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Abstract

In this article we are interested in the existence of positive classical solutions of

{ −�u + a(x) · ∇u + V (x)u = up + γ uq in �

u = 0 on ∂�,
(1)

and

{ −�u + a(x) · ∇u + V (x)u = up + γ |∇u|q in �

u = 0 on ∂�,
(2)

where � is a smooth exterior domain in RN in the case of N ≥ 4, p > N+1
N−3 and γ ∈ R. We assume that 

V is a smooth nonnegative potential and a(x) is a smooth vector field, both of which satisfy natural decay 
assumptions. Under suitable assumptions on q we prove the existence of an infinite number of positive 
classical solutions.

We also consider the case of N+2
N−2 < p < N+1

N−3 under further symmetry assumptions on �, a and V .
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1. Introduction

In this article we are interested in the following variants of the Lane–Emden and viscous 
Hamilton–Jacobi equations, on exterior domains, given by

{ −�u + a(x) · ∇u + V (x)u = up + γ uq in �

u = 0 on ∂�,
(3)

and

{ −�u + a(x) · ∇u + V (x)u = up + γ |∇u|q in �

u = 0 on ∂�,
(4)

where D ⊂ R
N is a smooth bounded domain and � := R

N\D. We seek positive classical solu-
tions which satisfy lim|x|→∞ u = 0. The assumptions on a and V are given by

(A1): a(x) is a smooth vector field satisfying lim
R→∞A(R) = 0 where A(R) := sup

|x|≥R

|x||a(x)|,
(A2): V (x) ≥ 0 is a smooth potential satisfying lim

R→∞V (R) = 0 where V (R) := sup
|x|≥R

|x|2|V (x)|.

By considering a suitable shift in a and V we can assume that 0 ∈ D.
We begin by recalling the bounded domain version of (3) in the case of a(x) = 0, V (x) = 0

and γ = 0 given by

{ −�u = up in �,

u = 0 on ∂�,
(5)

where � is a bounded domain in RN with N ≥ 3. Define the critical exponent ps = N+2
N−2 and note 

that it is related to the critical Sobolev imbedding exponent 2∗ := 2N
N−2 = ps +1. For 1 < p < ps , 

H 1
0 (�) is compactly imbedded in Lp+1(�) and hence standard methods show the existence of a 

positive minimizer of

min
u∈H 1

0 (�)\{0}

∫
�

|∇u|2dx(∫
�

|u|p+1dx
) 2

p+1

.

This positive minimizer is a positive solution of (5), see for instance the book [19]. For p ≥ ps , 
H 1

0 (�) is no longer compactly imbedded in Lp+1(�) and so to find positive solutions of (5)
one needs to take other approach. For p ≥ ps the well known Pohozaev identity [18] shows 
there are no positive solutions of (5) provided � is star shaped. For general domains in the 
critical/supercritical case, p ≥ ps , the existence versus nonexistence of positive solutions of (5)
is a very delicate question; see for instance [4,9,17,10].
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1.1. The full space problem

We now recall (3) in the case of a(x) = 0, V (x) = 0 and γ = 0 in the case of � =R
N . There 

has been much work done on the existence and nonexistence of positive classical solutions of

−�w = wp in R
N . (6)

As in the bounded domain case the critical exponent ps plays a crucial role. For 1 < p < ps there 
are no positive classical solutions of (6) and for p ≥ ps there exist positive classical solutions, 
see [2,3,13,12]. The moving plane method shows that all positive classical solutions, satisfying 
certain assumptions, are radial about a point.

In [5] it was shown that there was a positive classical solution of (3) in the case of γ = 0
and � = R

N provided a(x) was smooth divergence free and satisfied a smallness assumption 
and N ≥ 4 with p > N+1

N−3 . Under the further assumption that p > pJL (the so called Joseph–
Lundgren exponent; see [16,15,11] regarding pJL) the solution was shown to be stable in some 
suitable sense. In [1] we considered (3) and (4) in the case of � = R

N under the same assump-
tions on p, a(x) and V (x). Our approach in the existence portions of [5] and [1] was to use a 
linearization argument along with a fixed point argument in various spaces, to obtain positive 
solutions. Our starting point was the linear theory developed in Dávila–del Pino–Musso [6], see 
the next section for details. We also mention the work of Dávila–del Pino–Musso–Wei [7] where 
they examined −�u + V (x)u = up on RN .

The positive radial solution. For the remainder of the paper w(r) will refer to an explicit solu-
tion of (6). For p > N+2

N−2 let w = w(r) denote the positive radial decreasing solution of (6) with 
w(0) = 1. The asymptotics of w, as r → ∞, are given by

w(r) = β
1

p−1 r
−2
p−1 (1 + o(1)),

where

β = β(p,N) = 2

p − 1

(
N − 2 − 2

p − 1

)
> 0,

see [15] for this and for more detailed asymptotics.

1.2. The exterior problem

In Dávila–del Pino–Musso [6] they examined the problem

{ −�u = up in �

u = 0 on ∂�,
(7)

where � = R
N\D where D is a bounded open connected domain in RN . Their interest was in 

the existence of positive classical solution of (7). They obtained a continuum of positive solutions 
when p > N+1

N−3 . For N+2
N−2 < p < N+1

N−3 they obtained a similar result but they assumed a symmetry 
assumption on D. Define the linearized operator L(φ) := �φ + pwp−1φ associated with (6). 
The starting point for their analysis of (7) was to obtain various mapping properties of L on 
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some weighted L∞ spaces RN . They then needed to extend these linear estimates to the exterior 
space. For this set Lλ(φ)(x) := �φ(x) + pwλ(x)p−1φ(x) where 0 < λ and wλ(x) := λαw(λx)

where α := 2
p−1 ; note that wλ is also a solution of (6). We omit their linear estimates on the 

full space and only mention their final linear estimates on the exterior domains. For this we first 
define some spaces. For 0 < σ we define Yλ := {f ∈ C(�) : ‖f ‖Yλ < ∞} and Xλ,0 := {φ ∈
C(�) : φ = 0 on ∂� with ‖φ‖Xλ,0 < ∞} where

‖f ‖Yλ := λσ sup
|x|≤λ−1

|x|σ+2|f (x)| + λα sup
|x|≥λ−1

|x|α+2|f (x)|,

‖φ‖Xλ,0 := λσ sup
|x|≤λ−1

|x|σ |φ(x)| + λα sup
|x|≥λ−1

|x|α|φ(x)|.

Notation. Here and in the rest of the paper all supremums in the various norms are understood 
to be over x ∈ � along with the other stated assumptions. In addition recall that we are assuming 
that 0 ∈ D and hence there are no issues with the weights at the origin. We now come to their 
linear results.

Theorem A. (See Dávila–del Pino–Musso [6].)

1. Suppose N ≥ 4, p > N+1
N−3 and 0 < σ < N −2. Then there exists some small λ0 > 0 and some 

C > 0 such that for all 0 < λ < λ0, f ∈ Yλ there is some φλ ∈ Xλ,0 such that Lλ(φλ) = f in 
� with φλ = 0 on ∂� and ‖φλ‖Xλ,0 ≤ C‖f ‖Yλ .

2. Suppose N ≥ 3, N+2
N−2 < p < N+1

N−3 , 0 < σ < N −2 and D satisfies (A3) (see the text following 
Remark 1 for definition of (A3)). Then there exists some small λ0 > 0 and some C > 0 such 
that for all 0 < λ < λ0, f ∈ Y e

λ (see Section 4 for definition of Y e
λ and Xe

λ,i ) there is some 
φλ ∈ Xe

λ,0 such that Lλ(φλ) = f in � with φλ = 0 on ∂� and ‖φλ‖Xλ,0 ≤ C‖f ‖Yλ .

To obtain a positive solutions of (7) they then applied a fixed point argument using their linear 
theory. We also mention the work of Dávila–del Pino–Musso–Wei [8] where they considered 
the exterior problem and considered both fast and slow decay solutions and they utilized the 
Lyapunov–Schmidt reduction method to obtain positive solutions of (7), for N+2

N−2 < p < N+1
N−3

under no symmetry assumptions on D.

1.3. The main results

We now state our main results.

Theorem 1. Suppose N ≥ 4, p > N+1
N−3 , q > p and (A1), (A2) are satisfied.

1. Suppose γ ≥ 0 then there exists an infinite number of positive smooth solutions of (3).
2. Suppose γ < 0 and

‖(div(a) − 2V )+‖
L

N
2 (�)

< 2SN,

where (div(a) − 2V )+ is the positive part of div(a) − 2V and SN is the optimal constant in 
the critical Sobolev imbedding, see Lemma 6. Then there exists an infinite number of smooth 
positive solutions of (3).
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Theorem 2. Suppose N ≥ 4, p > N+1
N−3 , 2p

p+1 < q < 2 and (A1), (A2) are satisfied. Then there 
exists an infinite number of positive classical solutions of (4).

