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Abstract

In this paper, we consider boundary output feedback stabilization for a multi-dimensional wave equation 
with boundary control matched unknown nonlinear internal uncertainty and external disturbance. A new 
unknown input type extended state observer is proposed to recover both state and total disturbance which 
consists of internal uncertainty and external disturbance. A key feature of the proposed observer in this paper 
is that we do not use the high-gain to estimate the disturbance. By the active disturbance rejection control 
(ADRC) strategy, the total disturbance is compensated (canceled) in the feedback loop, which together with 
a collocated stabilizing controller without uncertainty, leads to an output feedback stabilizing feedback 
control. It is shown that the resulting closed-loop system is well-posed and asymptotically stable under 
weak assumption on internal uncertainty and external disturbance. The numerical experiments are carried 
out to show the effectiveness of the proposed scheme.
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1. Introduction

Since the robustness concept was introduced to control theory from the early 1970s ([18]), the 
capability of dealing with uncertainty has become one of the most important performances for 
control systems. Many control methods have been developed to cope with internal uncertainty 
and external disturbance. These include sliding mode control for various uncertainties ([20]); 
internal model principle for output regulation; adaptive control for unknown parameter identifi-
cation; and robust control ([3]) which is a remarkable paradigm shift in modern control theory 
for general plant uncertainty. Most of these methods, among many others, focus however, on 
the worst case scenario which makes the controller design rather conservative. The worth men-
tioning methods are internal model principle ([4,19]) and adaptive control ([1,11]) where the 
uncertainty is estimated and compensated. The estimation/cancellation strategy is an economic 
way in dealing with uncertainty. In this regard, an emerging control technology named active 
disturbance rejection control (ADRC) is an epitomized approach to cope with vast uncertainty 
in control systems ([10]). The uncertainties dealt with by ADRC are much more complicated. 
For instance, ADRC can deal with the coupling between the external disturbances, the system 
unmodeled dynamics, and the superadded unknown part of control input. The most remarkable 
feature of ADRC is that the disturbance is estimated, in real time, through an extended state 
observer and is canceled in the feedback loop. This reduces the control energy significantly in 
practice [24]. In the past two decades, there are numerous researches on ADRC from perspec-
tives of both engineering and mathematics. Very recently, we applied ADRC to stabilization for 
multi-dimensional wave equation with external disturbance in [8] where the full state feedback 
control was used and a high gain extended state was adopted. The output feedback control for 
PDEs by ADRC is much complicated. In paper [5], an unknown input observer was designed by 
variable structure control first and then ADRC was applied to design an observer-based feedback 
control for 1-d wave equation. But the observer in [5] is very complicated with discontinuous 
injection of the output and hence is hard to generalize to other PDEs.

The aim of this paper is to design a new extended state observer ([6]) in terms of measurements 
from the boundary and an interior domain which can be of arbitrarily small measure; and an 
extended state observer based output feedback stabilizing control law for a multi-dimensional 
wave equation subject to general internal uncertainty and external boundary disturbance. The 
uncertainty is hence more general than that considered in [8], and we do not use the high-gain to 
estimate the state and total disturbance as that in [5,8] to avoid possible peaking value problem.

The system that we are concerned with is a multi-dimensional wave equation with Neumann 
boundary control and unknown nonlinear internal uncertainty and external disturbance, governed 
by the following partial differential equation:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

wtt (x, t) = �w(x, t), x ∈ �, t > 0,

w(x, t)|�0 = 0, x ∈ �0, t ≥ 0,

∂w(x, t)

∂ν

∣∣
�1

= f (w(·, t)) + d(x, t) + v(x, t), x ∈ �1, t ≥ 0,

w(x,0) = w0(x), wt (x,0) = w1(x), x ∈ �,

y(x, t) = (w(x, t)|�1 ,wt (x, t)|�1 ,wt (x, t)|ω), t ≥ 0,

(1.1)

where � ⊂ R
n(n ≥ 2) is an open bounded domain with a smooth C2-boundary � = �0 ∪ �1

where �0 and �1 are subsets of �, int(�0) �= ∅, int(�1) �= ∅, �0 ∩ �1 = ∅; ν is the unit normal 
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vector of � pointing the exterior of �; f : H 1
�0

(�) → L2(�1) is a possibly unknown nonlinear 
mapping that represents the internal uncertainty; and d(x, t) is the unknown external disturbance 
which is only supposed to satisfy d ∈ L∞(0, ∞; L2(�1)). For the sake of simplicity, we denote 
F(w(x, t)) := f (w(·, t)) + d(x, t) as the “total disturbance”. The v(x, t) is the control input and 
y(x, t) is the output (measurement), where ω is an open subset of � to be supposed to satisfy that 
there exist open sets �j ⊂ � with Lipschitz boundary ∂�j and points xj

0 ∈ R
n, j = 1, 2, . . . , J , 

such that �i ∩ �j = ∅ for any 1 ≤ i < j ≤ J and

ω ⊃ � ∩Nε

[
(∪J

j=1γj ) ∪ (� \ ∪J
j=1�j)

]
(1.2)

for some ε > 0 where Nε[S] = ∪x∈S{y ∈R
n : |y−x| < ε} for S ⊂R

n, γj = {x ∈ ∂�j : (x−x
j

0 ) ·
νj (x) > 0} with νj (x), the unit normal vector of �j at x pointing towards the exterior of �j , 
defined almost everywhere on ∂�j , and belonging to L∞(∂�j ; Rn). The geometric condition 
(1.2) ensures that linear interior damping can stabilize exponentially the wave equation with the 
measure of ω being sufficiently small ([14]).

The aim of this paper is twofold: We design an unknown input state observer and an observer 
based output feedback stabilizing control for system (1.1). This is a nontrivial generalization of 
[8] where full state feedback stabilization was considered. It is also supposed in [8] that f (·) ≡ 0; 
dt (x, t) is bounded; and dx(x, t) is Hölder continuous. In this paper, we only suppose that d ∈
L∞(0, ∞; L2(�1)). So d(x, t) is allowed to be discontinuous in x. Therefore, the disturbance 
here is much more general than those in existing works by active disturbance rejection control.

It is well known that when the total disturbance is zero: F(w(x, t)) = 0, the collocated feed-
back control

v(x, t) = −kwt (x, t), x ∈ �1, t ≥ 0, k > 0 (1.3)

exponentially stabilizes system (1.1) provided that there exists a coercive smooth vector field 
h(x) = (h1(x), . . . , hn(x)) of C2(�) on �, that is, the following geometric optic condition is 
satisfied ([13]):⎧⎨⎩

(i) h · ν ≤ 0, a.e. on �0;
(ii) h · ν ≥ γ > 0, a.e. on �1;
(iii) H(x) + H�(x) is uniformly positive definite on �, where H(x) = {∂hi/∂xj }ni,j=1.

(1.4)

The assumption (1.4) is satisfied when � is “star-complemented-star-shaped” ([2]), that is, there 
exists a point x0 ∈R

n such that{
(x − x0) · ν ≤ 0 on �0, (�0 is star complemented with respect to x0),

(x − x0) · ν > 0 on �1, (�1 is star shaped with respect to x0),

by setting H(x) = In×n, ρ = 1, and h(x) = x −x0, where In×n stands for n-dimensional identity 
matrix. In this case, the open subset ω in (1.2) can be simply taken as ω = � ∩{y ∈R

n : |y −x| <
ε for x ∈ �1}. Notice that ε can be taken arbitrary small, which means that the measurement 
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(wt (x, t)|�1 , wt(x, t)|ω) is essentially the measurement of wt(x, t)|ω . Therefore, our measure-
ment for system (1.1) is essentially two signals, that is, y(x, t) = (w(x, t)|�1 , wt(x, t)|ω).

We consider system (1.1) in the energy Hilbert state space H = H 1
�0

(�) × L2(�) where 
H 1

�0
(�) = {φ ∈ H 1(�)| φ|�0 = 0} with the usual inner product given by

〈(φ1,ψ1)
�, (φ2,ψ2)

�〉H =
∫
�

[∇φ1(x)∇φ2(x) + ψ1(x)ψ2(x)]dx, ∀ (φi,ψi)
� ∈ H, i = 1,2.

The control space is U = L2(�1).
This paper adopts the strategy of active disturbance rejection control by estimating and com-

pensating the total disturbance. The first problem we come up with is that weather our measured 
outputs are sufficient (and necessary in some extent) to achieve this goal. This problem is closely 
related to observability of uncertain PDEs.

Definition 1.1. Suppose v(x, t) = 0. System (1.1) is said to be exactly observable, if
(i) When F(w(·, t)) = 0, system (1.1) is exactly observable;
(ii) y(x, t) can identify F(w(·, t)), that is,

y(·, t) = 0, t ∈ [0, T ] ⇒ F(w(·, t)) = 0, t ∈ [0, T ],

for any T > 0.

Proposition 1.1. System (1.1) is exactly observable.

Proof. The condition (i) is satisfied under the geometric condition (1.4) that there exist T , CT >

0 such that ([16, Theorem 2.1])

T∫
0

∫
�1

w2
t (x, t)dxdt ≥ CT ‖(w(·,0),wt (·,0))‖2

H, ∀ (w(·,0),wt (·,0)) ∈H.

To show the condition (ii), we write (1.1) with y(x, t) = 0 as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

wtt (x, t) = �w(x, t), x ∈ �, t > 0,

w(x, t) = 0, x ∈ ∂�, t ≥ 0,

wt (x, t)|�1 = 0, wt (x, t)|ω = 0, t ≥ 0,

∂w(x, t)

∂ν

∣∣
�1

= f (w(·, t)) + d(x, t), x ∈ �1, t ≥ 0.

(1.5)

Set

E(t) := 1

2

∫
[|∇w(x, t)|2 + w2

t (x, t)]dx.
�
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Differentiate E(t) with respect to t along the solution of (1.5) to obtain Ė(t) ≡ 0 for all t ∈ [0, T ], 
which yields E(t) = E(0) for all t ∈ [0, T ]. By [14, Theorem 2.3 and Theorem 4.1], there exist 
T , CT > 0 such that the following observability inequality holds:

T∫
0

∫
ω

w2
t (x, t)dxdt ≥ CT ‖(w(·,0),wt (·,0))‖2

H, ∀ (w(·,0),wt (·,0)) ∈H.

