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In this paper, we establish a Dancer-type unilateral global bifurca-
tion result for one-dimensional p-Laplacian problem{

−(
ϕp

(
u′))′ = μm(t)ϕp(u) + g(t, u;μ), t ∈ (0,1),

u(0) = u(1) = 0.

Under some natural hypotheses on the perturbation function
g : (0,1) × R × R → R, we show that μk(p) is a bifurcation
point of the above problem and there are two distinct unbounded
continua, C+

k and C−
k , consisting of the bifurcation branch Ck

from (μk(p),0), where μk(p) is the k-th eigenvalue of the linear
problem corresponding to the above problem.
As the applications of the above result, we study the existence of
nodal solutions for the following problem{(

ϕp
(
u′))′ + f (t, u) = 0, t ∈ (0,1),

u(0) = u(1) = 0.

Moreover, based on the bifurcation result of Girg and Takáč (2008)
[13], we prove that there exist at least a positive solution and a
negative one for the following problem{−div

(
ϕp(∇u)

) = f (x, u), in Ω,

u = 0, on ∂Ω.
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1. Introduction

In the celebrated work [29], P.H. Rabinowitz established Rabinowitz’s unilateral global bifurcation
theory (Theorem 1.27 and Theorem 1.40 of [29]). However, as pointed out by Dancer [6,7] and López-
Gómez [20], the proofs of these theorems contain gaps, the original statement of Theorem 1.40 of
[29] is not correct, and the original statement of Theorem 1.27 of [29] is stronger than what one
can actually prove so far. Although there exist some gaps in the proofs of Rabinowitz’s Theorem 1.27
and Theorem 1.40, Theorem 1.27 and Theorem 1.40 have been used several times in the literature
to analyze the global behavior of the component of nodal solutions emanating from u = 0 in wide
classes of elliptic boundary value problems for equations and systems [23,17,3,21]. In 2008, Girg and
Takáč proved a Dancer-type bifurcation theorem (Theorem 3.7, [13]) in which the continua bifurcate
from the principle eigenvalue for a high-dimensional p-Laplacian equation.

In this paper, we will also establish a Dancer-type bifurcation theorem for one-dimensional p-
Laplacian problem {

−(
ϕp

(
u′))′ = μm(t)ϕp(u) + g(t, u;μ), t ∈ (0,1),

u(0) = u(1) = 0,
(1.1)

where ϕp(s) = |s|p−2s, 1 < p < +∞, μ is a positive parameter, m(t) � 0 and m(t) �≡ 0 for t ∈ (0,1)

is a continuous weight function, g : (0,1) × R × R → R satisfies a Carathéodory condition in the first
two variables and

lim|s|→0

g(t, s;μ)

|s|p−1
= 0 (1.2)

uniformly for a.e. t ∈ (0,1) and μ on bounded sets.
Under the condition of (1.2), we will show that (μk(p),0) is a bifurcation point of (1.1) and

there are two distinct unbounded continua, C+
k and C−

k , consisting of the bifurcation branch Ck from
(μk(p),0), where μk(p) is the k-th eigenvalue of the linear problem corresponding to (1.1).

The proofs are based on the local properties of solutions of (1.1) bifurcating from (μk(p),0) (see
Lemma 3.1). Although the proof of the above result follows the same steps as do for the semilinear
case from [6] and the high-dimensional p-Laplacian case from [13], their methods cannot be applied
directly to obtain our result. Indeed, the proof of Lemma 3 of [6] strictly depends on the linear
property of operator L and needs some smooth property, to guarantee l(H) is well defined, of the
perturbation function H . And the proof of Lemma 5.8 of [13] strictly depends on properties, such as
Poincaré inequality holding, of the principle eigenvalue λ1 of high-dimensional p-Laplacian eigenvalue
problem, which are used to get local asymptotic analysis for λ near λ1. Thus, we construct a new
perturbation function which is different from those in [6] and [13]. Then, using the local properties
of solutions of (1.1) bifurcating from (μk(p),0) (see Lemma 3.1) and functional analysis method, we
can obtain a Dancer-type bifurcation result for (1.1).

Based on the unilateral global bifurcation result (see Theorem 3.2), we investigate the existence of
nodal solutions for the following one-dimensional p-Laplacian 0-Dirichlet problem{(

ϕp
(
u′))′ + f (t, u) = 0, t ∈ (0,1),

u(0) = u(1) = 0,
(1.3)

where f ∈ C([0,1] × R).
It is well known that when f (t, u) = λϕp(u), problem (1.3) has a nontrivial solution if and only if

λ is an eigenvalue of the 0-Dirichlet problem{(
ϕp

(
u′))′ + λϕp(u) = 0, t ∈ (0,1),

u(0) = u(1) = 0.
(1.4)
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In particular, when λ = λk(p) = (kπp)p , there exists solution u(t) = α
kπp

sinp(kπpt) of (1.4), where

πp = 2π(p−1)1/p

p sin(π/p)
, α = u′(0) and sinp is the p-sine function (see [9] or [33]). It is obvious that u+

k =
α

kπp
sinp(kπpt) when α > 0 and u−

k = α
kπp

sinp(kπpt) when α < 0, such that u+
k has exactly k − 1

zeros in (0,1) and is positive near 0, and u−
k has exactly k − 1 zeros in (0,1) and is negative near 0.

When p = 2, Ma and Thompson [23] considered the interval of r, for which there exist nodal
solutions of the boundary value problem{

u′′ + rm(t) f (u) = 0, t ∈ (0,1),

u(0) = u(1) = 0,
(1.5)

under some suitable assumptions on f and m. Using the bifurcation theory of Rabinowitz [28,29],

they proved that if λ̃k
f∞ < r <

λ̃k
f0

or λ̃k
f0

< r <
λ̃k
f∞ , (1.5) has two solutions u+

k and u−
k such that u+

k

has exactly k − 1 zeros in (0,1) and is positive near 0, and u−
k has exactly k − 1 zeros in (0,1) and

is negative near 0, where λ̃k is the k-th eigenvalue of linear problem of (1.5), f0 = lim|s|→0
f (s)

s ,

f∞ = lim|s|→+∞ f (s)
s . The idea of using bifurcation methods to study the solvability of nonlinear

boundary value problems has been applied to study some two-point, three-point and periodic bound-
ary value problems, see [22,24,25]. The results they obtained extended some well-known theorems of
the existence of positive solutions for related problems [15,11].

For p �= 2, M. Del Pino, M. Elgueta and R. Manásevich [9] investigated the existence of solutions
for (1.3) using the Leray–Schauder degree by the deformation along p.

