since ST (&, k) tends to sgn™(§ —k)(1 — 14,1 (£)) as € — 0 where 1yq is the indicator function of the
set {a} (with the notational convention 1(,; =0 when a = o), the Lebesgue convergence theorem
assures the existence of the limit of each term, as € — 0+, on the left-hand side of (3.17) except the
diffusion term

S

%/ / DB;i(§)SE (&, k)dx 19 (¢, %, af +7)drdtdx; dé. (3.18)

0 ©;— xR
The right hand of (3.17) equals

K+€ K4 Ki+€
p(e)! / ( / DBii(§ — Kk +ky)dE — / DBii(2k4 — &) dE + / Dﬁﬁ@)ds)wkd(mwn)
Q;- K Ky—€ Kt

(3.19)
provided x4 < oo and

K+€
€ //(p)‘d(er +n)
Q-

provided x = co. By change of variable (3.19) becomes

Ky+€
pe)! / / DBi(E)p M, +n)(, &+ — Kky)
Q- K+
K+
+p(e)‘1/ / DBii(§)p*d(my +n)(-, 2k4 — &)
Q- K++€
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Ky+e
+pE! / / Dpii(€)¢*d(m.y +n)(-, k)
Q- Ky
Bii(K4-+€)
=p(e)”! / / prdmy +n) (- B (D) + Kk — k)
Q- Biilks)
Bii (K4 +€)
—p [ [ e em(a2e - g @)
Q- Bii(ky)
Bii(k+¢€)
+pe)! / / g dmy +n)(-, B (D),
Qi—  Biilky)
which tends as € — 0+ to fQ,-— @*d(my (k) +n(x)). In the case of k; = oo the right hand of (3.17)

also tends as € — 0+ to the same limit just as above.

Next we calculate the diffusion term (3.18). Since DB;; =0 on (§_, &), we can rewrite (3.18) as
follows:

N

L[ st € - ki fug? drdedside

0 ©;,— xR

u(t,X;,ai+r,00)

N
1 -
:E/ / o f DB T (£) dg o> drdt d;

0 O- —00
S
=% / / 0,5 T () dr de dx;
0 O;-
S
= %/ / s& (U — key, k1) 3 Bii (W)@t drdt dx;, (3.20)
0 6;-

n
where D;Sisf = s DBii. By virtue of (3.8) with suitable choices of the test function ¢ € C°(R) we
have

lim sup

= limsup
s—+0

s—+0

% / / 3 Bii (w) ™ drde dx; % f / 3 (Bii () — Bii (k) ¥ dr de dx;
0 ;- 0 O

<[T P10+ 2M |9 (3.21)

for any ¥ € W2(Q)NC(Q)NL>®(Q) such that ¥ (0, x) =0, where v/|5 denotes the trace of ¥/ on X.

On the other hand, by virtue of Lemma 2.1 and the property (iii) of Definition 2.1, Egorov’s theorem
ensures that for each n > 0 there exist a closed subset F; C ¥ and a positive sequence s, | 0 such
that Hd(Z‘\Fl) < n and supggrcs, 1Bii (U(t, X;, a;” +1)) — Bii(Up(t, X;))| tends to 0 as n — oo uniformly
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for (t,X;) € F1, where 1% denotes the d-dimensional Hausdorff measure on R%t!. Also, by Lusin’s
theorem for Radon measures there exists a closed subset F, C Q such that (m4 (k) 4+ n(k))(Q\F2) <

n and Bii(u(t, x)) is continuous on F,. Let tp’ e C(R¥1), j=1,2, be the functions which satisfy

1//,7 <1, 1//5 =0 on Rd“\F] and 1//,7 =1 on the set {(t,x) € Fj;dist((t,x), RITI\Fj) > n}. We
notice that s¥ (u — k4, K+~)wn1ﬁn(p eW2(Q)NC(Q)NL®(Q) and sf(u — k4, k)Y ¥pp =0on X.
We can use (3.21) with ¢ =sF(u — k., /c+)1p,1] wf](p and obtain from (3.20)

lim / | D@t € ~ ke fruiet drdedside =o.

s—0+ S
0 ©;- xR

We pass to the limit as s =s; tends to 0 and then € to 0 in (3.17) with ¢ replaced by w,;w,%go.