Since wt(x, t)|ω = 0, we have (w(·, 0), wt(·, 0)) = 0 and hence E(t) ≡ 0, which implies that 
(w(·, t), wt(·, t)) ≡ 0. By the last equation of (1.5), we obtain F(w(·, t)) ≡ 0. �
Remark 1.1. From Proposition 1.1, we see that one of wt(x, t)|�1 and wt(x, t)|ω is almost neces-
sary for exact observability. Let � = {x = (x1, x2) ∈ R

2| 1 < x2
1 + x2

2 < 4} be a two-dimensional 
annulus and let �0 = {x = (x1, x2) ∈ R

2| x2
1 + x2

2 = 1}, �1 = � \ �0. For this example, we have
(a). The observation y(x, t) = (wt (x, t)|�1 , wt(x, t)|ω) is not enough for exact observability. 

Actually, let f (w) ≡ 0, and let d(x, t) ≡ d be a constant. Then, the condition (1.4) is satisfied 
with h(x) = x. System (1.1) admits a solution (w, wt) = (d ln(x2

1 + x2
2), 0) which makes the 

output y(x, t) = (wt (x, t)|�1 , wt(x, t)|ω) ≡ 0.
(b). The y(x, t) = (w(x, t)|�1 , wt(x, t)|�1) is also not enough for exact observability. Ac-

tually, take initial value (w(·, 0), wt(·, 0) = (sin(

√
x2

1 + x2
2π), 0) where w(·, 0) ∈ H 1

0 (�). 

Then system (1.1) admits a solution (w, wt) ∈ C(0, ∞; H 1
0 (�) × L2(�)) for f ≡ 0 and 

d(x, t) = ∂w(x,t)
∂ν

|�1 . However, w(·, t)|�1 ≡ 0 and hence wt(·, t)|�1 ≡ 0 makes y(x, t) =
(w(x, t)|�1 , wt(x, t)|�1) ≡ 0.

From Remarks 1.1 and 2.2 in section 2, we see that the measurement y(x, t) = (w(x, t)|�1 ,

wt (x, t)|�1 , wt(x, t)|ω) is almost the minimal signal to make system (1.1) exactly observable and 
(1.10) later well-posed. This ensures in particular that the output contains all information of the 
total disturbance, which gives possibility to estimate the total disturbance from the output.

Now, in order to state and prove our results conveniently, we will formulate the system (1.1)
into an abstract form.

Define the operator A as follows:

⎧⎪⎨⎪⎩
A(φ,ψ)� = (ψ,�φ)�, ∀ (φ,ψ)� ∈ D(A),

D(A) =
{

(φ,ψ)� ∈H ∩ (H 2(�) × H 1(�))

∣∣∣∣ ∂φ

∂ν

∣∣∣∣
�1

= ψ |�0 = 0

}
.

(1.6)

It is easy to verify that A∗ = −A in H. Define

Aφ = −�φ, D(A) =
{
φ
∣∣ φ ∈ H 2(�) ∩ H 1

�0
(�),

∂φ

∂ν

∣∣
�1

= 0

}
.

Then A is a positive definite operator in L2(�). It is easily shown (see e.g., [9]) that D(A1/2) =
H 1

�0
(�) and A1/2 is a canonical isomorphism from H 1

�0
(�) onto L2(�). We consider L2(�) as 

the pivot space. Then, the following Gelfand triple inclusions are valid:
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[D(A1/2)] ↪→ L2(�) = (L2(�))′ ↪→ [D(A1/2)]′,

where [D(A1/2)]′ is the dual space of D(A1/2) with the pivot space L2(�). An extension Ã ∈
L([D(A1/2)], [D(A1/2)]′) of A is defined by

〈Ãφ,ψ〉[D(A1/2)]′×[D(A1/2)] = 〈A1/2φ,A1/2ψ〉L2(�), ∀ φ,ψ ∈ D(A1/2) = H 1
�0

(�).

Define the Neumann map ϒ ∈ L(H s(�1), H 3/2+s(�)) ([15, p. 668]), i.e., ϒq = v̂ if and only if⎧⎨⎩
�v̂ = 0 in �,

v̂|�0 = 0,
∂v̂

∂ν

∣∣
�1

= q ∈ Hs(�1).

Using the Neumann map, one can write (1.1) in [D(A1/2)]′ as

ẅ + Ã(w − ϒ(v + f (w) + d)) = 0,

which is further written as

ẅ = −Ãw + B(v + f (w) + d), (1.7)

where B ∈ L(U, [D(A1/2)]′) is given by

Bu0 = Ãϒu0, ∀ u0 ∈ U.

Define B∗ ∈ L([D(A1/2)], U), the adjoint of B , by

〈B∗φ,u0〉U = 〈φ,Bu0〉[D(A1/2)]×[D(A1/2)]′ , ∀ φ ∈ D(A1/2), u0 ∈ U.

Then, for any φ ∈ D(A) and u0 ∈ C∞
0 (�1), by Green’s formula,

〈φ,Bu0〉[D(A1/2)]×[D(A1/2)]′ = 〈Aφ, Ã−1Bu0〉L2(�)

= 〈Aφ,ϒu0〉L2(�) = 〈Aφ,v0〉L2(�) = −
∫
�

�φ(x)v0(x)dx

= −
∫
�

φ�v0(x)dx −
∫

�0∪�1

∂φ(x)

∂ν
v0(x)dx +

∫
�0∪�1

φ(x)
∂v0(x)

∂ν
dx =

∫
�1

φ(x)u0(x)dx

= 〈φ,u0〉U ,

where v0 = ϒu0. Since C∞
0 (�1) is dense in L2(�1), we obtain

B∗φ = φ|�1 .

Therefore, system (1.1) can be written as
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d

dt

(
w

wt

)
= A

(
w

wt

)
+B[f (w) + v + d], (1.8)

where B = (0, B)� and B∗, the adjoint of B, is given by

B∗(φ,ψ)� = ψ |�1 , ∀ (φ,ψ) ∈ (H 1
�0

(�))2.

However, since B is not admissible for the semigroup eAt generated by A on H (see [23] and 
[15, p. 669]), system (1.8) does not always admit a unique solution in H for general v, d ∈
L2

loc(0, ∞, U).
To overcome this difficulty, we first introduce a damping on the control boundary by design-

ing

v(x, t) = −kwt (x, t) + u(x, t), k > 0, ∀ x ∈ �1, t ≥ 0, (1.9)

where the gain k is a positive constant and u(x, t) is the new control. Under (1.9), system (1.1)
becomes ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

wtt (x, t) = �w(x, t), x ∈ �, t > 0,

w(x, t)|�0 = 0, t ≥ 0,

∂w

∂ν

∣∣
�1

= −kwt (x, t) + f (w(x, t)) + d(x, t) + u(x, t), t > 0,

w(x,0) = w0(x), wt (x,0) = w1(x), x ∈ �.

(1.10)

Exactly the same as from (1.1) to (1.7), we can write (1.10) as

ẅ = −Ãw − kBB∗ẇ + B(f (w) + u + d) in [D(A1/2)]′ (1.11)

or in the first order form

d

dt

(
w

wt

)
=A

(
w

wt

)
+B(f (w) + u + d) in [D(A1/2)] × [D(A1/2)]′,

where the operators A and B are given by⎧⎪⎪⎪⎨⎪⎪⎪⎩
A

(
φ

ψ

)
=

(
ψ

−Ãφ − kBB∗ψ

)
, ∀

(
φ

ψ

)
∈ D(A),

D(A) = {(φ,ψ)�| φ,ψ ∈ D(A1/2), Ãφ + kBB∗ψ ∈ L2(�)},
B = B.

(1.12)

The Proposition 1.2 presents a sufficient condition for well-posedness of system (1.10).

Proposition 1.2. The operator A defined in (1.12) generates a C0-semigroup of contractions eAt

on H and B is admissible for the semigroup eAt . Suppose that f : H 1
�0

(�) → L2(�1) is contin-

uous with f (0) = 0 and satisfies the local Lipschitz condition in H 1
�0

(�). Then, for any initial 
value (w0, w1)

� ∈ H, control u ∈ L2 (0, ∞; L2(�1)), and disturbance d ∈ L2 (0, ∞; L2(�1)), 
loc loc
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system (1.10) admits a unique local solution (w, wt)
� ∈ C(0, T ; H) for some T > 0 such that 

for t ∈ [0, T ),

(
w(·, t)
wt (·, t)

)
= eAt

(
w0(·)
w1(·)

)
+

t∫
0

eA(t−s)
B[u(·, s) + d(·, s)]ds +

t∫
0

eA(t−s)
Bf (w(·, s))ds.

(1.13)

Moreover, if f : H 1
�0

(�) → L2(�1) satisfies the global Lipschitz condition:

‖f (φ1) − f (φ2)‖L2(�1)
≤ L‖φ1 − φ2‖H 1

�0
(�), ∀φ1, φ2 ∈ H 1

�0
(�)

for some L > 0, then (1.10) admits a unique global solution (w, wt)
� ∈ C(0, ∞; H) satisfying 

(1.13) with T = +∞.

Proof. By [8], we know that A generates a C0-semigroup eAt of contractions on H and B
is admissible for the semigroup eAt . Therefore, for any fixed T > 0, and any given u, d ∈
L2

loc(0, ∞; L2(�1)),

t∫
0

eA(t−s)
B[u(·, s) + d(·, s)]ds ∈ C(0, T ;H).

For initial value (w0, w1)
�, let (η1(t), η2(t))

� = eAt (w0, w1)
�. For any given σ > max0≤t≤1

‖η1(t)‖H 1
�0

(�) > 0 and t ∈ [0, 1], define a set �t by

�t = {φ : (φ,ψ) ∈ H, ‖φ − η1(t)‖H 1
�0

(�) ≤ σ }.

Since f : H 1
�0

(�) → L2(�1) satisfies the local Lipschitz condition, there exists a constant 
Lσ > 0 independent of t such that

‖f (φ1) − f (φ2)‖L2(�1)
≤ Lσ ‖φ1 − φ2‖H 1

�0
(�), ∀φ1, φ2 ∈ �t .