Of course, the natural question is that whether nodal solutions exist for (1.3) if f (x,s)
ϕp(s) crosses

λk(p)? In this paper, we will provide positive answer for this question (see Section 4).
In high-dimensional case, Girg and Takáč [13] proved a Dancer-type bifurcation theorem (Theo-

rem 3.7, [13]) in which the continua bifurcate from the principle eigenvalue for a quasilinear elliptic
eigenvalue problem. Based on their results, we will investigate the existence of constant sign solutions
for the following p-Laplacian 0-Dirichlet problem{−div

(
ϕp(∇u)

) = f (x, u), in Ω,

u = 0, on ∂Ω,
(1.6)

where Ω ⊂ R
N with N � 2 is a bounded smooth domain and f ∈ C(Ω × R).

By a solution of (1.6) we understand u ∈ W 1,p
0 (Ω) satisfying (1.6) in the weak sense, i.e., such that∫

Ω

|∇u|p−2∇u∇v dx =
∫
Ω

f (x, u)v dx

for all v ∈ W 1,p
0 (Ω). It is well known that when f (x, u) = λϕp(u), problem (1.6) has a nontrivial

solution if and only if λ is an eigenvalue of the 0-Dirichlet problem{−div
(
ϕp(∇u)

) = λϕp(u), in Ω,

u = 0, on ∂Ω.
(1.7)

In particular, there exist a positive solution and a negative one when λ = λ1(p), where λ1(p) is the
principle eigenvalue of (1.7).

Under the assumptions that f (x,s)
ϕp(s) crosses λ1(p), X.L. Fan, Y.Z. Zhao and G.F. Huang [12] proved

that problem (1.6) possesses two solutions including at least one nontrivial solution. In [16], using the
topological degree argument, Y.S. Huang and H.S. Zhou obtained the existence of positive solutions for
(1.6) in the N-dimensional case under the similar assumptions as in [12].
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Again, one will ask the question that whether a positive solution and a negative one exist for (1.6)
if f (x,s)

ϕp(s) crosses λ1(p)? In this paper, we also give a positive answer for this question (see Section 5).

The rest of this paper is arranged as follows. In Section 2, we establish the Rabinowitz-type global
bifurcation theory for (1.1). In Section 3, we establish the unilateral global bifurcation theory for (1.1).
In Section 4, we prove the existence of nodal solutions for (1.3) with crossing nonlinearity. In Sec-
tion 5, we prove the existence of constant sign solutions for (1.6) with crossing nonlinearity.

2. Global bifurcation phenomena for (1.1)

Let E be the Banach space C1
0[0,1] with the norm

‖u‖ = max
{‖u‖∞,‖u′‖∞

}
.

Let Y = L1(0,1) with its usual normal ‖ · ‖L1 .
We start by considering the following auxiliary problem

{(
ϕp

(
u′))′ = h, a.e. t ∈ (0,1),

u(0) = u(1) = 0
(2.1)

for a given h ∈ L1(0,1). By a solution of problem (2.1), we understand a function u ∈ E with ϕp(u′)
absolutely continuous which satisfies (2.1). Problem (2.1) is equivalently written as

u(t) = G p(h)(t) :=
t∫

0

ϕ−1
p

(
a(h) +

s∫
0

h(τ )dτ

)
ds,

where a : Y → R is a continuous function satisfying

1∫
0

ϕ−1
p

(
a(h) +

s∫
0

h(τ )dτ

)
ds = 0.

It is known that G p : Y → E is continuous and maps equi-integrable sets of Y into relatively compacts
of E . One may refer to Lee and Sim [17] and Manásevich and Mawhin [26] for detail.

The bifurcation points of (1.1) are related to the eigenvalues of the problem

{(
ϕp

(
u′(t)

))′ + μm(t)ϕp
(
u(t)

) = 0, a.e. in (0,1),

u(0) = u(1) = 0.
(2.2)

It is well known that the set of all eigenvalues of problem (2.2) is an infinite sequence of simple
eigenvalues

0 < μ1(p) < μ2(p) < · · · < μk(p) < · · · , lim
k→+∞

μk(p) = +∞,

and the eigenfunction ϕk corresponding to μk(p) has exactly k − 1 simple zeros in (0,1) (see, e.g.,
[17,2]).
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We define the operator T p
μ : E → E by

T p
μ(u)(t) =

t∫
0

ϕ−1
p

(
a
(−μmϕp

(
u(s)

)) −
s∫

0

μm(τ )ϕp
(
u(τ )

)
dτ

)
ds =: G p

(−μmϕp(u)
)
(t).

Then T p
μ : E → E is compact and problem (2.2) is equivalent to

u = T p
μ(u).

It is very known that I − T p
μ is completely continuous vector field in C1[0,1]. Thus the Leray–

Schauder degree dLS(I − T p
μ, Br(0),0) is well defined for arbitrary r-ball Br(0) and μ �= μk , k ∈ N.

Lemma 2.1. (See [17].) Let {μk(p)}k∈N be the sequence of eigenvalues of (2.2). Let μ be a constant with
μ �= μk(p) for all k ∈ N. Then for arbitrary r > 0,

deg
(

I − T p
μ, Br(0),0

) = (−1)β,

where β is the number of eigenvalues μk(p) of problem (2.2) less than μ.

Define the Nemitskii operators H : R × E → Y by

H(μ, u)(t) := −μm(t)ϕp
(
u(t)

) − g
(
t, u(t);μ)

.

Then it is clear that H is continuous operator which sends bounded sets of R × E into the equi-
integrable sets of Y and problem (1.1) can be equivalently written as

u = G p ◦ H(μ, u) := F (μ, u).

F is completely continuous in R × E → E and F (μ,0) = 0, ∀μ ∈ R.

Theorem 2.1. Assume (1.2) holds. Then for p > 1, μk(p) is a bifurcation point of (1.1) and the associated
bifurcation branch Ck in R × E whose closure contains (μk(p),0) is either unbounded or contains a pair
(μ,0) where μ is an eigenvalue of (2.2) and μ �= μk(p).

Proof. From now on, for simplicity, we write μk = μk(p). Suppose that (μk,0) is not a bifurcation
point of problem (1.1). Then there exist ε > 0, ρ0 > 0 such that for |μ−μk| � ε and 0 < ρ < ρ0 there
is no nontrivial solution of the equation

u − F (μ, u) = 0

with ‖u‖ = ρ . From the invariance of the degree under a compact homotopy we obtain that

deg
(

I − F (μ, ·), Bρ(0),0
) ≡ constant (2.3)

for μ ∈ [μk − ε,μk + ε].
By taking ε smaller if necessary, we can assume that there is no eigenvalue of (2.2) in (μk,μk +ε].

Fix μ ∈ (μk,μk + ε]. We claim that the equation

u − G p
(−μm(t)ϕp

(
u(t)

) − sg
(
t, u(t);μ)) = 0 (2.4)
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has no solution u with ‖u‖ = ρ for every s ∈ [0,1] and ρ sufficiently small. Suppose on the contrary,
let {un} be the solution of (2.4) with ‖un‖ → 0 as n → +∞.

