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1. Introduction and the statement of our main results

The classical Landau equation is given by

%F+v-VyF=V, - {/w(v —w)[FW)VyF(v) — F(v)qu(u)]du},
R3

where F(t, x, v) > 0 is the distribution function for the particles. The non-negative matrix v is defined
as

S = {su_ M]sz, (11)
lv|?

It is well known in the physics literature that the classical Landau collision operator can be formally
derived from the Boltzmann operator when the collision between particles become grazing. However,
if we want to describe a gas of Fermi-Dirac particles, one has to modify the classical Boltzmann
equation collision integral in order to take into account quantum effects. As a consequence of the
Pauli exclusion principle, two particles are not uncorrelated any longer before and after collision. Thus
the classical Boltzmann collision operator has to be replaced by the quantum Boltzmann collision
operator. Using the quantum Boltzmann collision operator and passing to the grazing collision limit
lead to the following quantum Landau equation

oF+v-VyF=Q(F,F), (1.2)

with

Q(F,G)=Vy- l fw(v —w[(1=Fw)Fw)VyG(v) — (1= G(v))G(V)VyF ()] du}
R3
3

=Yy, / Y v —w[(1 - Fw)Fw)dy,G(v) — (1= GW)G(v)dyFw)]du.  (1.3)
i,j R3

=1

The non-negative matrix v is given by (1.1), we recall that y is a parameter leading to the standard
classification of the hard potential (y > 0), Maxwellian molecule (y = 0) or soft potential (y < 0),
cf. [6]. In this paper, we consider the Cauchy problem of the quantum Landau equation (1.2) with
initial data

F(0,x,v) = Fo(x,v), xeR3, veR. (14)

We denote a normalized global Maxwellian by

1
M) = ———exp(—|v|%/2).
2m)? ( )

We also define the quantum Maxwellian My = Mg (v) as

M(v)
1+M©v)
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Throughout this paper, we consider solutions which are perturbations near the quantum Maxwellian.
We write the distribution F(t, x, v) as a perturbation of M,

F =M, +VMf,

where a suitable choice of M is

M(v)

M(v) = A+ Mw)? =Mg(v)(1 = Mg(v)),

then the quantum Landau equation (1.2) for f(t, x, v) takes the form

of+v-Vaf +Lf =T(f, ), (15)
with f(0,x, v) = fo(x, v). The linearized collision operator L is defined as

1

R v
Vi

— (1 = Mg(v))Mq(v) V(Y M f () + VI f () (1 = 2Mg () VMg (v)

Lf =— {/w(v—u)[(l —Mq(u))Mq(u)Vv(\/ﬁf(V))
R3

— VR ) (1 = 2Mg(1)) VMg(w)] du}

1 oo o] -
==V [ Y =M@ M@ {7, (72 F) ) = V(M f)w) d”}
=] / (%o (1)) = V(i1 )
= Af + Kf, (1.6)
where
Af =———v,. {M(vwv(zw%f)(v)/ww — M) du}, (1.7)
VM A
Kf=—=9,- {Mm/w(v - u)Mw)Vu(M‘%f)(u)dU}’ (18)
i A

and the collision operator I"(f, g) can be split into
I'(f,8)=TI(f.8 + Ihon(f. 2.
where I} and Iy, are given by

1 = =
Iyl f, gl= —= Vv-{Vv(V Mg)(v)fl/r(v—u)(v Mf)(u)du}
R3

N

1y, {w/ﬁg)(v) / Y (v —u) MgV M f) () du}
e, J
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1 ~ -
- —=Vy- {(V Mg)(V)/W(V —wWVy(VM[)(w) du}
VM E

+- Ly, {(2Mq\/ﬁg)(v)/¢(v —u)vu(\/ﬁf)(u)du} (19)
VM J
and
1 . 3
Thonl f, 81 = ———=Vy - {vm/ﬁg)(v) / Y(v— u)(Mfz)(u)du}
VM J
1 3
- —V,-{V\M (v)/l/f(v—u) M f? (u)du}
\/M q J ( )
+ Ly, d@mgym / x/r(v—u)vu(\/ﬁf)(u)du}
VM J
+ 1~ vy - (Mgz)(v)/w(v—u)vuMq(u)du} (1.10)
Vi J
respectively.

For any fixed (t, x), the null space of L is the five dimensional space generated by

/V:Span{m, vi\/ﬁ,|v|2\/ﬁ}, (111)

where 1 <i <3, cf. [17]. For any fixed (t,x), and any function f(t,x, v), we define P as its v-
projection in L‘z,, to the null space .#". We then decompose f(t, x, v) uniquely as

f=Pf+dA—-P)f. (112)

As in [3,11,12,17], Pf is the hydrodynamic, and (I — P) f the microscopic part. We can further denote

Pf={ar(t,x)+v-bs(t, %)+ v[2c (6. x) VM. (113)

For notational simplicity, we use {-,-) to denote the L2 inner product in R\3,, with its L2 norm given
by |- |2, and we use |- | to denote the L*° norm in R\3,, moreover (-,-) is L? inner product either
in R} x R3 or in R? with corresponding L? norm | - ||, we also use | - |l to denote the L norm

in R2 x R3 or in R2. We use the standard notation H¥ or W*P to denote the Sobolev space. For an
integrable function g:R3 — R, its Fourier transform g is defined by

g = / e~ 2T g(x) dx,

R3

for £ € R3, where § = /=1 is the imaginary unit.
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In order to obtain the optimal time decay of the global solution to (1.5), we introduce the space
Zg=L*R3; L9(R2)). Its norm is defined by

||f||zq=([</|f(x, V)|qu)qdv>2'

R? R3

Let

ol = f 1/fij(V —wWM®)du,
R3

and

ai:vj/w’j(v—u)M(u)du:/w’j(v—u)uj1\71(u)du.
R3 R3

We introduce a weight function as

y+2
2

w=ww)=(1+v}?)

We denote the weighted L?-norm

|g|5,9=/w29g2dv, lgll2 = / w2 g2 dxdv.
R3 R3 xR3

And it is natural to define the following weighted o -norm to characterize the dissipation rate

3 2
’ 1/ M) —1\?
o= 3 [wlonsnis+ 4 (o) o st |av
i’j=1R3

3 2
y 1/ M) —1\%
2 20 2
”g”w=z. / v {a'jaigajg+?1<m(v)+l> olvivig }dm'
Li=Tgs s

We note that

3
. 1 ..
lglo o~ / wz"{o’faigangr Za’fvingz}dxdv,
Li=1psyRs
since 0 < M(v) < (27)" 2.
Let o = [a1, o2, @3], B =[B1, B2, B3] denote multi-indices with length || and |B| respectively, and
let

0% = oy ox2 05 ) 02003
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Furthermore, define 81 < 8 if no component of 81 is greater than the component of 8, and gy < 8 if

B1 < B and |B1] < |B]|. Besides we use CE] to denote the usual binomial coefficient (fi

on, we use C or c to denote a generic positive constant may be different from line to line. A ~ B,
means cA < B < % for a generic constant 0 <c < 1.

For any function g, let & > 0, we define the instant energy functional £y (t) and the instant
high-order energy functional 51’31,9(0' respectively to be any functional which satisfies the equivalent
relation

). From now

Eno(F)(O) ~ Yiajen 107PFIP + Lo ipen 15 A=PIFIZ. ¥ >-2, g
| Y <n 1°PFI? + Xygpspian 10§ A=P)fIIF 4 5, —3<y <=2,
et () ~ Yi<ialan IUPFIZ + X0 ppan 105 A-P)fIG. ¥ >-2, s)
N,6 .
2 1<lal<N [9%Pf12 + Y atipin 195 X = P)ﬂ'gﬂﬁl’ 3<y <-2.
And define the dissipation rate Dy ¢(g) as

Dro(@)(®) ~ Y i<ial<n I“PFI? + X0 p<n 195 A=P)FIZ 4. y=-2, 116

| Yi<iai<n 1BOPFIP + 0 p1<n 19§ A=PVFIIZ 515 —3<y <—2.

Beside, we denote En.o0 = EN, Dn,o = Dn.
Throughout this paper, we shall assume N > 8. Our main results are as follows.

. 1
Theorem 1.1. Let 1 > F(0, x, v) = Mg(v) +/M(Vv) fo(x,v) > 0,6 > 0, y > —3, and assume that Sﬁ’e(fg)
is small enough, then there exists a unique global solution f(t,x, v) to the Cauchy problem (1.5) such that

1> F(t,x,v) = Mg(v) ++/M(v) f(t, x,v) > 0 and

t
Eno(D) +c / Duo(s)ds < CEn 5 (0), (117)
0

for any t > 0. Moreover, there is £ ,’3, o (t) such that

d
1606 (O + Dy s < CIVPSIP, (118)

holds for any t > 0.