Remark 1. We believe the restriction q >
2p

p+1 in Theorem 2 is somewhat natural and is coming 
from the equation (4). The other restriction that q < 2 we believe is not natural and is mainly an 
artifact of the choice of function space we are working in. In our prior work [1] we examined (4)
on RN and in this work we also obtained a positive solution for (4) in the case of 2p

p+1 < q < 2. 
By considering alternate function spaces we were able to relax the assumption of q < 2; we are 
currently unable to extend these methods to exterior domains.

In our final result we consider (3) and (4) under the assumption that N+2
N−2 < p < N+1

N−3 . For 
our results here we need to impose some conditions on D, which we label (A3): we assume 
0 ∈ D ⊂ R

N is smooth and bounded and for each 1 ≤ i ≤ N one has x ∈ D ⇐⇒ xi ∈ D where 
xi := (x1, x2, . . . , xi−1, −xi, xi+1, . . . , xN).

We also define some symmetry assumptions on a and V . Define

(A4) : V (xi) = V (x) ∀x ∈ �,∀1 ≤ i ≤ N.

For vector fields a we write a(x) = (a1(x), . . . , aN(x)) and we consider the symmetry as-
sumption where we require for all x ∈ � that

(A5) : for all x ∈ � one has aj (xi) =
{

aj (x) i �= j

−ai(x) i = j.

Theorem 3. Suppose N ≥ 3, N+2
N−2 < p < N+1

N−3 and (A1), (A2), (A3), (A4) and (A5) are satis-
fied.

1. Suppose q > p and γ ≥ 0. Then there exists an infinite number of positive smooth solutions 
of (3).

2. Suppose γ < 0,

‖(div(a) − 2V )+‖
L

N
2 (�)

< 2SN,

and q > p. Then there exists an infinite number of smooth positive solutions of (3).
3. Suppose 2p

p+1 < q < 2. Then there exists an infinite number of positive classical solutions 
of (4).

2. Equation (3); −�u + a(x) ·∇u + V (x)u = up + γuq

For our approach we need to adjust the spaces slightly. Define X2,λ := {φ ∈ C1(�) : �φ ∈
C(�) with φ = 0 on ∂� and ‖φ‖X2,λ

< ∞} where

‖φ‖Xλ,2 := λσ sup
|x|≤λ−1

(
|x|σ |φ(x)| + |x|σ+1|∇φ(x)| + |x|σ+2|�φ(x)|

)

+ λα sup
−1

(
|x|α|φ(x)| + |x|α+1|∇φ(x)| + |x|α+2|�φ(x)|

)
.

|x|≥λ
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The first result we need is to extend the linear theory of Dávila–del Pino–Musso [6] to Xλ,2. 
This will follow directly from their estimates and a scaling argument.

Lemma 1. Suppose N ≥ 4 and p > N+1
N−3 . Then for 0 < σ < N − 2 there exists some small 

λ0 > 0 and some C > 0 such that for all 0 < λ < λ0 and f ∈ Yλ there is some φλ ∈ Xλ,2 such 
that Lλ(φλ) = f in � with φλ = 0 on ∂� and ‖φλ‖Xλ,2 ≤ C‖f ‖Yλ (recall Lλ(φ) := �φ +
pwλ(x)p−1φ).

Proof. Fix R big enough such that D ⊂⊂ BR and let 0 < σ < N − 2, λ0 > 0 and C > 0 be from 
the above Theorem A [6]. Fix N < t < ∞ and suppose f ∈ Yλ. Then by Theorem A [6] there 
is some φλ ∈ Xλ,0 such that Lλ(φλ) = f in � and we have ‖φλ‖Xλ,0 ≤ C‖f ‖Yλ . We will now 
apply regularity results to obtain the improved estimates. We first obtain gradient estimates and 
in doing so it will be convenient to introduce the following two regions:

(i) �2R = � ∩ B2R, (ii) { |x| ≥ 2R},

where BR := {x ∈R
N : |x| < R}.

Before obtaining the estimates in the various regions the following collection of calculations 
will be helpful. Firstly note that

|f (x)| ≤
⎧⎨
⎩

‖f ‖Yλ

λσ |x|σ+2 if |x| ≤ λ−1

‖f ‖Yλ

λα |x|α+2 if |x| ≥ λ−1,
and |φλ(x)| ≤

⎧⎨
⎩

C‖f ‖Yλ

λσ |x|σ if |x| ≤ λ−1

C‖f ‖Yλ

λα |x|α if |x| ≥ λ−1.

Also note that wλ(x) ≤ λα for |x| ≤ λ−1 and wλ(x) ≤ C|x|−α for |x| ≥ λ−1, where C is inde-
pendent of λ. We now consider the gradient estimates in the two regions.

Region (i). Using boundary elliptic regularity theory there is some C = C(t, R) > 0 such that

sup
�∩B2R

|∇φλ| ≤ C

⎛
⎜⎝ ∫

�∩B4R

|�φλ(x)|t dx

⎞
⎟⎠

1
t

+ C

∫
�∩B4R

|φλ(x)|dx. (8)

By taking 0 < λ0 smaller, if necessary, we can assume that 4R < 1
λ0

and then note there is some 

C = C(R, D), where � = R
N\D, such that |f (x)|, |φλ(x)| ≤ Cλ−σ ‖f ‖Yλ for all 0 < λ < λ0. 

Recalling that φλ satisfies �φλ = f (x) − pw
p−1
λ (x)φλ we see that |�φλ(x)| ≤ Cλ−σ ‖f ‖Yλ in 

�4R . Putting these estimates into (8) we see that λσ sup�2R
|∇φλ| ≤ C‖f ‖Yλ and hence we see 

that λσ sup�2R
|x|σ+1|∇φλ| ≤ C‖f ‖Yλ .

Region (ii). For this region we consider the rescaled functions given by

ψλ(y) = φλ(x + |x|y) where |y| < 1
,

8
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which is well-defined (since x + |x|y ≥ 7|x|/4 > R) and satisfies

�ψλ(y) + p|x|2wλ(x + |x|y)p−1ψλ(y) = |x|2f (x + |x|y) |y| < 1

8
.

Note that if |x + |x|y| ≤ 1/λ, then 7|x|/8 ≤ 1/λ and |x|2wλ(x + |x|y)p−1 ≤ λ2|x|2 ≤ 64/49; if 
|x + |x|y| ≥ 1/λ, then |x|2wλ(x + |x|y)p−1 ≤ |x|2/|x + |x|y|2 ≤ 64/49. The elliptic regularity 
theory gives

sup
|y|< 1

16

|∇ψλ(y)| ≤ C

⎛
⎜⎜⎝|x|2

∫
|y|< 1

8

|f (x + |x|y)|t dy

⎞
⎟⎟⎠

1
t

+ C

∫
|y|< 1

8

|ψλ(y)|dy

≤ C

⎛
⎜⎜⎝

∫
|y|< 1

8

(
|x + |x|y|2 |f (x + |x|y)|

)t

dy

⎞
⎟⎟⎠

1
t

+ C

∫
|y|< 1

8

|φλ(x + |x|y)|dy.

