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We compute the second variation of the stream function energy
of two-dimensional steady free surface gravity water waves with
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nonpositive vorticity the second variation of the stream function
energy at extreme waves with Stokes corner asymptotics cannot
be nonnegative in any small neighbourhood of a given isolated
stagnation point. The particular form of our second variation
suggests however the possibility that certain singularities in the
case of nonzero vorticity might be constructible as minimizers of
the stream function energy.
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1. Introduction

The classical problem of traveling two-dimensional gravity water waves with vorticity can be de-
scribed mathematically as a free boundary problem for a semilinear elliptic equation: given an open
connected set Ω in the (x, y) plane and a function γ of one variable, find a nonnegative function ψ

in Ω such that

�ψ = −γ (ψ) in Ω ∩ {ψ > 0}, (1a)∣∣∇ψ(x, y)
∣∣2 = −y on Ω ∩ ∂{ψ > 0}. (1b)
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For a motivation of (1) as well as a mathematical background concerning existence, regularity, extreme
waves and stagnation points see for example [1,2] as well as the introduction of the paper [3]. Note
that problem (1) is also relevant for the description of more general steady flow configurations (for
example, the fluid domain could have a nonflat bottom, and there could be some further external
forcing acting at the boundary of the fluid region which is not in contact with the air region).

In the present paper we derive a formula for the second variation of the stream function energy

E(ψ) =
∫ (|∇ψ |2 − 2Γ (ψ) − yχ{ψ>0}

)

of (1) at critical points which are allowed to have isolated singularities; here Γ is a primitive of γ .
This energy functional resembles the functional introduced in [4], where various variational formula-
tions for steady water waves with vorticity have been investigated. The functional introduced in [4]
has been further pursued in [5] with the aim of establishing some formal stability. Although E(ψ) is
not the physical energy, the value of the second variation at a given solution can give us a hint as to
whether that solution could possibly be constructed minimizing the energy E which could then be
done by direct methods in the calculus of variations. Moreover, in the case of zero vorticity, we obtain
from our result an expansion formula for

∫
Dε

∣∣∇(φ + εζ )
∣∣2

in ε, where φ is the velocity potential and ζ is a harmonic function with homogeneous Neumann
boundary values on the boundary of the physical domain Ω , such that φ + εζ has homogeneous
Neumann boundary values on the perturbed free surface ∂ Dε .

We are particularly interested in solutions with singularities arising for example at stagnation points,
that is points at which the relative fluid velocity (ψy,−ψx) is the zero vector. Stokes [6] conjectured
that, in the irrotational case γ ≡ 0, at any stagnation point the free surface has a (symmetric) corner
of 120◦ , and formal asymptotics suggest that the same result might be true also in the general case
of waves with vorticity γ �≡ 0.

In the irrotational case, the Stokes conjecture was first proved, under isolatedness, symmetry, and
monotonicity assumptions, by Amick, Fraenkel and Toland [7] and Plotnikov [8] (see also [9] for a
simplification of the proof in [7]), while a geometric proof has recently been given in [10] without
any such structural assumptions.

In the case γ �≡ 0, it was proved in [11] that, at stagnation points, a symmetric monotone free
boundary has either a corner of 120◦ or a horizontal tangent. Moreover, it was also shown there that,
if γ � 0 close to the free surface, then the free surface necessarily has a corner of 120◦ . The existence
of waves with nonzero vorticity, having stagnation points has been obtained in the setting of periodic
waves of finite depth over a flat horizontal bottom under certain assumptions in the paper [12]. The
result [3] reveals the possibility of cusp singularities and excludes horizontally flat singularities in the
case that the vorticity is 0 on the free surface and the free surface is an injective curve. In the case of
disconnected air components however, the possibility of horizontally flat singularities remains even
for zero vorticity (see also [10]).

This variety of possible singularities raises questions of physical stability — which we will not
address in the present paper — as well as the question whether certain singularities might be stable
with respect to the stream function energy E and thus possibly constructible as minimizers of E .