The admissibility of B implies that for all t > 0, and ζ ∈ L∞(0, t; L2(�1)),

∥∥∥∥
t∫

0

eA(t−s)
Bζ(·, s)ds

∥∥∥∥
H

≤ Ct‖ζ(·, s)‖L2(0,t;L2(�1))
≤ Ct

√
t‖ζ(·, s)‖L∞(0,t;L2(�1))

(1.14)

for some constant Ct that is independent of ζ . By [23, Proposition 2.3], we know that Ct is 
nondecreasing in t . Let τ ≤ 1. Then Cτ ≤ C1. Choose τ so that C1

√
τLσ < 1 and

C1
√

τLσ

⎛⎜⎝σ +
∥∥∥∥∥∥eAt

(
w0
w1

)
+

t∫
eA(t−s)

B[u(·, s) + d(·, s)]ds

∥∥∥∥∥∥
⎞⎟⎠ < σ. (1.15)
0 C(0,1;H)
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Let

� =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(ϕ(·, t), ϕt (·, t))� ∈ C(0, τ ;H) : ϕ(·,0) = w0(·), ϕt (·,0) = w1(·)∥∥∥∥∥∥
(

ϕ(·, t)
ϕt (·, t)

)
− eAt

(
w0(·)
w1(·)

)
−

t∫
0

eA(t−s)
B[u(·, s) + d(·, s)]ds

∥∥∥∥∥∥
H

≤ σ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
be a closed subset of C(0, τ ; H). Define the nonlinear map F from � to C(0, τ ; H) by

F
(

ϕ(·, t)
ϕt (·, t)

)
= eAt

(
w0(·)
w1(·)

)
+

t∫
0

eA(t−s)
B[u(·, s) + d(·, s)]ds +

t∫
0

eA(t−s)
Bf (ϕ(·, s))ds.

(1.16)

It follows from (1.14) and (1.16) that for any (ϕ1, ϕ1t )
�, (ϕ2, ϕ2t )

� ∈ �,

∥∥∥∥F (
ϕ1(·, t)
ϕ1t (·, t)

)
−F

(
ϕ2(·, t)
ϕ2t (·, t)

)∥∥∥∥
H

=
∥∥∥∥∥∥

t∫
0

eA(t−s)
B[f (ϕ1(·, s)) − f (ϕ2(·, s))]ds

∥∥∥∥∥∥
H

≤ Ct

√
t‖f (ϕ1(·, s)) − f (ϕ2(·, s))‖L∞(0,t;L2(�1))

≤ C1
√

τ‖f (ϕ1(·, s)) − f (ϕ2(·, s))‖L∞(0,τ ;L2(�1))

≤ C1
√

τLσ ‖ϕ1(·, s) − ϕ2(·, s)‖L∞(0,τ ;H 1
�1

(�))

≤ C1
√

τLσ

∥∥∥∥( ϕ1(·, t)
ϕ1t (·, t)

)
−

(
ϕ2(·, t)
ϕ2t (·, t)

)∥∥∥∥
C(0,τ ;H)

,

(1.17)

from which and (1.15), we can see that F� ⊂ �. Thus, F is strictly contraction on �. By the 
contraction mapping theorem, (1.16) admits a unique fixed point (w, wt)

� ∈ C(0, τ ; H) which 
satisfies (1.13).

Now, we prove the second assertion. Let [0, T ) be the maximal interval of existence of the 
solution of (1.10). If T < ∞, then it follows from (1.14) that for t ∈ [0, T ),

∥∥∥∥
t∫

0

eA(t−s)
Bf (w(·, s))ds

∥∥∥∥2

H
≤ C2

t ‖f (w(·, s))‖2
L2(0,t;L2(�1))

≤ C2
T ‖f (w(·, s))‖2

L2(0,t;L2(�1))
≤ C2

T L2‖w(·, s)‖2
L2(0,t;H 1

�0
(�))

= C2
T L2

t∫
0

‖w(·, s)‖2
H 1

�0
(�)

ds ≤ C2
T L2

t∫
0

∥∥∥∥(
w(·, s)
wt (·, s)

)∥∥∥∥2

H
ds.

(1.18)

Since the solution over [0, T ) satisfies (1.13), by (1.18), it follows that
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∥∥∥∥( w(·, t)
wt (·, t)

)∥∥∥∥2

H
≤ 2

∥∥∥∥∥∥eAt

(
w(·,0)

wt (·,0)

)
+

t∫
0

eA(t−s)
B[u(·, s) + d(·, s)]ds

∥∥∥∥∥∥
2

H

+ 2

∥∥∥∥∥∥
t∫

0

eA(t−s)
Bf (w(·, s))ds

∥∥∥∥∥∥
2

H

≤ 2 max
t∈[0,T ]

∥∥∥∥∥∥eAt

(
w(·,0)

wt (·,0)

)
+

t∫
0

eA(t−s)
B[u(·, s) + d(·, s)]ds

∥∥∥∥∥∥
2

H

+ 2C2
T L2

t∫
0

∥∥∥∥(
w(·, s)
wt (·, s)

)∥∥∥∥2

H
ds,

which, by using Gronwall’s inequality, yields

∥∥∥∥( w(·, t)
wt (·, t)

)∥∥∥∥2

H
≤ 2 max

t∈[0,T ]

∥∥∥∥∥∥eAt

(
w(·,0)

wt (·,0)

)
+

t∫
0

eA(t−s)
B[u(·, s) + d(·, s)]ds

∥∥∥∥∥∥
2

H

e2C2
T L2T ,

that is, (w, ẇ)� is bounded on H over [0, T ]. Since T < ∞, similarly to the proof of the existence 
of local solution, we can prove that (1.10) has a unique solution over [0, T + δ0) for some δ0 > 0. 
This is a contradiction. This proves that (1.10) admits a unique global solution. �

Let us briefly indicate the main contributions of this paper. First, we design an extended state 
observer from which the state of system can be recovered asymptotically and the total disturbance 
can be estimated. Second, the disturbance is canceled in the feedback loop and a stabilizing 
output feedback control is then designed. The closed-loop system is shown to be asymptotically 
stable by guaranteeing that all subsystems are uniformly bounded.

We proceed as follows. In Section 2, we state the main results. These include, the procedure 
of design of an extended state observer that not only estimates the system state but also the total 
disturbance, the well-posedness of the extended state observer, and the stability of the closed-loop 
system. Section 3 is devoted to the proof of the main results. Some numerical simulations are 
presented in Section 4 for illustration. Finally, to end this section, we stipulate that in the rest of 
the paper, all obvious domains both for time and spatial variables are dropped without confusion.

2. The main results

2.1. Extended state observer design

In this subsection, we list the outline of design of an extended state observer in terms of 
the input and output of system (1.10). The extended state observer is a special unknown input 
observer served for estimation of total disturbance as well. The mathematical justification follows 
up in next section. We shall achieve this goal through the following steps.
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Step 1: Separate the total disturbance from the original system to an exponentially stable 
system. Actually, design an auxiliary system “z(x, t)” as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ztt (x, t) = �z(x, t) − a(x)[zt (x, t) − wt(x, t)],
z(x, t)|�0 = 0,

∂z(x, t)

∂ν

∣∣
�1

= −kzt (x, t) + u(x, t),

z(x,0) = z0(x), zt (x,0) = z1(x),

(2.1)

which is completely determined by output wt(x, t)|ω and input u(x, t)|�1 , and a : � → [0, +∞)

in (2.1) is chosen to be continuous with supp(a) ⊂ ω and there exists an open set ωo ⊂⊂ ω such 
that a(x) > 0 for x ∈ ωo, where ωo also satisfies the condition (1.2). In other words, system (2.1)
is a completely known system. Let

ẑ(x, t) = z(x, t) − w(x, t) (2.2)

be the error of z-system (2.1) and original system (1.1). Then ̂z(x, t) satisfies

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẑt t (x, t) = �̂z(x, t) − a(x)̂zt (x, t),

ẑ(x, t)|�0 = 0,

∂ẑ(x, t)

∂ν

∣∣
�1

= −k̂zt (x, t) − f (w(·, t)) − d(x, t),

ẑ(x,0) = z0(x) − w0(x), ẑt (x,0) = z1(x) − w1(x).

(2.3)

The system (2.3) is just the system that we are looking for because its linear part is exponentially 
stable and the inhomogeneous part of (2.3) is just the total disturbance. System (2.3) is our 
starting point to estimate the total disturbance.

Step 2: Design a “d̂(x, t)” system from (2.3) to estimate the total disturbance. For this pur-
pose, design ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d̂t t (x, t) = �d̂(x, t) − a(x)d̂t (x, t),

d̂(x, t)|�0 = 0,

d̂(x, t)|�1 = −[z(x, t) − w(x, t)],
d̂(x,0) = d̂0(x), d̂t (x,0) = d̂1(x),

(2.4)

which is determined by z(x, t) and output w(x, t)|�1 and hence (2.4) is determined by input and 
output only. Let d̃(x, t) = ẑ(x, t) + d̂(x, t). Then d̃(x, t) satisfies{

d̃t t (x, t) = �d̃(x, t) − a(x)d̃t (x, t),

d̃(x, t)|�=�0∪�1 = 0,
(2.5)

which is exponentially stable ([14]). In other words, system (2.4) is an unknown input observer 
for system (2.3) that −d̂(x, t) gives an estimate of ̂z(x, t). Now,
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∂d̃(x, t)

∂ν
= ∂d̂(x, t)

∂ν
+ kd̂t (x, t) − F(w(·, t)). (2.6)

Since we can also show that

∂d̃

∂ν
∈ L2(0,∞;L2(�1)), (2.7)

which means that the error between ∂d̂(x,t)
∂ν

+ kd̂t (x, t) and F(w(·, t)) is at most of an error of 
L2(0, ∞; L2(�1)), we can therefore consider

∂d̂(x, t)

∂ν
+ kd̂t (x, t) ≈ F(w(·, t)). (2.8)

The error system (2.5) is independent of total disturbance (d̃(x, 0) depends actually on the 
initial value w(x, 0) only because z(x, 0) and d̂(x, 0) can be assigned arbitrarily). In other words, 
no matter what the total disturbance is, the convergence rate is always the same or equivalently, 
the total disturbance is sufficiently estimated by (2.4). This is a remarkable merit of this design.