From the proof later on, the above nonlinear energy estimates together with the time decay esti-
mates on the linearized homogeneous system indeed lead to optimal time decay rates of the instant
energy functionals En ¢ (t) (6 =0,1,2,...) and 5,’\’,’9(0. Precisely, our another main result in this paper
is stated as follows. Set €y g as

eno =Eno0) + [ foll - (119)

Theorem 1.2. Let f (t, x, v) be the solution to the Cauchy problem (1.5) obtained in Theorem 1.1. For any fixed
0=0,1,2,...,ify > —2 and en g1 is sufficiently small where 6 v 1 = max{6, 1}, then
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| F©O) < Cenpn (14072, (120)

5
Eh o) < Cengur(1+0)72, (121)
hold for any t > 0.

Now, we give a brief review of previous work on related topics. There has been extensive investiga-
tions on the Landau equation or related models, cf. [5-10,12-15,19-21,23-29] and references therein.
In what follows let us mention some of them. The global existence of renormalized solutions to the
inhomogeneous equation was established by Lions [18] and Villani [26] for the classical Landau equa-
tion. In the celebrated paper [6], Degond and Lemou analyzed the spectral properties and dispersion
relations for the linearized Fokker-Planck operator in the case of hard potentials. In the context of
perturbations of equilibrium, Guo [12] constructed the global classical solution of the Landau equa-
tion in a period box by a refined energy method which has been widely used in the study of the
Boltzmann equation and related models. Chen, Desvillettes and He [5] studied the smooth effect of
the classic solutions of the full Landau equation. Recently, Strain and Guo [23] developed a weighted
energy method to get the exponential rate of convergence for the Boltzmann equation and Landau
equation with soft potentials on the torus. Duan, Ukai, Yang and Zhao [10] got the optimal time de-
cay rate of the Boltzmann equation with time-periodic external forcing by using the energy-spectrum
method. And very recently, Yang and Yu [27-29] introduced a method by combining Kawashima’s
compensating function approach and the macro-micro decomposition to get the optimal convergence
rate of some kinds of kinetic equations (the relativistic Boltzmann equation and Landau equation,
the Vlasov-Maxwell-Fokker-Planck system, etc.) in the whole space. We also mention that Duan and
Strain [8,9] studied the hypocoercivity property of nonlinear Vlasov-Poisson-Boltzmann system and
Vlasov-Maxwell-Boltzmann system by the method of Fourier analysis and nonlinear energy estimates.

Although the classical Landau equation has been extensively investigated, the quantum Landau
equation has received scant attention. Lemou [17] extended the results of [6] to the relativistic and
quantum version. In the case of hard and Maxwellian potentials, Bagland [2] established existence and
uniqueness of a weak solution of spatial homogeneous quantum Landau equation, and recently Chen
[4] proved that the weak solution obtained by Bagland [2] becomes immediately smooth if all the
moments for the initial datum are finite. In this paper, we consider the Cauchy problem for the full
quantum Landau equation (1.2)-(1.4) with hard potentials as well as soft potentials. We mainly use
Kawashima’s compensating function to deduce the uniform energy estimate, from which the time-
decay properties of solutions to the linearized equation can be obtained, then combing the careful
estimates of the nonlinear collision operator, we derived the optimal convergence rate 0(1)(1+t)~3/4

and 0(1)(1 +t)~>/* in the norm of \/Eny and ,/EN respectively. We shall point out that the term
F(1 — F) is quadratic and the estimates for the nonlinear collision operator I}, defined in (1.10) is
different from the bilinear term I" of [15,27]. In [15,27], Guo, Yang and Yu mainly used the splitting

r'(f,/)=r®f,PfYy+r(Pf,{1-Pf)+ I ({I-P}f,Pf)+ T ({I-P}f {I-P}f) (122)

to obtain the dissipation norm of f, however, for Ijon, (1.22) is not true. As a compensation, we
should firstly deduce Lemma 2.5 in which the x— integrations are not considered, then apply the
decomposition f =Pf + {I — P}f as well as the Sobolev embedding inequality (2.46) to estimate the
quadratic terms. We also remark that by the comparison principle, one can find that the solutions
of (1.2) should satisfy 0 < F < 1 which is coincide with the Pauli exclusion principle as mentioned
above.

The rest of this paper is arranged as follows. In Section 2, we give some basic estimates for later
use. Section 3 is devoted to the estimates for the hydrodynamic part Pf and the optimal time de-
cay rates of the linearized quantum Landau equation are also obtained in this section. In Section 4,
we establish the local existence of the quantum Landau equation, and the global existence as well as
the optimal decay rates is given in Section 5 and Section 6, respectively.



S. Liu et al. /]. Differential Equations 252 (2012) 5414-5452 5421

2. Preliminaries

In this section, we give some preliminary lemmas which will be used in the proof of Theorem 1.1.
The following is the positivity of L.

Lemma 2.1. For the linear collision operator L, it holds that (Lg, g) =0 ifand only if g(v) ={a+b-v +
c[v}M?, where a, c € R and b € R3. Moreover, there exists a § > 0 such that

(Lg,g) >8|a—Pgl>. (2.1)

Proof. By the definitions of (1.6), we integrate by parts over v variable and change the variables
u — v to obtain

(Lg, g) = / Y (v — MM [V, (M2 g)(v) — Vi (M~ g) ()}
R3 xR3
x {Vy (M~3 g)(v)} dudv

1

= / Y v — MM W)V, (173 g)(v) - Vu (M2 g) )
R3 xR3

X {—Vu(lf/l’%g)(u)}du dv
1 I -1 -1
=5 f Y (v —wMuMW){Vy(M~2g)(v) — Vy(M~2g) ()}
R3 xR3
X {VV(M_%g)(v)—VU(M_%g)(u)}dudv20. (2.2)
If (Lg, g) =0, performing the similar calculations as Lemma 4 in [12], we get that g(v)={a+b-v +
clV2IM3.

To prove (2.1), we use the method of contradiction. Assuming the contrary, we have a sequence of
normalized functions gp(v) such that |g,|s = 1, which also satisfy

gne Nt (23)

(Lgn, &n) = (Agn, &n) + (Kgn, &n) < (2.4)

S| =

We denote the weak limit, with respect to the inner product (-), of g, (up to a subsequence) by go.
Hence

|g0|0 < 1.
On the other hand, one get from (1.7), (1.8) that

Vv (M(v) — 1)?
T4 (M(v)+1)2

ollg —d;(digo) VM) i, MW =1 (0 ) , (25)

R T L)

(Kg1, 82) = / ¥ (v — ) M)Mv)Vy (M2 g1) )V, (M~2 g2) (v) dudv, (2.6)
R3 xR3
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then we claim that

viviMv) Mv)—1, o_l C o / 2
<4(M(v)+1)20 g,g>+<—M(v)+1BJ( 5 )g,g>+<1<g,g>< —18le +Cam) g dv,
lvl<m

2.7)

for any m > 1. To verify (2.7), we only compute the first term in the left hand side of (2.7), since the
second and third term can be estimated by following the same way as Lemma 4 in [12]. We split

viviM(v) ij . / / ) viviM(v) ol g2
<(M(v)+1)20 g’g>_<| I M +12° &

It suffice to consider the first integral over |v| > m (m > 1), since

(M(v) — 1)?

M(v)gT (Ivl>m=>1),
hence
ViviM(v) sigdy< L / vivj (M(v) —1)? Siia? gy
N (M(v)+1)2 u 4 (M(v)+1)2 ‘

With (2.7) in our hands, now we turn to check

<7viva(v) olg gn>+<7M(v)_18-<U—i>gn gn>

(M(v) +1)2 M) +1 i\5
- <<M(v>+1)2(’ g“’g°>+<m<v)+1af< 2 )go’g°>» n— oo, (2.8)
and
(Kgn, gn) — (Kgo, g0), n— oc. (2.9)

Since 9;g, is bound in L%(Jv| <m) from |ga|sc = 1, Theorem 2.32 in [1] yields the following strong
convergence

< viviMv) > < MW -1, (o >
Xm(V)—(M(V)+1)2C7 8n, 8n Xm(v )M( V1 1( ) )gn,gn
viviM(v) 4 Myv)-1_ U_i
_><X'"(v)7(M(v)+l)20 go,go>+<xm(\/)7M(v)+13;< 5 )go,go>, (2.10)
where X, (v) is defined as
_ )L vism
Xm(v) = 0, |v|>m.
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Furthermore, by first choosing m sufficiently large and then letting n — oo, we can see that (2.8) is
true. On the other hand, in view of Lemma 5 in [12], one can get that (2.9) is also valid.
Now we return to (2.4), letting n — oo, we have (Lgop, go) = 0, or equivalently

O—l—<LM(V)Gij > <M(V)—1a(oi) > « )
=1\ 7127 808\ )19\ 3 )80 80) + (Keo. go

=1-lgolz + (Lgo, &),
which yields the contradiction
|golz =1, (Lg.8) =0, oA
Therefore (2.1) is true. This completes the proof of Lemma 2.1. O
The following lemma is devoted to the estimates of the o -norm.
Lemma 2.2. (See [6,12].) Let y > —3, there exists C > 0, such that

Y
2

r+2 y+2
1812 > C{|(1+ V) 2Pydigls + | (1 + V) 2 A=Pyaigla+|(1+1vl) 2 g3}, (@11)

where Py, is the projection defined as
h h Vi <i<
P, i=z jVjW, 1<i<3,
for any vector-valued function h(v) = [h1(v), ha(v), h3(v)].

We now summarize some estimates for x, v derivatives of the collision operators L and I".

Lemma 2.3. For linear operators (1.7) and (1.8), if y > —3, let 8 > 0, 8 > 0, for any n > 0, there exists
Cy,181 > 0 such that

2 (212)

(o Ag. w05 8) > |o5'&]; , —n D o gl o — Coim| 5%
Bi<p

and
@cn o) <{o X Pl Comlithosl el @12
p1<
Proof. Recalling (2.5), we have

20 _ 2 B VjVj (M(V) - ])2 ii 20
(95 Ag, w5 g) = ogel, ,+ D Cj' <8ﬁ] {—4 Mo 12 ])20” d5_p, & W IEE
1B1121

I

+ ) C? (95,0195_5, g, w805 g)
Br1>1

I
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+ Y ng (95,0795_, 018, ;w37 g)
1B21>0

I3

— E Cﬁz ViviM(v) ij 0
9 (M) = 1)2 dg_ , W 0
18210 ! ( ﬁz{(M(V)Jrl)Z p—p28 58
212

I4

5 M(v)—1, o 2
|B21>0

Is

Now we turn to estimate I; (1 <i<5) term by term. First of all, by Lemma 3 in [12], we have

‘ {v,-vj M(v) —1)2
B1

4 m"ﬁﬂﬂaﬁlaﬁ\Jr!aiffi!<C[1+IVI]V“, (2.15)

provided |B1| > 1. Therefore I, I5s are bounded by

¢ / [1+|v|]y+]w29{|8§‘751g]+‘8g‘,52g]}|8§‘g|dxdv
R3xR3

N

C
¢ [ ws Clagel, ol . 216)
R3x{|v|<m) B<B

For the part |v| <m, for any n > 0, we use the compact interpolation in the Sobolev space to get
y+1. 20
¢ [ T W o]+ a5l o5 axay
R3 x{|v|<m)

<Gy / |W98°‘g|2dvdx+n Z / |W63§‘g|2dvdx

R3 x{|v|<m}) BI=IBI+1R x (|v)<m)

°. (217)

<nlogel; ,+ ol T a%g|
For Iy, if |B1] > 2, in light of Lemma 3 in [12],

9,07 < C(1+v])".