(9)

Now for each |x| ≥ 2R, divide |y| < 1/8 into two sets A1 and A2 such that A1 = {|y| <
1/8 : |x + |x|y| ≤ 1/λ} and A2 = {|y| < 1/8 : |x + |x|y| > 1/λ}. Note that the dependence of 
A1 and A2 on x is suppressed, and A2 can be empty if |x| ≤ 1/λ and A1 can be empty if |x| >
1/λ. Then |x + |x|y|2|f (x + |x|y)| ≤ ‖f ‖Yλ

λσ |x+|x|y|σ ≤ C‖f ‖Yλ

λσ |x|σ for y ∈ A1 and |x + |x|y|2|f (x +
|x|y)| ≤ C‖f ‖Yλ

λα |x+|x|y|α ≤ ‖f ‖Yλ

λα |x|α for y ∈ A2. Similarly, we get |φλ(x + |x|y)| ≤ C‖f ‖Yλ

λσ |x|σ for y ∈ A1

and |φλ(x + |x|y)| ≤ C‖f ‖Yλ

λα |x|α for y ∈ A2. Using these estimates we have, for 2R ≤ |x| ≤ 1/λ,

⎛
⎜⎜⎝

∫
|y|< 1

8

(
|x + |x|y|2 |f (x + |x|y)|

)t

dy

⎞
⎟⎟⎠

1/t

≤
⎛
⎜⎝∫

A1

(
|x + |x|y|2 |f (x + |x|y)|

)t

dy

⎞
⎟⎠

1/t

+
⎛
⎜⎝∫

A2

(
|x + |x|y|2 |f (x + |x|y)|

)t

dy

⎞
⎟⎠

1/t

≤ C‖f ‖Yλ

λσ |x|σ + C‖f ‖Yλ

λα|x|α ≤ C‖f ‖Yλ

λσ |x|σ ,

where in the last equality we used 8/9 ≤ |x|λ ≤ 1 for y ∈ A2. Similarly we get 
∫
|y|< 1

8
|φ(x +

|x|y)|dy ≤ C‖f ‖Yλ

λσ |x|σ for 2R ≤ |x| ≤ 1/λ. The same argument together with 1 ≤ |x|λ ≤ 8/7 for 
|x| > 1/λ and x ∈ A1 yields, for |x| > 1/λ,
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⎛
⎜⎜⎝

∫
|y|< 1

8

(
|x + |x|y|2 |f (x + |x|y)|

)t

dy

⎞
⎟⎟⎠

1/t

≤ C‖f ‖Yλ

λα|x|α ,

∫
|y|< 1

8

|φ(x + |x|y)|dy ≤ C‖f ‖Yλ

λα|x|α .

Therefore, it follows from (9) that

sup
|y|< 1

16

|∇ψλ(y)| ≤
⎧⎨
⎩

C‖f ‖Yλ

λσ |x|σ if 2R ≤ |x| ≤ 1/λ,

C‖f ‖Yλ

λα |x|α if |x| > 1/λ.

From this we get

λσ sup
2R<|x|≤ 1

λ

|x|σ+1|∇φλ(x)| ≤ C‖f ‖Yλ, λα sup
|x|> 1

λ

|x|1+α|∇φλ(x)| ≤ C‖f ‖Yλ .

Combining the estimates in Regions 1 and 2 gives the desired estimate for |∇φλ|:

λσ sup
|x|≤ 1

λ

|x|σ+1|∇φλ(x)| + λα sup
|x|> 1

λ

|x|1+α|∇φλ(x)| ≤ C‖f ‖Yλ .

The norm estimates involving the term |�φλ| come directly from the equation. �
The right inverse of Lλ. For N, p, σ and λ0 as in Lemma 1 we define the right inverse of Lλ to 
be Fλ where Fλ(f ) = φλ where f and φλ are as in the lemma. Define X̃λ,2 := Ran(Fλ). Using 
the continuity of Fλ and Lλ one can easily prove that X̃λ,2 is a closed subspace of Xλ,2. Now 
note that Lλ : X̃λ,2 → Yλ is, continuous, one to one and onto and hence its Fredholm index is 
zero.

2.1. The linear theory of Lλ(φ) := Lλ(φ) − a(x) · ∇φ − V (x)φ : Xλ,2 → Yλ

To examine (3) and (4) we need to obtain a linear theory for Lλ where Lλ(φ)(x) := �φ(x) +
pwλ(x)p−1φ(x) − a(x) · ∇φ(x) − V (x)φ(x) = Lλ(φ)(x) − T (x). Our approach will be to view 
Lλ as a compact perturbation of Lλ and then to use Fredholm theory. We begin with showing 
that T is a compact operator.

Lemma 2. T : Xλ,2 → Yλ is a compact operator for each 0 < λ.

Proof. Fix 0 < λ and set T (φ) = T 1(φ) + T 2(φ) where T 1(φ)(x) = a(x) · ∇φ(x) and 
T 2(φ)(x) = V (x)φ(x). We show T 1 is compact and the proof that T 2 is compact follows the 
same approach. Let {φm}m denote a bounded sequence in Xλ,2, bounded by say C0, and note 

that elliptic regularity shows that {φm}m is bounded in C
1, 3

4
loc (� ∪ ∂�). By a compactness and 

diagonal argument there is some subsequence {φmk
}k which is convergent in C

1, 1
2

loc (� ∪ ∂�). Let 
R > 1 and then note
λ
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‖T 1(φmk
) − T 1(φmn)‖Yλ = λσ sup

|x|≤λ−1
|x|2+σ |a(x) · ∇(φmk

(x) − φmn(x))|

+ λα sup
|x|≥λ−1

|x|α+2|a(x) · ∇(φmk
(x) − φmn(x))|.

We now break this second term into a supremum for λ−1 ≤ |x| ≤ R and |x| ≥ R. We then get an 
inequality of the form

‖T 1(φmk
) − T 1(φmn)‖Yλ ≤ C(λ) sup

|x|≤R

|∇(φmk
(x) − φmn(x))|

+ sup
|x|≥R

(|a(x)||x|)
(
|x|α+1|∇φmk

(x) − ∇φmn(x)|
)

,

≤ C(λ) sup
|x|≤R

|∇(φmk
(x) − φmn(x))|

+ A(R)‖φmk
− φmn‖Xλ,2

≤ C(λ) sup
|x|≤R

|∇(φmk
(x) − φmn(x))|

+ A(R)2C0.

Hence we see that lim supk,n→∞ ‖T 1(φmk
) −T 1(φmn)‖Yλ ≤ 2C0A(R) and then sending R → ∞

shows that {T 1(φk)}k is Cauchy in Yλ and hence T 1 : Xλ,2 → Yλ is compact. �
As noted above Lλ : X̃λ,2 → Yλ has Fredholm index zero and since T is compact we can 

apply Fredholm theory to see that Lλ = Lλ − T : X̃λ,2 → Yλ is also Fredholm index zero.
The following proposition is the key linear result needed later when we prove existence of 

solutions to (3) and (4) using a fixed point argument. Additionally our approach for this perturbed 
linearized operator Lλ theory differs from [7] (where they studied −�u + V (x)u = up in RN ) 
in the sense that we utilize some Liouville theorems (of course we utilize their [6,7] linear theory 
regarding Lλ as mentioned before).

Proposition 1. Let N ≥ 4, p > N+1
N−3 , 0 < σ < N − 2 and suppose (A1) and (A2) are satisfied. 

Then there are some λ0 > 0 small and C > 0 such that for all 0 < λ < λ0 and all f ∈ Yλ there is 
some φλ ∈ X̃λ,2 such that Lλ(φλ) = f in �. Moreover we have ‖φλ‖Xλ,2 ≤ C‖f ‖Yλ .

Proof. Suppose N ≥ 4 and p > N+1
N−3 and let 0 < σ < N −2 and λ0 > 0 be small from Lemma 1.

We now suppose the conclusion of the proposition is false and so there is some λm ↘ 0 such 
that either kernel Lλm : X̃λm,2 → Yλm is non-empty or its empty but there are some fm ∈ Yλm

with ‖fm‖Yλm
→ 0 and φm ∈ X̃λm,2 such that Lλm(φm) = fm and ‖φm‖Xλm,2 = 1. So in either 

case we can assume there is some fm ∈ Yλm with ‖fm‖Yλm
→ 0 and some φm ∈ X̃λm,2 with 

‖φm‖Xλm,2 = 1 such that Lλm(φm) = fm in � with φm = 0 on ∂�.
So we have

�φm(x) + pwλm(x)p−1φm(x) − a(x) · ∇φm(x) − V (x)φm(x) = fm(x) in �,
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with φm = 0 on ∂�. Now set f̂m(x) := λσ
mfm(x) and set φ̂m(x) = λσ

mφm(x). Then f̂m → 0
uniformly on any BR ∩ �. Also we have

|φ̂m(x)| ≤ ‖φm‖Xλm,0

|x|σ

for all |x| ≤ 1
λm

. So we have

{
�φ̂m + pλ2

mw(λmx)p−1φ̂m − a(x) · ∇φ̂m − V (x)φ̂m(x) = f̂m in �,

φ̂m = 0 on ∂�.
(10)

Let Rk ↗ ∞ and set �k := � ∩ BRk
. Using (10) and elliptic boundary regularity shows that 

φ̂m is bounded in C1,δ(�k) for all k and large m for some 0 < δ < 1. By a compactness and 
diagonal argument there is some subsequence, which we won’t rename, {φ̂m}m, that converges 
in C1,δ(�k), for each k, to some function φ̂ : � → R which satisfies |φ̂(x)| ≤ |x|−σ on � and

⎧⎪⎨
⎪⎩

�φ̂(x) − a(x) · ∇φ̂(x) − V (x)φ̂(x) = 0 in �,

φ̂ = 0 on ∂�,

lim|x|→∞ φ̂(x) = 0.

