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Abstract

The reaction–diffusion system at = axx − abn, bt = Dbxx + abn, where n ≥ 1 and D > 0, arises from 
many real-world chemical reactions. Whereas n = 1 is the KPP type nonlinearity, which is much studied 
and very important results obtained in literature not only in one dimensional spatial domains, but also 
multi-dimensional spaces, but n > 1 proves to be much harder. One of the interesting features of the system 
is the existence of traveling wave solutions. In particular, for the traveling wave solution a(x, t) = a(x −vt), 
b(x, t) = b(x − vt), where v > 0, if we fix limx→−∞(a, b) = (0, 1) it was proved by many authors with 
different bounds v∗(n, D) > 0 such that a traveling wave solution exists for any v ≥ v∗ when n > 1. For 
the latest progress, see [7]. That is, the traveling wave problem exhibits the mono-stable phenomenon for 
traveling wave of scalar equation ut = uxx + f (u) with f (0) = f (1) = 0, f (u) > 0 in (0, 1) and, u = 0 is 
unstable and u = 1 is stable. A natural and significant question is whether, like the scalar case, there exists a 
minimum speed. That is, whether there exists a minimum speed vmin > 0 such that traveling wave solution 
of speed v exists iff v ≥ vmin? This is an open question, in spite of many works on traveling wave of the 
system in last thirty years. This is duo to the reason, unlike the KPP case, the minimum speed cannot be 
obtained through linear analysis at equilibrium points (a, b) = (0, 1) and (a, b) = (1, 0). In this work, we 
give an affirmative answer to this question.
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1. Introduction

In this paper we study the reaction–diffusion system

(I )

⎧⎪⎪⎨
⎪⎪⎩

∂a

∂t
= ∂2a

∂x2
− abn,

∂b

∂t
= D

∂2b

∂x2
+ abn,

where n > 1, D > 0 and (a, b) are non-negative smooth functions with continuous initial values 
(a0, b0). In isothermal diffusion, a is the density of material consumed, b is the temperature, see 
[5,4,15]. In addition, it models, after a simple scaling, a simple autocatalytic chemical reaction 
of the form

A + nB → (n + 1)B with rate kabn,

where k > 0 is a rate constant, between two chemical species A and B . More importantly, the 
system arises from many important chemical wave models of excitable media ranging from the 
idealized Brusselator to real-world clock reactions such as Belousov–Zhabotinsky reaction, the 
Briggs–Rauscher reaction, the Bray–Liebhafsky reaction and the iodine clock reaction. In that 
setting, its importance was recognized fairly early, [13,12,22]. Another type of application is 
that of biological pattern formation of Turing type. In particular, for the purpose of replicating 
experimental results in early 1990s, two significant models CIMA and Gray–Scott both have the 
special case of n = 2 incorporated in the complete system, see [17,18].

One interesting feature of the system is the existence of traveling waves, which describes 
the spreading of chemical species B , when locally added to the uniformly distributed A, by 
consuming chemical species A. This phenomenon was observed in experiment, see [14,22].

By using the simple scaling invariance property of the system and a conservation law, see [7], 
we can normalize the traveling wave problem, with a(x, t) = α(x − vt), b(x, t) = β(x − vt) as 
follows. ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

α′ + Dβ ′ = v(1 − α − β), α′ � 0 ∀ z ∈R,

Dβ ′′ + vβ ′ = −αβn, ∀ z ∈R,

limz→∞( α,β ) = (1,0),

limz→−∞( α,β ) = (0,1),

(1.1)

where v > 0 is the speed of traveling wave. Here α′ � 0 is not an additional restriction, because 
for a traveling wave solution, it is direct from (I) that α′′ + cα′ = αβn and therefore a′ � 0.