Hence
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3 cgly(aﬁlo"fagfﬂlaig, w?9;05g)|
1B11>2

<ol [+ [ Juemrwlagaslo el axav
R3x{lvi<m}  R3x{lv|>m}

<nlagely o +ColMo7g|”

c VTH 05 % 0 qa
+E / [1+1v] 7w 8/3,/3181~gH[1+|v|] w 3,38jg\dxdv
R3 x{|v|>m}
2 o 2 C
<nloggl; ,+Colimmag)’ + - > Jasel, 95l (218)

B<B
If |1] =1, an integration by part of the v variable yields
95,0108 g, w29,9%8) = — - (35 (W 61102, Oig, 9,0
(6.0 95 _p, g, w905 8) = =3 (9, { W™ 95, 0V }95_p, 918, 0055, 8).
Since |p1] =1, |dp, (W dp,07}] < C(1+|v|)Y w?, by following the same splitting as (2.18) we obtain
o 2 L o 2 C o 2
I <n|ogel; o +CylMo%g]” + o5 el o

We now consider I3, if > =0, since [3;{o79;w?’}| < w?’(1 + |v|)?, after an integration by part of
the v variable, we have

II3l<C / [1+vI] {w® |9 g])* dxdv

R3 xR3
<(f o+ ) il e
R3x{lv|<m}  REx{lv|>m}

2 C 2
<Gy / lgl?dvdx+n _Z wiogeg| dvdx+ —[oggl, . (219)
R3 x{|v|<m} IBI=IBIHTR3  {|v|<m)

If |B2] > 0, 135,099;w?| < w2’ (1 + |v|)?, then following the same spirit of (2.19), the desired esti-
mates for I3 can be obtained.

As to I4, since M(v) decays exponentially, the computations are much easier, we omit the details
for brevity. This completes estimates for A. By the same procedure of computing (ag Kg, w29agg>

in [12], the stated estimates for K follows easily. Thus the proof of Lemma 2.2 is completed. O

Next, by Lemma 2.3 and the standard interpolation formula in Sobolev space, one can get that

Lemma 2.4. (See [19].) Let B > 0, 0 > O, there exists positive constant C|g| ¢ > 0 such that

1
(w05 1g.958) > S| w g el - Ciprow'o”g]. (2.20)
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Remark 2.1. If |B]| = 0, for any 1 > 0, there exists C; ¢ > 0 such that

(6" Ag. w?'5%g) > (1 = m)|3%g| , — Cr| M T 078", (221)
and
(9K, w0 g2) < 0081, , + Coa W51 |} |2 22] ., (222)
Therefore (2.20) can be improved as
(2.23)

1 2 ~ 1 2
(w9%Lg, 3%g) > S[|w' 3%, — Co[MTe0%g]".
Lemma 2.5. For the quantum Landau kernel (1.9) and (1.10), if y > —3, let |a| 4+ |B| < N, 8 > 0, there exists
C > 0, such that

<3§Fbi(f’g>awzoa CZ |8 f‘ze‘a g|ae+’3 f|09‘a g’ze}‘agh‘ae’ (2.24)

and

Z_ g )Z’a _azf’29|a g‘c()’aﬂh’aé)
|dz\+|6g|<‘52'§'“2‘
so( X ) Kl sl gl
lort 1 +1811< 182 |+ ler2|

-1

> el ) Yolos ol oo el o,

LR

w0 X el ) el g, @29

lo1 [+1811< | Ba | +letz |

(8grnon(f: 2, Wzgag )<
+c(

where the summation Y is over o + a1 = o, B < B1, By < B2, B1 + B2 < B
Proof. For brevity, we only prove (2.25). By the definition (1.10) and the product rule, we expand

9
(05 Tron(F. &), w?agh)=>" " cach,

i=6 a1tor=0

B1+p2=p

where [; (6 <i<9) takes the form
— (O ([ D1 et g (v) + P ML g (v Ty« (M9 (F)]}, w2 o)
lo=1 +(0p{[54770% &) + 00 g(WIYT x [M0*2(f)]}, w95 djh)

+ (9, [‘; %ﬁ

0 g(v) + 3;0%1 g(VIY T % 05, IMI%2 (f2)], 0;[w** 195 h),
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— (@15 ML M2 () ]y [M8% (£2)1), w3 h)
=1+ (@p{viM3 (1YY« [M3* (F2)]), w85 9;h)

+ (O ViME YT 5 05, (M2 (F2)], 051w 1),

(@ (15 M1 001 (€219 # [% ML R399 f(u) + M2 8;0% f ()]}, w? agh)
lg=1  — (05 (M2 g1yl % 9, [ % M1 g3 5%

— (O [W1 @21y 0, [ % ML W2 5% £ (u) + B3 0;0% f ()], 0w 1agh),

@2 f(u) + M2 8;0°2 f ()], w23 9jh)

+(0p (15 ML W20 (g2) 1y + [u; 1), w? 9% h)
Ig= — (35! [V 2 g21y 1 s g, [u; M1, w96 9;h)

~ 1 .e ~

— (3, [M2 (g*)1yY * dp, [u; M1, 8;{w>*13g h).

Now we turn to compute [; (6 <i<9) term by term. First of all, we use I" (1<k<3,6<i<9)
to denote the corresponding terms in I; for simplicity. For Il and I2 we decompose the double

integration region [u, v] € R> x R? into three parts:

(i<t} uizwlviz1), <yl ivi=1}).

For the first part {|v| < 1}, letting |B§| + |oa] < |,§2 , noticing ¥ = 0(|v|¥*2) e L2 , we have

loc?

vivi (M —1)% iM-1_, - )
(]| e+ 5 Sy 20780 [y« [0 2] s

vivj (M — iM—
_C§1CIIZ§C.32CO(2 / aﬁ1|: ]( ) aal ( )+_

1
4 M+1)? 2 M+ a,amg(v)] W

{ivi<1}

{/llf”(V—u)a,32 5, M05 ;‘,Zfa fdu}dv

<clitto® sl Jme / {102 2| + 002 (v [} (1 + V1) w? |35 | av

{lvi<1}

c|1\/133°‘2f| | 07>~ a2f|29|3 'gl, 9|3ﬁ |a 0 (2.26)

and similarly
1 o (03 VY%
<aﬁ{[2 M+1a Tg(v) + 80 1g(v)]¢ * [Md 2(f2)]} x1w? 008 >

C|M83a2f| |3ZZZ 252 }29}3 '8l 1055 40 (2.27)

where we have used the fact that
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<cwéag,z ;m</|w<v_u>|2M%du>7(/M%| e | du)
R3

R3

C(1+1vl)" 2|5 o 1o 9552 f | (2.28)

For the second part {2|u| > |v|, |v| > 1}, since
~ VE DI
18,5, M(w)| < CRI )M T5 (v),

by the same type of estimates in (2.28), the v-integrand in 123 and I% are bounded by

C|Msa°‘2f| [ ;;‘,2 |16 / Maz(v)w29{|a"“g(v)|+|a,a“1g(v)|}{|aﬂh|+|aﬁa]h|}
(vi>1)
CIM3 052 | 05222 1, o105 &l 405 ], (229)

Next, we consider the third part of {2[u| < |v|, |v| > 1}, for which we shall estimate I} and I2 in
slightly different ways. To estimate I}, the key is to expand ¥ (v —u) into

Y —u) =y (v) — gy (V)uy, (2.30)

where 7 is between v — u and v. We plug (2.30) into the integrand of I}, and noticing that

2w mvivi=0. Y alyvivi=0. Y ylmvi=0. Y ylmvi=0.  (231)
i,j j i

ij

we have

vivi (M—1)2 viM—1_ . ij o ( f2
<aﬁ{[TWa EW 5 0 g(v)]wj*[x%m ( )]}’

(1= x)w*95h >

vi (M —1)? M-1 ij 5,20
= / 8,31 [Emaalg(\/) + M—_Haiaalg(\/)] aklﬂ (V)W 8‘;}1 dv
{lvi=1}

X f %aﬁz (ujueMa®2(£2)) du. (2.32)

{12ul<Iv]}

On the other hand,

1 3
SIS IVI=lul s VIS Vi Jul < SVl (2.33)
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thus
BT @) <c(1+v) T,
then one can see that (2.32) is bounded by
ClM3 052 | [0222 1, 4|05 &, 4 05 ],
cyMsa“ny ya“Z‘ny |(1 +|v|% i03' g |(1+|v|)VTﬂa“hy
2.0 5, 82,0 82,0

-1
<C|ms a2f| |BZ; ,?er!a '8l 1055 -

For Ié, we again expand ¥ (v —u) as

. . . 1 o
P —w =9I W) = o et 5 3oy Dug, (234)

k.l

with v between v and v — u. We plug (2.34) into 1(25 and we can decompose 81-3;11g and ajagh into
their P, parts as well as I — P, parts. For the first term in the expansion (2.34), recalling (2.28),
we obtain