(11)

By the strong maximum principle applied to the subdomain �R , for R large, we can conclude 
that sup�R

|φ̂| ≤ sup∂�R
|φ̂| but after considering the decay of φ̂ we can conclude that φ̂ = 0

in �. Hence we can conclude that φ̂m → 0 = φ̂ in C1,δ(�k) for each k ≥ 1.
Now recall that φm satisfies

⎧⎪⎨
⎪⎩

Lλm(φm) = fm + a · ∇φm + V φm in �,

φm = 0 on ∂�,

lim|x|→∞ φm = 0.

(12)

By Lemma 1 there is some C > 0 such that for all 0 < λ < λ0 we have

C‖φm‖Xλm,2 ≤ ‖fm‖Yλm
+ ‖a · ∇φm + V φm‖Yλm

.

We now examine this last term. Fix R > 0 large, then

‖a · ∇φm + V φm‖Yλm
≤ λσ

m sup
|x|≤λ−1

m

|x|σ+2 (|a(x)||∇φm(x)| + V (x)|φm(x)|)

+ λα
m sup

|x|≥λ−1
m

|x|α+2 (|a(x)||∇φm(x)| + V (x)|φm(x)|)

=: Im + Jm.
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A computation shows that

Jm ≤ λα sup
|x|≥λ−1

m

|x||a(x)||x|α+1|∇φm(x)|

+ λα sup
|x|≥λ−1

m

|x|2V (x)|x|α|φm(x)|

≤
(
A(λ−1

m ) + V (λ−1
m )

)
‖φm‖Xλm,1

≤ A(λ−1
m ) + V (λ−1

m ) → 0.

Fix R big and decompose Im = I 1
m + I 2

m where I 1
m will be the inner portion and I 2

m the outer. 
Then

I 2
m := λσ

m sup
R≤|x|≤λ−1

m

|x|2+σ (|a(x)||∇φm(x)| + V (x)|φm(x)|)

≤ λσ
m sup

R≤|x|≤λ−1
m

(
|x||a(x)||x|1+σ |∇φm(x)| + |x|2V (x)|x|σ |φm(x)|

)

≤ A(R) + V (R).

We now come to the I 1
m term.

I 1
m = λσ

m sup
|x|≤R

|x|2+σ (|a(x)||∇φm(x)| + V (x)|φm(x)|)

≤ sup
z∈RN

|z||a(z)| sup
|x|≤R

λσ
m|x|1+σ |∇φm(x)|

+ sup
z∈RN

|z|2V (z) sup
|x|≤R

|x|σ λσ
m|φm(x)|

≤ CR1+σ sup
�R

(
|∇φ̂m(x)| + |φ̂m(x)|

)
→ 0

for each fixed R big as m → ∞. So combining the above results we have

C‖φm‖Xλm,2 ≤ ‖fm‖Yλm
+ A(λ−1

m ) + V (λ−1
m ) + A(R) + V (R) + I 1

m,

and from this we can contradict the fact that ‖φm‖Xλm,2 = 1 by taking R sufficiently big and then 
sending m → ∞. �
2.2. Equation (3); the fixed point argument

Instead of solving (3) directly we will first find a nonzero solution of

{ −�u + a(x) · ∇u + V (x)u = |u|p + γ |u|q in �

u = 0 on ∂�,
(13)

and then argue the solution must be positive.
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Let D ⊂⊂ BR0 and let R0 ≤ R ≤ 4R ≤ 1
λ

. Let ζ denote a smooth radial cut-off with ζ = 0 in 
BR and ζ = 1 on Bc

2R . Then we have |∇ζ | ≤ CR−1 and |�ζ | ≤ CR−2 where C is independent 
of R.

We look for solutions to (13) of the form u = ζ(x)wλ(x) + φ(x). Then we need φ to satisfy

Lλ(φ) = |wλ + φ|p − |ζwλ + φ|p

−
(
|wλ + φ|p − pw

p−1
λ φ − w

p
λ

)
− γ |wλζ + φ|q
+ a(x) · ∇(ζwλ) + V wλζ

+ �wλ − �(ζwλ)

= I1(φ) + I2(φ) + I3(φ) + I4(φ) + I5(φ) in �, (14)

with φ = 0 on ∂�. To obtain a solution φ we apply a fixed point argument and towards this we 
define the nonlinear mapping Jλ(φ) = ψλ where ψλ satisfies

Lλ(ψλ) =
5∑

k=1

Ik(φ) in �, ψλ = 0 on ∂�. (15)

Of course to find a solution ψλ we will require N, p, σ, λ0 to be as in Proposition 1 and 0 < λ <
λ0. In addition we will be taking σ > 0 smaller, if necessary, to ensure various quantities are of a 
specific sign. Also we will need the right hand side of (15) to belong to Yλ. In a moment we will 
apply a fixed point argument on the closed ball Br of radius r , centered at the origin, in Xλ,2. We 
will end up taking R, related to the cut off ζ , to be given by R = ε

λ
and r = βλα where ε, β > 0

will be chosen small to be determined later. Once these parameters are fixed we will take λ small. 
We now collect the various estimates which will be needed to show that Jλ is a contraction on 
Br . We begin with the following lemma.

Lemma 3. Into. (Estimates on ‖Ik(φ)‖Yλ .) Let φ ∈ Br ⊂ Xλ,2. Then we have

‖I1(φ)‖Yλ ≤ CRσ+2λαp+σ + CR2+σ(2−p)rp−1λα+σ(2−p), (16)

‖I2(φ)‖Yλ ≤ Cr2λ2−α + Cr2λ−α + Crpλ−2, (17)

‖I3(φ)‖Yλ ≤ C

(
λθ1 + rq

λ2+α

)
λα, (18)

‖I4(φ)‖Yλ ≤ C

(
A(R)

Rλ
+ A(R) + V (R) + A(λ−1) + V (λ−1)

)
λα, (19)

‖I5(φ)‖Yλ ≤ Cλσ
(
R2+σ λ2 + Rσ

)
λα. (20)

Proof. We begin by listing some computations: λσ |x|σ |φ(x)| ≤ r for |x| ≤ λ−1, λα|x|α|φ(x)| ≤
r for |x| ≥ λ−1. Recalling wλ(x) = λαw(λx) one has: wλ(x) ≤ λα for |x| ≤ λ−1 and wλ(x) ≤
C|x|−α for |x| ≥ λ−1.
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Estimate of ‖I1(φ)‖Yλ . From part 3 of Lemma 7 we have

|I1(φ)| :=
∣∣∣|wλ + φ|p − |ζwλ + φ|p

∣∣∣ ≤ C
(
w

p−1
λ + |φ|p−1

)
(1 − ζ )wλ.

From this we see

sup
|x|≤λ−1

|x|2+σ |I1(φ)| ≤ sup
|x|≤2R

C|x|σ+2w
p
λ + C sup

|x|≤2R

|x|σ+2wλ|φ|p−1.

So we have

sup
|x|≤λ−1

|x|σ+2|I1(φ)| ≤ CRσ+2λαp + CR2+σ(2−p)rp−1λα−σ(p−1).

Now noting the fact that I1(φ) = 0 for |x| ≥ 2R gives

‖I1(φ)‖Yλ ≤ CRσ+2λαp+σ + CR2+σ(2−p)rp−1λα+σ(2−p).

Estimate of ‖I2(φ)‖Yλ . From Lemma 7 we have

∣∣∣|wλ + φ|p − pw
p−1
λ φ − w

p
λ

∣∣∣ ≤ Cw
p−2
λ φ2 + C|φ|p.

A computation shows that

sup
|x|≤λ−1

|x|2+σ w
p−2
λ φ2 ≤ Cr2λα(p−2)−σ−2 = Cr2λ−α−σ , and

sup
|x|≥λ−1

|x|2+αw
p−2
λ φ2 ≤ Cr2

λ2α
.

Hence we have

‖wp−2
λ φ2‖Yλ ≤ Cr2λ−α.

Similarly

sup
|x|≤λ−1

|x|2+σ |φ|p ≤ Crpλ−2−σ and sup
|x|≥λ−1

|x|2+α|φ(x)|p ≤ rpλ−αp,

and hence ‖|φ|p‖Yλ ≤ Crpλ−2. Combining these estimates gives

‖I2(φ)‖Yλ ≤ Cr2λα(p−2) + Cr2λ−α + Crpλ−2.