There have been many works on the existence of traveling waves of (I) and related models in 
the last thirty years, [2,7–9,11,16,19–21]. A typical result is there exist two constants v1(n, D) >
v2(n, D) > 0 such that if v ≥ v1 there exists a traveling wave with speed v; but if v < v2, there 
does not exist a traveling wave. The emphasize is on estimating the smallest-speed traveling 
wave and close the gap between v1 and v2. The situation is very different from the case of n = 1, 
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where the minimum speed is obtained directly from linear analysis of equilibrium points (1, 0)

and (0, 1). The underlying reason for getting sharp results on minimum speed is the universal 
belief that the smallest-speed wave is the most stable one. In particular, when D = 1, (1.1) is 
reduced to a single equation,

{
β ′′ + vβ ′ + (1 − β)βn = 0, v � 0 ∀ z ∈ R,

limz→∞ β = 0, limz→−∞ β = 1.
(1.2)

It is well-known that there exists vmin > 0 such that traveling wave exists iff v ≥ vmin. A classical 
result on the corresponding parabolic equation

{
bt = bxx + (1 − b)bn, ∀x ∈R, t > 0,

b(x,0) = b0(x) ≥ 0,
(1.3)

is that if b0 has compact support, then as t → ∞, b converges to the minimum speed traveling 
wave, see [1,10]. For other works of scalar equation on models with non-local operator and 
discrete lattice structure see [3,6].

The expected result for (I) is that if a0 is a constant and b0 has compact support, then the 
spreading speed of b is that of minimum speed. The case of n = 1 is rigorously proved by two 
authors of this work in [9].

In spite of substantial effort, one outstanding question is still, like the special case of D = 1, 
whether there exists vmin = vmin(n, D) > 0 such that traveling wave solution exists iff v ≥ vmin? 
We settle this question in the present work.

Theorem 1. Suppose that D > 0 and n > 1. Then, there exists a positive constant vmin such that
(1.1) admits a solution if and only if v � vmin.

Remark. The case of D > 1 was proved by many authors using the monotone properties of 
traveling waves in relation to the speed v, see [7]. The argument breaks down when D < 1. In 
this work, we use a totally different approach which works for all values of D. The method we 
use is a combination of center-manifold theory for the ODE system and reformulation of the 
system (1.1) into an elliptic-parabolic PDE problem, from which we can construct a traveling 
wave solution for larger speed using the smaller speed one as a super-solution.

The plan of this work is that we prove the main result in section 2, and put off the proof of 
some technical lemmas to section 3.

2. Proof of Theorem 1

In this section we prove our main result Theorem 1. The key is to reformulate the system (1.1)
into a second order non-autonomous equation for β ′ as a function of 1 −β and analyze in details 
the center-stable manifold at the equilibrium point (1, 0) of (1.1). The basic properties of the 
system (1.1) are well established and their proof elementary. We shall use it without referring to 
where they are first derived. Instead, a convenient source is [7].

We carry out the proof after discussion of some preliminary results and put off the proof of 
some technical results to next section.
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First, as we know, the set of admissible wave speeds is a closed set in (0, ∞). For the existence 
of a minimum wave speed, we need only to show that if there exists a traveling wave speed 
v0 > 0, then for any v > v0, there is also a traveling wave of speed v.

Hence, in the sequel we assume that there is a traveling of speed v0 and v > v0 is any fixed 
constant. We are going to show that there is a traveling wave of speed v.

Starting from the equations

αz + vα + Dβz + vβ = v, Dβzz + vβz = −αβn,

for convenience, we use new variable (α, u, p) where u := 1 −β and p := uy with y := z/κ, κ =
D/v. The traveling wave problem is equivalent to solving

1

D
αy = p + u − α, uy = p, py = −p + κ2

D
α(1 − u)n (2.4)

subject to the constraints α > 0 and u < 1 on R and the boundary conditions

lim
y→−∞(α(y),u(y),p(y)) = (0,0,0), lim

y→∞(α(y),u(y),p(y)) = (1,1,0).

Notice that (0, 0, 0) is a saddle point of the system (2.4) with a one dimensional unstable 
manifold, half of which is in the first octant when close to the origin and is a trajectory. We 
denote this trajectory by γ̄ = {(ᾱ(y), ū(y), p̄(y))}y∈(−∞,Y ), where Y is the first point at which 
u = 1. Then

lim
y→−∞

ᾱ(y)

ū(y)
= λ(κ) + 1

λ(κ)/D + 1
, lim

y→−∞
p̄(y)

ū(y)
= λ(κ) := 1

2

(√
4κ2 + D − D

)
.

Let

ȳ = sup{y ∈ R | ū < 1 in (−∞, y)}.