Let vn := un‖un‖ , then vn should be a solution of the problem

vn(t) = G p

(
−μm(t)ϕp

(
vn(t)

) − s
g(t, un(t);μ)

‖un‖p−1

)
. (2.5)

Let

g̃(t, u;μ) = max
0�|s|�u

∣∣g(t, s;μ)
∣∣ for a.e. t ∈ (0,1) and μ on bounded sets,

then g̃ is nondecreasing with respect to u and

lim
u→0+

g̃(t, u;μ)

|u|p−1
= 0. (2.6)

Further it follows from (2.6) that

g(t, u;μ)

‖u‖p−1
� g̃(t, |u|;μ)

‖u‖p−1
� g̃(t,‖u‖∞;μ)

‖u‖p−1
� g̃(t,‖u‖;μ)

‖u‖p−1
→ 0, as ‖u‖ → 0 (2.7)

uniformly for a.e. t ∈ (0,1) and μ on bounded sets.
By (2.5), (2.7) and the compactness of G p , we obtain that for some convenient subsequence

vn → v0 �= 0 as n → +∞. Now v0 verifies the equation

−(
ϕp

(
v ′

0

))′ = μm(t)ϕp(v0)

and ‖v0‖ = 1. This implies that μ is an eigenvalue of (2.2). This is a contradiction. From the invariance
of the degree under homotopies and Lemma 2.1 we then obtain

deg
(

I − F (μ, ·), Br(0),0
) = deg

(
I − T p

μ, Br(0),0
) = (−1)k. (2.8)

Similarly, for μ ∈ [μk − ε,μk) we find that

deg
(

I − F (μ, ·), Br(0),0
) = (−1)k−1. (2.9)

Relations (2.8) and (2.9) contradict (2.3) and hence (μk,0) is a bifurcation point of problem (1.1).
By standard arguments in global bifurcation theory (see [29]), we can show the existence of a

global branch of solutions of (1.1) emanating from (μk,0). �
We finally prove that the first choice of the alternative of Theorem 2.1 is the only possibility. In

what follows, we use the terminology of Rabinowitz [30]. Let S+
k denote the set of functions in E

which have exactly k − 1 interior nodal (i.e. non-degenerate) zeros in (0,1) and are positive near
t = 0, and set S−

k = −S+
k , and Sk = S+

k ∪ S−
k . It is clear that S+

k and S−
k are disjoint and open in E

(also see [27]). Finally, let Φ±
k = R × S±

k and Φk = R × Sk under the product topology.

Lemma 2.2. If (μ, u) is a solution of (1.1) and u has a double zero, then u ≡ 0.
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Proof. Let u be a solution of (1.1) and t∗ ∈ [0,1] be a double zero. We note that

u(t) =
t∗∫

t

ϕ−1
p

( t∗∫
s

(−μm(τ )ϕp
(
u(τ )

) − g
(
τ , u(τ );μ))

dτ

)
ds.

First, we consider t ∈ [0, t∗]. Then

∣∣u(t)
∣∣ �

t∗∫
t

ϕ−1
p

(∣∣∣∣∣
t∗∫

s

(−μm(τ )ϕp
(
u(τ )

) − g
(
τ , u(τ );μ))

dτ

∣∣∣∣∣
)

ds

� ϕ−1
p

( t∗∫
t

∣∣μm(τ )ϕp
(
u(τ )

) + g
(
τ , u(τ );μ)∣∣dτ

)
,

furthermore,

ϕp
(∣∣u(t)

∣∣) �
t∗∫

t

∣∣μm(τ )ϕp
(
u(τ )

) + g
(
τ , u(τ );μ)∣∣dτ

�
t∗∫

t

∣∣∣∣μm(τ ) + g(τ , u(τ );μ)

ϕp(u(τ ))

∣∣∣∣ϕp
(
u(τ )

)
dτ

�
t∗∫

t

(
μ

∣∣m(τ )
∣∣ +

∣∣∣∣ g(τ , u(τ );μ)

ϕp(u(τ ))

∣∣∣∣)ϕp
(∣∣u(τ )

∣∣)dτ .

In view of (1.2), for any ε > 0, there exists a constant δ > 0 such that∣∣g(t, s;μ)
∣∣ � εϕp

(|s|)
uniformly with respect to a.e. t ∈ (0,1) and fixed μ when |s| ∈ [0, δ]. Hence,

ϕp
(∣∣u(t)

∣∣) �
t∗∫

t

(
|μ| max

t∈[0,1]m(t) + ε + max
s∈[δ,‖u‖∞]

∣∣∣∣ g(τ , s;μ)

ϕp(s)

∣∣∣∣)ϕp
(∣∣u(τ )

∣∣)dτ .

By the Gronwall–Bellman inequality [4], we get u ≡ 0 on [0, t∗]. Similarly, using a modification of
Gronwall–Bellman inequality [14, Lemma 2.2], we can get u ≡ 0 on [t∗,1] and the proof is com-
plete. �
Lemma 2.3. The last alternative of Theorem 2.1 is impossible if Ck ⊂ Φk ∪ {(μk,0)}.

Proof. Suppose on the contrary, if there exists (μm, um) → (μ j,0) when m → +∞ with (μm, um) ∈
Ck , um �≡ 0 and j �= k. Let vm := um‖um‖ , then vm should be a solution of the problem

vm = G p

(
−μmm(t)ϕp

(
vm(t)

) − g(t, um(t);μm)

‖u (t)‖p−1

)
. (2.10)
m
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By (2.7), (2.10) and the compactness of G p we obtain that for some convenient subsequence
vm → v0 �= 0 as m → +∞. Now v0 verifies the equation

−(
ϕp

(
v ′

0

))′ = μ jm(t)ϕp(v0)

and ‖v0‖ = 1. Hence v0 ∈ S j which is an open set in E , and as a consequence for some m large
enough, vm ∈ S j , and this is a contradiction. �
Theorem 2.2. Let (1.2) hold, then from each (μk(p),0) it bifurcates an unbounded continuum Ck of solutions
to problem (1.1), with exactly k − 1 simple zeros, where μk is the eigenvalue of problem (2.2).

Proof. Taking into account Theorem 2.1 and Lemma 2.3, we only need to prove that Ck ⊂ Φk ∪
{(μk,0)}.