Let us briefly state our main results and give a plan of the paper:

Main Result A. (Cf. Proposition 4.3.) Let ψ be a suitable weak solution, and let 0 be an isolated stagnation
point of ψ . The second variation in direction ζ , where 0 � g ∈ C∞

0 (B1 \ {0}) and ζ is the harmonic function in
{ψ > 0} ∩ B1 with boundary data g on ∂({ψ > 0} ∩ B1), is given by
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δ2 Jψ(ζ ) =
∫

∂{ψ>0}∩B1

ζ 2
(

ν2

2y
+ κ − γ (0)√−y

)
dH1

+
∫

{ψ>0}∩B1

(|∇ζ |2 − γ ′(ψ)ζ 2);

here ν is the outward unit normal on ∂{ψ > 0} and κ is the curvature on ∂{ψ > 0} (nonnegative if {ψ = 0}
were convex).

The second variation formula is applicable to all isolated singularities, including the more diffi-
cult horizontally flat singularities and cusps, however precise estimates for the regularity of the free
boundary close to singularities are known only in the case of Stokes corner asymptotics (for a proof of
regularity see [3, proof of Theorem 10.1]), we confine ourselves in the present paper to singularities
with Stokes corner asymptotics and obtain:

Main Result B. (Cf. Theorem 5.1.) Let γ � 0, let ψ be a suitable weak solution, and let 0 be a stagnation point
of ψ with Stokes corner asymptotics. Then ψ is unstable in B1(0) with respect to the stream function energy
in the sense that there exists a test function ζ such that δ2 Jψ(ζ ) < 0.

For zero vorticity we expect the same instability of horizontally flat singularities, but for nonzero
vorticity our second variation formula suggests the possibility of singularities minimizing E in the case that
the Rayleigh–Taylor condition is violated. However, in order to investigate these issues without assuming
too much regularity we need regularity theory in the vein of [13] or [14], which we defer to future
research.

Plan of the paper. After clarifying our notion of solution and extreme waves in Section 3, we follow
in Section 4 the approach in [15] (carried out for the Bernoulli problem) in order to compute the
second variation in the water wave problem. Last, we use in Section 5 ideas of [16] in combination
with original ideas in order to prove that the second variation is negative in certain directions in the
case of Stokes corner asymptotics.

2. Notation

We denote by χA the characteristic function of a set A. We denote by x = (x, y) a point in R
2, by

x · y the Euclidean inner product in R
2 ×R

2, by |x| the Euclidean norm in R
2, by Br(x0) := {x ∈ R

2 |
|x − x0| < r} the ball of center x0 and radius r and by Br the ball Br(0). Also, Ln shall denote the
n-dimensional Lebesgue measure and Hs the s-dimensional Hausdorff measure. By ν we will always
refer to the outer normal on a given surface.

3. Weak solutions

For the sake of convenience we are going to reflect solution etc. at the line {y = 0}. Let Ω be a
bounded domain in R

2 which has a non-empty intersection with the {y = 0}, in which we consider
the combined problem for fluid and air. We study solutions u, in a sense to be specified, of the
problem

�u = − f (u) in Ω ∩ {u > 0},
|∇u|2 = y on Ω ∩ ∂{u > 0}. (2)

The nonlinearity f is assumed to be a C1 function with primitive F (z) = ∫ z
0 f (t)dt . Since our results

are completely local, we do not specify boundary conditions on ∂Ω .
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Definition 3.1 (Variational solution). We define u ∈ W 1,2
loc (Ω) to be a variational solution of (2) if u ∈

C0(Ω) ∩ C2(Ω ∩ {u > 0}), u � 0 in Ω , u ≡ 0 in Ω ∩ {y � 0} and the first variation with respect to
domain variations of the functional

J (v) :=
∫
Ω

(|∇v|2 − 2F (v) + yχ{v>0}
)

vanishes at v = u, i.e.

0 = − d

dε
J
(
u
(
x + εφ(x)

))∣∣∣∣
ε=0

=
∫
Ω

((|∇u|2 − 2F (u)
)

divφ − 2∇uDφ∇u + yχ{u>0} divφ + χ{u>0}φ2
)

dx

for any φ ∈ C1
0(Ω;R2).