It is easy to show, see [7], that in (−∞, ȳ), p̄ > 0, ᾱ > 0, and ᾱy > 0. We prove that the trajectory 
is a traveling wave.

We shall work both on this trajectory in the phase space (α, u, p) and on the projection of it 
in the (u, p)-plane. For the latter, we shall write p as a function of u. Since solutions of interest 
has the property uy = p > 0, there is an inverse y = Y(u) of the function u = u(y). Then we can 
define P(u) = p(Y (u)). Hence we can express γ̄ ∩ {u � 1} as p̄(y) = P̄ (ū(y)), which satisfies

P̄ (u) > 0 ∀u ∈ (0,1), lim
u↘0

P̄ (u)

u
= λ(κ) := 1

2

(√
4κ2 + D2 − D

)
.

To show that there exists a traveling wave, it suffices to show that P̄ (1) = 0, as was shown in [7]. 
To be self-contained, we give a brief explanation in what follows.

If P̄ (1) = 0, then (p̄ + ū)y = κ2ᾱ(1 − ū)n/D > 0 in (−∞, ȳ) so that p̄ + ū < 1 in (−∞, ȳ). 
The equation for ᾱ then implies that ᾱy/D = p̄ + ū − ᾱ < 1 − ᾱ in (−∞, ȳ), therefore ᾱ < 1
in (−∞, ȳ). This implies that ȳ = ∞, since otherwise, the trajectory would be the trajectory 
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passes through (ᾱ(ȳ), 1, 0) whose solution is given by (1 − [1 − ᾱ(ȳ)]e−(z−ȳ)/D, 1, 0), which is 
impossible. Thus ȳ = ∞ and limy→∞(ᾱ, ū, p̄) = (1, 1, 0).

Next, to show that P̄ (1) = 0, we shall work on the equation for P , derive as follows. Since 
solutions of interest satisfy u < 1 on R,

α = D

κ2
(1 − u)−n(uyy + uy), αy = D

κ2
(1 − u)−n

{
[uyyy + uyy] + nuy(uyy + uy)

1 − u

}
.

Substituting these two expressions into the equation κ2( 1
D

αy + α − uy − u)(1 − u)n = 0, we 
conclude that, as far as traveling wave solution is concerned, the original traveling wave problem 
is reduced to a single equation

[uyyy + uyy] + [uyy + uy][ nuy

1−u
+ D] − κ2[uy + u][1 − u]n = 0.

On the (u, p)-phase plane the equation then becomes a second order non-autonomous equation, 

denoting p(y) = P(u(y)), P ′ = dp
du

and P ′′ = d2p

du2 ,

N [κ,P ] := P 2P ′′ + P [P ′ + 1]
{
P ′ + D + nP

1 − u

}
− κ2(P + u)(1 − u)n = 0. (2.5)

Note that if P(·) ∈ C2((c, d)), (c, d) ⊂ (0, 1) is a positive solution to (2.5) in an interval 
u ∈ (c, d), then it provides a trajectory via the transformation, for any fixed u0 ∈ [c, d],

y =
u(y)∫
u0

ds

P (s)
, p(y) := P(u(y)), α(y) = D

κ2
(1 − u)−n(uyy + uy). (2.6)

Since we have assumed that there exists a traveling wave of speed v0, the traveling wave 
solution provides a solution of (2.5) with κ = κ0 := D/v0. Denote the solution by P0(·). It has 
the following properties

P0(u) > 0 ∀u ∈ (0,1), lim
u↘0

P0(u)

u
= λ(κ0) := 1

2

(√
4κ2

0 + D2 − D
)
,

either lim
u↗1

P0(u)

1 − u
= 1 or lim

u↗1

P0(u)

(1 − u)n
= κ2

0

D
.

These properties can be derived from local analysis of the equilibria (0, 0, 0) and (1, 1, 0) of the 
system (2.4), we give a proof of the last statement in Appendix.

In the following we use a sub-super solution technique from theory of elliptic and parabolic 
PDEs to find a solution P ∗ to (2.5) that is sandwiched between P0(u) and 1 − u.