Suppose Ck �⊂ Φk ∪ {(μk,0)}. Then there exists (μ, u) ∈ Ck ∩ (R × ∂ Sk) such that (μ, u) �= (μk,0),
u /∈ Sk , and (μn, un) → (μ, u) with (μn, un) ∈ Ck ∩ (R × Sk). Since u ∈ ∂ Sk , by Lemma 2.2, u ≡ 0. Let
wn := un‖un‖ , then wn should be a solution of the problem

wn = G p

(
μnm(t)ϕp

(
wn(t)

) + g(t, un(t);μn)

‖un(t)‖p−1

)
. (2.11)

By (2.7), (2.11) and the compactness of G p we obtain that for some convenient subsequence
wn → w0 �= 0 as n → +∞. Now w0 verifies the equation

−(
ϕp

(
w ′

0

))′ = μm(t)ϕp(w0)

and ‖w0‖ = 1. Hence μ = μ j , for some j �= k. Therefore, (μn, un) → (μ j,0) with (μn, un) ∈ Ck ∩ (R ×
Sk). This contradicts Lemma 2.3. �
3. Unilateral global bifurcation phenomena for (1.1)

In this section, we will prove more details about the bifurcation from Theorem 2.2. Let E = R × E ,
Φ(μ, u) := u − F (μ, u) and

S := {
(μ, u) ∈ E: Φ(μ, u) = 0, u �= 0

}E

.

In order to formulate and prove main results of this section, it is convenient to introduce Dancer’s [6]
and López-Gómez’s notations [20]. Given any μ ∈ R and 0 < s < +∞, we consider an open neighbor-
hood of (μ,0) in E defined by

Bs(μk,0) := {
(μ, u) ∈ E: ‖u‖ + |μ − μk| < s

}
.

And Bs(0) denotes {u ∈ E: ‖u‖ < s}. Let E0 be a closed subspace of E such that

E = span{ϕk} ⊕ E0.

According to the Hahn–Banach theorem, there exists a linear functional l ∈ E∗ , here E∗ denotes the
dual space of E , such that

l(ϕk) = 1 and E0 = {
u ∈ E: l(u) = 0

}
.
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Finally, for any 0 < η < 1, we define

Kη := {
(μ, u) ∈ E:

∣∣l(u)
∣∣ > η‖u‖}.

Since

u �→ ∣∣l(u)
∣∣ − ‖u‖

is continuous, Kη is an open subset of E consisting of two disjoint components K +
η and K −

η , where

K +
η := {

(μ, u) ∈ E: l(u) > η‖u‖},
K −

η := {
(μ, u) ∈ E: l(u) < −η‖u‖}.

In particular, both K +
η and K −

η are convex cones, K −
η = −K +

η , and νtϕk ∈ K ν
η for every t > 0, where

ν ∈ {+,−}.
Applying the similar method to prove [20, Lemma 6.4.1] with obvious changes, we may obtain the

following result, which localizes the possible solutions of (1.1) bifurcating from (μk,0).

Lemma 3.1. For every η ∈ (0,1) there exists a number δ0 > 0 such that for each 0 < δ < δ0 ,((
S \ {

(μk,0)
}) ∩ Bδ(μk,0)

) ⊂ Kη.

Moreover, for each

(μ, u) ∈ (
S \ {

(μk,0)
}) ∩ (

Bδ(μk,0)
)
,

there are s ∈ R and unique y ∈ E0 such that

u = sϕk + y and |s| > η‖u‖.
Furthermore, for these solutions (μ, u),

μ = μk + o(1) and y = o(s)

as s → 0.

Remark 3.1. From the proof of Lemma 6.4.1 of [20], we can see that if g(t, u;μ) is replaced by
gn(t, u;μ) which satisfies

lim‖u‖→0

gn(t, u;μ)

‖u‖p−1
= 0

uniformly for all n ∈ N, then δ0 can be chosen uniformly with respect to n.

Let δ > 0 be the constant from Lemma 3.1. For 0 < ε � δ we define Dν
μk,ε

to be the component

of {(μk,0)} ∪ (S ∩ Bε ∩ K ν
η ) containing (μk,0), Cν

μk,ε
to be the component of Ck \ D−ν

μk,ε containing
(μk,0), and Cν

k to be the closure of
⋃

0<ε�δ Cν
μk,ε

. Clearly, Cν
k is connected. Thanks to Lemma 3.1, the

definition of Cν
k is independent from the choice of η and Ck = C+

k ∪ C−
k .

The following unilateral global bifurcation result is a close analogue of Dancer’s result [6, Theo-
rem 2] shown originally for abstract semilinear equations.
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Theorem 3.1. Either C+
k and C−

k are both unbounded, or else C+
k ∩ C−

k �= {(μk,0)}.

As in the semilinear case in Dancer [6, Theorem 2], our proof of Theorem 3.1 is based on the
following three lemmata.

Lemma 3.2. Suppose δ1, δ2 > 0 such that 0 < δ1 + δ2 < δ and Φ(μ, u) �= 0 if ‖u‖ = δ1 and |μ −μk| � δ2 . If
0 < σ < δ2 and β(σ ) is sufficiently small and positive, then

deg
(
Φ(μk + σ , ·), W ν,0

) − deg
(
Φ(μk − σ , ·), W ν,0

) = (−1)k−1,

where W ν = {u ∈ E: (μ, u) ∈ K ν
η , β(σ ) < ‖u‖ < δ1}.

Proof. Recall that u = l(u)ϕk + y. We define

ĝ(t, u;μ) =

⎧⎪⎨⎪⎩
g(t, u;μ) if l(u) � −η‖u‖;
−l(u)
η‖u‖ g(t,−η‖u‖ϕk + y;μ) if −η‖u‖ < l(u) � 0;
−g(t,−u;μ) if l(u) > 0

and

Φ̂(μ, u) = u − G p
(−μm(t)ϕp

(
u(t)

) − ĝ
(
t, u(t);μ))

.

Then the mapping Φ̂(μ, u) is odd with respect to u.
By our hypothesis and Lemma 3.1, the equation Φ(μk + σ , u) = 0 has no solution in

Bδ1 \ (
W + ∪ W − ∪ Bβ

)
.

By Lemma 3.1, Φ̂(μk + σ , u) = Φ(μk + σ , u) on ∂ Bδ1 ∪ ∂ Bβ . It follows that

deg
(
Φ̂(μk + σ , ·), Bδ1 ,0

) = deg
(
Φ̂(μk + σ , ·), Bβ,0

)
+ deg

(
Φ̂(μk + σ , ·), W +,0

) + deg
(
Φ̂(μk + σ , ·), W −,0

)
.

The oddness of Φ̂(μk + σ , ·) and the definition of the degree in Schwartz [31] ensure that

deg
(
Φ̂(μk + σ , ·), W +,0

) = deg
(
Φ̂(μk + σ , ·), W −,0

)
.

And the definition of Φ̂ ensures that

deg
(
Φ(μk + σ , ·), W −,0

) = deg
(
Φ̂(μk + σ , ·), W −,0

)
.