Since we want to focus in the present paper on the analysis of stagnation points, we will assume
that everything is smooth away from y = 0, however this assumption may be weakened considerably
by using in {y > 0} regularity theory for the Bernoulli free boundary problem (see [17] for regularity
theory in the case f = 0 — which could effortlessly be perturbed to include the case of bounded f —
and see [18] for another regularity approach which already includes the perturbation).

Definition 3.2 (Weak solution). We define u ∈ W 1,2
loc (Ω) to be a weak solution of (2) if the following are

satisfied: u is a variational solution of (2) and the topological free boundary ∂{u > 0} ∩ Ω ∩ {y > 0} is
locally a C2,α-surface.

Remark 3.3. It follows that in {y > 0} the solution is a classical solution of (2).

Definition 3.4 (Stagnation points). Let u be a variational solution of (2).
We call Su := {(x, y) ∈ Ω | y = 0 and (x, y) ∈ ∂{u > 0}} the set of stagnation points.
If x0 ∈ Su and

u(x0 + rx)

r3/2
→ u0(x) = r3/2 cos

(
3

2

(
min

(
max

(
θ,

π

6

)
,

5π

6

)
− π

2

))
in W 1,2

loc

(
R

2),
then we call x a stagnation point with Stokes corner asymptotics.

Definition 3.5 (Extreme waves). If Su �= ∅, the solution u is called an extreme wave.

4. The second variation formula

Let J (v, B1) = ∫
{v>0}∩B1

(|∇v|2 −2F (v)+ y), let u be a weak solution in the sense of Definition 3.2,
and let 0 be an isolated stagnation point of u.

For 0 � g ∈ C∞
0 (B1 \ {0}), let ζ be the harmonic function in {u > 0} ∩ B1 with boundary data g on

∂({u > 0} ∩ B1). We define vε = u − εζ and Dε = {x ∈ B1 | u(x) < εζ(x)}. Then∫
{vε>0}∩B1

|∇vε|2 =
∫

∂ B1∩{u>0}
u(uν − εζν)dH1 −

∫
{vε>0}∩B1

vε�vε

=
∫

∂ B ∩{u>0}
u(uν − εζν)dH1 +

∫
{v >0}∩B

f (u)vε
1 ε 1
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where ν is the unit outward normal on the boundary. Thus

∫
{vε>0}∩B1

|∇vε|2 −
∫

{u>0}∩B1

|∇u|2

= −ε

∫
∂ B1∩{u>0}

uζν dH1 +
∫

{vε>0}∩B1

f (u)(u − εζ ) −
∫

{u>0}∩B1

f (u)u

= −ε

∫
∂ B1∩{u>0}

(uζν − uνζ )dH1 +
∫

{vε>0}∩B1

f (u)(u − εζ ) −
∫

{u>0}∩B1

f (u)u

= −ε

∫
∂(B1∩{u>0})

(uζν − uνζ )dH1 − ε

∫
∂{u>0}∩B1

ζuν dH1

+
∫

{vε>0}∩B1

f (u)(u − εζ ) −
∫

{u>0}
f (u)u

= ε

∫
∂{u>0}∩B1

ζ
√

y dH1 − ε

∫
{vε>0}∩B1

f (u)ζ − ε

∫
{u>0}∩B1

f (u)ζ −
∫
Dε

f (u)u

because ζ = 0 on ∂ B1 ∩ {u > 0}, u = 0 on ∂{u > 0} ∩ B1 and uν = −√
y on ∂{u > 0} \ {0}. Moreover

∫
{vε>0}∩B1

F (vε) −
∫

{u>0}
F (u) = −ε

∫
{vε>0}∩B1

f (u)ζ + ε2
∫

{vε>0}∩B1

f ′(u)

2
ζ 2 −

∫
Dε

F (u) + o
(
ε2).

It follows that

J (vε, B1) − J (u, B1) = ε

∫
∂{u>0}∩B1

ζ
√

y dH1 −
∫
Dε

y − ε2
∫

{vε>0}∩B1

f ′(u)ζ 2

− ε

∫
Dε

f (u)ζ + 2
∫
Dε

F (u) −
∫
Dε

f (u)u + o
(
ε2).