Since d̃(x, t) = ẑ(x, t) + d̂(x, t) = z(x, t) + d̂(x, t) −w(x, t), it follows from the exponential 
stability of (2.5) that z(x, t) + d̂(x, t) gives an estimate of w(x, t). In other words, the systems 
(2.1) and (2.4) together give an unknown input observer for original system (1.1). This is the 
first time we have obtained an unknown input observer for system (1.1). However, since control 
appears explicitly in (2.1) only, it is a little bit not convenient to take care of (2.5) for design 
control. To round this obstacle, we present Step 3.

Step 3: Compensate the total disturbance to obtain a state observer. Actually let

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ŵtt (x, t) = �ŵ(x, t) − a(x)[ŵt (x, t) − wt(x, t)],
ŵ(x, t)|�0 = 0,

∂ŵ(x, t)

∂ν

∣∣
�1

= −kŵt (x, t) + ∂d̂(x, t)

∂ν
+ kd̂t (x, t) + u(x, t),

ŵ(x,0) = ŵ0(x), ŵt (x,0) = ŵ1(x),

(2.9)

which is determined by input and output. Then w̃(x, t) = ŵ(x, t) − w(x, t) where w(x, t) is the 
solution of (1.10), satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩

w̃tt (x, t) = �w̃(x, t) − a(x)w̃t (x, t),

w̃(x, t)|�0 = 0,

∂w̃(x, t)

∂ν

∣∣
�1

= −kw̃t (x, t) + ∂d̃(x, t)

∂ν
,

(2.10)

which could be shown to be asymptotically stable due to “smallness” of inhomogeneous term 
∂d̃
∂ν

∈ L2(0, ∞; L2(�1)). Therefore ŵ(x, t) can be regarded as an estimate of w(x, t) as t → +∞. 
In other words, (2.9) is served as another unknown input observer for original system (1.1). 
This is the second unknown input observer we designed for system (1.1). System (2.10) is more 
convenient for control design.



JID:YJDEQ AID:8782 /FLA [m1+; v1.257; Prn:5/04/2017; 16:19] P.13 (1-34)

H.-C. Zhou, B.-Z. Guo / J. Differential Equations ••• (••••) •••–••• 13
Finally, putting all these systems (2.1), (2.4), and (2.9) together, we obtain an extended state 
observer for system (1.10) as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ŵtt (x, t) = �ŵ(x, t) − a(x)[ŵt (x, t) − wt(x, t)],
ŵ(x, t)|�0 = 0,

∂ŵ(x, t)

∂ν

∣∣
�1

= −kŵt (x, t) + ∂d̂(x, t)

∂ν
+ kd̂t (x, t) + u(x, t),

d̂tt (x, t) = �d̂(x, t) − a(x)d̂t (x, t),

d̂(x, t)|�0 = 0, d̂(x, t)|�1 = −[z(x, t) − w(x, t)],
ztt (x, t) = �z(x, t) − a(x)[zt (x, t) − wt(x, t)],
z(x, t)|�0 = 0,

∂z(x, t)

∂ν

∣∣
�1

= −kzt (x, t) + u(x, t),

ŵ(x,0) = ŵ0(x), ŵt (x,0) = ŵ1(x),

d̂(x,0) = d̂0(x), d̂t (x,0) = d̂1(x),

z(x,0) = z0(x), zt (x,0) = z1(x),

(2.11)

which estimates not only the state but also the total disturbance.

2.2. Well-posedness of extended state observer

In this subsection, we explain the well-posedness of extended state observer (2.11). Lemma 2.1
is on system (2.3).

Lemma 2.1. For any u ∈ L2
loc(0, ∞; L2(�1)), d ∈ L2

loc(0, ∞; L2(�1)), and (w0, w1) ∈ H, sup-
pose that f : H 1

�0
(�) → L2(�1) is continuous with f (0) = 0 and that (1.10) admits a unique 

solution (w, wt)
� ∈ C(0, ∞; H). Then, for any initial state (̂z0, ̂z1) ∈ H, system (2.3) admits 

a unique solution (̂z, ̂zt ) ∈ C(0, ∞; H). Moreover, if d ∈ L∞(0, ∞; L2(�1)) and the solution 
(w(x, t), wt(x, t))� of (1.10) is bounded, then (̂z(x, t), ̂zt (x, t))� is also bounded, i.e.,

sup
t≥0

‖(̂z(·, t), ẑt (·, t))‖H < +∞.

Next, we consider (2.5) and (2.10) together, namely, the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w̃tt (x, t) = �w̃(x, t) − a(x)w̃t (x, t),

w̃(x, t)|�0 = 0,

∂w̃(x, t)

∂ν

∣∣
�1

= −kw̃t (x, t) + ∂d̃(x, t)

∂ν
,

d̃tt (x, t) = �d̃(x, t) − a(x)d̃t (x, t),

d̃(x, t)|�=�0∪�1 = 0,

w̃(x,0) = w̃0(x), w̃t (x,0) = w̃1(x),

d̃(x,0) = d̃ (x), d̃ (x,0) = d̃ (x).

(2.12)
0 t 1
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Let H = H 1
0 (�) × L2(�). It is well known ([14]) that the “d̃-part” of system (2.12) admits a 

unique solution (d̃, ̃dt ) ∈ C(0, ∞; H) such that

E(t) := 1

2

∫
�

[
|∇d̃(x, t)|2 + |d̃t (x, t)|2

]
dx ≤ Mde−ωd t‖(d̃(·,0), d̃t (·,0))‖2

H
, (2.13)

for some constants Md, ωd > 0. It is worth mentioning that the decay rate ωd depends on the 
damping coefficient a(x), and the measure of the interior observation domain ω, but independent 
of total disturbance. The last property is one of the remarkable merits of this design.

We consider system (2.12) in the energy Hilbert state space X = H ×H with the usual inner 
product given by

〈(φ1,ψ1,p1, q1)
�, (φ2,ψ2,p2, q2)

�〉X =
∫
�

[∇φ1(x)∇φ2(x) + ψ1(x)ψ2(x)]dx

+
∫
�

[∇p1(x)∇p2(x) + q1(x)q2(x)]dx, ∀ (φi,ψi,pi, qi)
� ∈ X , i = 1,2.

(2.14)

Lemma 2.2. For any initial value (w̃0, ̃w1, ̃d0, ̃d1)
� ∈X , system (2.12) admits a unique solution 

(w̃, ̃wt, ̃d, ̃dt )
� ∈ C(0, ∞; X ) satisfying

lim
t→∞‖(w̃(·, t), w̃t (·, t), d̃(·, t), d̃t (·, t))‖X = 0.

Moreover,

∂d̃

∂ν
∈ L2(0,∞;L2(�1)), (2.15)

which is said to be the hidden regularity of the PDE satisfied by d̃(x, t).

Theorem 2.1 is about the well-posedness of the extended state observer (2.11). A first main 
result of present paper.

Theorem 2.1. For any u ∈ L2
loc(0, ∞; L2(�1)), d ∈ L2

loc(0, ∞; L2(�1)), and (w0, w1) ∈ H, sup-
pose that f : H 1

�0
(�) → L2(�1) is continuous with f (0) = 0 and that (1.10) admits a unique 

solution (w, ẇ)� ∈ C(0, ∞; H). Then, the extended state observer (2.11) is well-posed and for 
any (ŵ0, ̂w1, ̂d0, ̂d1, z0, z1) ∈ H3 with compatible condition

d̂0(x) + z0(x) − w0(x) = 0 on �1,

(2.11) admits a unique solution (ŵ, ̂wt, ̂d, ̂dt , z, zt ) ∈ C(0, ∞; H3). Moreover, (ŵ(x, t), ̂wt(x, t))
satisfies

lim
t→∞‖(ŵ(·, t) − w(·, t), ŵt (·, t) − wt(·, t)‖H = 0, (2.16)
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and d̂(x, t) satisfies

∂d̂

∂ν
+ kd̂t − F(w) ∈ L2(0,∞;L2(�1)). (2.17)

Notice that (2.17) is just (2.7), in other words, (2.17) confirms the approximation (2.8). Now 
we want to show much stronger approximation than (2.17). To do this, we consider system (2.5)
further. It is seen that system (2.5) is an independent system with the system operator given by

{
A1(φ,ψ)� = (ψ,�φ − aψ)�, ∀ (φ,ψ)� ∈ D(A1),

D(A1) = {
(φ,ψ)� ∈H∩ (H 2(�) × H 1(�))| φ|� = ψ |� = 0

}
.

(2.18)

Lemma 2.3. For any given (d̃(·, 0), ̃dt (·, 0))� ∈ D(A1), the solution of (2.5) satisfies

∥∥∥∥∂d̃(·, t)
∂ν

∥∥∥∥
L2(�1)

≤ Ce−ωd∗ t ,

with some constants C, ωd∗ > 0, where C depends on (d̃(·, 0), ̃dt (·, 0)) only.

Corollary 2.1 is a direct consequence of Theorem 2.1 and Lemma 2.3.

Corollary 2.1. Suppose that (ŵ0, ̂w1, ̂d0, ̂d1, z0, z1) ∈ H3 ∩ (H 2(�) ×H 1(�))3 with compatible 
condition

d̂0(x) + z0(x) − w0(x) = 0 on �1.