Estimate of ‖I3(φ)‖Yλ . First note that we have |ζwλ + φ|q ≤ Cζqw
q
λ + C|φ|q . For |x| ≤ 1

λ
.

sup
−1

|x|σ+2w
q
λ |ζ |q ≤ Cλαq−σ−2.
|x|≤λ
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Taking σ > 0 sufficiently small such that σ + 2 − σq > 0, we then have sup|x|≤λ−1 |x|2+σ |φ|q ≤
Crq

λ2+σ . We now consider the case of |x| ≥ 1
λ

. Since q > p we have that θ1 := αq − 2 − α > 0 and 
then note that

sup
|x|≥λ−1

|x|2+αζ qwλ(x)q ≤ Cλθ1 .

Also we have

sup
|x|≥λ−1

|x|2+α|φ|q ≤ sup
|x|≥λ−1

rq

λαq |x|αq−2−α
≤ Crqλ−2−α,

for θ1 > 0. So for θ1 > 0 we have

‖I3(φ)‖Yλ ≤ C

(
λθ1 + rq

λ2+α

)
λα.

Estimate of ‖I4(φ)‖Yλ . First we note that

|I4(φ)| ≤ |a||∇ζ |wλ + |a|ζ |∇wλ| + V wλζ,

and we now estimate these three terms individually, but we first recall some estimates: |∇ζ | ≤
CR−1 for R ≤ |x| ≤ 2R and |∇wλ(x)| = λα+1|∇w(λx)| ≤ Cλα+2|x| for all |x| ≤ λ−1. In ad-
dition we have |∇wλ(x)| ≤ C|x|−α−1 for all |x| ≥ λ−1. With these estimates in mind, and after 
recalling the support of ζ , and the decay estimates on a and V , one sees

sup
|x|≤λ−1

|x|2+σ |a||∇ζ |wλ ≤ C
A(R)

R
λα−1−σ , and sup

|x|≤λ−1
|x|2+σ |a(x)|ζ |∇wλ| ≤ CA(R)λα−σ .

Similarly we see sup|x|≤λ−1 |x|2+σ V ζwλ ≤ CV (R)λα−σ . We now consider the case of |x| ≥ 1
λ

. 
A computation shows

sup
|x|≥λ−1

|x|2+α|a|ζ |∇wλ| ≤ sup
|x|≥λ−1

C|x||a(x)| ≤ CA(λ−1), and sup
|x|≥λ−1

|x|2+α|a|ζV ≤ CV (λ−1).

Combining the estimates gives

‖I4(φ)‖Yλ ≤ C

(
A(R)

Rλ
+ A(R) + V (R) + A(λ−1) + V (λ−1)

)
λα.

Estimate of ‖I5(φ)‖Yλ .

I5(φ) = �wλ − (�ζ)wλ − 2∇ζ · ∇wλ − ζ�wλ

and so

I5(φ) = (ζ − 1)w
p − (�ζ)wλ − 2∇ζ · ∇wλ.
λ
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First consider |x| ≤ 1
λ

. A computation shows

sup
|x|≤λ−1

|x|σ+2|ζ − 1|wp
λ ≤ CR2+σ λαp, and sup

|x|≤λ−1
|x|2+σ |�ζ |wλ ≤ CRσ λα.

Similarly we show sup|x|≤λ−1 |x|2+σ |∇ζ ||∇wλ| ≤ CR2+σ λα+2. Note that I5(φ) = 0 for |x| ≥ 1
λ

after the considering the support of ζ . Combining the estimates gives

‖I5(φ)‖Yλ ≤ Cλσ
(
R2+σ λαp−α + Rσ + R2+σ λ2

)
λα. �

We now collect the various facts for showing that Jλ is a contraction on Br ⊂ Xλ,2.

Lemma 4. Contraction. (Estimates on ‖Ik(φ̂) − Ik(φ)‖Yλ .) Let φ̂, φ ∈ Br ⊂ Xλ,2. Then we have

‖I1(φ̂) − I1(φ)‖Yλ ≤ C
(

2λ−σ(p−1)rp−1R2−σ(p−1) + 4R2λ2
)

‖φ̂ − φ‖Xλ,2, (21)

‖I2(φ̂) − I2(φ)‖Yλ ≤ C(λ−αr + λ−2rp−1)‖φ̂ − φ‖Xλ,2, (22)

‖I3(φ̂) − I3(φ)‖Yλ ≤ C(λθ1 + λ−2rq−1)‖φ̂ − φ‖Xλ,2 . (23)

Proof. Let φ̂, φ ∈Br ⊂Xλ,2. Then as in the proof of the previous lemma we have λσ |x|σ |φ(x)| ≤
r for |x| ≤ λ−1, λα|x|α|φ(x)| ≤ r for |x| ≥ λ−1 along with the analogous statement of φ̂. Addi-
tionally we have wλ(x) ≤ λα for |x| ≤ λ−1 and wλ(x) ≤ C|x|−α for |x| ≥ λ−1.

Estimate of ‖I1(φ̂) − I1(φ)‖Yλ . Note we can write

I1(φ̂) − I1(φ) = |wλ + φ̂|p − |wλ + φ|p + |ζwλ + φ|p − |ζwλ + φ̂|p,

and note for |x| ≥ 2R this quantity is zero. So we can estimate

‖I1(φ̂) − I1(φ)‖Yλ ≤ λσ sup
|x|≤2R

|x|2+σ
∣∣∣|wλ + φ̂|p − |wλ + φ|p

∣∣∣
+ λσ sup

|x|≤2R

|x|2+σ
∣∣∣|ζwλ + φ̂|p − |ζwλ + φ|p

∣∣∣.
By Lemma 7 we have

∣∣∣|wλ + φ̂|p − |wλ + φ|p
∣∣∣ ≤ C

(
w

p−1
λ + |φ|p−1 + |φ̂|p−1

)
|φ̂ − φ|.

From this we see

λσ sup |x|2+σ
∣∣∣|wλ + φ̂|p − |wλ + φ|p

∣∣∣ ≤ sup |x|2
(
w

p−1
λ + |φ|p−1 + |φ̂|p−1

)
‖φ̂ − φ‖Xλ,2 .
|x|≤2R |x|≤2R
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A computation shows that sup|x|≤2R |x|2|φ|p−1 ≤ λ−σ(p−1)rp−1R2−σ(p−1) and similarly for the 

φ̂ term. A computation also shows that sup|x|≤2R |x|2wp−1
λ ≤ 4R2λ2. Hence we can conclude 

that

λσ sup
|x|≤2R

|x|2+σ
∣∣∣|wλ + φ̂|p − |wλ + φ|p

∣∣∣ ≤
(

2λ−σ(p−1)rp−1R2−σ(p−1) + 4R2λ2
)

‖φ̂ − φ‖Xλ,2 .

The term involving the cut-off gives a similar estimate and hence we see that

‖I1(φ̂) − I1(φ)‖Yλ ≤ C
(

2λ−σ(p−1)rp−1R2−σ(p−1) + 4R2λ2
)

‖φ̂ − φ‖Xλ,2 .

Estimate of ‖I2(φ̂) − I2(φ)‖Yλ . Using Lemma 7 we have

|I2(φ̂) − I2(φ)| ≤ C
(
w

p−2
λ (|φ| + |φ̂|) + |φ|p−1 + |φ̂|p−1

)
|φ̂ − φ|.

From this we have

λσ sup
|x|≤λ−1

|x|σ+2|I2(φ̂) − I2(φ)| ≤ CK in
2 ‖φ̂ − φ‖Xλ,2,

where

K in
2 := sup

|x|≤λ−1
|x|2

(
w

p−2
λ (|φ| + |φ̂|) + |φ|p−1 + |φ̂|p−1

)
.

We now estimate these terms in K in
2 . A computation shows sup|x|≤λ−1 |x|2wp−1

λ |φ| ≤
λα(p−2)−2r = λ−αr . A similar calculation shows that sup|x|≤λ−1 |x|2|φ|p−1 ≤ rp−1λ−2. Hence 
we see that

K in
2 ≤ 2λ−αr + 2rp−1λ−2.

We now estimate the portion where |x| ≥ 1
λ

. An identical argument shows that

λα sup
|x|≥λ−1

|x|2+α|I2(φ̂) − I2(φ)| ≤ CKout
2 ‖φ̂ − φ‖Xλ,2,

where Kout
2 is defined exactly as K in

2 , except the supremum is now over |x| ≥ 1
λ

, i.e.

Kout
2 := sup

|x|≥λ−1
|x|2

(
w

p−2
λ (|φ| + |φ̂|) + |φ|p−1 + |φ̂|p−1

)
.