Lemma 1. Suppose that there is a traveling wave of speed v0 > 0. Let κ ∈ (0, κ0). There exists 
P ∗ ∈ C0([0, 1]) ∩ C2((0, 1)) such that

N [κ,P ∗](u) = 0, 0 < P ∗(u) < 1 − u ∀u ∈ (0,1), P ∗(0) = P ∗(1) = 0.
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In addition, denoting the corresponding solution to (2.4) by γ ∗ = (α∗, u∗, p∗) and write α∗(y) =
A∗(u∗(y)), there holds

A∗(0) > 0,

P ∗(u) ∼
√

2κ2A∗(0)

D

√
u as u ↘ 0,

P ∗(u) ∼ (1 − u) − κ2

nD
(1 − u)n as u ↗ 1.

This lemma will be proven later.

Proof of Theorem 1. The local behavior of solutions to (2.4) near the equilibrium, see [2]
and Proposition 2.1 in [7], is as follows. The equilibrium (1, 1, 0) has a two dimensional sta-
ble manifold whose tangent space at (1, 1, 0) is spanned by the vector (1, 0, 0) and (0, 1, −1). 
Also, the equilibrium (1, 1, 0) has a center manifold, with tangent vector (1, 1, 0). In addition, 
there exists a positive constant r > 0 and a continuously differentiable function Ps defined on 
Br := {(α, u) | (α − 1)2 + (u − 1)2 � r2} such that

(i) The local stable manifold of (2.4) associated with (1, 1, 0) is given by the surface p =
Ps(α, u), (α, u) ∈ Br , and the function Ps has the expansion

Ps(α,u) = 1 − u + κ2

nD
α(1 − u)n + o(1)(1 − u)n.

(ii) For given (α1, u1) ∈ Br ∩ {u < 1} and each p1 ∈ [0, Ps(α1, u1)), the trajectory of (2.4)
through (α1, u1, p1) is on the center-stable manifold associated with the equilibrium (1, 1, 0)

and has the property

lim
y→∞(α(y),u(y),p(y)) = (1,1,0), lim

y→∞
p(y)

(1 − u(y))n
= κ2

D
.

To show that P̄ (1) = 0, we use a contradiction argument. Suppose to the contrary that 
P̄ (1) �= 0. Then ȳ < ∞ and P̄ (1) > 0.

Fix a u0 ∈ (1 − 1
2 r, 1) and denote (α0, p0) = (A∗(u0), P ∗(u0)). Let L be the line segment in 

the phase space (α, u, p) that connects (α0, u0, 0) and (α0, u0, p0):

L = {(α0, u0,p) |0 � p � p0}.
For each s ∈ [0, 1], we denote by γ (s) = {(α(s, y), u(s, y), p(s, y) | y ∈ R} the trajectory to the 
system

1

D
α̇ = p + u − α, u̇ = p, ṗ = −p + κ2

D
|α|(1 − u)n, (α,u,p)|y=0 = (α0, u0, sp0).

(2.7)

Here the replacement of α by |α| in the last equation will be explained later.
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Note that when s = 1, the trajectory γ (1) is exactly γ ∗, which is a trajectory for all y ∈
(−∞, ∞).

Since (a0, u0) ∈ B(r), we see that for each s ∈ [0, 1), γ (s) is on center manifold associated 
with (1, 1, 0), in particular, α(s, y) > 0, p(s, y) > 0 for all y ∈ [0, ∞) and that

lim
y→∞(α(s, y), u(0, y),p(s, y)) = (1,1,0), lim

y→∞
p(s, y)

(1 − u(s, y))n
= κ2

D
.

Lemma 2. For each s ∈ [0, 1], there exists a unique T (s) � 0 such that the unique solution to 
(2.7) satisfies

p(s,T (s)) = 0, p(s, z) > 0 ∀ z ∈ (T (s),∞).

We put off the proof to next section.
We continue our proof. Now in (T (s), ∞), we denote by p(s, z) as P(s, u) in the sense that 

p(s, y) = P(s, u(s, y)).
When s = 0, T (s) = 0. Also when u0 is sufficiently close to 1, P(0, u) = O((1 − u)n) so

P ∗(u) > P (0, u) ∀u ∈ [u0,1).

We denote by

U(s) = u(s, T (s)), A(s) = α(s, T (s)).