Noting also that Vx, (Bii(up) — Bii (k) ¥ vy @™ = Vi, Bii(up) sgnt (Bii (up) — Bii (k) ¥ ¥ =0 on X,
one obtains

f (=) 3 (Y10 2e") + F k) - V(39207
di-

d
— > san (U — k)3, (Bij (1) — B (K)) 3 (¥ ¥ @) + sgnt (u — k) gy Y™ dt dx

k,j=1

T / > sent s = (B n) — )i vig dedi+ [ [ < -ae) T dedids
9. JFI~ O._ K

/ Y ly2erd(m, () +n(c))

for any weak* cluster point f{ = fI(t,X;,£). Since u is an entropy sub-solution and sgnt (Bij(up) —
Bij(k))@* =0 on X, we obtain

[ —mas -t wiuietaedsi— [ [a@ -n rpulvie dedside

O;— [CRE

< [ viviedm. o
o.

However, since lim;_, o4 tp}, 1//,2, =1 H%-ae. on X as well as m_ (k)-a.e. on Q, passing n — 0+ yields
(3.16).
Now, define the function mﬂ t,y, &) by

mb (¢, y. &) = M(up(t, y) —€)+ —/—ni— -a(n) f1(t, y,mdn
£

for (t,y) € X, &£ e R. Clearly, we see that limg_, « m'_i =0 and (3.15) holds. O
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We are now in a position to prove the comparison theorem.

Proof of Theorem 2.2. Let f., n and my be defined for an entropy sub-solution u as above. ff’ de-
notes the time kinetic trace and f} a cluster point of the space kinetic trace associated with u. The

corresponding ones associated with an entropy super-solution ii will be denoted by f’,, n, m_, ff"
and fZ, respectively.
Letie{1,2,...,d}. We set for (t,X;, &) € O x R,

Fi(t.Xi ) =—nps -a(®) f1 (6. %0} &) = Y DBij(€)d; 1.
J#

F_(t.%.6)=—mp -a@) T (t. % a} . &) — Y _ DBy(&)dy, f°.
J#

where fﬁ =sgn~ (il — £). Notice that both F, and F_ belong to L1(¥ x Re¢) by the hypothesis (A3).
We set € = (€p, €1,...,€4) € R‘i“ and define

d
Pe(t, X) = 0Ocp ¢, (1) l—[ 060,€j (x;).
=1

Then we set

fi=(f+ X 1Qi‘;)*(t,x) Pe>

d
fio.e — (in X lgiv*) *y (1_[95076]),
j=1

F§ = (F4 x (15 dtdxi ® 6(xi — a}))) *@ Pe.
mj. = (m4 x 1in*) *(t,x) Pes
n€ =0 x IQI}i) *(t,x) Pe>
where le_u* denotes the characteristic function of Q,-‘i defined on R%+!, while 1 b denotes the charac-

teristic function of Z‘i‘i defined on RY and 1y dtdx; ® §(x; —ay) is the product measure of 1xv dt dx;
and 8(x; — ajf). Next, for the regularization in & we set for n > 0,

On(§) =0y, (8)

and define

Fy = £5 % 6y

and

[su—6g]"" = (s —5)glqy) *x.6) Peby-

The functions ff"“’, Fin, mi‘", n®7 are similarly defined. As for the functions ]‘,, ]‘f“, F_, etc,

their regularizations f¢, f&7, o€, Fr€n FE EEN etc. are similarly defined in the same way as

above, but with the different parameter € instead of €.
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Let € C°([0, T) x RI1), 4 >0, and let i* =i~ again without loss of generality. Applying (3.9) to

the test function yi- *(pee,]) where Q¢ (t,X) = —t, —x) and 9,, (¢) =0,(—£), and using Lemma 3.3
one has
d
/ FEMN @ +a@ V)Y — > o, (DB (€) F5) * 0n) o ™
RA+2 k,j=1

+ ([8@—8g]""+FS" 4 FI0cy )Y dt dxde

> / dgeyrd(m" +nT) + / RYy* dtdxde (3.22)

Rd+2 Rd+2

with

RY =div{a®) fi" — (a@) f$) x 0y}

Similarly we can regularize the equation satisfied by f, by the same manner and obtain for the
same y’s