/wz"w"fa,-ag‘;gajaghdw / 9p, (M2 (f?)) du
[vi=1 2Jul< vl

y+2
C|M88 f| | 9" a2f|20| T+|vl) > {1-Py}aidg g, ,

y+2
x [(1+1vl) = (1=Py)3;95h|, . (2.35)

where we have used (2.31) so that the sum of the terms with % - M+1 Lo g(y), P\,ala/3 g and P.,ajaﬂh
vanish. For the second term in the expansion (2.34), we have to compute

M—1 y
/ 8,31|:—8a1g(v)i|ak¢l]W203jagth- / —Uidg, ﬁz{ ’M}a‘ﬁ(ﬂ)du

M+1 2 B2
{lvi=1} 2ul<Iv]
+ f [0:05 g (V) ]aky w? 9;05 hdv - f —ukaﬁrlgzlf/lag;(fz)du. (2.36)
{lvi=1} 2ul <]

By expanding a,-ag‘]lg and ajagh into their P, and I — P, parts yields

akwl]az (V)aja/j
—8kw”{{l—Pv}8,8 g{l— Pv}ajagh+{I—PV}8,~8§?gPV818§h
+PV818ﬁ g{l—Py}d;05h}. (2.37)
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Noticing that 9,y ¥ (v) < C(1+ |v|)¥ 1!, one can get that (2.36) is no more than

~l -
ClME 052 £ 1052 57 1 |,.0105 €l o105 H ], - (2.38)

For the third term in the expansion (2.34), we obtain

M-—1 o= i
/ 9, [ma"lg(v)]a,dw”(v>w29818}§‘h dv- / ()3, g, { M }% (/) du
(i1 2ui<Iv|
n / (335" g ]ay T @) w? ;9% hdv - / (upuy)dg, g, M3Z? (f2) du
(vi>1} 2ul<|v|

| a2f| |a;22 ,g/z | |aalg|09|aﬂh|09 (2'39)

This follows, since we can employ (2.33) to get that d ¥ (V) < C(1 + |v])Y.
Now we consider I3, since [3;[w??]| < C[w??](1 + |v|)~!, by direct computation, we get that

R <clitols| Jor ey, f [ (i) ] (-4 v+ wag

CWSE)Z’Z oo |a2 a2f|29|3 g|09|8§‘h|09 (2.40)

Now we turn to compute Ig, because the estimate for I7 and I9 are similar (and easier). We note
that

o UM —1 e +|ophn| < CHIE,
Bl M+1 p

=<

for any |B| > 0, therefore applying the same type estimate as (2.28), we have
-1 crloa
[g] < C‘M"(‘agjﬂ + faiagff\)b”‘/”agfg\oo
f|M48°“ “5e| (1 ) W {[agh| + [aagh] ) dv

o1
C|M8 oZ! | |3ﬂ ﬁ/g|20|8 2o 610505 - (241)

Thus (2.25) is proved. O
There is a direct result from Lemma 2.5.

Lemma 2.6. Assume y > —3, |a| + |B| < N, 0 > 0, there exists C > 0, such that if y > —2, we have

(95 T (f.g). w¥agh)| < C{ 1\7,9(f)+529(g)+5N9(f)}Dzg(g)Dzg(h)

+C{EL () +E24(8) + Ens(@)DE (DG (), (242)
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if =2 >y > —3, we obtain

1 1 1 1
(05 T (f.2), w*TPlagh) | < C{ef o () + X o(@) + Ena(N])DE o (@)DF ()
{859(f>+550<g>+5N9(g)}2>§0<f)7> o). (243)

Proof. Since (2.42) and (2.43) can be proved in the similar way, we only prove (2.43). Recalling
Lemma 2.5, we compute only the following term for brevity.

T= Z /|M aﬂlzf| |3/§[z2 g/zf}z,eﬂﬁllagllg|a,9+\5\‘3ﬂ ‘0 6+\ﬁ| (2.44)
I |+ < P21t1o2) g3

To compute (2.44), we divide our calculations into two parts. The first part is concerned with o > 0,
and without lose of generality, we may suppose |oy| > ";‘—' > 0. Therefore, if |oa| + |B2] < X, we have
by splitting g into g =Pg + (I — P)g that

1 5
T< C/{|3O[1 (ag. bg, cg)| + !8,2? (I_P)g‘a,e+\ﬁ|}|M83§[§f|m| Z; Z‘jflz o18108 15 0416 9%
R3

CSUP|3al(agabg7Cg)|SUP|M83 f|/|3§22 §2f|2 o11p1198 15 o414

+CSuplOST e 1], supl it o f|/|a"”(l PE, o 5105l 150 (2.45)

which can be further bounded by

1 1
CgN,O(f)'DK],g (g)'Dﬁ],Q(h)»
according to the following Sobolev’s inequality:
sup|a“1(ag,bg,cg)| C|[Vxd* (ag. bg. o) 3. (2.46)

sup!Méag‘;ﬂ < C|Vwd®(as, by.cp)| p + C||Msa“2(1 —P)f s (2.47)
X,V X
and

sup|8 f|20+|ﬁ‘\ Z C w29+2|ﬂ||8“iag;f8°‘/_°‘48g22f|dvdx

l|<4 p3l g3

o 2
<C D0 195 oy (2.48)

&2 |+1B2l<N

If |z | + | B2] > % by the same type estimates as (2.47) and (2.48) we obtain
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T<C53P|3§‘fglo 9+\5\SUP|M 0% f|/|8a2 azf 29+\ﬂ||agh|a,0+lﬁldx

< CEn g (F)D} 4()D; o (h). (2.49)

As to the case || =0, one can prove that (2.43) is true by using the same argument above. This
completes the proof of Lemma 2.6. O

For use later in the uniform spatial energy estimates, the following lemma is needed.

Lemma 2.7. Assume y > —3, |a| < N, let £ (v) be a smooth function that decays exponentially, then there’s a
C¢ > O such that

H / DI (f, Pedv| < CoE3(H) +En(HIDI). (2.50)

Lemma 2.8. It holds that

Irf ol <C Y Iwdggll D 19gfIl+C D 19g fI7

1B11<2 1B21<2 |B21<2
+C Y g2 Y Iwag gl D N9 FI+C Y llap gl
lo2|+1B21<6 1B11<2 1B21<1 1B11<2
loe2|>0
+C Y [o5e| Y Iwosgl Y 19s Sl (2551)
log | +1B11<6 8111 |B21<2
loer|>0

Proof. Recalling from (1.9) and (1.10), we see that

M —1)2 iM— o
Fbi(fvg)=|:vérjﬁ (v )+?M—+1 zg(V)]lﬁ [M7f]
M- I
—9; [%M—Hg(vwalg(v) W*[Mif]}
[vivi (M —1)2 M — 1
- JW“WMHW”} <[2MgM= 1]
vi M — 1 -1
+9;j [EM—Hg(V)Jralg(V) Y Mz f
_[viM- ui M Ve
2M+1g( )}W [2M+1M fw)y+Mz9 f(u)}
+ aJ-{g(v)w“' * [jﬁTMzﬂu) + Mzaza“mu)}}
] M 1_1 _M
+[2MqM+1g(V)}w [2—1\/1+1M f(u)+M28f(u)]

2 M+1

8
=> i (2.52)
i=1

- 31{[2ng<v)]w” * [EMMZ 9% f (u) + M2 ala“Zf(u)]}
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and
v viM "y’
ﬂwn(f,g)_[ 4 MtV M+1azg(v)]¢ *[Mf?]
iM— V
— 0 {[%M—g(v)—f—a,g(v)]vf [Mfz]}
[ M0 g i) o v M s
[ . (M+1)2M (v)}p *[Mf]—i—a]”: M+1M (v)}/f [Mf]}
M—1 -1 o TuiM—=1 -1 Vel
-[Fme v« it o]
+; ~%gz(v)w*[%%—Hmﬂunmzala”ﬂ”)“
. M—] .. ~ ~ .. ~
+ [%M% Mt gz(v)]‘ﬁ” s [ui] — 0 [M2 g2 (v) ]y« [ui 1}
16
e (2.53)
i=9

Let g = f in (2.52) and (2.53), now we turn to compute || Ji||z1 (1 <i< 16) term by term. For j{, by
the generalized Minkowski inequality, we have
d

e </{/

R3 R3

[NE

R LERE:
M dv} dx,  (2.54)

a,f< )}/x [7’

vi (M —1)?
[2 (M+1)2f( )+

recall (2.28), the second term in the right hand side of (2.54) is bounded by

1
B 2
C/\M%ﬂz{/\(l+|v|)”za,-f<v)!2dv} dx<C Y [wag, FlIWSL.
R3 R3 |B11=1

For the first term, applying the same argument as computing I in Lemma 2.5, we obtain its upper
bound C||wf ||l fI|. Similarly, one can verify that | Ji|| ;1 (2 <i<8) are all bounded by

C Y lwdg, fll Y llwdg, fIl.