Lemma 4.1. Let z : R → R
2 , z(s) = (s, η(s)). In the coordinate system x(s, t) = z(s) − tν(s) (here ν is the

outward unit normal on ∂{u > 0}) the volume element

dx = (1 − tκ)dH1 dt

where κ = η′′

(
√

1+(η′)2)3
is the curvature of ∂{u > 0}.

Proof. Since x(s, t) = (s − t η′(s)√
1+(η′)2

, η(s) + t 1√
1+(η′)2

),

Dx(s, t) =
⎛
⎝ 1 − t( η′√

1+(η′)2
)′ −η′√

1+(η′)2

η′ + t( 1√ ′ 2
)′ 1√ ′ 2

⎞
⎠ .
1+(η ) 1+(η )
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Thus

det
(

Dx(s, t)
) = 1√

1 + (η′)2
− 1√

1 + (η′)2

tη′′

(1 + (η′)2)3/2

+ (η′)2√
1 + (η′)2

− tη′η′′

(1 + (η′)2)3/2

η′√
1 + (η′)2

=
√

1 + (
η′)2

(
1 − t

η′′

(1 + (η′)2)3/2

)

=
√

1 + (
η′)2

(1 − tκ).

Therefore

dx = ∣∣det
(

Dx(s, t)
)∣∣ds dt = (1 − tκ)

√
1 + (

η′)2
ds dt

= (1 − tκ)dH1 dt. �
Similar to [15, Remark 1], we have

Lemma 4.2. uνν = √
yκ − f (0) on ∂{u > 0} ∩ (Br0 \ {0}).

Proof. Let x0 = (x0, y0) ∈ ∂{u > 0} ∩ (Br0 \ {0}). Rotate the coordinate system around x0 such that
∂{u > 0} is locally the graph of y = η(x) and η′ = 0 at x0. Since u(x, η(x)) = 0 near x0, differentiating
with respect to x yields

ux + u yη
′ = 0

and

uxx + u yxη
′ + u yη

′′ = 0.

Thus at x0,

uxx = −u yη
′′ = uνκ = −√

y0κ.

Moreover, since �u = − f (u) and f (u) = f (0) on ∂{u > 0}, we obtain at x0

uνν = u yy = −uxx − f (0) = √
y0κ − f (0). �

We are now ready to expand the term
∫

Dε
y in ε: z(s) − tν(s) ∈ ∂ Dε is equivalent to

u
(
z(s) − tν(s)

) = εζ
(
z(s) − tν(s)

)
.

Taking Taylor’s expansions at t = 0, we have

t
√

y + (√
yκ − f (0)

) t2

+ O
(
t3) = ε(ζ − tζν) + εO

(
t2).
2
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Let t = aε + bε2 + O (ε3). We obtain

√
yaε + √

ybε2 + a2

2
ε2(√yκ − f (0)

) + O
(
ε3) = εζ − ε2aζν + O

(
ε3),

which implies a = ζ√
y and b = ( f (0)−√

yκ)ζ 2

2y3/2 − ζ ζν
y . Therefore

t = ζ√
y
ε +

(
( f (0) − √

yκ)ζ 2

2y3/2
− ζ ζν

y

)
ε2 + O

(
ε3).

It follows that

∫
{u>0}

y −
∫

{vε>0}
y

=
∫
Dε

y

= O
(
ε3) +

∫
∂{u>0}∩B1

ζ√
y ε+(

( f (0)−√
yκ)ζ2

2y3/2 − ζ ζν
y )ε2∫

0

(1 − tκ)(y − tν2)dt dH1

= O
(
ε3) +

∫
∂{u>0}∩B1

ζ√
y ε+(

( f (0)−√
yκ)ζ2

2y3/2 − ζ ζν
y )ε2∫

0

(
y − t(yκ + ν2) + O

(
t2))dt dH1

=
∫

∂{u>0}∩B1

(
εζ

√
y + ( f (0) − √

yκ)ζ 2

2
√

y
ε2 − ζ ζνε

2 − yκ + ν2

2

ζ 2ε2

y

)
dH1 + O

(
ε3)