~ d ~ o~
f ST+ a® - V)t S o (DB TE) #6y) i v

Rd+2 k,j=1
— ([8G—©)8]"" + FS" + %6, 2,) v dedxde

> /8;¢Ad( m& A€ — /R?l//}‘dtdxdé (3.23)

Rd+2 Rd+2

with

RY = divx{a(é)]rf"7 — (a@®)FE) 0y}

Now, let us fix a nonnegative test function ¢ € C°([0, T) x R?). We apply (3.22) to the test func-
tion ¢ = —ff’"(t, X, &)(t,x) (notice the test function is admissible by Remark 3.1), and apply (3.23)

to the test function ¢ = ffr’"(t, X, £)(t, x). We sum the two resulting inequalities and use the formula
for integration by parts on the left-hand side of the resultant inequality to get

y . d
/ —FETFET (O 4 a®) - V)@ 4 FET Y By 0 (DB (8) FE) # 6)

RA+2 k=1
d .
Y v, (DB ) FE) % 0y)
k,j=1
( f‘L'o 6960,60}‘5’" ‘L’O 69%0 éOf €n _ Fin}f’n Fi fE )(p)L

— [ —5)g]"" FE"e" — [ — £)8] " ££ o de dxdg
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>— / 8gff~‘"g0*d(mi’”+n€”7)— / ¥ fE oM d(m €n + i)

Rd+2 RA+2
- / (RUFET 4+ RY FEM) g de dxde.
RA+2

Then we can rewrite this inequality as follows:

‘/ —fEFE B+ a®) - V)@

RA+2

+ Z “78,9 D'3’<J(">%)f+)*9'7)"’frfrWSXJ((Dﬁkj(“E)J?E)"‘9'7)}3Xk‘ﬂx
k,j=1
— ([su—£)g]“"FE + [8( — £)8]" £ )" dedxde
>h+lh+l+l3+1s+14
+ /{ 0 Gy cof A+ F0€0, 20 fC ”7+Fi”]ff’”+Ff’"fj"}<pkdtdxdg, (3.24)

Rd+2

where

I =— f (RUFET 4+ RY FEM) o de dxdg,
Rd+2

K d

=2 / D= D (0 fS) *0n)an (o) # 0) " de dxd,

pir2 =1k j=1

d .
RA+2 k.j=1

K d

£33 st e (oaF?) o) o e

=1k, j=1

732 /{ Zaxkf+ ax}((Dﬂkjf )*9'7)

RE+2 k. j=1

K d

£33 st e (oaF?) o) o e

1=1 k, j=1

Iy= / 8(E — ) (e x.¢) (PeOy)n > drdx dg,
Rd+2

Ta= / 8(E —u) *(.xe) (Peby)€ Q" dt dxdg.

Rd+2
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Here we used the fact that m; and m_ are nonnegative. Thanks to the lemmas [12, Lemmas 4.1 and
4.2] we have that I, I3 and I3 tend to 0 as n — O+ and I, + I4 + 14 > 0.

Letting successively 7, €p, (€1, ...,€i—1,€it1,...,€q) and then €; pass to 0 in (3.24) and noting
that the regularized function f{ vanishes at the parabolic boundary 8,Q, we get

d
— ST (B +a@) - V)eh+ Y {F-0x, (DBGE) F) + F§ 0y (DAG(E) f-) } o 0"

Q;— xR k,j=1

+([8u—6g] - +8G —&)EFE) g dtdxds

> / (f1Ocq.e0 f + FS )9 dt dxde. (3.25)
Q;— xR
Then we pass in turn e€g, €; and €' = (€1, ..., €1, €it1,...,€4) to 0 in (3.25). The first term on

the right-hand side of (3.25) tends to fgixR f’(x,g)ff"(x,g)go)‘(o,x) dxd& by Lemma 3.1 (also see
Lemma 3.5). In order to treat the second term, noting Remark 2.1 we compute:

DB (E)(dy, f2) F-g* dtdxds
Q;— xR

= f DB(E) (0, £2) (6. R0, £) (F-9™ 0, ) # g ey (6. Kiv a7, ) de i d,

Rd+1

which tends as € — 0+ to

/ DB (&) (05, £2) ) (6.8 0 £)