Then the “(d̂, z)-part” of (2.11) admits a unique solution (d̂, z) such that

∥∥∥∥∂d̂(·, t)
∂ν

+ kd̂t (·, t) − F(w(·, t))
∥∥∥∥

L2(�1)

≤ Ce−ωd t . (2.19)

Theorem 2.2. For any u ∈ L2
loc(0, ∞; L2(�1)), d ∈ L2

loc(0, ∞; L2(�1)), and (w0, w1) ∈ H, sup-
pose that f : H 1

�0
(�) → L2(�1) is continuous with f (0) = 0 and that (1.10) admits a unique 

solution (w, ẇ)� ∈ C(0, ∞; H). Then, the extended state observer (2.11) is well-posed and 
for any (ŵ0, ̂w1, ̂d0, ̂d1, z0, z1) ∈ H3 ∩ (H 2(�) × H 1(�))3, (2.11) admits a unique solution 
(ŵ, ̂wt, ̂d, ̂dt , z, zt ) ∈ C(0, ∞; H3). Moreover, (ŵ(x, t), ̂wt(x, t) satisfies

‖(ŵ(·, t) − w(·, t), ŵt (·, t) − wt(·, t)‖H ≤ Me−μt , (2.20)

where M, μ > 0.
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2.3. Extended state observer based output feedback

In this subsection, we consider the second main problem of this paper: extended state observer 
based output feedback stabilization. By Lemmas 2.2 and 2.3, ∂d̂(x,t)

∂ν
+ kd̂t (x, t) can be regarded 

as an estimate of the total disturbance F(w(·, t)). Thus, we can cancel the total disturbance by 
designing output feedback control to (1.10) as follows:

u(x, t) = −∂d̂(x, t)

∂ν
− kd̂t (x, t). (2.21)

Under feedbacks (1.9) and (2.21), the closed-loop system of (1.1) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wtt (x, t) = �w(x, t),

w(x, t)|�0 = 0,

∂w

∂ν

∣∣
�1

= −kwt (x, t) + f (w(x, t)) + d(x, t) − ∂d̂(x, t)

∂ν
− kd̂t (x, t),

ŵtt (x, t) = �ŵ(x, t) − a(x)[ŵt (x, t) − wt(x, t)],
ŵ(x, t)|�0 = 0,

∂ŵ

∂ν

∣∣
�1

= −kŵt (x, t),

d̂tt (x, t) = �d̂(x, t) − a(x)d̂t (x, t),

d̂(x, t)|�0 = 0, d̂(x, t)|�1 = −[z(x, t) − w(x, t)],
ztt (x, t) = �z(x, t) − a(x)[zt (x, t) − wt(x, t)],
z(x, t)|�0 = 0,

∂z(x, t)

∂ν

∣∣
�1

= −kzt (x, t) − ∂d̂(x, t)

∂ν
− kd̂t (x, t).

(2.22)

Theorem 2.3 is about convergence of system (2.22), the second main result of this paper.

Theorem 2.3. Suppose that d ∈ L∞(0, +∞, L2(�1)) and f ∈ C(H 1
�0

(�), L2(�1)) satisfies 
f (0) = 0. Then, for any initial state (w0, w1, ̂w0, ̂w1, ̂d0, ̂d1, z0, z1)

� ∈H4 with compatible con-
dition

d̂0(x) + z0(x) − w0(x) = 0 on �1, (2.23)

the closed-loop system (2.22) admits a unique solution (w, wt, ̂w, ̂wt, ̂d, ̂dt , z, zt ) ∈ C(0, ∞; H4)

which satisfies

lim
t→∞‖(w(·, t),wt (·, t), ŵ(·, t), ŵt (·, t))‖H2 = 0, (2.24)

and

sup‖(d̂(·, t), d̂t (·, t), z(·, t), zt (·, t))‖H2 < +∞. (2.25)

t≥0
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Moreover, if we assume further that

(z0 − w0 + d̂0, z1 − w1 + d̂1)
� ∈ D(A1)

where D(A1) is defined in (2.18), then∥∥∥∥∂d̂(·, t)
∂ν

+ kd̂t (·, t) − F(w(·, t))
∥∥∥∥

L2(�1)

≤ Ce−ωd t , (2.26)

and there exist constants M, μ > 0 such that

‖(w(·, t),wt (·, t), ŵ(·, t), ŵt (·, t))‖H2 ≤ Me−μt . (2.27)

Remark 2.1. For the closed-loop system (2.22) in Theorem 2.3, different to Lemma 2.1, The-
orems 2.1 and 2.2, we remove the assumption that the “w-part” of closed-loop system (2.22)
admits a unique solution (w, ẇ)� ∈ C(0, ∞; H). This sounds extraordinary because the closed-
loop system (2.22) is a nonlinear system. However, the closed system (2.22) is equivalent to 
system (2.28): ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wtt (x, t) = �w(x, t),

w(x, t)|�0 = 0,

∂w(x, t)

∂ν

∣∣
�1

= −kwt (x, t) − ∂d̃(x, t)

∂ν
,

w̃tt (x, t) = �w̃(x, t) − a(x)w̃t (x, t),

w̃(x, t)|�0 = 0,

∂w̃(x, t)

∂ν

∣∣
�1

= −kw̃t (x, t) + ∂d̃(x, t)

∂ν
,

d̃tt (x, t) = �d̃(x, t) − a(x)d̃t (x, t),

d̃(x, t)|�=�0∪�1 = 0,

ẑt t (x, t) = �̂z(x, t) − a(x)̂zt (x, t),

ẑ(x, t)|�0 = 0,

∂ẑ(x, t)

∂ν

∣∣
�1

= −k̂zt (x, t) − f (w(x, t)) − d(x, t),

(2.28)

which is (3.35) is next section, where we can see that the “(w, ̃w, ̃d)-subsystem” of (2.28) admits 
a unique solution because it is linear and independent of “ ẑ-subsystem”. The principal part of 
“ ẑ-subsystem” is linear and the nonlinear term f (w(x, t)) is its inhomogeneous term and is 
obtained from the linear “(w, ̃w, ̃d)-subsystem”. This interesting trick solves well-posedness of 
actual nonlinear system (2.22).

Remark 2.2. From Remark 1.1, the signal wt(x, t)|�1 is used to make system (1.10) (Proposi-
tion 1.2) as well as extended state observer (2.11) well-posed (Theorem 2.1). In other words, 
if we consider stabilization of closed-loop system only without consideration of well-posedness 
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for open loop system and extended state observer, the output y(x, t) = (w(x, t)|�1 , wt(x, t)|ω)

is sufficient to be used to stabilize system (1.1). Indeed, setting k = 0 in (2.11) and replacing the 
control (2.21) by u(x, t) = −ŵt (x, t) − ∂d̂(x,t)

∂ν
, we have the closed-system as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wtt (x, t) = �w(x, t),

w(x, t)|�0 = 0,

∂w

∂ν

∣∣
�1

= −ŵt (x, t) + f (w(x, t)) + d(x, t) − ∂d̂(x, t)

∂ν
,

ŵtt (x, t) = �ŵ(x, t) − a(x)[ŵt (x, t) − wt(x, t)],
ŵ(x, t)|�0 = 0,

∂ŵ

∂ν

∣∣
�1

= −ŵt (x, t),

d̂tt (x, t) = �d̂(x, t) − a(x)d̂t (x, t),

d̂(x, t)|�0 = 0, d̂(x, t)|�1 = −[z(x, t) − w(x, t)],
ztt (x, t) = �z(x, t) − a(x)[zt (x, t) − wt(x, t)],
z(x, t)|�0 = 0,

∂z(x, t)

∂ν

∣∣
�1

= −∂d̂(x, t)

∂ν
− ŵt (x, t).

(2.29)

Following the proofs of Lemmas 2.1 and 2.2, and Theorem 2.3 in next section with slight modifi-
cation, we can prove that for any initial state (w0, w1, ̂w0, ̂w1, ̂d0, d̂1, z0, z1)

� ∈ H4 with compat-
ible condition d̂0(x) + z0(x) − w0(x) = 0 on �1, the closed-loop system (2.29) admits a unique 
solution (w, wt, ̂w, ̂wt, ̂d, ̂dt , z, zt ) ∈ C(0, ∞; H4) satisfying limt→∞ ‖(w(·, t), wt(·, t), ̂w(·, t),
ŵt (·, t))‖H2 = 0 and supt≥0 ‖(d̂(·, t), d̂t (·, t), z(·, t), zt (·, t))‖H2 < +∞. As pointed in [15, 
p. 669], the system (1.1) is not well-posed even if f ≡ 0 and d ≡ 0 when the dimension n ≥ 2. 
In this case, the extended state observer (2.11) with k = 0 is not well-posed. Since the solvability 
of observer is important as indicated in [7], we include signal wt(x, t)|�1 in the output to make 
(1.10) well-posed.

3. Proof of the main results

Proof of Lemma 2.1. We first notice that system (2.3) can be rewritten as an evolution equation 
in H:

d

dt
(̂z(·, t), ẑt (·, t))� =A0(̂z(·, t), ẑt (·, t))� +B(f (w(·, t)) + d(·, t)), (3.1)

where B is the same as that in (1.12) and the operator A0 is given by⎧⎪⎨⎪⎩
A0(φ,ψ)� = (ψ,�φ − aψ)�, ∀ (φ,ψ)� ∈ D(A0),

D(A0) =
{
(φ,ψ)� ∈ H ∩ (H 2(�) × H 1

�0
(�)) : ∂φ

∂ν
|�1 = −kψ |�1

}
.

(3.2)

We will show that system (3.1) has a unique solution. Since (w, wt)
� ∈ C(0, ∞; H) and 

f : H 1 (�) → L2(�1) is continuous, we know that f (w(·, ·)) ∈ C(0, ∞; L2(�1))), and thus 
�0
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it suffices to prove that A0 generates a C0-semigroup eA0t and B is admissible for the semigroup 
eA0t ([23]). Actually, for any (φ, ψ)� ∈ D(A0),

Re〈A0(φ,ψ)�, (φ,ψ)�〉H = Re
∫
�

[∇ψ(x) · ∇φ(x) + (�φ(x) − aψ(x))ψ(x)
]
dx

= −k

∫
�1

|ψ(x)|2dx −
∫
�

a(x)|ψ(x)|2dx ≤ 0.

(3.3)

This shows that A0 is dissipative. Now we show that A−1
0 ∈ L(H). Solve the equation:

A0

(
φ

ψ

)
=

(
ψ

φ′′ − aψ

)
=

(
φ̂

ψ̂

)
∈ H

to obtain ψ = φ̂ ∈ H 1
�0

(�), and

⎧⎨⎩
�φ(x) − a(x)ψ(x) = ψ̂(x),

φ|�0 = 0,
∂φ

∂ν
|�1 = −kψ |�1 .