1B11<2 1B21<2
We now consider Jg, the generalized Minkowski inequality yields

vi (M —1)2 M-1, i Tuic
||19||21</{/‘[ f)+ Half(v)}p *[?Mf]
R3

2 0
2 M+ 1)2 dv} dx, (2.55)
R3

the second term in the right hand side of (2.55) is no more than
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>
~r 1 ~ 1 +2 2
Csup|Msf|/|Msf|2{/|(1+|v|)V 3 f W) dv} dx
X,u
R3 R3

<C Y wag fIl Y JagErlIfL

[B11=1 oz |[+182|<6
o2 [>0

according to the same type estimates as (2.28) and the Sobolev inequality:

I oo e xr3) < Cl Vi - | naRe xr3)-

(2.56)

Applying the same method as computing Ig again, we get that the first term in (2.55) is bounded by

c X lagsliwsuns.
loz|+B2|<6
loe2|>0

And similarly,

ol <C D> 9g2f] D2 lIwag, FIl Y 119g, F1I.

lo2|+1B2|<6 |B11<2 [B21<1
lo2|>0
11l <C logr F Wl >~ 119g, 1.
A1
lee1 |+1811<6 [B21<1
lo1[>0
Iaallz <C Y gl f D liwag FI D 19g, £l
loer |[+1B11<6 8111 18212
lo1[>0

As to J11, J12, J1e, utilizing the Sobolev embedding H?(R3) ¢ L>°(R3), we have

11l <c/s3p|f||f|zdx<c > 19g FIISIL

R3 1B21<2
2l <C Y /Sldplfllanglzdxéc D log fll Y 1ag, fII,
1B21<1R3 1B21<2 1B21<1
115021 <Cfsup|f||f|zdx<c D 19g IS,
e IB11<2
sl <C Y /Stvlplfllaglflde<C > ldg £l D g, FII.
1A1I<1g3 1A11<2 1A11<1

Thus the proof of Lemma 2.8 is completed. O

Lemma 2.9. For any 6 > 1, it holds that

S 09rf H|F < Cleh o) + [ o O] Jena ().

o<1

(2.57)

(2.58)

(2.59)

(2.60)
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Proof. Recall (2.52) and (2.53), let f = g, we have to estimate 16 terms. For brevity, we only compute
IlJ11% and || Jo||? in the following. If || =0, for J;, we have
/]

2
110% = /
Set 6 > 1, in light of (2.56) and (2.28), the second term in the right hand side of (2.61) is bounded by

dv dx. (2.61)

ST

2
[v, M-1) M — i

s Ot e 8,f(V)]1/f [

Jj
2
R3 xR3

~12 +2 2
Csup|Ms f| / [(1+ V)78 F (v)|“dvdx < CEY o (HEn0(f) (2.62)
X,u
R3 xR3
For the first term, borrow the same procedure as estimating Ig, we can get the same upper bound as

above.
As to ]9, we obtain

2 [ |[viM—1)? M- w o P
otz = [ ‘[2 e aJ(v)] [ Ui || avax 26y
R3R3
The second term in the right hand side of (2.63) is no more than
CSXUE)M/I%H [ |1+ v o f )P dvdx < Cleh o (D) ena (), (2.64)

R3 xR3

according to (2.56) and (2.28). For the first term, one can get the upper bound by applying the same
method as computing Ig again. As to the case || =1, one can prove that (2.60) is true by using the
same argument above. Thus Lemma 2.9 is valid. O

3. The linearized equation

In this section, our goal is to estimate Pf in terms of (I —P)f. We first recall Kawashima’s com-
pensating function method. Let W denote the subspace of thirteen moments, precisely, W is defined
as the space generated by .#” and the image of .#” under the mapping f(v) — v;f(v), thus

13

w =span{1\7l%¢ ey

where ¢1 =1, ¢pj =V}, pjra= v?, g =V1Va, g =V2V3, P10 =V1V3, Pjr10 = |V|2Vj, j=1,2,3.

Note that v-&: .4 (L) — W for all & € R3, and that .# (L) C W. We denote an orthogonal basis
for this thirteen dimensional space by e; (1 < j < 13). Let

~ 1
{M2 ¢, }k 1013x13—[€j]J 15

where det O # 0, and [EJ']?:] is the orthogonal basis of the null space of L. Let Py be the orthogonal
projection from L2(R3) into W

13
Pof =) (f.exer
k=1
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Now we consider the following linear quantum Landau equation

0f+v-Vif+1f =g (3.1)
From which and by putting Wy = (f, ex) we have
3 .
AW+ VioyW +IW =g+R,
j=1
where VJ (j=1,2,3) and L are symmetric matrices
>, 13 13
VE) = Z Vigi={{(v-©er, el>}k,l=]’ L={(Llel, ek>}k,l=l’

j=1

g is the vector with components (g, e;) and R is a sum of terms involving (I — Pp) f.
Next we introduce the notation

W=[W,wpl',  Wi=[Wi,Wa,... . Wsl",  Wy=[We Wys,..., W3]
and write Rz for the real part of z € C.

With the above preparations in hand, now we can define the compensating function of (3.1) as
follows [11,16].

Definition 3.1. Let S(w), @ € S? be a bounded linear operator on LZ(R3) is called a compensating
function for (3.1) if:

(1) S(-) is C* on S? with values in the space of bounded linear operators on L2(R3?), and S(—w) =
—S(w) for all w € S?,

(2) iS(w) is self-adjoint on L*(R3) for all w € S?,
(3) there exists co > 0 such that for all 3% f € L*(R%) and w € S?,

RIS@)(v - @)d% f, 3% f) + (L% F, 3% f) = co([0°Pf|* + [0*A—P) f|2).

In order to find the compensating function S(w) of (3.1), we need the following lemma which has
been proved in [16].

Lemma 3.1. There exist 13 x 13 real constant skew-symmetric matrices RI (j =1, 2, 3) and positive constants
1, ¢ such that for

3
R@)=) R,
j=1
we have
R{R(@)V (@)W |W) = c1|W,? — co| Wy 2,

forall W e C'3. Here (-|-) denotes the complex inner product on C13.
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Next we exhibit a compensating function for (3.1). Given w € §?, 8% f € L?>(R?), we write R(w) =
{r,-j}}?j:l. Let

13

S(@)d* f =Y Mu@)(d* f, el)er,

k=1
for some A > 0.

Lemma 3.2. There exists . > 0 such that S(w) is a compensating function for (3.1). Moreover S(w) :
L2R3) —»> W.

Since (2.1) is obtained, the proof of Lemma 3.2 is the same as that of [16], we omit the details
here.
Now, we are in a position to estimate the macroscopic component of the solution to (1.5) by virtue
of the above compensating function.
Lemma 3.3. For Eq. (1.5), we have the following estimate:
d 2 . — —
i X - X [relis@ar. 7 ac)

lo|<N le|SN—1p3

w81y [aePsP s D [ata-msl

1<alSN Ja|<N

1
<C{ER ) +En(H +ERN DN, (3.2)

and especially,

%{ > s - X f|5|(ﬁs<w>a’oﬁf,a’oﬁ)ds}

I|a|<N 1| SN=1p;

to 3 [rfPen 3o [ata-prl;

2<]al<N 1|l <N

<C{ER ) +EnH) +ERN DN, (3.3)

where §1 > 0, 8, > 0.

Proof. Let w = £/|&|, by acting 9% to (3.1) and taking the Fourier transform in x of the resulting
equation, we have

0% f +8IE|(v - £)09f + Ld% f = 5%g. (3.4)
Further taking complex inner product with 8"‘/\f and taking the real part yield
1. —2 — — —_—
5at|aaf|2+(Laaf,awf):R(a%g, I« f). (35)
On the other hand, applying —i|£|S(w) to (3.4) gives

—81€1S(@)3:0% f + £12S (@) ((v - £)3% F) — HEIS (@) L% | = —3||S(w)¥g. (3.6)
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By taking the inner product of the above equation with B/a\f and taking the real part, we obtain

R(—8IE1S(@)3:0% f, 8% f) + IE1*R(S(@)((v - £)3%f), 3% f)
= |EIR{(3S(@)LI¥}, 8% F) - (iS(@)0%g, °])}. (3.7)

Next, choosing ¥ > 0 small enough, Definition 3.1, Lemma 3.1, as well as (3.5) and (3.7) imply that
there exist 87 > 0, 8 > 0 such that

d — —
(1 +18P) |87 3 — clg (i @)a*F . 8 F))
+ 8116 [PATF [ + (1 + 1€ P) | - P [,

<(1+ 6% R(07g, 8% F) - ZRa g e, (38)

k=1

where we also used the fact that (Lf,ex) < C|(I — P)f|,. Integrating (3.8) over R® with respect to &
and summing over 0 < |o| < N — 1 give

%{lea"‘f\lz > fmsus«o)awf awf)ds}

l|<N | <N—1g

bor Y [P ra Y Ja-pe ]

I<la|<N la|<N

< ) / +IEP)R(9%g, 0 F)ds — Z > /Raagek : (39)

\‘1|<N 1 k=1 |a|<N— 1

Io I
Now, we turn to estimate [1g and 11 with g =I"(f, f). For I1p, we get from Parseval’s identity that
ol < Y |(*T(f, ). 0 )|
loe| <N-1

+ Y (V0O ), 0% F) + (0°T(f, ), Vxd* f)]

le]<N-1

(3.10)

which can be bounded by

1
Cleg (H +En(H DN,
according to Lemma 2.6. As to I11, Lemma 2.7 and Plancherel’s identity imply
1] < C{ENH) + ERN DN,

We conclude from all the estimates above that (3.2) is valid, and the same argument can be used to
prove that (3.3) is true. This completes the proof of the lemma. O
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For the study on the optimal time decay, we need the following estimate on the solution operator
of the homogeneous linearized quantum Landau equation

of+v-Vif +Lf =0, FQ0,%,v) = fo(x, v). (3.11)
Formally, the solution to the Cauchy problem (3.11) can be written as the mild form

F© =S fo, (3.12)

where S(t) denotes the solution operator to the Cauchy problem of the linearized equation (3.11). The
solution operator has the following decay estimates.