Rd+1

) (El / sgn™ (Bii (U(t, X, a7 +1) — Bii(®))@” (t. xi,a; +71) dr)) dt dx; dg,

0
where
(€0.€) d
(0, £2) " (0. Ri %0, 8) = f (0 F215, ) (5. 51X, 8) - Ogcg (t = ) [ [ Oeo.e; () — ¥ ) dsdi
Rd J?H

with the notational convention that 69 ¢ = 4. In a similar way as in the proof of Lemma 3.2 it follows
from (iii) of Definition 2.1 that the above integral tends as €; — O+ and then €' — 0 to

/ D,Bij(é)(?)xjfﬂzi_)(f,?_(i,a,-_,E)Sgn_(ﬁii(ﬁb(f,?i)) — Bii(®))@" (t. i, a7 ) dt dx; d&
Rd+1

= [ Day@a, 70" dedsi e

Y. xR

1
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Thus we obtain

/ Cf T (a4 a) - V)
Q;— xR

d
+ D (DB (E) f f-) O 9" drdxds + / sgnt (u —i)(g — §)¢* dr dx

k, j=1 Q-
> / FRF@0,x) dxds
£2;— xR
+ / (—ni—-a(é)fiff+ZDﬂu(é)ax,-fﬂff)(pkdtdiidé (3.26)

xR i#k

1
for any weak™ cluster point fI(t,y,&) and for some weak* cluster point ]‘Z t,y,&).

On the other hand, we first let n, €, (€1, ..., €i—1, €i+1,-..,€q) and €; in turn pass to 0 in (3.24)
and secondly we let €, €; and (€1, ..., €j_1, €41, ..., €q) in turn pass to O to obtain

—fr (3 +a@) - V)p*

Q;— xR
d ~
+ Y 0y (DBG(E) f1 )" dtdxds + / sgn(u — i1)(g — &g drdx
k,j=1 Q-

> / FOFOQ0, %) dxds
Qif xR

+ / (—nr-a(&)fzfi+ZDﬂi,-<s>axjféf£><p*dtd>‘<ids (3.27)

Y. xR J#i

1

for any weak* cluster point fZ(t, y,£) and for some weak* cluster point fi(t, y,&). Summing (3.26)
and (3.27) yields

/ —frf- (3 +a®) - V)p"
Q;— xR

d
+ ) 0y (DB &) f )" drdxds + / sgnt(u — ) (g — §)¢" dtdx

k,j= Q-
> /
£2;—x

~ 1 _
+ / (—n,»f LQIMAEEDY Dﬂij@)ax,-(f_‘;fﬁ))w dt dx; d& (3.28)

Y. xR J#i*

=1
FOF ™0, %) dxds
R
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for some weak* cluster points f} and ff. We compute each term of (3.28). Firstly, the left-hand side
of (3.28) becomes

f (U — i) g + FHu, )V
d

+ ) oy (sgnt (u — ) (B () — Bij (@) By @ + sgn (u — ) (g — )@ dtdx. (3.29)
k,j=1

Secondly, by virtue of Lemma 3.5 and by using integration by parts one can calculate:

iig ugVilg
[rimas = [ o (e co) (@ +sen @0 - )ds = [ (. 00) 5 (. £1) d
R —00 tip
- / (9em. + sgn™ (uo — £)) D" ((—o0, £]) dt
uovﬁo
ug upVilg
= [ R cona® de — [ v (12, 00) 5 (oo, £1) de
—00 ao
[ amt (o) de
uo\/ﬁo
l:l() uO\/ﬁo
= ;" ([llo, 00))M° (-, lig) + / m® dvy® — / (18, 00)) 15° ((—o0, £1) d&
—00 ﬁO
+mY (-, uo V li0) 1° ((—o0, ug V iigl) + / m dp™
Ll()Vflo
uOVﬁo
> - dé = —(ug—iig) ™.
iig
Here we used the fact that d”:ogj[—g‘oo)) —dv (&) and w dp™(&). Thus we obtain
/ flofe Adxa!z;>—/(uo—ao)+g&(0,x)arx. (3.30)
Q.

Finally, we analogously calculate the boundary term by using Lemma 3.5:
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up
[ ca@iTrds = [ oo, (.00 de
R —00
up Vi
= [ o -awi (00 ((—oc. ) ds
ip
+ / d:m’y vf , ((—00, £1) d&
up Vi
upVilp
< [ Jaelas

up

<M(up —iip)*.