We now estimate the individual terms of Kout
2 . First note that

sup
−1

|x|2wp−2
λ |φ| ≤ sup

−1

|x|2Cr

|x|α(p−2)λα|x|α ≤ Cλ−αr.

|x|≥λ |x|≥λ
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Similarly one sees that sup|x|≥λ−1 |x|2|φ|p−1 ≤ λ−2rp−1. Combining these estimates gives 
Kout

2 ≤ C(λ−αr + λ−2rp−1). From this we see that

‖I2(φ̂) − I2(φ)‖Yλ ≤ C(λ−αr + λ−2rp−1)‖φ̂ − φ‖Xλ,2 .

Estimate of ‖I3(φ̂) − I3(φ)‖Yλ . Recall I3(φ) = −γ |ζwλ + φ|q . So we have

|γ |−1|I3(φ̂) − I3(φ)| =
∣∣∣|ζwλ + φ̂|q − |ζwλ + φ|q

∣∣∣.
By Lemma 7 we have

∣∣∣|ζwλ + φ̂|q − |ζwλ + φ|q
∣∣∣ ≤ C

(
ζ q−1w

q−1
λ + |φ|q−1 + |φ̂|q−1

)
|φ̂ − φ|.

We first consider |x| ≤ 1
λ

. A computation gives

λσ sup
|x|≤λ−1

|x|2+σ
∣∣∣|ζwλ + φ̂|q − |ζwλ + φ|q

∣∣∣ ≤ CK in
3 ‖φ̂ − φ‖Xλ,2,

where K in
3 = sup|x|≤λ−1 |x|2

(
ζ q−1w

q−1
λ + |φ|q−1 + |φ̂|q−1

)
. We now estimate these terms 

individually. First note that sup|x|≤λ−1 |x|2ζ q−1w
q−1
λ ≤ |x|2λα(q−1) ≤ λθ1 where, as before, 

θ1 = α(q − 1) − 2 and this is positive provided q > p. A similar calculation shows that 
sup|x|≤λ−1 |x|2|φ|q−1 ≤ λ−2rq−1. From this we see that K in

3 ≤ λθ1 + 2λ−2rq−1. Now consider 
|x| ≥ 1

λ
. A computation shows

λα sup
|x|≥λ−1

|x|2+α
∣∣∣|ζwλ + φ̂|q − |ζwλ + φ|q

∣∣∣ ≤ CKout
3 ‖φ̂ − φ‖Xλ,2

where, as before, we are defining Kout
3 exactly as K in

3 except the supremum is now over 

|x| ≥ 1
λ

, i.e. Kout
3 = sup|x|≥λ−1 |x|2

(
ζ q−1w

q−1
λ + |φ|q−1 + |φ̂|q−1

)
. A computation shows 

sup|x|≥λ−1 |x|2wq−1
λ ≤ Cλθ1 . Similarly we have sup|x|≥λ−1 |x|2|φ|q−1 ≤ rq−1λ−2. So we have 

Kout
3 ≤ Cλθ1 + 2rq−1λ−2. Combining with the above estimates gives

‖I3(φ̂ − I3(φ)‖Yλ ≤ C(λθ1 + λ−2rq−1)‖φ̂ − φ‖Xλ,2 . �
Proof of Theorem 1. We begin by finding a nonzero solution u of (13) and for this we don’t 
need to distinguish the cases of γ positive or negative. Fix N, p, σ, λ0 as Proposition 1. Take 
0 < λ < λ0 and given φ ∈ Br ⊂ Xλ,2 define ψλ = Jλ(φ) as defined in (15). We will now show 
that Jλ is a contraction on Br . Set r := βλα and R := ε

λ
where β, ε > 0 will be chosen later; and 

recall that R is related to the cut off ζ .
Into. Let φ ∈ Br ⊂ Xλ,2. Then by Proposition 1 we have

C‖Jλ(φ)‖Xλ,2 = C‖ψλ‖Xλ,2 ≤
5∑

‖Ik(φ)‖Yλ .
k=1
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We now compute each of these terms with these choices of r and R. By Lemma 3 we have

‖I1(φ)‖Yλ

Cr
≤ εσ+2β−1 + ε2+σ(2−p)βp−2,

‖I2(φ)‖Yλ

Cr
≤ βλ2 + β + βp−1,

‖I3(φ)‖Yλ

Cr
≤ λθ1(β−1 + βq−1),

‖I5(φ)‖Yλ

Cr
≤ (2ε2+σ + εσ )β−1,

and

‖I4(φ)‖Yλ

Cr
≤

(
(1 + ε−1)A(λ−1ε) + A(λ−1) + V (λ−1ε) + V (λ−1)

)
β−1.

Using these estimates one sees that Jλ(Br) ⊂ Br provided we first fix β > 0 sufficiently small, 
then fix ε > 0 sufficiently small and then take λ > 0 small.

Contraction. Let φ̂, φ ∈ Br and we let ψ̂λ = Jλ(φ̂) and ψλ = Jλ(φ). Then by (14) we have

‖Jλ(φ̂) − Jλ(φ)‖Xλ,2 ≤ C

3∑
k=1

‖Ik(φ̂) − Ik(φ)‖Yλ .

We now take R = ε
λ

and r = βλα and use Lemma 4 to see

‖Jλ(φ̂) − Jλ(φ)‖Xλ,2

C‖φ̂ − φ‖Xλ,2

≤ βp−1ε2−σ(p−1) + ε2 + β + βp−1 + λθ1(1 + βq−1). (24)

Note that the same procedure for picking β, ε, λ that we used to show that Jλ(Br) ⊂ Br also 
shows that Jλ a contraction on Br . Hence we can apply Banach’s fixed point theorem to see there 
is some φ ∈ Br = Bβλα such that Jλ(φ) = φ in � with φ = 0 on ∂�. Hence we have u = ζwλ +φ

satisfies (13). Also note that there is some β0 > 0 such that w(λx) ≥ β0
λα |x|α for all λ|x| ≥ 1. Also 

recall that for all |x| ≥ 1
λ

we have λα|x|α|φ(x)| ≤ βλα and hence we have

|x|αu(x) ≥ β0 − β,

for |x| ≥ 1
λ

. Hence by taking β > 0 small we see that u > 0 for |x| ≥ 1
λ

. We now separate the 
cases of positive and negative γ .

Case 1: γ ≥ 0. In this case we have

−�u + a(x) · ∇u + V (x)u = |u|p + γ |u|q in �

with u = 0 on ∂� and u > 0 for large |x|. We can then apply the maximum principle and the 
strong maximum principle to see that u > 0 in �.

Case 2: γ < 0. Recall how we picked the parameters. We fixed β > 0 small and then took 
ε > 0 small and then were able to take λ > 0 as small as we wish. With this in mind let λm ↘ 0
and let um = ζmwλm + φm denote a solution of (13) and as mentioned above we have um > 0 for 
|x| ≥ 1

λm
. Note ζm is just the cut off from before but we are indicating the dependence on m. Our 

goal is to show that for large enough m that um ≥ 0 in �. So towards a contradiction suppose 
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that for all large m we have {x ∈ � : um(x) < 0} is non-empty and let �m denote a maximal 
connected component. So we have �m ⊂ � ∩ B

λ−1
m

. So um is a negative solution of

{ −�um + a(x) · ∇um + (
V (x) − |γ ||um|q−1

)
um = |um|p in �m

um = 0 on ∂�m.
(25)

We now use a slight variation of the maximum principle given in Lemma 6, to show um ≥ 0. 
Multiply (25) by (um)− ∈ H 1

0 (�m) and integrate by parts to arrive at

2
∫

�m

|∇(um)−|2 ≤
∫

�m

(
div(a) − 2V + 2γ |um|q−1

)
(um)2− ≤

∫
�

Cm(x)(um)2−dx

where Cm(x) := (div(a) − 2V )+ + 2|γ ||um|q−1. We apply Hölder’s inequality on the right to 
see the right hand side is bounded above by ‖Cm‖

L
N
2 (�m)

‖(um)−‖2
L2∗

(�m)
. We apply the critical 

Sobolev inequality, SN‖ψ‖2
L2∗(�m)

≤ ‖∇ψ‖2
L2(�m)

, on the left with ψ = (um)−, and regroup to 
see (

2SN − ‖Cm‖
L

N
2 (�m)

)
‖(um)−‖2

L2∗
(�m)

≤ 0.

If we can show 2SN − ‖Cm‖
L

N
2 (�m)

> 0 then we see that um ≥ 0 in �m giving us the desired 

contradiction. We now examine this term in more detail. Note

‖Cm‖
L

N
2 (�m)

≤ ‖(div(a) − 2V )+‖
L

N
2 (�m)

+ 2|γ |‖um‖q−1

L
N(q−1)

2 (�m)

≤ ‖(div(a) − 2V )+‖
L

N
2 (�)

+ 2|γ |‖um‖q−1

L
N(q−1)

2 (�m)

.