= ε

∫
∂{u>0}∩B1

ζ
√

y − ε2
∫

∂{u>0}∩B1

(
κζ 2 − f (0)ζ 2

2
√

y
+ ν2ζ

2

2y

)
dH1 − ε2

∫
{u>0}∩B1

|∇ζ |2 + O
(
ε3)

and

ε

∫
Dε

f (u)ζ = ε

∫
∂{u>0}∩B1

εζ√
y∫

0

(
f (0)ζ + O (t)

)
(1 − tκ)dt dH1 + O

(
ε3)

= ε2
∫

∂{u>0}∩B1

f (0)ζ 2

√
y

dH1 + O
(
ε3).

Moreover, we have ε2
∫
{v >0}∩B f ′(u)ζ 2 = ε2

∫
{u>0}∩B f ′(u)ζ 2 + O (ε3),
ε 1 1
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∫
Dε

F (u) =
∫

∂{u>0}∩B1

εζ√
y +(

f (0)−√
yκ

2y3/2 − ζ ζν
y )ε2∫

0

(− f (0)(∇u · ν)t + O
(
t2))(1 − tκ)dt dH1 + O

(
ε3)

= ε2
∫

∂{u>0}∩B1

f (0)ζ 2

2
√

y
dH1 + O

(
ε3),

and

∫
Dε

f (u)u =
∫

∂{u>0}∩B1

εζ√
y +(

f (0)−√
yκ

2y3/2 − ζ ζν
y )ε2∫

0

(
f (0)

√
yt + O

(
t2))(1 − κt)dt dH1 + O

(
ε3)

= ε2
∫

∂{u>0}∩B1

f (0)ζ 2

2
√

y
dH1 + O

(
ε3).

Thus

J (vε, B1) − J (u, B1) = ε2
∫

∂{u>0}∩B1

(
ν2ζ

2

2y
+ κζ 2 − f (0)ζ 2

√
y

)
dH1

+ ε2
∫

{u>0}∩B1

|∇ζ |2 − ε2
∫

{u>0}∩B1

f ′(u)ζ 2 + o
(
ε2).

We obtain:

Proposition 4.3. Let u be a weak solution in the sense of Definition 3.2, and let 0 be an isolated stagnation
point of u. The second variation in direction ζ , where 0 � g ∈ C∞

0 (B1 \ {0}) and ζ is the harmonic function in
{u > 0} ∩ B1 with boundary data g on ∂({u > 0} ∩ B1), is given by

δ2 J (ζ ) =
∫

∂{u>0}∩B1

ζ 2
(

ν2

2y
+ κ − f (0)√

y

)
dH1 +

∫
{u>0}∩B1

(|∇ζ |2 − f ′(u)ζ 2).

5. The second variation of extreme waves

Theorem 5.1. Let f � 0, let u be a weak solution in the sense of Definition 3.2 satisfying in addition u y > 0 in
Ω ∩ {u > 0}, and let 0 be a stagnation point of u with Stokes corner asymptotics. Then u is unstable in B1(0)

with respect to the stream function energy in the sense that there exists a test function ζ such that δ2 J (ζ ) < 0.

Proof. First, by the proof of [3, Theorem 10.1], 0 is an isolated stagnation point, {u > 0} is in Bρ

the supergraph of a function η in the y-direction, η ∈ C1((−ρ/2,0]) ∩ C1([0,−ρ/2)). It follows that
there are positive constants 0 < c1 < C2 < +∞ such that c1 � |η′| � C2 in (−ρ/2,ρ/2). The outward

normal is given by ν = (
η′(x)√

1+η′(x)2
, −1√

1+η′(x)2
). From the higher regularity in [19, Theorem 2] we know

also that for ηr(x) := η(rx)/r

‖ηr‖C2([−1,−1/2]∪[1/2,1]) � C3.
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It follows that |η′′(x)| � C3/|x| in (−ρ/2,ρ/2) \ {0} and that |κ(x)| � C4/|x| in Bρ/4. Last, we obtain
from [20, (3.15)] that the differential inequality ν2

2y + κ � 0 is in this graph case always satisfied.
By Proposition 4.3, we have

δ2 J (ζ ) =
∫

∂{u>0}∩B1

ζ 2
(

ν2

2y
+ κ − f (0)√

y

)
dH1 +

∫
{u>0}∩B1

(|∇ζ |2 − f ′(u)ζ 2).