. - dvf s
Here y stands for the point (X;,a;) and we used the fact that W

v, (—00.£))

= —dvtfy(é) and

=dvf ,(€). We also note that m, >0 if & > u, and m? >0 if & < by virtue of (3.15)

3
in Lemma 3.5. Hence we have
/ ;- -a) fT fl™ dtdx;ds <M / (up — iip) T " dt dx;. (3.31)
- xR >

i

Moreover,

/ DBij (§)dx, (2 F2) ¢ de di de

Y. xR

1

= / O, (sgn™ (up — itp) (Bij (up) — Bij (ilp) ) )™ dt d;. (3.32)
s

Combining (3.28) with (3.29) through (3.32) and choosing appropriate test functions ¢’s (and also
noting Vo* = AV@ + ¢V1) we arrive at for a.e. t € (0, T)

/ (u(t, ) —ii(t, ) x- dx

Q.

< / (ug — flo)+)»i— dx+ M / (up — tp)Ai- dsdx;
G 0.0)x(02);-

1 - - _
—3 Z / Oy (sgnt (up — 1ip) (Bij (up) — Bij(ip)) ) Ai- ds dX;
J#0,0x (952),-

+ / (§— &) Ai-dsdx+E,, _ (3.33)

(0,t)x 2;-
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for 1 <i <d. Here

d
Ey. = f Fru, i) - Vip — Z dx; (sgn™ (u — 1) (Byj (1) — Bij (1)) )y Aix ds dx.
(0,6)x 24+ k,j=1

When i =0, we have Ag € C° (RY) and supp(ro) C £2. By extending u and i to RY by 0 outside of £2
we can use the result on the Cauchy problem obtained by Chen and Perthame [12] to obtain

/(u(t, 3 — @i, ‘))+ dx < /(uo —1ig) T hodx + / (g— 8 rodsdx +E,,.
20 20 (0,t)x£29

Summing over i € {0,1,...,d} one has

/(u(t D —uf(t, ) dx</(uo—uo)+dx+MZ / A (ub)—A,-(ﬂb))JrA,-*dsdki

Qv Lo, Hx(02)Y

- Z / dx; (sgn™ (up — 1ip) (Bij(up) — Bij(lip))) ds dx;
#i0,0x(02)

d
+ / (g— @ dsdx+ ) Ey,. (3.34)
(0,6)x 2V i=0

The function h defined by

d
h=|F @]+ Y [y (Biw) — By (@)]
k,j=1

belongs to L%(Q) (see Remark 2.1). Since Z?:o L+ =1 on §22,, we have with D, = (0, T) x (£2\£22,)

1
< Cllhll2(p,) (meas(2\822,)) 2 v~

d

Z El)i*

i=0

< lhll2(p,)

L2(Dy)

< Clhl2p,)

and hence Z?:o Ey,. tends to 0 as v — 0+. Consequently, passing v to 0 in (3.34) yields (2.3). O

4. Existence of entropy solutions

As was mentioned in the introduction the existence of entropy solutions of (1.1)-(1.3) will be
proved in the quasi-isotropic case under the additional smoothness condition on the flux A(u) and
the diffusion Bj;(u).
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Theorem 4.1. Suppose that (A1), (A2) and (A3) are satisfied with D B;; = 0 when i # j. In addition suppose

that A;, Bii € w2 ®MR),i=1,2,...,d and u, € W1-°(X). Then there exists a unique entropy solution of
(1.1)-(1.3).

loc

To prove this theorem we consider the approximate problem

d
du+divAu) — Za,ﬁ (Bi(w) —eu) =g° inQ,
i=1

Ulemo =ud,  ulx =uj, (41)
where €, § >0 and uj) € C*(R2), uj € C(E), ge C°°(Q) are functions such that u$ and uj satisfy

the compatibility condition on £ N2 and u$ — uo, u) — up, g® — g in the L'-norms as § — 0+ and