Thus

2 deg
(
Φ(μk + σ , ·), W −,0

) = deg
(
Φ̂(μk + σ , ·), Bδ1 ,0

) − deg
(
Φ̂(μk + σ , ·), Bβ,0

)
. (3.1)

Analogously,

2 deg
(
Φ(μk − σ , ·), W −,0

) = deg
(
Φ̂(μk − σ , ·), Bδ1 ,0

) − deg
(
Φ̂(μk − σ , ·), Bβ,0

)
. (3.2)



2458 G. Dai, R. Ma / J. Differential Equations 252 (2012) 2448–2468
By Lemma 3.1 and the definition of Φ̂ , we have

deg
(
Φ̂(μk − σ , ·), Bβ,0

) = deg
(
Φ(μk − σ , ·), Bβ,0

)
and

deg
(
Φ̂(μk + σ , ·), Bβ,0

) = deg
(
Φ(μk + σ , ·), Bβ,0

)
.

As in the proof of Theorem 2.1 one can show that

deg
(
Φ(μk − σ , ·), Bβ,0

) = (−1)k−1 and deg
(
Φ(μk + σ , ·), Bβ,0

) = (−1)k. (3.3)

From Lemma 3.1 and the definition of Φ̂ , we can see that

deg
(
Φ̂(μk + σ , ·), Bδ1 ,0

) = deg
(
Φ(μk + σ , ·), Bδ1 ,0

)
and

deg
(
Φ̂(μk − σ , ·), Bδ1 ,0

) = deg
(
Φ(μk − σ , ·), Bδ1 ,0

)
.

By our assumptions, for μ ∈ [μk − σ ,μk + σ ] the homotopy Φ(μ, ·) is admissible on Bδ1 . The homo-
topy invariance of the degree ensures that

deg
(
Φ(μk + σ , ·), Bδ1 ,0

) = deg
(
Φ(μk − σ , ·), Bδ1 ,0

)
.

Subtracting (3.1) from (3.2) and using (3.3), we arrive at

deg
(
Φ(μk + σ , ·), W −,0

) − deg
(
Φ(μk − σ , ·), W −,0

) = (−1)k−1. �
Define T −

μk,ε
to be the component of Ck \ (Bε(μk,0) ∩ K +

η ) containing (μk,0).

Lemma 3.3. If 0 < ε < δ, zero is an isolated solution of Φ(μk, u) = 0, and T −
μk,ε

is bounded in E, then

∂Bε(μk,0) ∩ K +
η ∩ T −

μk,ε
�= ∅.

Proof. Proof of Lemma 2 of [6] is also valid for the quasilinear case, and therefore the proof is omit-
ted. �
Lemma 3.4. The statement of Lemma 3.3 holds without the assumption that zero is an isolated solution of
Φ(μk, u) = 0.

Proof. For any n ∈ N, choose continuous functions fn : [0,+∞) → [0,1] such that fn(s) = ϕp(s) for
0 � |s| � 1

2n and fn(s) = 0 for |s| � 1
n . Define

Φn(μ, u) := u − G p
(−μm(t)ϕp

(
u(t)

) − g
(
t, u(t);μ) − fn

(
l
(
u(t)

))∥∥u(t)
∥∥p)

.

Since lim‖u‖→0
g(t,u;μ)

p−1 = 0 and the definition of fn , we have
‖u‖
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lim‖u‖→0

g(t, u;μ) + fn(l(u))‖u‖p

‖u‖p−1
= 0 for all n ∈ N. (3.4)

Let

Sn := {
(μ, u) ∈ E : Φn(μ, u) = 0, u �= 0

}E

,

using Remark 3.1 and (3.4), we can show that

((
Sn \ {

(μk,0)
}) ∩ Bδ(μk,0)

) ⊂ Kη.

Moreover, for each

(μ, u) ∈ (
Sn \ {

(μk,0)
}) ∩ Bδ(μk,0),

there exist s ∈ R and unique y ∈ E0 such that

u = sϕk + y and |s| > η‖u‖.

We claim that zero is an isolated solution of Φn(μk, u) = 0 for each positive integer n.
Suppose on the contrary, let u is a nontrivial solution of Φn(μk, u) = 0, such that

0 < ‖u‖ := b < δ.

Thus, u = sϕk + y with s = l(u), y ∈ E0 and y = o(s). Let v = u
s . It follows that lims→0 v = ϕk . Conse-

quently, we have

v + y

s
= G p

(
−μkm(t)ϕp

(
v(t) + y(t)

s

)
− g(t, u(t);μk) + fn(l(u(t)))‖u(t)‖p

ϕp(s)

)
. (3.5)

Letting s → 0 on the both sides of (3.5) and using the continuous property of G p , we can obtain that

ϕk = G p

(
−μkm(t)ϕp

(
ϕk(t)

) − lim
s→0

g(t, u(t);μk) + fn(l(u(t)))‖u(t)‖p

ϕp(s)

)
,

i.e.,

−(
ϕp

(
ϕ′

k

))′ = μkm(t)ϕp(ϕk) + lim
s→0

g(t, u;μk) + fn(l(u))‖u‖p

ϕp(s)
.

Therefore,

lim
s→0

g(t, u;μk) + fn(l(u))‖u‖p

ϕp(s)
= 0. (3.6)

While, in view of (1.2) and the definition of fn , we obtain that
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lim
s→0

g(t, u;μk) + fn(l(u))‖u‖p

ϕp(s)
= lim

s→0

g(t, u;μk)

ϕp(s)
+ lim

s→0

fn(l(u))‖u‖p

ϕp(s)

= lim
s→0

(
g(t, u;μk)

ϕp(u)
· ϕp(u)

ϕp(s)

)
+ bp

= lim
s→0

g(t, u;μk)

ϕp(u)
· ϕp(ϕk) + bp

= bp �= 0.

This contradicts (3.6).
Now let 0 < ε < δ and assume that T −

μk,ε
is bounded in E. Let Tn be a component of Sn \

(Bε(μk,0) ∩ K +
η ) containing (μk,0). Suppose that the conclusion of our lemma is false. This means

that

∂Bε(μk,0) ∩ K +
η ∩ T −

μk,ε
= ∅.

The definition of T −
μk,ε

implies that

Bε(μk,0) ∩ K +
η ∩ T −

μk,ε
= ∅.

Since T −
μk,ε

is bounded, we can find R > 0 such that T −
μk,ε

⊂ BR(μk,0).
Combining these facts with a classical topological result from Whyburn [32, Chap. I, State-

ment (9.3)], we conclude that

K := (
S ∩ BR(μk,0)

)∖ (
Bε(μk,0) ∩ K +

η

) = k1 ∪ k2,

where k1, k2 are disjoint compact subsets of K , such that T −
μk,ε

⊂ k1 and

(
S ∩ ∂BR(μk,0)

) ∪ (
S ∩ ∂Bε(μk,0) ∩ K +

η

) ⊂ k2.

Consequently, there exists a bounded open set U in E such that k1 ⊂ U , k2 ∩ U = ∅, (μk,0) ∈ U ,
(∂U ∩ S) ⊂ (Bε(μk,0) ∩ K +

η ) and ∂Bε(μk,0) ∩ K +
η ∩ U = ∅.