(3.4)

By the trace theorem and ψ = φ̂ ∈ H 1
�0

(�), (3.4) can be rewritten as

⎧⎪⎨⎪⎩
�φ(x) = ψ̂(x) + a(x)φ̂(x) ∈ L2(�), x ∈ �,

φ|�0 = 0,
∂φ

∂ν

∣∣∣∣
�1

= −kφ̂|�1 ∈ H 1/2(�1).
(3.5)

By the elliptic partial differential equation theory, we know that (3.5) admits a unique solution 
φ ∈ H 2(�) satisfying

‖φ‖H 2(�) ≤ C
[‖ψ̂ + aφ̂‖L2(�) + ‖φ̂‖H 1/2(�1)

]
.

Hence A−1
0 (φ̂, ̂ψ)� = (φ, ̂φ), where φ is uniquely defined by (3.5). It follows from the Lumer–

Phillips theorem [17, Theorem 1.4.3] that A0 generates a C0-semigroup of contractions eA0t

on H. Moreover, we can show that eA0t is exponentially stable on H. Actually, the operator 
A0 can be decomposed into the sum of two operators, i.e., A0 = A + Aa , where A is given by 
(1.12) and Aa is defined by Aa(φ, ψ)� = (0, −aψ)� with D(Aa) = H. It is clear that for any 
(φ, ψ)� ∈ D(Aa),

Re〈Aa(φ,ψ)�, (φ,ψ)�〉H = −
∫
�

a(x)|ψ(x)|2dx ≤ 0,

which shows that Aa is dissipative. Since Aa is bounded on H, Aa generates a C0-semigroup of 
contractions eAat , i.e., ‖eAa t‖ ≤ 1 for all t ≥ 0. Since we have proved that all e(A+Aa)t , eAt and 
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eAa t are C0-semigroups of contractions, it follows from the Trotter product formula [21] that

eA0t = lim
n→∞[eAt/neAa t/n]n, ∀ t ≥ 0. (3.6)

Since eAt is exponentially stable, there exist Mω0 ≥ 1, ω0 > 0 such that ‖eAt‖ ≤ Mω0e
−ω0t . Take 

τ0 > 0 such that Mω0e
−ω0τ0/2 = 1. It is seen that ‖eAt‖ ≤ Mω0e

−ω0t = Mω0e
−ω0/2t e−ω0/2t ≤

e−ω0t/2 for t ≥ τ0. By (3.6), we have

‖eA0t‖ = ‖ lim
n→∞[eAt/neAa t/n]n‖ ≤ lim

n→∞‖[eAt/neAat/n]n‖
≤ lim

n→∞[‖eAt/n‖‖eAat/n‖]n ≤ lim
n→∞[e−ω0t/(2n) · 1]n = e−ω0t/2, ∀ t ≥ τ0.

(3.7)

So, eA0t is exponentially stable on H.
Now, we show that B is admissible for the semigroup eA0t . For this purpose, we consider the 

following system:

d

dt

(
p(·, t)
pt (·, t)

)
=A0

(
p(·, t)
pt (·, t)

)
. (3.8)

Since A0 generates a C0-semigroup on H, which has been justified, for any (p(·, 0), ṗ(·, 0))� ∈
D(A0), the solution to (3.8) satisfies (p(·, t), pt (·, t))� ∈ D(A0). Take the inner product on both 
sides of (3.8) with (p(·, t), pt(·, t))� and take (3.3) into account to obtain

Re〈p̈, ṗ〉 + Re〈∇p,∇ṗ〉 = −k‖B∗ṗ‖2 − ‖√aṗ‖2,

that is,

Ḟ (t) = −k

∫
�1

|B∗pt(x, t)|2dx −
∫
�

a(x)|pt (x, t)|2dx, F (t) = 1

2

∫
�

[‖∇p(x)‖ + ‖pt(x)‖2]dx.

Therefore,

k

T∫
0

∫
�1

|B∗pt(x, t)|2dxdt ≤ F(0) − F(T ) ≤ F(0).

This shows that the operator B is admissible for the semigroup eA0t ([23]). Therefore, system 
(2.3) has a unique solution given by

(
ẑ(·, t)
ẑt (·, t)

)
= eA0t

(
ẑ0(·)
ẑ1(·)

)
+

t∫
0

eA0(t−s)
B(f (w(·, t)) + d(·, t))ds. (3.9)

Since eA0t is exponentially stable on H, which has been justified, and since B is ∞-admissible for 
eA0t by virtue of [23, Remark 4.7], it follows from [23, Remark 2.6] that there exists a constant 
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M > 0 independent of t such that

∥∥∥∥
t∫

0

eA0(t−s)
B(f (w(·, t)) + d(·, t))ds

∥∥∥∥
H

≤ M‖f (w) + d‖L∞(0,t;L2(�1))
. (3.10)

Since f : H 1
�0

(�) → L2(�1) is continuous and (w(·, t), ẇ(·, t))� is bounded, there exists 
M1 > 0 such that ‖f (w(·, t))‖L2(�1)

≤ M1 for all t ≥ 0. It follows from (3.9) and (3.10) that 
supt≥0 ‖̂z(·, t), ̂zt (·, t))‖H < +∞. �
Proof of Lemma 2.2. It suffices to prove that the “w̃-part” of system (2.12) admits a unique 
solution (w̃, ̃wt) ∈ C(0, ∞; H) and is asymptotically stable. For this purpose, we first prove that 
(2.15) holds. Since the boundary � is of class C2, it follows from Lemma 2.1 of [12, p. 18] that 
there exists vector function ĥ ∈ C1(�, Rn) (different from h in (1.4)) such that an ĥ(x) = ν(x)

on x ∈ �. Set

ρ(t) = Re
∫
�

d̃t (x, t)ĥ(x) · ∇d̃(x, t)dx. (3.11)

It follows from Cauchy’s inequality that

|ρ(t)| ≤ max
{

1,‖ĥ‖2
L∞(�)

}
E(t), ∀ t ≥ 0, (3.12)

where E(t) is given by (2.13). Denote Ĥ (x) = {∂ĥi/∂xj }ni,j=1. Since

∇d̃(x, t)|� = ∂d̃(x, t)

∂ν
ν(x) owing to d̃(x, t)|� = 0, (3.13)

it follows from the divergence theorem and the fact ĥ(x) · ν(x) = 1 on � that

Re
∫
�

∇d̃(x, t) · ∇(ĥ(x) · ∇d̃(x, t))dx = 1

2
Re

∫
�

∇d̃(x, t)(Ĥ (x) + Ĥ�(x))∇d̃(x, t)dx

+ 1

2

∫
�

div(|∇d̃(x, t)|2ĥ(x))dx − 1

2

∫
�

|∇d̃(x, t)|2div(ĥ(x))dx

= 1

2

∫
�

∣∣∣∣∂d̃(x, t)

∂ν

∣∣∣∣2dx + 1

2
Re

∫
�

∇d̃(x, t)(Ĥ (x) + Ĥ�(x))∇d̃(x, t)dx

− 1

2

∫
�

|∇d̃(x, t)|2div(ĥ(x))dx,

(3.14)

and



JID:YJDEQ AID:8782 /FLA [m1+; v1.257; Prn:5/04/2017; 16:19] P.22 (1-34)

22 H.-C. Zhou, B.-Z. Guo / J. Differential Equations ••• (••••) •••–•••
∫
�

ĥ(x) · ∇(|d̃t (x, t)|2)dx =
∫
�

[div(|d̃t (x, t)|2ĥ(x)) − |d̃t (x, t)|2div(ĥ(x))]dx

=
∫
�

|d̃t (x, t)|2ĥ(x) · ν(x)dx −
∫
�

|d̃t (x, t)|2div(ĥ(x))dx

= −
∫
�

|d̃t (x, t)|2div(ĥ(x))dx.

(3.15)

By (3.13), (3.14), and (3.15), differentiating ρ(t) yields

ρ̇(t) = Re
∫
�

�d̃(x, t)ĥ(x) · ∇d̃(x, t)dx − Re
∫
�

a(x)d̃t (x, t)ĥ(x) · ∇d̃(x, t)dx

+ 1

2

∫
�

h(x) · ∇(|d̃t (x, t)|2)dx

= Re
∫
�

∂d̃(x, t)

∂ν
ĥ(x) · ∇d̃(x, t)dx − 1

2

∫
�

∣∣∣∣∂d̃(x, t)

∂ν

∣∣∣∣2dx

− 1

2
Re

∫
�

∇d̃(x, t)(Ĥ (x) + Ĥ�(x))∇d̃(x, t)dx + 1

2

∫
�

|∇d̃(x, t)|2div(h(x))dx

− 1

2

∫
�

|d̃t (x, t)|2div(ĥ(x))dx − Re
∫
�

a(x)d̃t (x, t)ĥ(x) · ∇d̃(x, t)dx

= 1

2

∫
�

∣∣∣∣∂d̃(x, t)

∂ν

∣∣∣∣2dx − 1

2
Re

∫
�

∇d̃(x, t)(Ĥ (x) + Ĥ�(x))∇d̃(x, t)dx

+ 1

2

∫
�

|∇d̃(x, t)|2div(ĥ(x))dx

− 1

2

∫
�

|d̃t (x, t)|2div(ĥ(x))dx − Re
∫
�

a(x)d̃t (x, t)ĥ(x) · ∇d̃(x, t)dx.