Lemma 3.4. (See [11,16].) Suppose that fo € HN N Zy, and assume that f (t, x, v) defined in (3.12) is a solution
of (3.11), we have

[VEs @ fol* < 1+ 0721 foll, + | V¥ o). (3.13)

where q € [1, 2], 0 < k < N and the decay rate is measured by
3/1 1 n
0, =—|-——=
q.k 2\q 2

In this section, we construct local-in-time solution to the quantum Landau equation (1.2). Recall
(1.3), the construction is based on a uniform energy estimate for the following sequence of iterating
approximate solutions:

k
5

4. Local existence

{0 +v -V F"™ = Q(F", F™*1),  F"™1(0,x v) = Fo(x,v), (41)

starting with FO(t, x, v) = Fo(x, v). Since F'*1 = M, + VM f+1, equivalently, we need to solve f"+!
such that

(O +v-Ve+ AT LK =T (" M, f7T0,x,v) = folx, v). (4.2)

Our discussion is based on the uniform bound in n for Ey ¢ (f™*1) for a small time interval. The main
results is as follows.

Lemma 4.1. Assume y > —3, for any sufficiently small W > 0, there exists T*(W) > 0 such that if

En,o(fo) < Wo,

then there is a unique classical solution f(t, x, v) to the quantum Landau equation (1.5) in [0, T*(Wy)) x
R3 x R3 such that

t
sup Ena(NO +c / Dio(f)(s)ds < CWo, (43)
0<t<T*(Wo) 0

where ¢, C > 0 and Dy ¢(f)(¢t) is defined as
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Z\a|<1\1 ||30lpf||2 + Z|a\+|ﬂ\<N ||3ﬂ Ir- P)f”g' 9> y = -2,

D ,g(8)(t) ~
2 lal<N [9%Pf12 + 2jalipi<n 105 = P)f2 otipp T3SV <-2

Moreover, En o (f)(t) is continuous over [0, T*(Wp)). If 0 < Fo(x, v) = Mg + mfo < 1, then
0<F(t,x,v) =Mg+VMf(t,x,v) <1
Proof. Recall F" =M, + mf”, for each n > 0, we first claim that

y" () < CWo, (4.4)

where y"(t) is defined as

o<t

t
Yty ~ sup Eno(f")(s) + / (4.5)
0

To verify (4.4), we use an induction over k. Clearly k = 0 is valid and we assume (4.4) is true for
k =n so that 0 < F"'(t,x, v) < 1. We notice that the quantum Landau collision operator in (4.1) has
the non-divergence form of

— {8y« FM)[FT (1 — FPT)], (4.6)
provided y > —3. On the other hand, one can get that
—oy =2y + 3" 20, y >
—{oyy U« F"} =87F" >0, y=—

Therefore, by following the same procedure as Appendix in [2] or by the generalized maximum prin-
ciple in [22], we can see that (4.1) has a smooth solution F"*! satisfying 0 < F™*t! <1 for some time
T > 0. We now turn to prove (4.4). In order to make our presentation easy to read, we divide our
computations into following three steps.
Step 1. Mixed derivatives: Taking 82‘ (Je| + 18] <N, |B| #0) of (4.2), we have
[0 + v - Vg fH1 4 0 A[0% FH1] + 05K [0% ] + ' 9p, v - 9pp, VS ™!

=g (f", "), (4.7)

where |81] > 1. If y > —2, taking the inner product of (4.7) over R? x R® with w29agf”+1, we obtain

%” Weagfn+] ”2 + (aﬁA[E)“f”“], eragfn+1) + (851([8“f”], eragfn+1)

N =

—(cg1 p, v - 0p—p, VST WO F) o (g T (7 FMT), wHag 1. (4.8)
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We now estimate (4.8) term by term. Applying Lemma 2.3, we deduce, for any 7 > 0,

(apA[0% F1 ] w2 g 1) > og 7 =1 30 195, G 0 — Coer 0% £

Bi<p
k(o 7w 1) < o S a8 7+ Gl 1, o 0
Bi<B
<0 N 0 5+ Gl
BB

And if =3 <y < -2, taking the inner product of (4.7) over R® x R® with w2@*+FDag 141, we obtain

d
a ||W0+|ﬂ\3§tfn+1 “2 + (BﬂA[Baan], W2(9+\ﬂ\)3gfn+1) + (8ﬁ1([8“f”], W2(9+\ﬂ|)agfn+1)

N =

= —(CGap, v - Bp_p, Va1 wHOHED G2 1Y) o (g (f7, frHT), w2OHED g p1HT) - (4.9)
Since w!/1! > w!fl for 1 < B, one can get from Lemma 2.3 that

(8,3A[80‘f"+1], W2(6+Iﬂ\)agfn+l)

2 2 2
208 £ M g pip =1 220 195 S5 o4 — s 19 S5
B1<B

2 2
(9K [0 "], w? DA £y < D 195 5 o,y + Crnl 199 £ -
Bi<B

For the free streaming term, if y > —2, we get from Cauchy-Schwarz’s inequality with » that

(CE ap,v - 0, VS ™ Lo w? ol FHY) <y Y0 a7+ o
1BI=181-1

If -3 <y < -2, we have

2 2
(Cgl dp, v - Ip—p, fon-&-l’ W2(9+\ﬂ|)3gfn+1) <Gy _ Z ||3§‘f"+1 ||a,9+\/§| + ’7“ agfn+1 ”0,0+|ﬁ|'
1Bl=IB1—1

For the nonlinear term, by Lemma 2.5, we see that
(aglr(fﬂ’ fl’l"rl), W29 aglfn‘f’])
and
(8gF(f", fn+l), W2(0+|ﬁ|)3gfn+l)

are bounded by



5442 S. Liu et al. / ]. Differential Equations 252 (2012) 5414-5452

Ceno(f ){51%,9(1‘"“) +Dno(f")} + Ceno(F)D 1%,0(fn)51%l,9(fn+l)
T Cena(F)DE o (1)

<CENno (Do (") + Cono (F™ ) Do (F™) + CER o (F7)

+ CENO (F™ Do (F) + CER o (F™) + Do ()

where we have used the Cauchy-Schwarz inequality with n
IBI<N, |Bl=1,2

Next, integrating (4.8) over [0, t], collecting the above estimates and summing up over |c| +
,2,..., we obtain directly

t
> grliee X [logr e
o +IBISN loe|+IBISN
1BI=1 1BI=1

< ¥ C||3afn+](0)||9+C/DN0 ds+CZ/||3“f”“llae
o o

t
+ [ e (F)Dro(F ) ds +C / Eno(F™ Do (F71)ds
0

t
/
t t
+c0/5§,ﬂ(f")ds+c0f
t
/

Eno(f"T) Do (f")ds
+C 6’,%,.0 (f™1)ds, fory >— (410)
t
2 2
Z lag £+t ||9+|ﬂ| +c1 Z /Hagfnﬂ ||g,0+|ﬂ\ds
| +HIBISN la| +IBISN
1BI>1 IBI>1

<y WWﬂwmeW/me assc [l
i

le]<N

t

+C | Enpg (fn)ﬁN,g(fn+1) ds+C / ENng (an)T)N,e (fn-H) ds
0

Eno(f"T) Do (f™)ds

+C

t
/
t t
+C0/5,%,,9(f”)ds—l—co/‘
t
/

ERo(f™N)ds, for —3<y <-2.

(411)
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Step 2. x-Derivatives with weight: We now consider the pure x-derivatives with velocity weight.
Taking 0% (Ja| < N) of (4.2), we have

[0 + v - Vi]d® f1H1 4 A[0% f™ ) 4+ K[9% f"] = 9% (F7, fH). (4.12)

Therefore, applying Lemma 2.5 yields

2 dt ”W aolfn—H ” + ( [aafn-H]’ eraafn-H) + (K[aafn]’ eraafn_H)
<Cno (M) Do (F™Y) + Ceno (F™ ) Do (S") + CER o (F1)
+Ceno(S) Do (S") + CEX o (™) + Do (). (413)

Furthermore, integrating the above over [0, t] yields

t t
%Hweaafnﬂuz+/(A[8O‘f"+1],W208afn+1)ds+/(l<[8“f"],w298af"+1)ds
0 0

L t
<€ / Eno(fM) Do (") ds+C / Eno(f" Do (f"H)ds
0 0

t t t
Cfg,%,’e(f”)ds—i—C/gN,g(f”“)j_)N,g(f”)ds—i—C/é‘,%w(f"“)ds. (4.14)
0 0 0

We notice that from Remark 2.1,
t t
/ aot fn+l 20 aa fn+l ds +/ K 801 n 29 3afn+])ds
0 0

t t t t
1
>3 [l pas—c [loe st s —n [ o sl s - ¢y [ a1 as
0 0 0 0
(4.15)

Step 3. x-Derivatives without weight: We now turn to estimate the pure x-derivatives without veloc-
ity weight. Taking the inner product of (4.12) with 3% f**1 and utilizing Lemma 2.5, we have

2 dt ||8afn+1 H + [8afn+1], aafnJrl) + (K[a"‘f"], aafnJrl)
S CEN(fY)DN (™) + CEN(F DN (™) + CER (FT)

+ CgN(an)ﬁN(fn) + CS,%,(f"H) + ﬂﬁN(an)- (4.16)
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On the other hand, one get from Remark 2.1 that

t t
/ aolfn"rl 80{fn+1 dSJ"/ I< aC{ ﬂ] aOlfnJrl)
0

0

t t t t
%/|8°‘f”+1|| ds — /M_ f"+1||2ds_n/||aafn||jds_c,7/ | 1% 0% 7| ds.
0 0 0 0

(4.17)
Then a suitable linear combination of (4.10)-(4.17) yields
¢
Ene (f"“)(f) +c2 / Dn.g (f"“) ds
0
t t
<Eno (1)) +C / Myds+C Y [ || ds
o el <N
t t
+C/€N0 fn-H ds+C/€N9 fn+1 (fn+l) B
0 0
t t t
+c/sﬁ,ﬁ(f")ds+c/sN,Q(f"“)ﬁN,g(f")ds+c/5,§_9(f"+1)ds, (418)
0 0 0
where 0 < ¢y < 1.
Recall (4.5), we deduce from (4.18) that
YO < YN0 + YR ) + Cey™HH ) + Cy 0y ) + C (v )+ C (o).
(419)

Choosing T*(Wy) < T} small enough, letting 0 <t < T*(Wy), and noticing y"(t) < CWp, one get from
(4.19) that

Yy < CWo + C(y 1),
which implies
YL < CWo,

for 0 <t < T*(Wyp). Thus (4.4) is true. Finally, by taking n — +o0 in (4.4), we obtain a classical
solution f(t, x, v) which satisfies (4.3). The proof for the uniqueness of f(t,x, v) is the same as that
of Theorem 4 in [12], we omit the details. This completes the proof of Lemma 4.1. O

Remark 4.1. Notice that in this local existence result, 51\;,9( f) includes the macroscopic part |[Pf]3,
therefore it is stronger than the dissipation rate Dy ¢ (f).
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5. Energy estimates on the nonlinear equation
In this section, we establish our Theorem 1.1, which follows from the local existence together

with the uniform a priori estimates as well as the standard continuum argument. Now we derive the
uniform a priori estimates.