Towards a contradiction we assume that δ2 J (ζ ) � 0 for all ζ .
For r ∈ (0,ρ), we define Ar = {x ∈ [−r,−r/2) | κ = η′′(x)

(
√

1+η′(x)2)3
� − ν2

4y }, D(r) = 2r−1H1(Ar) and

D(0+) = lim supr→0+ D(r).

Case 1. D(0+) > 0. Then there exist δ > 0 and a sequence {ri} such that ri+1 � ri/2 and D(ri) > δ for
all i ∈ N. We denote Ai = Ari , whereupon Ai ∩ A j = ∅ for all i �= j.

Following [16, proof of Theorem 8.1], we define gτ (x) = φ(x) − φ( 2x
τ ) for 0 < τ < 1, where 0 �

φ ∈ C∞
0 (B1), φ ≡ 1 in B 1

2
and φ is a non-increasing function of |x|. Let ζτ be the harmonic function

in {u > 0} ∩ B1 with boundary data gτ . Then we have

∫
{u>0}∩B1

|∇ζτ |2 �
∫

{u>0}∩B1

|∇gτ |2 < C5,

where C5 is independent of τ . On the other hand we obtain for ζn = ζrn that

∫
∂{u>0}∩B1

(
ν2

2y
+ κ

)
ζ 2

n dH1 �
n∑

i=1

∫
Ai

(
ν2

2y
+ κ

)√
1 + (

η′)2
dx

� −
n∑

i=1

∫
Ai

1

4η(x)
dx � −

n∑
i=1

∫
Ai

1

4C2|x| dx

� −
n∑

i=1

δ

4C2
→ −∞

as n → ∞.
We also know that

∫
B1∩∂{u>0}

| f (0)|ζ 2
n√

y
dH1 �

1∫
−1

| f (0)|√
c1|x| (1 + C2)dx < +∞

and

∫
{u>0}∩B1

(|∇ζn|2 − f ′(u)ζ 2
n

)
� C6,

where C6 is independent of n. Thus δ2 J (ζn) → −∞ as n → ∞. So we obtain a contradiction.
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Case 2. D(0+) = 0. For every δ > 0, there exists an r0 ∈ (0,ρ) such that D(r) < δ for all r � r0. Let
ri = r0

2i , Ai = Ari and Bi = (−ri,−ri/2) \ Ai for i ∈ N. Then we obtain

∣∣∣∣
∫
Ai

κ

√
1 + η′(x)2 dx

∣∣∣∣ �
∣∣∣∣
∫
Ai

(1 + C2)C4

x
dx

∣∣∣∣ � (1 + C2)C4δ

and

∫
Bi

κ

√
1 + η′(x)2 dx �

∫
Bi

1

4η
dx � ri

2
(1 − δ)

1

4C2ri
= (1 − δ)(8C2)

−1.

We choose a δ ∈ (0, r0) such that (1 − δ)(8C1)
−1 − (1 + C2)C4δ > τ > 0. Then we have

∣∣∣∣∣
r1∫

rn+1

κ

√
1 + η′(x)2 dx

∣∣∣∣∣ �
n∑

i=1

∫
Bi

κ

√
1 + η′(x)2 dx

−
n∑

i=1

∣∣∣∣
∫
Ai

κ

√
1 + η′(x)2 dx

∣∣∣∣ � nτ → +∞

as n → +∞, which contradicts the fact that — using the fact that the free boundary is a graph —
| ∫D κ dH1| � 2π for all connected subsets D of ∂{u > 0} \ {0}. �
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