Now recall that we are assuming ‖(div(a) − 2V )+‖
L

N
2 (�)

< 2SN and hence it will be sufficient 

to show that ‖um‖
L

N(q−1)
2 (�m)

→ 0 as m → ∞. Recall that um = ζmwλm + φm and �m ⊂ B
λ−1

m

in RN and hence we have wλm ≤ λα
m in �m. Hence we have

‖um‖
L

N(q−1)
2 (�m)

≤ λα
m|�m| 2

N(q−1) + ‖φm‖
L

N(q−1)
2 (�m)

,

and note λα
m|�m| 2

N(q−1) ≤ CNλ
2

p−1 − 2
q−1

m → 0 since q > p. Now since φm ∈ Bβλα
m

⊂ Xλm,2 we see 
|φm(x)| ≤ β|x|−σ λα−σ

m in �m and hence

∫
�m

|φm(x)|N(q−1)
2 dx ≤ C(N,β,σ )λ

N(α−σ)(q−1)
2

m

λ−1
m∫

ρ

sN−1− σN(q−1)
2 ds

where ρ > 0 is sufficiently small such that Bρ ⊂ D. By taking σ > 0 sufficiently small and since 

q > p we see then that 
∫ |φm(x)|N(q−1)

2 dx → 0 which gives us the desired conclusion. Hence 

�m
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by contradiction we have um ≥ 0 is a C2,δ nonzero solution of (13), for sufficiently large m, and 
hence we can apply the strong maximum principle to see that um > 0 in �.

So we have shown the existence of a solution of (3) of the form uλ(x) = ζλ(x)wλ(x) + φλ(x)

for sufficiently small λ; here ζ = ζλ was the appropriate cut off that depended on R (and recall R
now depends on λ). As pointed out in [6] and (more details were given in [8]) one has sup� uλ →
0 as λ ↘ 0 and recall that uλ > 0 and so we see this implies that there is an infinite number of 
solutions of (3). We now give some details. First note that for all x ∈ � we have 0 < uλ(x) ≤
λαw(λx) + |φλ(x)| ≤ λα + |φλ(x)|. Now recall that φλ ∈ Br = Bβλα in Xλ,2 we have

sup
x∈�,|x|≥λ−1

|φλ(x)| ≤ βλα, sup
x∈�,|x|≤λ−1

|φλ(x)| ≤ C(�,σ)βλα−σ

where C(�, σ) is some positive constant. Note we need to take σ > 0 small enough such that 
α − σ > 0. Combining these computations shows that sup� |φλ| → 0 as λ ↘ 0. So from this we 
see sup� uλ → 0 as λ ↘ 0. �
3. Equation (4); −�u + a(x) ·∇u + V (x)u = up + γ |∇u|q

We now find a positive solution of (4), but as usual, we instead will find a positive classical 
solution of { −�u + a(x) · ∇u + V (x)u = |u|p + γ |∇u|q in �

u = 0 on ∂�,
(26)

and then argue the solution must be positive. The approach we take is exactly the same as in 
the previous section: let D ⊂⊂ BR0 and R0 ≤ R ≤ 4R ≤ 1

λ
and ζ denote a smooth radial cut-off 

with ζ = 0 in BR and ζ = 1 on Bc
2R . Then we have |∇ζ | ≤ CR−1 and |�ζ | ≤ CR−2 where C is 

independent of R.
We look for solutions to (26) of the form u = ζ(x)wλ(x) + φ(x). Then we need φ to satisfy

Lλ(φ) = |wλ + φ|p − |ζwλ + φ|p

−
(
|wλ + φ|p − pw

p−1
λ φ − w

p
λ

)
− γ |∇(wλζ ) + ∇φ|q
+ a(x) · ∇(ζwλ) + V wλζ

+ �wλ − �(ζwλ)

= I1(φ) + I2(φ) + I3(φ) + I4(φ) + I5(φ) in �, (27)

with φ = 0 on ∂�. Note that each term Ik agrees with the previous section except the term I3. 
To obtain a solution φ we apply a fixed point argument and towards this we define the nonlinear 
mapping Jλ(φ) = ψλ where ψλ satisfies

Lλ(ψλ) = |wλ + φ|p − |ζwλ + φ|p

−
(
|wλ + φ|p − pw

p−1
λ φ − w

p
λ

)
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− γ |∇(wλζ ) + ∇φ|q
+ a(x) · ∇(ζwλ) + V wλζ

+ �wλ − �(ζwλ)

= I1(φ) + I2(φ) + I3(φ) + I4(φ) + I5(φ) in �. (28)

So we first find a positive classical solution of (26) by showing Jλ is a contraction on Br ⊂
Xλ,2 for suitable r > 0 and small 0 < λ, as was the earlier approach. Let 0 < λ0 be small and 
C > 0 such that Lλ : Xλ,2 → Yλ has a right inverse bounded by C for all 0 < λ < λ0.

Into. Let 0 < λ < λ0 and φ ∈ Br . Then we have

‖Jλ(φ)‖Xλ,2 ≤ C

5∑
k=1

‖Ik(φ)‖Yλ,

and now recall that Lemma 3 gives the estimates

‖I1(φ)‖Yλ ≤ CRσ+2λαp+σ + CR2+σ(2−p)rp−1λα+σ(2−p), (29)

‖I2(φ)‖Yλ ≤ Cr2λ2−α + Cr2λ−α + Crpλ−2, (30)

‖I4(φ)‖Yλ ≤ C

(
A(R)

Rλ
+ A(R) + V (R) + A(λ−1) + V (λ−1)

)
λα, (31)

‖I5(φ)‖Yλ ≤ Cλσ
(
R2+σ λ2 + Rσ

)
λα. (32)

We now calculate the I3 estimates. By Lemma 7 there is some C > 0 such that

|I3(φ)| ≤ Cζq |∇wλ|q + Cw
q
λ |∇ζ |q + C|∇φ|q, (33)

and hence we have

‖I3(φ)‖Yλ ≤ C‖ζ q |∇wλ|q‖Yλ + C‖wq
λ |∇ζ |q‖Yλ + C‖|∇φ|q‖Yλ . (34)

Taking 0 < σ small enough we have σ + 2 > q(σ + 1). Computations show that ‖|∇φ|q‖Yλ ≤
2rqλq−2, ‖wq

λ |∇ζ |q‖Yλ ≤ CRσ+2−qλσ+αq and ‖ζ q |∇wλ|q‖Yλ ≤ Cλq(α+1)−2.
Combining the results gives

‖I3(φ)‖Yλ ≤ Cλq(α+1)−2 + CRσ+2−qλσ+αq + Crqλq−2. (35)

Contraction. Let φ, φ̂ ∈ Br and ψ̂λ = Jλ(φ̂) and ψλ = Jλ(φ). Then we have

Lλ(ψ̂λ − ψλ) =
3∑

k=1

(Ik(φ̂) − Ik(φ)),

where I1, I2 and I3 are as above. From Lemma 4 we have
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‖I1(φ̂) − I1(φ)‖Yλ ≤ C
(

2λ−σ(p−1)rp−1R2−σ(p−1) + 4R2λ2
)

‖φ̂ − φ‖Xλ,2, (36)

‖I2(φ̂) − I2(φ)‖Yλ ≤ C(λ−αr + λ−2rp−1)‖φ̂ − φ‖Xλ,2 . (37)

We now need to examine I3 term. By Lemma 7 we have

|I3(φ̂) − I3(φ)| ≤ C
(
|∇(wλζ )|q−1 + |∇φ|q−1 + |∇φ̂|q−1

)
|∇φ̂ − ∇φ|.

Using this we can rearrange it to see that

‖I3(φ̂) − I3(φ)‖Yλ ≤ C(Kin + Kout)‖φ̂ − φ‖Xλ,2,

where

Kin := sup
|x|≤λ−1

|x|
(
|∇(wλζ )|q−1 + |∇φ|q−1 + |∇φ̂|q−1

)
,

and where Kout is Kin but with the supremum taken over |x| ≥ λ−1. We now estimate Kin and 
Kout . Using the support of ζ and estimates for |∇wλ| we see

Kout

C
≤ sup

|x|≥λ−1
|x|

(
1

|x|(α+1)(q−1)
+ |∇φ|q−1 + |∇φ̂|q−1

)
.

A computation shows that

Kout ≤ Cλ(α+1)(q−1)−1 + Crq−1λq−2.

A further computation shows that

Kin

C
≤ λ(α+2)(q−1)−q + λα(q−1)

Rq−2
+ rq−1λq−2.