Lemma 5.1. Under the conditions listed in Theorem 1.1, there exist Ay > 0 and C > 0 such that

d 1
N+ ANDN () < CLEZ(H) +ENCH) +ER(H)DNS). (5.1)

Proof. Let —3 < ¥ < —2, in order to make our presentation clear, we divide our computation into

following two steps. The first step is concerned with the case that g = 0. Recalling Lemma 3.3, and
noticing that

Yo [ clelfis@)a .60 f)ds < Y ¢ £, (5.2)

el <N—1p5 | <N

one can see that (5.1) is true in the case of 8 = 0. The second step is devoted to the estimates for x, v
derivatives. Letting || + |8] < N and |8] > 1, taking ag of (1.5) to get

{8 +v-Va)af A—P)f +35LA—P) f

= (0 +v-VJIIPf — 3 Chlagv-Vy o SR D). (5.3)
1B{1=0

Taking the inner product of (5.3) over R? x R with WZ‘ﬁlag (I—P) f, we obtain
11”80‘(1_1))}('”2 +(8"‘L(I—P)f Wzlﬁ‘aa(l—l’)f)
2dt"F 11 T \% ; K

2 B 2
=—({oc+v-VogPf, w?Ploga—P)f) - Z Cy' (aﬁév-vxagfﬂ],f,w Flaga—p)f)

e 18>0
I13
+@Fr(f. HLwPlaga—rpf). (5.4)
I14
We apply Lemma 2.4 to get that
1 2 2
2
(gLa—rp)f, w2flaga—p)f) > SIogA=Pf 5 = C 0" a=P)f ;. (5.5)

We are now in a position to compute I; (12 < j < 14) term by term. There are two parts in I12, we
estimate each part as follows. For the first part, we obtain

(95 aPf, w?Plag @—P) f)| < C[ (3% (a, b, 0), w?Plag A —P) f)|

<e||a;,§‘(1—l’)f||i_ﬂ+C(e)| KXN: 1||8°‘8t(a,b,c)
a|<N—

2

(5.6)
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according to the Cauchy-Schwarz inequality with €. Next, we have by taking the inner product of
(1.5) over R® x R? with 8,0*Pf that

ce) Y [0%@b.of’<c Y [Vorf|P + il +En(DIDN.  (5.7)

loe|<N-1 le|<SN

where we have used Lemma 2.7 to estimate Z|a|<N—1 1% (f, ), o) >

For the second part in I13, it is bounded by

ce) Y @b.ol*+e Y |aga-pyf| (5.8)

O<Ja|<N lo|+IBISN

according to the Cauchy-Schwarz inequality with €.
Utilizing the Cauchy-Schwarz inequality with € again, I13 can be estimated as follows

loga=Pf|2 o +Ce D oEVaf] 0 (5.9)
ol +1B I <N-1
B=181-1

Applying the nonlinear estimates in Lemma 2.6, we get

1
14l < C{EZ (N + ENCH DN ). (5.10)

Finally, putting all the estimates above together, summing over 0 < || < N and adjusting constants,
we can see that (5.1) with —3 <y < —2 is true. The case of y > —2 follows the same argument
without using the weight function w!#!. Thus the proof of Lemma 5.1 is completed. O

Moreover, we have the following weighted energy estimates.

Lemma 5.2. Under the conditions listed in Theorem 1.1, for any 6 > 0, there exist Ay > 0 and C > 0 such that

d _ 1
ESN,G(f) +ANDno(f) < C{gl\zj,g(f) +Eno()+ 51%/(f)}DN,9(f)- (5.11)

Proof. As in Lemma 5.1, we only discuss the case —3 < y < —2, for this, we divide our proof into
following three parts. The first part is devoted to the case that |@¢| =0, || =0 and 6 > 0. Letting
|| =0, || =0 in (5.3), taking the inner product of the resulting equation with w2’ —P)f over
R3 x R3, we obtain

1d
EE”(I—P)J‘H: +(LA-P)f, WZQ(I_P)f)
I1s

=—({d +v- VP, w?A=P)f) +(I(f, ), w?A-P)f). (5.12)

I I17

Now we turn to estimate I; (15 < j < 17) term by term. Firstly, we have get from Remark 2.1 that

1
hs > S [a=Ps; , — Cola—Pf. (513)
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By Cauchy-Schwarz’s inequality with €, we can see that
2 2 2
6| < C(€)|d(a, b, 0)|” + C©)|V(a.b,o)| +€e|d-P)f ||0’9. (5.14)
For the first term in (5.14), just applying the same argument as (5.7) we get

|ac@, b, 0> <C|[Via,b, 0| +C|VaA=P)f|> + {E2()) +En(HIDN). (515

Applying the nonlinear estimates in Lemma 2.6, we get

1
1171 < C{ER o () + Ena ()} DN (). (5.16)

Combing the estimates (5.12)-(5.16) together, we deduce that

d
ala-ms |5+ 2| a=Psf|2 , <CONH) +ClEo () +Ena(D)DNa(H).  (517)

where A1 > 0.
The second part is concerned with that case that || =0, 1 < |o| < N. Letting ||+ |8| < N, taking
0% of (1.5) to get

{000 + v - Vxd*} f +0%Lf =3“T(f, f). (5.18)

Multiplying the above equation by w2?3% f, taking the integrations in x, v and applying Remark 2.1,
one has

d
oo+ 2o £2 < Co 30 oSS +|GUr S L wPo ). (519)
1<]a|<N

where 1, > 0. For the second term on the right hand side of (5.19), by Lemma 2.6 we have

I < C{EN 2 (f) + Eno ()} Do (). (5.20)

Therefore, putting the estimates (5.19) and (5.20) together, we have

d
107 13 + 220712 < COND + CLEN W) + Ena (D} Dra (D). (5.21)

Now, we turn to the remaining third part |8| > 1, || + |8]| < N. Applying ag(l —P)f to (5.3), taking
the inner product of the resulting equation over R? x R® with w2(9+‘ﬂ|)8g (I—P)f, we obtain

1d

S losa- P)f [y 5+ (05 LA =P f, w?CHED e —P) f)

I1g

=—({oc+v- VuagPf, w?OPDog @ —p)f)

g
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- Z aﬁ,v Vi f,w2<9+‘ﬂ‘>a;;‘(l—l’)f)

1871>0
I
+ (Bg‘F(f, ), W2(9+|ﬂ|)3g([ _ p)f)‘ (5.22)
I
Now we turn to estimate I; (18 < j < 21) term by term.

For I1g, by Lemma 2.4, we obtam

1 2 2
l1g > 5 ”Bg(l - P)fH(r,0+|ﬁ| —Ciplo Haa(l - P)f”a,GH,H\

1 2 2
> 3 log a— P)fHUﬂHﬂl —Cigro[[0*@=Pyf|;. (5.23)
since w < 1 in this case.
For I9, by performing the similar calculations as I, one can get that
2 2
el <C© Y [V f|" +e€|ofA=P)f |, 400
le|<N-1
C{en () + ER(H DN (). (5.24)
According to Cauchy-Schwarz’s inequality, I¢ is no more than
2 2
C(e) Z HVX"’g]f”o,eHﬁﬂ +€||3§’('—P)f”g,e+|m' (5:25)
1B11=18]-1
By Lemma 2.6, we can see that
1/2
1211 < C{ENZ () + Ene ()] Dro(f). (5.26)
Therefore, we get from (5.22)-(5.26) that there exists A3 > 0 such that
g a—Pos[2,, +ssloga-pr|
de %8 o+181 T 31% o,0+18l
1/2
< CDN() + CLENS () +Eno(F) + ER(HDN.o(F). (5.27)

A linear combination of (5.1), (5.17), (5.21) and (5.27) yields that (5.11) is true. This completes the
proof of Lemma 5.2 with —3 < y < —2. The proof for the case of y > —2 is similar and much easier.