Applying Lemma 3.3 to Φn , we have

∂Bε(μk,0) ∩ K +
η ∩ Tn �= ∅ for each n ∈ N.

By the connectedness of Tn , there exists an (un,μn) ∈ ∂U ∩ Tn . By choosing a subsequence if nec-
essary, we may assume that un ⇀ u∗ in E and μn → μ∗ in R. Letting n → +∞ on the both of
Φn(μn, un) = 0 and using the compact and continuous properties of G p , we can show Φ(μ∗, u∗) = 0.
By the closed property of ∂U , we conclude that (μ∗, u∗) ∈ ∂U ∩ Tn . In view of the definition of Tn ,
we can obtain that

(
μ∗, u∗) ∈ (

S ∩ BR(μk,0)
)∖ (

Bε(μk,0) ∩ K +
η

) ⊂ k2.

This contradicts ∂U ∩ k2 = ∅. �
Proof of Theorem 3.1. Define T −

μk
to be the closure of

⋃
0<ε�δ T −

μk,ε
. Then T −

μk
⊆ C−

k . Suppose C−
k is

bounded. By Lemma 3.4, for any 0 < ε � δ, we have
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∂Bε(μk,0) ∩ K +
η ∩ T −

μk
�= ∅.

It follows that

(
T −
μk

∖(
Bδ(μk,0) ∩ K −

η

)) ∩ ∂Bε(μk,0) �= ∅.

Furthermore, for every open set U of (μk,0) and U ⊆ Bδ(μk,0), the above implies that(
T −
μk

\ (
Bδ(μk,0) ∩ K −

η

)) ∩ ∂U �= ∅. (3.7)

Let L = (T −
μk

\ (Bδ(μk,0)∩ K −
η )) and T be the component of T −

μk
\ (Bδ(μk,0)∩ K −

η ) containing (μk,0).

Let Uρ be a ρ-neighborhood of T and K = Uρ ∩ L.
We claim that T ∩ ∂Bδ(μk,0) �= ∅.
In fact, if T ∩ ∂Bδ(μk,0) = ∅, Lemma 1.1 implies that K = K1 ∪ K2, where K1, K2 are disjoint

compact subsets of K containing T and ∂Bδ(μk,0) ∩ K , respectively. Let O be any ε-neighborhood in
E of K1. It is obvious that O ⊆ Bδ(μk,0) and ∂O ∩ L = ∅. This is a contradiction.

By the definition of C+
k and the fact T ∩ ∂Bδ(μk,0) �= ∅, we have

C+
μk

⊇ C+
μk,δ

⊇ Cμk \ (
(μk,0) ∪ (

S ∩ (
Bδ(μk,0) ∩ K −

η

))) ⊇ T .

Therefore, C+
k ∩ C−

k �= {(μk,0)}. Similar argument could be used for C+
k . The proof is complete. �

Remark 3.2. From the proof of Theorem 3.1, we can see that, if C+
k or C−

k is bounded, there ex-
ists a connected set Q ⊆ (C+

k ∩ C−
k ) \ {(μk,0)} such that Q ∩ (R × (E0 \ {0})) �= ∅. Indeed, we can

show that T ∩ ∂Bδ(μk,0) |E0 �= ∅, where ∂Bδ(μk,0) |E0 denotes the restriction of ∂Bδ(μk,0) on E0.
Suppose on the contrary, if T ∩ ∂Bδ(μk,0) |E0= ∅, T ∩ ∂Bδ(μk,0) �= ∅ implies that u = sϕk for any
u ∈ T ∩ ∂Bδ(μk,0). However, that is impossible if we take |s| small enough. Therefore, the result of
Theorem 3.1 is stronger than that of Theorem 6.4.3 of [20].

Connecting Theorem 2.2 with Theorem 3.1, we can easily deduce the following unilateral global
bifurcation result.

Theorem 3.2. Let ν ∈ {+,−}. Then Cν
k is unbounded in R × E and

Cν
k ⊂ {

(μk,0)
} ∪ (

R × Sν
k

)
or Cν

k ⊂ {
(μk,0)

} ∪ (
R × S−ν

k

)
. (3.8)

Proof. By Theorem 2.2, we can get (3.8) easily. We only need to prove that both C+
k and C−

k are
unbounded. Suppose on the contrary, without loss of generality, we may suppose that C−

k is bounded.
By Theorem 3.1, we know that (C−

k ∩ C+
k ) \ {(μk,0)} �= ∅. Therefore, in view of (3.8), there exists

(μ∗, u∗) ∈ C−
k ∩ C+

k such that (μ∗, u∗) �= (μk,0) and u∗ ∈ S+
k ∩ S−

k . This contradicts the definitions of
S+

k and S−
k . �

Remark 3.3. It is easy to see that the results of Theorem 3.2 remain true even if “m(t) is a continuous
weight function” is substituted by “m(t) is a measurable weight function”.

4. Nodal solutions of one-dimensional p-Laplacian with crossing nonlinearity

We use Theorem 3.2 to prove the existence of nodal solutions for problem (1.3) with crossing
nonlinearity.
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In this section, we suppose that

(H1) λk(p) � a(t) ≡ lim|s|→+∞ f (t,s)
ϕp(s) uniformly on [0,1], and the inequality is strict on some subset of posi-

tive measure in (0,1);
(H2) 0 � lim|s|→0

f (t,s)
ϕp(s) ≡ c(t) � λk(p) uniformly on [0,1], and all the inequalities are strict on some subset

of positive measure in (0,1);
(H3) f (t, s)ϕp(s) > 0 for a.e. t ∈ (0,1) and s �= 0.

Remark 4.1. From (H1)–(H3), we can see that there exist a positive constant � and a subinterval
[α,β] of (0,1) such that f (t,s)

ϕp(s) � � for all t ∈ [α,β] and s �= 0.

The main results of this section are the following:

Theorem 4.1. Suppose that f (t, u) satisfies (H1), (H2) and (H3), then problem (1.3) possesses two solutions
u+

k and u−
k such that u+

k has exactly k − 1 zeros in (0,1) and is positive near 0, and u−
k has exactly k − 1 zeros

in (0,1) and is negative near 0.

Similarly, we also have the following:

Theorem 4.2. Suppose that f (t, u) satisfies (H3) and

(H ′
1) λk(p) � a(x) ≡ lim |s| → +∞ f (t,s)

ϕp(s) � 0 uniformly on [0,1], and all the inequalities are strict on some

subset of positive measure in (0,1);
(H ′

2) lim|s|→0
f (t,s)
ϕp(s) ≡ c(x) � λk(p) uniformly on [0,1], and the inequality is strict on some subset of positive

measure in (0,1), then problem (1.3) possesses two solutions u+
k and u−

k such that u+
k has exactly k − 1

zeros in (0,1) and is positive near 0, and u−
k has exactly k − 1 zeros in (0,1) and is negative near 0.