moreover [[u§ i) < luolle@), ullres) < lupllees), IVudlieos) < IVuplles). 18 ) <
llgllz>o(q)- The problem (4.1) has a unique smooth solution u(t, x) = u® 3(t,x) (see e.g. [21]). Multiply
(4.1) by (u —k)* with sufficiently large k > |lug|lze V |lupllz V ||gll~ and integrate over (0,t) x £2
to obtain

t
/(u(t, .)—k)+dx</(ug—k)+dx+2||g5||Loo//(u — k)T dtdx,

2 2 02
which yields
/(u(t, ) —k)+dx < C/(ug —k)+dx:0
2 2

and so u < k. A similar estimate on (u — k)~ gives the estimate

Jus? ||L°°(Q) <C (42)

with some constant which does not depend on € as well as §. Then multiply (4.1) by u and integrate
over Q to obtain

d
/Z(|axisi,~(u)|2 + €9y ul?) dt dx
'

i=1
<%/|ug|2dx—/A(ug)ug~ndtdor+/A(u;§)-ndtdo
2 b b

d
+Z / (3w Bii (up)up + €updyup ) dt dx;
=15,

—Z/ Ay, Bii (u ub+eugaxiu2)dtd>_<i+/g5udtdx,
i= 121,7 Q

where A is a primitive of A. Hence (4.2) and the assumption on uj yield
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d
/Z(]axisii(ue*‘s)yz+e]8xiu€’8\2)dtdx<C (43)
i=1
and then
d
Z/ o, i (u?) [P dedx < € (44)
i=1 Q

with some constant C independent of € and 8.
Next, let us denote v = d;u. We have

d
dv +div(au)v) — Y 0z (DBii(w)v + €v) = o, g°. (4.5)
i=1

Multiply (4.5) by D@y (v), where @4 (z) = (2> + «2)7, o > 0, to obtain

/atgoa(v)dtdx—i-/a(ug)atunga(atug) .ndtdo
Q b

d
/a(u)sz%,(v) Vvdtdx—/z DBii (uf) deup + €dul)) Dgy (deup)n; dt do
ol i=1

d d
/ > 0y DBii(u)v D>y (v) oy v dt dx + / > (DBii(u) + €)D*po (v) |3, vI* de dx
i=1 i=1

= / 0cg’ Dos (v) dt dx. (4.6)
Q

Note that D%y (2) > 0, |zD?@4(2)| < 1 and z5%¢, (z) — 0 as a — 0+. Letting € — 0+ and also noting
v(0,) =—divA(u) + ¢, 32 (Bii(uf) + €up) 4+ g°(0, ), we obtain the estimate for v = deu®-’:

|9eu? @, )| 1 gy < Cs (4.7)

for some constant Cs which may be depend on §, but does not depend on €.
Similarly, if we consider the function w = Bxkuf"s, then we can get the estimate

ok u®? (. )] 1) < Co. (48)

Let us fix § > 0 for the moment. By virtue of (4.2), (4.7), (4.8) and Kolmogorov’s compactness theo-
rem there is a subsequence (still denoted) u€-%(¢t, x) and u® € C([0, T]; L1(£2)) such that

Jim usd =u’ inC([0, T1; L' (£2))

and thanks to (4.3) and (4.4),
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i ) 3 P
w- lim, 3y i (%) =g Bii(u’) inL*(Q),
”ax,'ﬁii(u(s)”LZ(Q) g C (49)

and
95511 (u°) | 29, < C- (4.10)

Furthermore, since the smooth solution u€-®(t,x) satisfies inequality (2.1), so does the strong limit
function u®(t, x). Thus we see that u®(t, x) is an entropy solution of (1.1)-(1.3) with data (u§, uj, g*).
Moreover, thanks to (2.3), for 81, 2 >0

/ |u® (£, %) — u®2 (£, %)| dt dx
Q

g/|u50’(x)—ugz(x)|dx+Mf|uil(t,x)—uz2(t,x)|dtda
2 b

+/ g% (t. x) — g% (t,x)|dtdx.
Q

Therefore {u®} is a Cauchy sequence and there exists u € C([0, T1; L(§2)) such that
lim u’(t,x) =u(t,x) inC([0, T]; L (£2)).
§—0+

By virtue of (4.3) and (4.4), 9x;s;i(u) and dy,B;i(u) belong to L%(Q). Since u®(t,x) is an entropy
solution, so does u(t, x). Thus the proof is complete. O
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