Combining the above results shows that

‖I3(φ̂) − I3(φ)‖Yλ

C‖φ̂ − φ‖Xλ,2

≤ λ(α+1)(q−1)−1 + rq−1λq−2 + λα(q−1)

Rq−2
.

Now let φ̂, φ ∈ Br ⊂ Xλ,2 and set ψ̂λ = Jλ(φ̂) and ψλ = Jλ(φ). After considering (29)–(35)
one sees that for Jλ(Br) ⊂ Br it is sufficient that

Rσ+2λαp+σ + R2+σ(2−p)rp−1λα+σ(2−p) + r2λ2−α + r2λ−α + rpλ−2

+λq(α+1)−2 + Rσ+2−qλσ+αq + rqλq−2

+
(

A(R)

Rλ
+ A(R) + V (R) + A(λ−1) + V (λ−1

)
λα

+λσ
(
R2+σ λ2 + Rσ

)
λα ≤ r

2
. (38)
C + 1
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For Jλ to be a contraction on Br with Lipschitz constant at most 3
4 it is sufficient

λ−σ(p−1)rp−1R2−σ(p−1) + 4R2λ2 + λ−αr + λ−2rp−1

+λ(α+1)(q−1)−1 + rq−1λq−2 + λα(q−1)

Rq−2
≤ 3

4(C + 1)
. (39)

We are now in a position to pick the parameters. As before we take ε, β > 0 (to be determined 
later) and we take r := βλα and R := ε

λ
and eventually we will take λ > 0 small.

Substituting these values in shows that to satisfy (38) it is sufficient that

εσ+2 + εσ + ε2+σ(2−p)βp−1 + β2(λ2 + 1) + βp + λq(α+1)−2−α(1 + εσ+2−q + βq)

+
(

A(ελ−1)

ε
+ A(ελ−1) + V (ελ−1) + A(λ−1) + V (λ−1

)
≤ β

C2 + 1
. (40)

Also note the left hand side of (39) is controlled by a constant times

βp−1ε2−σ(p−1) + ε2 + β + βp−1 + λq(α+1)−α−2
(

1 + ε2−q + βq−1
)

, (41)

and hence (39) is satisfied provided this can be made arbitrarily small.
To satisfy (40) and to make (41) sufficiently small one first fixes β > 0 small, then fixes ε > 0

small and finally takes λ > 0 sufficiently small. One can then apply the contraction mapping 
principle to obtain a solution φ ∈ Br = Bβλα ⊂ Xλ,2 of (27). We then have u(x) = ζ(x)wλ(x) +
φ(x) is a solution of (26). To see u is not identically zero note that for |x| ≥ λ−1 we have u(x) =
λαw(λx) +φ(x) ≥ λαw(λx) −β|x|−α . Recall there is some β0 > 0 such that |x|αw(x) ≥ β0 for 
all |x| ≥ 1. So for fixed λ and sufficiently large |x| we have

u(x) ≥ λαβ0

2λα|x|α − β

|x|α ,

so hence for sufficiently small β and large |x| we see u(x) > 0. We can then apply the maximum 
principle to see that u is a positive solution of (26) and hence a solution of (4). To obtain an 
infinite number of solutions we argue as in the previous section.

4. Equations (3) and (4) for N+2
N−2 < p < N+1

N−3

In this section we prove Theorem 3. Since the approach is very similar to the case of p > N+1
N−3

we will be fairly brief. We will always assume that D satisfies (A3) (see the text following 
Remark 1 for definition of (A3)). We define the subspace Y e

λ of Yλ by

Y e
λ :=

{
f ∈ Yλ : f (xi) = f (x) for all x ∈ � and 1 ≤ i ≤ N

}
,

where, as before, � :=R
N\D. It is clear that Y e

λ is a closed subspace of Yλ. We similarly define 
Xe

λ,0 and Xe
λ,2 to be the closed subspaces of Xλ,0 and Xλ,2 (respectively) which contain functions 

φ with the same symmetries as functions in Y e
λ . We now recall the definitions Lλ(φ)(x) :=

�φ(x) + pwλ(x)p−1φ(x) and Lλ(φ)(x) := Lλ(φ)(x) − a(x) · ∇φ(x) − V (x)φ(x).
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We now need to develop the needed linear theory on these spaces of symmetric functions. 
Firstly recall Theorem A, 2) gives us the existence of a continuous right inverse for Lλ as a 
mapping on Xe

λ,0 to Y e
λ . Using the same approach as we did in the proof of Lemma 1 one is able 

to show the analogue of Lemma 1, for the symmetric functions, given by

Lemma 5. Suppose N ≥ 3, N+2
N−2 < p < N+1

N−3 and D satisfies (A3). Then for 0 < σ < N −2 there 
exists some small λ0 > 0 and some C > 0 such that for all 0 < λ < λ0 and f ∈ Y e

λ there is some 
φλ ∈ Xe

λ,2 such that Lλ(φλ) = f in � with φλ = 0 on ∂� and ‖φλ‖Xλ,2 ≤ C‖f ‖Yλ .

We can now construct the right inverse of Lλ exactly as we did following the proof of 
Lemma 1. So there is some closed subspace X̃e

λ,2 of Xe
λ,2 such that Lλ : X̃e

λ,2 → Y e
λ is con-

tinuous, one to one and onto and hence its Fredholm index is zero.
We now would like to extend the above linear theory to the operator Lλ. A computation shows 

that the symmetry assumptions (A4) and (A5) imposed on V and a (along with the decay as-
sumptions (A1) and (A2)) show that Lλ(X

e
λ,2) ⊂ Y e

λ . So we have Lλ : Xe
λ,2 → Y e

λ is a continuous 

linear operator. From this we see that Lλ : X̃e
λ,2 → Y e

λ is a Fredholm index zero linear map. We 
can now argue exactly as in the proof of Proposition 1 to obtain the analogues result given by:

Proposition 2. Suppose N ≥ 3, N+2
N−2 < p < N+1

N−3 and (A1), (A2), (A3), (A4), (A5) are satisfied. 
Then for 0 < σ < N − 2 there exists some small λ0 > 0 and some C > 0 such that for all 
0 < λ < λ0 and f ∈ Y e

λ there is some φλ ∈ Xe
λ,2 such that Lλ(φλ) = f in � with φλ = 0 on ∂�

and ‖φλ‖Xλ,2 ≤ C‖f ‖Yλ .

This gives us all the needed linear theory and we now would like to apply fixed point argu-
ments to solve the nonlinear problems. The main difference now will be that we will replace Xλ,2
with Xe

λ,2 in the various fixed point arguments.

Proof of Theorem 3, 1) and 2). We begin by considering (3). Given φ ∈ Xe
λ,2 consider Jλ(φ) :=

ψλ ∈ Xe
λ,2 where ψλ satisfies (15); to see this is possible note that the right hand side of (15) is 

an element of Y e
λ . We can now argue exactly as before to obtain a fixed point of Jλ, on a suitable 

closed ball in Xe
λ,2, provided q > p, and again we need to split up the cases of γ ≥ 0 and γ < 0. 

Omitting the details one obtains a positive solution of (3) and we then argue as before to obtain 
an infinite number of solutions. �

The proof of Theorem 3, 3) is very similar to part 1) and 2) and so we omit the details.
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Appendix A

We now recall the particular maximum principle but this requires we recall the best constant 
SN associated with the critical Sobolev imbedding H 1

0 ⊂ L2∗
which is independent of the do-

main; SN‖φ‖2
2∗ ≤ ‖∇φ‖2

2 for all φ ∈ H 1.

L L 0
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Lemma 6 (Maximum principle). (See [14].) Suppose w ∈ H 1
0 (�) is a weak solution of 

−�w(x) − C(x)w = f (x) ≥ 0 in � where ‖C+‖
L

N
2 (�)

< SN . Then w ≥ 0 in �.

Proof. Their proof involves multiplying the equation by w− (the negative part of w) and inte-
grating by parts and applying Hölder’s inequality. �
Lemma 7. Suppose p > 1. There exists a constant C > 0 such that the following hold:

1. For all numbers w > 0, φ ∈R, and φ̂,

∣∣∣|w + φ|p − pwp−1φ − wp
∣∣∣ ≤ C

(
wp−2φ2 + |φ|p

)
,

and ∣∣∣|w + φ̂|p − |w + φ|p − pwp−1(φ̂ − φ)

∣∣∣
≤ C

(
wp−2(|φ| + |φ̂|) + |φ|p−1 + |φ̂|p−1

)
|φ̂ − φ|;

2. For all x, y, z ∈ R
n,

∣∣∣|x + y|p − |x + z|p
∣∣∣ ≤ C

(
|x|p−1 + |y|p−1 + |z|p−1

)
|y − z|.
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