Hence,

1

2

t∫
0

∫
�

∣∣∣∣∂d̃(x, t)

∂ν

∣∣∣∣2dxds = 1

2
Re

t∫
0

∫
�

∇d̃(x, t)(Ĥ (x) + Ĥ�(x))∇d̃(x, t)dxds

− 1

2

t∫ ∫
|∇d̃(x, s)|2div(ĥ(x))dxds + 1

2

t∫ ∫
|d̃t (x, t)|2div(ĥ(x))dxds (3.16)
0 � 0 �
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+ Re

t∫
0

∫
�

a(x)d̃t (x, t)h(x) · ∇d̃(x, s)dxds + ρ(t) − ρ(0)

≤ C

t∫
0

E(s)ds + ρ(t) − ρ(0),

where C is a positive constant depending only on ĥ(x). By (2.13), (3.12) and (3.16), we have

∞∫
0

∫
�

∣∣∣∣∂d̃(x, t)

∂ν

∣∣∣∣2dxds < +∞, (3.17)

which implies (2.15). Next, we consider the “w̃-part” of system (2.12). Notice that the “w̃-part” 
of system (2.12) can be written as

d

dt
(w̃(·, t), w̃t (·, t))� =A0(w̃(·, t), w̃t (·, t))� +B

∂d̃(·, t)
∂ν

, (3.18)

where the operators A0 and B are given by (3.2). By Lemma 2.1, we know that B is admissible 
for eA0t . Therefore, the “w̃-part” of system (2.12) has a unique solution given by

(w̃(·, t), w̃t (·, t))� = eA0t (w̃0, w̃1)
� +

t∫
0

eA0(t−s)
B

∂d̃(·, s)
∂ν

ds. (3.19)

By (3.17), for any given ε > 0, there exists t0 > 0 such that

∞∫
t0

∫
�1

∣∣∣∣∂d̃(x, s)

∂ν

∣∣∣∣2dxds ≤ ε2. (3.20)

We rewrite (3.19) as

(w̃(·, t), w̃t (·, t))� = eA0t (w̃0, w̃1)
� + eA0(t−t0)

t0∫
0

eA0(t0−s)
B

∂d̃(·, s)
∂ν

ds

+
t∫

t0

eA0(t−s)
B

∂d̃(·, s)
∂ν

ds.

(3.21)

It follows from the admissibility of B, the exponential stability of the semigroup eA0t and [23, 
Remark 2.6] that
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∥∥∥∥∥∥
t∫

t0

eA0(t−s)
B

∂d̃(·, s)
∂ν

ds

∥∥∥∥∥∥
H

≤
∥∥∥∥∥∥

t∫
0

eA0(t−s)
B

(
0�

t0

∂d̃(·, s)
∂ν

)
ds

∥∥∥∥∥∥
H

≤ L

∥∥∥∥∂d̃(·, s)
∂ν

∥∥∥∥
L2(t0,∞;L2(�1))

≤ Lε,

(3.22)

where L is a constant that is independent of d̃(x, t), and

(u�
τ

v)(t) =
{

u(t), 0 ≤ t ≤ τ,

v(t), t > τ.

Since eA0t is exponentially stable claimed by Lemma 2.1, there exist constants L0, ω0 > 0 such 
that ‖eA0t‖ ≤ L0e

−ω0t . By (3.21) and (3.22), it follows that

∥∥∥∥( w̃(·, t)
w̃t (·, t)

)∥∥∥∥
H

≤ L0e
−ω0t

∥∥∥∥(w̃0
w̃1

)∥∥∥∥
H

+ L0e
−ω0(t−t0)

∥∥∥∥
t0∫

0

eA0(t0−s)
B

∂d̃(·, s)
∂ν

ds

∥∥∥∥
H

+ Lε.

(3.23)

Passing to the limit as t → ∞, we finally obtain

lim
t→∞

∥∥∥∥( w̃(·, t)
w̃t (·, t)

)∥∥∥∥
H

≤ Lε. (3.24)

This proves that limt→∞ ‖(w̃(·, t), ̃wt(·, t)‖H = 0. �
Proof of Theorem 2.1. Let ẑ(x, t) be given by (2.2) and let (w̃(x, t), ̃d(x, t)) = (ŵ(x, t) −
w(x, t), ̂z(x, t) + d̂(x, t)). It is obvious that⎛⎜⎜⎜⎜⎜⎜⎝

ŵ(x, t)

ŵt (x, t)

d̂(x, t)

d̂t (x, t)

z(x, t)

zt (x, t)

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 I 0
0 0 0 0 0 I

I 0 −I 0 0 0
0 I 0 −I 0 0
0 0 I 0 I 0
0 0 0 I 0 I

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
d̃(x, t)

d̃t (x, t)

ẑ(x, t)

ẑt (x, t)

w(x, t)

wt (x, t)

⎞⎟⎟⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎜⎜⎝
I 0
0 I

0 0
0 0
0 0
0 0

⎞⎟⎟⎟⎟⎟⎟⎠
(

w̃(x, t)

w̃t (x, t)

)
.

It follows from Lemmas 2.1 and 2.2 that (2.11) admits a unique solution (ŵ, ̂wt, ̂d, ̂dt , z, zt ) ∈
C(0, ∞; H3). By Lemma 2.2, we know that (2.16) and (2.17) are valid. �
Proof of Lemma 2.3. For any given (d̃(·, 0), ̃dt (·, 0))� ∈ D(A1), (d̃, ̃dt )

� ∈ C(0, ∞; D(A1)) is 
the classical solution to (2.5). Denote d∗(x, t) = d̃t (x, t). Then d∗(x, t) satisfies⎧⎪⎨⎪⎩

d∗
t t (x, t) = �d∗(x, t) − a(x)d∗

t (x, t),

d∗(x, t)|�0 = 0,

d∗(x, t)| = 0,

(3.25)
�1
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and (d∗(·, 0), d∗
t (·, 0)) ∈ H. Hence, system (3.25) admits a unique solution (d∗, d∗

t ) ∈ C(0,

∞; H) which is exponentially stable, i.e., there exist constants Md∗, ωd∗ > 0 such that

‖(d∗(·, t), d∗
t (·, t))‖H ≤ Md∗e−ωd∗ t‖(d∗(·,0), d∗

t (·,0))‖H, (3.26)

which implies that

‖∇d̃t (·, t)‖L2(�) = ‖∇d∗(·, t)‖L2(�) ≤ Md∗e−ωd∗ t‖(d∗(·,0), d∗
t (·,0))‖H, (3.27)

and

‖d̃t t (·, t)‖L2(�) = ‖d∗
t (·, t)‖L2(�) ≤ Md∗e−ωd∗ t‖(d∗(·,0), d∗

t (·,0))‖H. (3.28)

By the first equation of (2.5), the Poincare’s inequality, (3.27) and (3.28), we obtain

‖�d̃(·, t)‖L2(�) ≤ ‖d̃t t (·, t)‖L2(�) + ‖a(·)‖L∞(ω)‖d̃t (·, t)‖L2(�)

≤ ‖d̃t t (·, t)‖L2(�) + C0‖a(·)‖L∞(ω)‖∇d̃t (·, t)‖L2(�)

≤ (1 + C0‖a(·)‖L∞(ω))Md∗e−ωd∗ t‖(d∗(·,0), d∗
t (·,0))‖H,

(3.29)

for some constant C0. It follows from the Sobolev embedding theorem, the trace theorem, (2.13)
and (3.29) that there are constants C1, C2 > 0 such that

∥∥∥∥∂d̃(·, t)
∂ν

∥∥∥∥
L2(�1)

= ‖∇d̃(·, t) · ν‖L2(�1)
≤ ‖∇d̃(·, t)‖L2(�1)

≤ C1‖∇d̃(·, t)‖H 1/2(�1)
≤ C1C2‖∇d̃(·, t)‖H 1(�)

≤ C1C2[‖∇d̃(·, t)‖L2(�) + ‖�d̃(·, t)‖L2(�)]
≤ C1C2M1e

−μ1t [‖(d̃(·,0), d̃t (·,0))‖H + ‖(d∗(·,0), d∗
t (·,0))‖H],

(3.30)

with M1 = [(1 + C0‖a(·)‖L∞(ω))Md∗ + 2Md ], μ1 = min{ωd∗, ωd/2}. �
Proof of Theorem 2.2. By Theorem 2.1, it suffices to prove (2.20). Let (w̃(x, t), ̃d(x, t)) =
(ŵ(x, t) − w(x, t), ̂z(x, t) + d̂(x, t)). Then w̃(x, t) satisfies

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

w̃tt (x, t) = �w̃(x, t) − a(x)w̃t (x, t),

w̃(x, t)|�0 = 0,

∂w̃(x, t)

∂ν

∣∣
�1

= −kw̃t (x, t) + ∂d̃(x, t)

∂ν
,

w̃(x,0) = ŵ(x) − w0(x), w̃t (x,0) = ŵ1(x) − w1(x),

(3.31)

which gives
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(w̃(·, t), w̃t (·, t))� = eA0t (w̃0, w̃1)
� +

t∫
0

eA0(t−s)
B

∂d̃(·, s)
∂ν

ds

= eA0t (w̃0, w̃1)
� + eA0(t−t/2)

t/2∫
0

eA0(t/2−s)
B

∂d̃(·, s)
∂ν

ds +
t∫

t/2

eA0(t−s)
B

∂d̃(·, s)
∂ν

ds.

(3.32)

By Lemma 2.1, eA0t is exponentially stable, and hence there exist M0, ω0 > 0 such that ‖eA0t‖ ≤
M0e

−ω0t . It follows from (2.15), the admissibility of B and [23, Remark 2.6] that there exists a 
constant L > 0 such that

∥∥∥∥eA0(t−t/2)

t/2∫
0

eA0(t/2−s)
B

∂d̃(·, s)
∂ν

ds

∥∥∥∥
H

≤ ‖eA0(t−t/2)‖
∥∥∥∥

t/2∫
0

eA0(t/2−s)
B

∂d̃(·, s)
∂ν

ds

∥∥∥∥
H

≤ L‖eA0(t−t/2)‖
∥∥∥∥∂d̃

∂ν

∥∥∥∥
L2(0,t/2;L2(�1))

= LM0e
−ω0t/2

∥∥∥∥∂d̃

∂ν

∥∥∥∥
L2(0,∞;L2(�1))

,

(3.33)

and ∥∥∥∥∥∥∥
t∫

t/2

eA0(t−s)
B

∂d̃(·, s)
∂ν

ds

∥∥∥∥∥∥∥
H

≤
∥∥∥∥∥∥

t∫
0

eA0(t−s)
B

(
0 �

t/2

∂d̃(·, s)
∂ν

)
ds

∥∥∥∥∥∥
H

≤ L

∥∥∥∥0 �
t/2

∂d̃(·, s)
∂ν

∥∥∥∥
L2(0,t;L2(�1))

= L

∥∥∥∥∂d̃(·, s)
∂ν

∥∥∥∥
L2(t/2,t;L2(�1))

(3.34)

where L is a constant that is independent of d̃(x, t). By Lemma 2.3, (3.32), (3.33) and (3.34), we 
have

‖(w̃(·, t), w̃t (·, t))�‖H ≤ M0e
−ω0t‖(w̃0, w̃1)