Then {(U(s), A(s)}s∈[0,1] is a smooth curve on the {P = 0} plane with end point (A∗(0), 0) and 
(α0, u0). We define

ŝ = min{s ∈ [0,1] | U(s) � 0}.

Since U(0) > 0, we see that ŝ ∈ (0, 1], U(ŝ) = 0 and 0 < U(s) < 1 for every s ∈ (0, ̂s).
Now we can complete our proof as follows.
Suppose P̄ (1) �= 0. Then P̄ (1) > 0. Let

P∗(u) := min{P̄ (u),P ∗(u)} ∀u ∈ [0,1].

In the notion of elliptic PDEs, P∗ is a supersolution to the operator N (κ, ·). As P̄ (1) > 0, there 
exists u1 ∈ (0, 1) such that P∗(u) = P ∗(u) < P̄ (u) for all u ∈ (u1, 1). We assume that u0 is close 
to 1 enough such that u0 > u1.

Note that when s = 0, P(0, u) < P∗(u) for all u ∈ (u0, 1). Hence, the following is well-
defined:

s̃ = sup{s ∈ (0, ŝ] | P(s,u) � P∗(u) ∀u ∈ (U(s), u0)}.

First of all, we must have s̃ < ŝ. Indeed, if s̃ = ŝ, then U(ŝ, T (ŝ)) = 0. As γ̄ is not on the stable 
manifold of (1, 1, 0), we cannot have |α(ŝ, T (ŝ))| = 0. Hence, ṗ(ŝ, T (ŝ)) = |α(ŝ, T (ŝ))| =: m >
0 so that when t is close to T = T (ŝ),
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p(ŝ, t) ≈ m(z − T ), u(ŝ, t) ≈ 1
2m(z − T )2

so that P(ŝ, u) ≈ √
2mu when u is small. However, when u is small, P∗(u) = P̄ (u) ≈ λ(κ)u, 

and it is impossible to have P(ŝ, u) < P∗(u) for all u ∈ (0, u0).
Thus, s̃ ∈ (0, ̂s), namely, U(s̃) > 0. Since P∗ > 0 in (0, 1), we have P∗(u) > P(s̃, u) in 

[U(s̃), U(s̃) + ε] for some small ε > 0.
On the other hand, we know that

lim
u→1

P(s̃, u)

1 − u
= 0 < lim

u↘1

P∗(u)

1 − u
.

We see that P∗(u) > P(s̃, u) when u is closed to 1.
Now by continuity we cannot have P(s, u) < P∗(u) for all u ∈ (U(s̃), u0) since it would 

implies the existence of a small positive ε such that P(s̃ + ε, u) < P∗(u) for u ∈ [U(s̃ + ε), u0)

which contradicts the maximality of s̃.
Thus, we must have P(s̃, û) = P∗(û) and ∂P (s̃, û)/∂u = ∂P∗(û)/∂u at some û ∈ (U(s̃), 1). 

As P(s̃, ·) is twice differentiable at û and the derivative of P∗ has negative jump at every inter-
section point of p = P ∗ and p = P̄ , we cannot have P ∗(û) = P̄ (û). Hence one of the following 
holds:

either (i) P̄ (û) = P(s̃, û), P̄u(û) = Pu(s̃, û),

or (ii) P ∗(û) = P(s̃, û), P ∗
u (û) = Pu(,̃û).

However, the former case implies that γ (s) = γ̄ and the latter case γ (s) = γ ∗ since they represent 
the same solution to (2.4) with the same initial data. We note that under the change of variable 
y → u = u(s, y), in case (i),

A(s) = D

κ2
(1 − T (s))−nP (s, T (s))[Pu(s, T (s)) + 1]

= D

κ2
(1 − T (s))−nP ∗(T (s))[P ∗

u (T (s)) + 1] = Ā(T (s)) > 0,

whereas in case (ii), A(s, T (s)) = A∗(T (s)) > 0.
This is a clear contradiction. Hence, γ̄ is a heteroclinic orbit, completing the proof of Theo-

rem. �
3. Proof of two lemmas

In this section we prove the technical lemmas used in the proof of our main result. We start 
by proving Lemma 2.