Therefore Lemma 5.2 holds for all potentials. Recall Sﬁe(f) is sufficiently small uniformly in time,
then (1.17) is true for all 6 > 0, this completes the first part of Theorem 1.1. Now we turn to prove
the second part of Theorem 1.1. Firstly, we denote

Evoh= Y logflo+ Y. [ega—mrsl;

NN lo|+IBI<N

-k Yy |£I(3S (@)% f, 8% f)dg, fory > —2, (5.28)

1<[a|<N-1p;
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and

Both= 3 logflom+ > Io5a-Prlg,,

1</al<N el +IBISN
—k Y £I(8S(@)d* f, 8% f)dg, for —3<y <2, (5.29)
1<]al<N-1g3

then from Lemma 3.3, (5.17), (5.21) and (5.27), we deduce that

d ~
GrEN0() + Do (F) < CIVPSIP + C{EVG () +Eno () + ER (DI DNo()- (530)

Noticing (5.2) and the definition (1.15) for 5,’3,, we have

d
e EN o (1) + Do () S CIVIPSIP + C{EG () + Ena () + +ER (DD (). (531)

1
which implies the desired estimate (1.18) since 5,\2,,9(f) is small enough uniformly in all t > 0. This
completes the second part of Theorem 1.1. O

6. Time decay for the nonlinear equation

In this section, we turn to prove Theorem 1.2. And the following proofs on the optimal decay
estimates are motivated by the work of Duan, Ukai, Yang, Zhao [10] and Yang, Yu [27-29] on the
Boltzmann equation and related models. In order to make our presentation easy to read, we divide

our proofs into following two parts, the first part is devoted to getting the decay estimate for higher
instant energy. From the definition (1.16) and (1.14) it is easy to see that

Di,o(t) = EN o(6) — | VxPf1%. (6.1)

Therefore we get from Lemma 5.2 that

d
&5;’,,9(0 + &l o (6) < CIIVAPSII2. (6.2)

On the other hand, by using Lemma 3.1 we obtain
t 2
_s _s5
IVAPFI? < Vi fII? < Cho(1 +6)72 +c[f<1 =4 (|1 L D, + VI, f)ll)ds} ,
0

where Ag = (||f0||%1 + || Ve foll?). Moreover by Lemmas 2.9, 2.8 and the micro-macro decomposi-
tion (1.12), we have

1
[V, pl < clyeb© +ehned . (63)

and
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[P Pl <C Y7 Ilwag flldg, Fl+C D 196, I

IB11<2 1B21<2
+C Y Iwas fIP DS o S|
1B11<2 latz|+1B21 <6
loz |21
2
<C Y |wag, A=P)F|"+ CIIPFI? + Cén.1(0)/ ER (D). (6.4)
IB11<2
Define
5 3
M) = sup {(1+9)3EN 0},  Mo®)= sup {(1+9)7f|*}. (6.5)
0<s<t 0<s<t

Then we easily have

5
[VAPfII> < Cro(1+1)"2

t 2
+C{[Ena(0) + €2, O ]M®) + M3(D) [/(1 ft—s) 31497 ds:|

0
_s
<CA+D72 a0+ [En1(0) +E2 1 O]M®) + ME(®)). (6.6)
On the other hand, we have from (6.2) that
t
E o (0) <e el 4 (0) + / e )| VP f(s)|” ds. (6.7)
0
Substituting (6.6) into (6.7), we can deduce that
E o0 <eTEN 4 (0)
t
+ {10+ [En1(0) + E§ (O ]M(D) + Mg(t)}/e*f“*”(l +5)"3 ds. (6.8)
0
Then letting En,1(0) small enough, we can get
5
ER o) < Clenovt + MZ®) (1 +D)72. (6.9)

The second part is concerned with the decay estimate for || f(t)||. By the definition (1.16) and (1.15) it
is easy to see that

Dn(t) = En(6) — CIIPf|?, (6.10)

from which and (5.31), we deduce that

d
SN N () < CIIPf|%, (6.11)

for some suitable ¢ > 0.
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Next, employing Lemma 3.1 again, we obtain

t 2
I < IFI? < Crr(1+1)2 +c[/<l =8 T[T D, + T f>H)dS} ,
° (6.12)

where A1 = ||f0||%1 + || foll%. Performing the similar calculations as (6.3), (6.4), we have

1
[rcs.nll, +Ira. pl<clyeio+eole o
1
+E3 1 (O ER 1O +IPFIIP + Ena (0 ER (D).

From which and (6.12), (6.9), we get
_3 1 2
IPFI*> < Cr+0)72 + Clen o7 1(0) + Ena(0)]
t 2
2 _3 _3
+MgO} | A+t—s)"3(1+t)"4ds
0

< Clengvi + MO} A +0)77. (6.13)

Recalling (6.11), we deduce

t
| £ < el (©0) + Clenovt + MZ©)) / eI (1 45)77 ds
0

SA+D72E00) +CA+0) 2 {en g1 + M)}
< Cenpn (14072 +CME(OA +1)77. (6.14)

Since €N pv1 can be small enough, we have from (6.14) that

| FO]° < Cenon(+1)72,

from which and (6.9), we obtain

El 5 (t) < Cengui(1+0)73.
Hence (1.21) holds. This completes the proof of Theorem 1.2.
Acknowledgments
The research of the first author was supported by the NNSFC grant 11101188. The research of
the second author was supported by ARF(GDEI). And the research of the third author was supported

in part by FANEDD, NCET, the NNSFC Grant 11071085, Huo Ying Dong Foundation 121002 and the
project sponsored by SRF for ROCS, SEM.



5452 S. Liu et al. / ]. Differential Equations 252 (2012) 5414-5452

References

[1] R. Adams, ]. Fournier, Sobolev Spaces, Academic Press, 2003.
[2] V. Bagland, Well-posedness for the spatially homogeneous Landau-Fermi-Dirac equation for hard potentials, Proc. Roy. Soc.
Edinburgh Sect. A 134 (2004) 415-447.
[3] C. Cercignani, R. Illner, M. Pulvirenti, The Mathematical Theory of Dilute Gases, Appl. Math. Sci., vol. 106, Springer, New
York, 1994.
[4] Y.M. Chen, Smoothing effects for weak solutions of the spatially homogeneous Landau-Fermi-Dirac equation for hard
potentials, Acta Appl. Math. 113 (1) (2011) 101-116.
[5] Y.M. Chen, L. Desvillettes, L.B. He, Smoothing effects for classical solutions of the full Landau equation, Arch. Ration. Mech.
Anal. 193 (2009) 21-55.
[6] P. Degond, M. Lemou, Dispersion relations for the linearized Fokker-Planck equation, Arch. Ration. Mech. Anal. 138 (2)
(1997) 137-167.
[7] L. Desvillettes, C. Villani, On the spatially homogeneous Landau equation for hard potentials, I, I, Comm. Partial Differential
Equations 25 (1-2) (2002) 179-298.
[8] R-J. Duan, RM. Strain, Optimal time decay of the Vlasov-Poisson-Boltzmann system in R3, Arch. Ration. Mech.
Anal. 199 (1) (2011) 291-328.
[9] R.-]. Duan, R.M. Strain, Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space, Comm.
Pure. Appl. Math. 64 (11) (2011) 1497-1546.
[10] R.-J. Duan, S. Ukai, T. Yang, H.-]. Zhao, Optimal decay estimates on the linearized Boltzmann equation with time-dependent
forces and their applications, Comm. Math. Phys. 277 (1) (2008) 189-236.
[11] RT. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
1996.
[12] Y. Guo, The Landau equation in a periodic box, Comm. Math. Phys. 231 (3) (2002) 391-434.
[13] Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure Appl. Math. 55 (9) (2002) 1104-1135.
[14] Y. Guo, The Vlasov-Maxwell-Boltzmann system near Maxwellians, Invent. Math. 153 (3) (2003) 593-630.
[15] Y. Guo, The Boltzmann equation in the whole space, Indiana Univ. Math. J. 53 (4) (2004) 1081-1094.
[16] S. Kawashima, The Boltzmann equation and thirteen moments, Japan J. Appl. Math. 7 (1990) 301-320.
[17] M. Lemou, Linearized quantum and relativistic Fokker-Planck-Landau equations, Math. Models Methods Appl. Sci. 23
(2000) 1093-1119.
[18] P.L. Lions, On Boltzmann equation and Landau equations, Philos. Trans. R. Soc. Lond. A 346 (1994) 191-204.
[19] S.-H. Liu, H.-]. Zhao, Diffusive expansion for solutions of the Boltzmann equation in the whole space, ]. Differential Equa-
tions 250 (2) (2011) 623-674.
[20] T.-P. Liu, S.-H. Yu, Boltzmann equation: Micro-macro decompositions and positivity of shock profiles, Comm. Math.
Phys. 246 (1) (2004) 133-179.
[21] T.-P. Liy, T. Yang, S.-H. Yu, Energy method for the Boltzmann equation, Phys. D 188 (3-4) (2004) 178-192.
[22] R.P. Sperb, Maximum Principles and Their Applications, Academic Press, New York, 1981.
[23] R.M. Strain, Y. Guo, Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal. 187 (2) (2008) 287-
339.
[24] S. Ukai, T. Yang, H.-J. Zhao, Global solutions to the Boltzmann equation with external forces, Anal. Appl. (Singap.) 3 (2)
(2005) 157-193.
[25] C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Ration.
Mech. Anal. 143 (3) (1998) 273-307.
[26] C. Villani, On the Cauchy problem for Landau equation: sequential stability, global existence, Adv. Differential Equa-
tions 1 (5) (1996) 793-816.
[27] T. Yang, H.-J. Yu, Hypocoercivity of the relativistic Boltzmann and Landau equations in the whole space, J. Differential
Equations 248 (6) (2010) 1518-1560.
[28] T. Yang, H.-J. Yu, Optimal convergence rate of the Landau equation with external force in the whole space, Acta Math.
Sci. 29 (4) (2009) 1035-1062.
[29] T. Yang, H.-J. Yu, Global classical solutions for the Vlasov-Maxwell-Fokker-Planck system, SIAM ]. Math. Anal. 42 (1) (2010)
459-488.



	Optimal time decay of the quantum Landau equation  in the whole space
	1 Introduction and the statement of our main results
	2 Preliminaries
	3 The linearized equation
	4 Local existence
	5 Energy estimates on the nonlinear equation
	6 Time decay for the nonlinear equation
	Acknowledgments
	References