Remark 4.2. We would like to point out that even in the semilinear case, the assumptions (H1) and
(H2) are weaker than the corresponding conditions of Theorem 1.1 of [23]. In fact, if we let f (t, s) ≡
rm(t) f (s), then we can get lim|s|→+∞ f (t,s)

ϕp(s) ≡ rm(t) f∞ := a(t) and lim|s|→0
f (t,s)
ϕp(s) ≡ rm(t) f0 := c(t). By

the strict decreasing of λ̃k( f ) with respect to weight function f (see [2]), we can show that our con-

dition c(t) � λk(p) � a(t)(≡ a(t)) is equivalent to the condition λ̃k
f∞ < r <

λ̃k
f0

. Similarly, our condition

c(t) � λk(p) � a(t)(≡ a(t)) is equivalent to the condition λ̃k
f0

< r <
λ̃k
f∞ . Therefore, Theorem 1.1 of [2] is

the corollary of Theorems 4.1 and 4.2, even in the case of p = 2.

We only prove Theorem 4.1, since the proof of Theorem 4.2 is similar.

Proof of Theorem 4.1. Firstly, we study the bifurcation phenomena for the following p-Laplacian
eigenvalue problem with crossing nonlinearity{(

ϕp
(
u′))′ + μ f (t, u) = 0, a.e. t ∈ (0,1),

u(0) = u(1) = 0,
(4.1)

where μ > 0 is a parameter.
Let ζ ∈ C((0,1) × R) be such that

f (t, u) = c(t)ϕp(u) + ζ(t, u)

with

lim|u|→0

ζ(t, u)

ϕ (u)
= 0 uniformly on [0,1]. (4.2)
p
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Hence, the condition (1.2) holds. Using Theorem 3.2, we have that there are two distinct unbounded
continua, C+

k and C−
k , consisting of the bifurcation branch Ck from (μk(p),0), such that

Cν
k ⊂ {

(μk,0)
} ∪ (

R × Sν
k

)
or Cν

k ⊂ {
(μk,0)

} ∪ (
R × S−ν

k

)
.

It is clear that any solution of (4.1) of the form (1, u) yields a solution u of (1.3). We will show Cν
k

crosses the hyperplane {1} × E in R × E .
By the strict decreasing of μk(c(t)) with respect to c(t) (see [2]), where μk(c(t)) is the k-th eigen-

value of (2.2) corresponding to the weight function c(t), we have μk(c(t)) > μk(λk(p)) = 1.
Let (μn, yn) ∈ Cν

k where yn �≡ 0 satisfies

μn + ‖yn‖ → +∞.

We note that μn > 0 for all n ∈ N, since (0,0) is the only solution of (1.3) for μ = 0 and Cν
k ∩

({0} × E) = ∅.

Step 1. We show that if there exists a constant number M > 0 such that

μn ⊂ (0, M]
for n ∈ N large enough, then Cν

k crosses the hyperplane {1} × E in R × E .
In this case it follows that

‖yn‖ → +∞.

Let ξ ∈ C((0,1) × R) be such that

f (t, u) = a(t)ϕp(u) + ξ(t, u)

with

lim|u|→+∞
ξ(t, u)

ϕp(u)
= 0 uniformly on [0,1]. (4.3)

We divide the equation

−(
ϕp

(
y′

n

))′ − μna(t)ϕp(yn) = μnξ(t, yn)

by ‖yn‖ and set yn = yn
‖yn‖ . Since yn is bounded in E , after taking a subsequence if necessary, we have

that yn ⇀ y for some y ∈ E and yn → y in Y with ‖y‖ = 1. By (4.3), using the similar proof of (2.7),
we have that

lim
n→+∞

ξ(t, yn(t))

‖yn‖p−1
= 0 in Y .

By the compactness of G p we obtain

−(
ϕp

(
y′))′ − μa(t)ϕp(y) = 0,

where μ = limn→+∞ μn , again choosing a subsequence and relabeling if necessary.
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It is clear that y ∈ Cν
k ⊆ Cν

k since Cν
k is closed in R × E . Therefore, μ(a(t)) is the k-th eigenvalue of{(

ϕp
(
u′(t)

))′ + μa(t)ϕp
(
u(t)

) = 0 a.e. in (0,1),

u(0) = u(1) = 0.

By the strict decreasing of μ(a(t)) with respect to a(t) (see [2]), where μ(a(t)) is the k-th eigenvalue
corresponding to the weight function a(t), we have μ(a(t)) < μ(λk(p)) = 1. Therefore, Cν

k crosses the
hyperplane {1} × E in R × E .

Step 2. We show that there exists a constant M such that μn ∈ (0, M] for n ∈ N large enough.
On the contrary, we suppose that

lim
n→+∞μn = +∞.

On the other hand, we note that

−(
ϕp

(
y′

n

))′ = μn
f (t, yn)

ϕp(yn)
ϕp(yn).

In view of Remark 4.1, we have μn
f (t,yn)
ϕp(yn)

> λk(p) for n large enough and all t ∈ [α,β]. By Lemma 2.5

of [18] on [α,β], we get yn must change its sigh more than k − 1 times in (α,β) for n large enough,
which contradicts the fact that yn ∈ S±

k .
Therefore,

μn � M.

for some constant number M > 0 and n ∈ N sufficiently large. �
5. Constant sign solutions for high-dimensional p-Laplacian with crossing nonlinearity

In this section, based on the bifurcation result of Girg and Takáč [13], we will study the existence
of constant sign solutions for problem (1.6). From now on, for simplicity, we write X := W 1,p

0 (Ω).
Similarly with the assumptions of Theorem 4.1, we suppose that

( f1) λ1(p) � a±(x) ≡ lims→±∞ f (x,s)
ϕp(s) uniformly on Ω , and the inequality is strict on some subset of positive

measure in Ω;
( f2) 0 � lim|s|→0

f (x,s)
ϕp(s) ≡ c(x) � λ1(p) uniformly on Ω , and all the inequalities are strict on some subset of

positive measure in Ω;
( f3) f (x, s)ϕp(s) > 0 for a.e. x ∈ Ω and s �= 0.

The main results of this section are the following:

Theorem 5.1. Suppose that f (x, u) satisfies ( f1), ( f2) and ( f3), then problem (1.6) possesses at least a positive
and a negative solution.

Analogously, we also have the following:

Theorem 5.2. Suppose that f (x, u) satisfies ( f3) and

( f ′
1) λ1(p) � a±(x) ≡ lims→±∞ f (x,s)

ϕp(s) � 0 uniformly on Ω , and all the inequalities are strict on some subset

of positive measure in Ω;
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( f ′
2) lim|s|→0

f (x,s)
ϕp(s) ≡ c(x) � λ1(p) uniformly on Ω , and the inequality is strict on some subset of positive

measure in Ω , then problem (1.6) possesses at least a positive and a negative solution.