Proof of Lemma 2. We define

T (s) := inf{z | p(s, ·) > 0 in (z,∞)}.
We need only show that T (s) is finite. Suppose on the contrary that T (s) = −∞. Then p > 0
on R, so u(s, ·) is strictly increasing on R. In addition,
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d

dz
(p + u) = |α|(1 − u)n � 0

so p + u is increasing and p + u < 1 on R. Since (0, 0, 0) is the only equilibrium in the phase 
space of interest and there is no heteroclinic. By the contradiction assumption, we must have 
either limy→−∞(p + u) = −∞ or limy→∞ |α| = ∞. From the equation 1

D
α̇ = p + u − |α|, we 

conclude that limy→−∞ α = ∞.
Now from d

dy
p = −(p + u) + u + |α|(1 − u)n ≥ −1 + u + |α|(1 − u)n → ∞ as y → −∞. 

But this contradicts p > 0 in R. Hence, T (s) is finite. �
Next, we prove Lemma 1.

Proof of Lemma 1. Denote κ0 = D/v0. The traveling wave with speed v0 gives a unique solu-
tion P0 ∈ C2([0, 1]) to

N [κ0,P0] = 0 < P0 in (0,1), P0(0) = P0(1) = 0.

By the same derivation as we did for γ̄ we conclude that

0 < P0(u) < 1 − u, P ′
0(u) + 1 > 0 ∀u ∈ (0,1).

The key here is that P0 is a sub-solution and P1(u) := 1 − u is a super-solution of (2.5) with 
0 < κ < κ0 in the sense that

N [κ,P0] = (κ2
0 − κ2)(P0 + u)(1 − u)n > 0 ∀u ∈ (0,1),

N [κ,P1] = −κ2(1 − u)n < 0 ∀u ∈ (0,1).

Fix any ε, δ ∈ (0, 1/2). Set Iε,δ = (ε, 1 − δ) and consider the initial boundary value problem 
for the parabolic equation, for Pε,δ = Pε,δ(u, t), (u, t) ∈ Īε,δ × [0, ∞):

⎧⎪⎨
⎪⎩

∂Pε,δ

∂t
=N [κ,Pε,δ] in Iε,δ × (0,∞),

Pε,δ = p0 on
(
∂Iε,δ × [0,∞)

)
∪

(
Iε,δ × {0}

)
.

Since P0 > 0 on Īε,δ = [ε, 1 − δ], local existence in time of a positive solution follows from a 
standard parabolic equation theory. Also, by comparison, P0 � Pε,δ � P1. Hence, there exists a 
global positive solution in time satisfying

P0 < Pε,δ < P1 in Iε,δ × (0,∞).

Furthermore, one notices that Q := ∂
∂t

Pε,δ satisfies

Q = 0 on ∂Iε,δ × [0,∞), Q|t=0 =N (κ,p0) > 0.

Therefore, by maximum principle, Q = ∂ Pε,δ > 0 in Iε,δ × (0, ∞). Consequently,

∂t
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P̂ε,δ(u) := lim
t→∞Pε,δ(u, t) ∀u ∈ [ε,1 − δ]

exists. Since Pε,δ is uniformly positive on Īε,δ × [0, ∞), classical regularity theory shows that 
the above limit is in Cm(Ī ) for any positive integer m. Hence, N [κ, P̂ε,δ] = 0.

Next, consider the family {P̂ε,δ}0<ε,δ<1/2. From the construction and comparison,

P̂ε,δ > P̂
ε̂,δ̂

in Ī
ε̂,δ̂

× (0,∞) if 0 < ε < ε̂ < 1/2, 0 < δ < δ̂ < 1/2.

It then follows that P̂ε,δ � P̂
ε̂,δ̂

in Ī
ε̂,δ̂

. Hence, there exists the limit

P̂ε(u) = lim
δ↘0

P̂ε,δ(u) ∀u ∈ [ε,1),

and P̂ε is non-increasing in ε. Note that P0 � P̂ε � 1 − u. It is then not very difficult to show 
that N (κ, P̂ε) = 0 in (ε, 1). In addition, since P̂ε(ε) = P0(ε) and P̂ε � p0 on (ε, 1), we have 
P̂ ′

ε(ε) ≥ P ′
0(ε) ≥ −1. Thus, the corresponding solution (αε, uε) (via (2.6)) satisfies αε > 0 in 

[0, ∞).
Let

P ∗(u) = lim
ε↘0

P̂ε(u) ∀u ∈ (0,1]

Then 1 − u � P ∗(u) � P0(u) for all u ∈ (0, 1]. It is then easy to show that N (κ, P∗) = 0 in 
(0, 1]. Let (α∗(0), u∗(0), q∗(0)) = limε↘0(αε(0), uε(0), pε(ε)). Clearly, u∗(0) = 0, q∗(0) = 0, 
and α∗(0) � 0. It is easy to exclude the case α∗(0) = ∞. If α∗(0) = 0, we have a heteroclinic 
connection. However, this would imply the asymptotic P ∗(u) = [λ(κ) + o(1)]u as u ↘ 0 where 
λ(κ) = 1

2 (
√

D2 + 4κ2 − D). Since we know κ0 > κ , P0 = [λ(κ0) + o(1)]u, and P ∗ � P0, we 
obtain a contradiction. Hence, α∗(0) > 0 and for small positive y,

u∗
yy(0) = κ2α∗(0)

D
, u∗

y(y) ≈ κ2α∗(0)

D
y, u∗(y) ≈ κ2α∗(0)

2D
y2, P ∗(u) ≈

√
2κ2α∗(0)

D

√
u.

Finally, as u ↗ 1, either P ∗(u) ∼ κ2

D
(1 −u)n or P ∗(u) ∼ 1 −u, and either P0 ∼ κ2

0
D

(1 −u)n >

κ2

D
(1 − u)n or P0 ∼ 1 − u. But, since κ < κ0, P ∗ > P0, P ∗(u) ∼ κ2

D
(1 − u)n would lead to 

P0(u) ∼ κ2
0

D
(1 − u)n > P ∗(u). A contradiction. The only possibility is that P ∗(u) ∼ 1 − u −

κ2

nD
(1 − u)n. This completes the proof of the Lemma. �

Appendix A

We prove the following proposition.

Proposition 1. Suppose (α, u) is a traveling wave solution of (2.5). Then,

either lim
u↗1

P(u)

1 − u
= 1 or lim

u↗1

P(u)

(1 − u)n
= κ2

D
.
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Proof. For any ε0 ∈ (0, 1), consider

μ(u) ≡ P(u) − ε0(1 − u).

It is easy to verify that

Pμ′ = (P ′ + ε0)P

= (ε0 − 1)P + κ2

D
α(1 − u)n

= −(1 − ε0)μ − ε0(1 − ε0)(1 − u) + κ2

D
α(1 − u)n.

It is clear that as u is close to 1, μ(u) cannot change sign.
If μ(u) > 0 for all u close to 1, then, using the fact that P ′(u) > −1, we get

P ′ + 1 <
κ2

Dε0
α(1 − u)n−1 <

κ2

Dε0
(1 − u)n−1.

An integration on [u, 1] then gives

−P(u) + 1 − u <
κ2

Dnε0
α(1 − u)n.

Hence,

P(u) > 1 − u − κ2

Dnε0
α(1 − u)n.

This, together with P(u) < 1 − u, yields

lim
u↗1

P0(u)

1 − u
= 1.

If μ(u) < 0 for all ε0 > 0 when u close to 1, say for u ≥ u0, choose L � 1 such that

L(1 − u0)
n > ε0(1 − u0) and Ln(1 − u0)

n−1 < 1

for some u0 ∈ (0, 1). It is easy to compute

P(P − L(1 − u)n)‘ = −P + Ln(1 − u)n−1P < 0,

and therefore P(u) < L(1 − u)n on [u0, 1). Next, by using

P ′ = −1 + κ2

DP
α(1 − u)n,
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we find

P ′′ = κ2

DP 2

(
(α′(1 − u)n − nα(1 − u)n−1)P − α(1 − u)nP ′) ,

which yields that P ′ cannot change sign if u is sufficiently close to 1. It follows that

lim
u↗1

P ′(u) = 0.

Therefore,

lim
u↗1

P(u)

(1 − u)n
= κ2

D
. �
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