Remark 5.1. We note that the assumption ( f1) is weaker than the condition (4) of [12] because we
don’t require lims→±∞ f (x,s)

ϕp(s) � λ2(p) which is essential in [12]. And the assumptions ( f1) and ( f2) are

weaker than the conditions (F1) and (F2) of [16] even in the case of f � 0. Moreover, it is obvious
that our results are better than the results of [12,16].

Remark 5.2. By the C1,α (0 < α < 1) regularity results for quasilinear elliptic equations with p-growth
condition [19], u ∈ C1,α(Ω) for any solution u of (1.6) since f is continuous and subcritical.

The existence of constant sign solutions of (1.6) is related to the following p-Laplacian eigenvalue
problem {−div

(
ϕp(∇u)

) = μ f (x, u), in Ω,

u = 0, on ∂Ω,
(5.1)

where μ > 0 is a parameter. Therefore, we will study the bifurcation phenomena for (5.1) with cross-
ing nonlinearity. Moreover, the bifurcation points of (5.1) are related to the eigenvalues of the problem{

div
(
ϕp

(∇u(x)
)) + μc(x)ϕp

(
u(x)

) = 0, in Ω,

u = 0, on ∂Ω.
(5.2)

It is well known that there exists a principle eigenvalue μ1(p) of (5.2) (see [1] or [10]).

Lemma 5.1. Assume ( f1) and ( f2) hold. Then for p > 1, μ1 is a bifurcation point of (5.1) and the associated
bifurcation branch C1 in R × X whose closure contains (μ1,0) is either unbounded or contains a pair (μ,0)

where μ is a eigenvalue of (5.2) and μ �= μ1 .

Proof. Let ϑ ∈ C(Ω × R) be such that

f (x, u) = c(x)ϕp(u) + ϑ(x, u)

with

lim|u|→0

ϑ(x, u)

ϕp(u)
= 0 and lim

u→±∞
ϑ(x, u)

ϕp(u)
= a±(x) − c(x) uniformly on Ω. (5.3)

From (5.3), we can see that ϑ(x, u) satisfies the Hypotheses (H0) of [13]. Now, Proposition 3.5 can be
applied to get the results of this lemma. �

Let Cν
1 be the component from Theorem 3.7 of [13], we have known that C1 = C+

1 ∪ C−
1 (see [13]).

The following result plays a fundamental role in our study.

Lemma 5.2. (See [13].) Either C+
1 and C−

1 are both unbounded, or else C+
1 ∪ C−

1 �= {(0,μ1)}.

Finally, let

S
+
1 = {

u ∈ C1,α(Ω): u(x) > 0, for all x ∈ Ω
}
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and

S
−
1 = {

u ∈ C1,α(Ω): u(x) < 0, for all x ∈ Ω
}
.

Using the same method to prove [8, Lemma 3.1] with obvious changes, we may obtain the follow-
ing result.

Lemma 5.3. Let ( f1) and ( f2) hold. Then we have

C1 ⊂ {(
μ1(p),0

)} ∪ (
R × S

±
1

)
and C1 is unbounded in R × X.

Connecting Lemma 5.2 with Lemma 5.3, then applying the similar method to prove Theorem 3.2
with obvious changes, we may obtain the following unilateral global bifurcation result.

Lemma 5.4. Let ν ∈ {+,−}. Then Cν
1 is unbounded in R × X and

Cν
1 ⊂ {(

μ1(p),0
)} ∪ (

R × S
ν
1

)
or Cν

1 ⊂ {(
μ1(p),0

)} ∪ (
R × S

−ν
1

)
. (5.4)

We use Lemma 5.4 to prove the main results of this section. We only prove Theorem 5.1, since the
proof of Theorem 5.2 is similar.

Proof of Theorem 5.1. Since the proof is similar to that of Theorem 4.1, we only give a rough sketch
of the proof. It is clear that any solution of (5.1) of the form (1, u) yields a solution u of (1.6). We will
show Cν

1 crosses the hyperplane {1} × X in R × X .
Firstly, for simplicity, we write μ1 = μ1(p). By the strict decreasing of μ1( f ) with respect to f

(see [5]), where μ1( f ) is the principal eigenvalue corresponding to the weight function f , we have
μ1(c(x)) > μ1(λ1(p)) = 1.

Let (μn, yn) ∈ Cν
1 where yn �≡ 0 satisfies

μn + ‖yn‖X → +∞.

We note that μn > 0 for all n ∈ N since (0,0) is the only solution of (5.1) for λ = 0 and
Cν

1 ∩ ({0} × X) = ∅.
Using a similar method as that of the proof of Theorem 4.1, we can show that there exists a

constant M such that μn ∈ (0, M] for n ∈ N large enough. It follows that

‖yn‖X → +∞.

Let � ∈ C(Ω × R) be such that

f (x, u) = a±(x)ϕp(u) + �(x, u)

with

lim
u→±∞

�(x, u)

ϕ (u)
= 0 and lim|u|→0

�(x, u)

ϕ (u)
= c(x) − a±(x) uniformly on Ω. (5.5)
p p
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We divide the equation

−div
(
ϕp(∇ yn)

) − μna±(x)ϕp(yn) = μn�(x, yn)

by ‖yn‖X and set yn = yn
‖yn‖X

. Since yn is bounded in X , after taking a subsequence if necessary, we

have that yn ⇀ y for some y ∈ X and yn → y in L p′
(Ω) with ‖y‖X = 1.

From (5.5), we can see that

lim|u|→0

�(x, u)

ϕp(u)
= 0 and lim|u|→+∞

�(x, u)

|u|p
= 0 uniformly on Ω.

It follows that for any ε > 0, there exists a constant C such that∣∣�(x, un)
∣∣ � ε|un|p−1 + C |un|p . (5.6)

By (5.6), we can easily show that

lim
n→+∞

�(x, yn(t))

‖yn‖p−1
X

= 0 in Lp′
(Ω),

where p′ = p
p−1 . By the compactness of G p : L p′

(Ω) → X (see [8]) we obtain

−div
(
ϕp(∇ y)

) − (
μa±(x)ϕp(y)

) = 0,

where μ = limn→+∞ μn , again choosing a subsequence and relabeling if necessary.
It is clear that y ∈ Cν

1 ⊆ Cν
1 since Cν

1 is closed in R× X . Therefore y �= 0, i.e., μ(a±(x)) is the eigen-
value of (5.2). By the strict decreasing of μ( f ) with respect to f (see [5]), where μ( f ) is the principal
eigenvalue corresponding to the weight function f , we have μ(a±(x)) < μ(λ1(p)) = 1. Therefore, Cν

1
crosses the hyperplane {1} × X in R × X . �
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