�‖H + LM0e
−ω0t/2

∥∥∥∥∂d̃

∂ν

∥∥∥∥
L2(0,∞;L2(�1))

+ L

∥∥∥∥∂d̃

∂ν

∥∥∥∥
L2(t/2,t;L2(�1))

= M0e
−ω0t‖(w̃0, w̃1)

�‖H

+ LCM0

2ωd∗
e−ω0t/2 + LC

ωd∗
(e−ωd∗ t/2 − e−ωd∗ t ),

which implies that (w̃(x, t), ̃wt(x, t))� is exponentially stable on H. This proves (2.20). �
Proof of Theorem 2.3. Using the error variables (w̃(x, t), ̃d(x, t)) defined by (2.12), and ̂z(x, t)
defined by (2.3), and the invertible transformation:⎛⎜⎜⎝

w

w̃

d̃

ẑ

⎞⎟⎟⎠ =

⎛⎜⎜⎝
I 0 0 0

−I I 0 0
−I 0 I I

−I 0 0 I

⎞⎟⎟⎠
⎛⎜⎜⎝

w

ŵ

d̂

z

⎞⎟⎟⎠ ,
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we can convert system (2.22) into system (2.28) in section 2, which is rewritten here as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wtt (x, t) = �w(x, t),

w(x, t)|�0 = 0,

∂w(x, t)

∂ν

∣∣
�1

= −kwt (x, t) − ∂d̃(x, t)

∂ν
,

w̃tt (x, t) = �w̃(x, t) − a(x)w̃t (x, t),

w̃(x, t)|�0 = 0,

∂w̃(x, t)

∂ν

∣∣
�1

= −kw̃t (x, t) + ∂d̃(x, t)

∂ν
,

d̃tt (x, t) = �d̃(x, t) − a(x)d̃t (x, t),

d̃(x, t)|�=�0∪�1 = 0,

ẑt t (x, t) = �̂z(x, t) − a(x)̂zt (x, t),

ẑ(x, t)|�0 = 0,

∂ẑ(x, t)

∂ν

∣∣
�1

= −k̂zt (x, t) − f (w(x, t)) − d(x, t).

(3.35)

Obviously, it suffices to prove that the “(w, ̃w, ̃d)-part” in (3.35) is convergent as t → ∞ and the 
“ ẑ-part” is bounded. However, the “(w̃, ̃d)-part” in (3.35) has been shown in Lemma 2.2. Now 
we only need to consider the “(w, ̂z)-part” of system (3.35). Actually, the “w-part” in (3.35) can 
be rewritten as ⎧⎪⎪⎪⎨⎪⎪⎪⎩

wtt (x, t) = �w(x, t),

w(x, t)|�0 = 0,

∂w

∂ν

∣∣
�1

= −kwt (x, t) − ∂d̃(x, t)

∂ν
.

(3.36)

By Proposition 1.2, we can write the solution of (3.36) as

(w(·, t),wt (·, t))� = eAt (w0,w1)
� +

t∫
0

eA(t−s)
B

∂d̃(·, s)
∂ν

ds, (3.37)

where the operators A and B are given by (1.12). By (2.15) in Lemma 2.2, for any given ε > 0, 
there exists t0 > 0 such that

∞∫
t0

∫
�1

∣∣∣∣∂d̃(x, s)

∂ν

∣∣∣∣2dxds ≤ ε2. (3.38)

We rewrite (3.37) as
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(w(·, t),wt (·, t))� = eAt (w0,w1)
� + eA(t−t0)

t0∫
0

eA(t0−s)
B

∂d̃(·, s)
∂ν

ds +
t∫

t0

eA(t−s)
B

∂d̃(·, s)
∂ν

ds.

(3.39)

Since eAt is exponentially stable, it follows from the admissibility of B and [23, Remark 2.6]
that

∥∥∥∥∥∥
t∫

t0

eA(t−s)
B

∂d̃(·, s)
∂ν

ds

∥∥∥∥∥∥
H

≤
∥∥∥∥∥∥

t∫
t0

eA(t−s)
B

(
0�

t0

∂d̃(·, s)
∂ν

)
ds

∥∥∥∥∥∥
H

≤ L

∥∥∥∥∂d̃(·, s)
∂ν

∥∥∥∥
L2(t0,∞;L2(�1))

≤ Lε,

(3.40)

where L is a constant that is independent of d̃(x, t).
Suppose that ‖eAt‖ ≤ L0e

−ω0t for some L0, ω0 > 0, it follows from (3.39) and (3.40) that

∥∥∥∥( w(·, t)
wt (·, t)

)∥∥∥∥
H

≤ L0e
−ω0t

∥∥∥∥(w0
w1

)∥∥∥∥
H

+ L0e
−ω0(t−t0)

∥∥∥∥
t0∫

0

eA(t0−s)
B

∂d̃(·, s)
∂ν

ds

∥∥∥∥
H

+ Lε.

(3.41)

Passing to the limit as t → ∞, we finally obtain

lim
t→∞

∥∥∥∥( w(·, t)
wt (·, t)

)∥∥∥∥
H

≤ Lε. (3.42)

This proves that limt→∞ ‖(w(·, t), wt(·, t))‖H = 0. The “ ẑ-part” of system (3.35) can be rewrit-
ten as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẑt t (x, t) = �̂z(x, t) − a(x)̂zt (x, t),

ẑ(x, t)|�0 = 0,

∂ẑ(x, t)

∂ν

∣∣
�1

= −k̂zt (x, t) − f (w(x, t)) − d(x, t),

ẑ(x,0) = z0(x) − w0(x), ẑt (x,0) = z1(x) − w1(x).

(3.43)

Since f ∈ C(H 1
�0

(�), L2(�1)) and limt→∞ ‖(w(·, t), wt(·, t))‖H = 0, we obtain f (w) ∈
L∞(0, ∞; L2(�1), and thus f (w) + d ∈ L∞(0, ∞; L2(�1). By Lemma 2.1, we know that 
(̂z(x, t), ̂zt (x, t)) is bounded. The inequalities (2.26) and (2.27) follow from Corollary 2.1 and 
Theorem 2.2. �
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4. Numerical simulation

In this section, we present some numerical simulations for system (2.22) for illustration. For 
simplicity, we just take dimension n = 2. We consider � = {(x1, x2) ∈ R

2| 1 < x2
1 + x2

2 < 4}, 
�0 = {(x1, x2) ∈ R

2| x2
1 + x2

2 = 1}, �1 = � \ �0. Take the interior observation domain ω =
{(x1, x2) ∈ R

2| 3.9 < x2
1 + x2

2 < 4}. Obviously, ω satisfies the condition (1.2). For numerical 
computations, we take parameter k = 3, internal uncertainty f (w(x, t)) = w2(x, t)|�1 , distur-
bance d(x, t) = sin(x1t) + cos(x2t). Since the spatial domain consists of a two-dimensional 
annulus, we can more easily solve (2.22) in the polar coordinate (r, θ) and then convert back to 
the original coordinate for some figures if necessary. Under the polar coordinate, system (2.22)
can be written as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2w(r, θ, t)

∂t2
− ∂2w(r, θ, t)

∂r2
− 1

r

∂w(r, θ, t)

∂r
− 1

r2

∂2w(r, θ, t)

∂θ2
= 0,

1 < r < 2, 0 < θ < 2π, t > 0,

w(1, θ, t) = 0, 0 ≤ θ ≤ 2π, t ≥ 0,

∂w(2, θ, t)

∂r
= −k

∂w(2, θ, t)

∂t
+ f (w(2, θ, t)) + d(2 cos(θ),2 sin(θ), t)

− ∂d̂(2, θ, t)

∂r
− kd̂t (2, θ, t), 0 < θ < 2π, t > 0,

∂2ŵ(r, θ, t)

∂t2
− ∂2ŵ(r, θ, t)

∂r2
− 1

r

∂w(r, θ, t)

∂r
− 1

r2

∂2ŵ(r, θ, t)

∂θ2

− a(r, θ)

[
∂ŵ(r, θ, t)

∂t
− ∂w(r, θ, t)

∂t

]
= 0, 1 < r < 2, 0 < θ < 2π, t > 0,

ŵ(1, θ, t) = 0, 0 ≤ θ ≤ 2π, t ≥ 0,

∂ŵ(2, θ, t)

∂r
= −k

∂ŵ(2, θ, t)

∂t
, t ≥ 0,

∂2d̂(r, θ, t)

∂t2
− ∂2d̂(r, θ, t)

∂r2
− 1

r

∂d̂(r, θ, t)

∂r
− 1

r2

∂2d̂(r, θ, t)

∂θ2

+ a(r, θ)
∂d̂(r, θ, t)

∂t
= 0, 1 < r < 2, 0 < θ < 2π, t > 0,

d̂(1, θ, t) = 0, 0 ≤ θ ≤ 2π, t ≥ 0,

d̂(2, θ, t) = −[z(2, θ, t) − w(2, θ, t)], 0 ≤ θ ≤ 2π, t ≥ 0,

∂2z(r, θ, t)

∂t2
− ∂2z(r, θ, t)

∂r2
− 1

r

∂z(r, θ, t)

∂r
− 1

r2

∂2z(r, θ, t)

∂θ2

− a(r, θ)

[
∂z(r, θ, t)

∂t
− ∂w(r, θ, t)

∂t

]
= 0, 1 < r < 2, 0 < θ < 2π, t > 0,

z(1, θ, t) = 0, 0 ≤ θ ≤ 2π, t ≥ 0,

∂z(2, θ, t)

∂r
= −k

∂z(2, θ, t)

∂t
− ∂d̂(2, θ, t)

∂r
− kd̂t (2, θ, t), 0 ≤ θ ≤ 2π, t ≥ 0,

(4.1)



JID:YJDEQ AID:8782 /FLA [m1+; v1.257; Prn:5/04/2017; 16:19] P.30 (1-34)

30 H.-C. Zhou, B.-Z. Guo / J. Differential Equations ••• (••••) •••–•••
Fig. 1. The initial state and state at t = 15 of system (4.1) with total disturbance F(x, t) = w2(x, t)|�1 + sin(x1t) +
cos(x2t) (for interpretation of the references to color of the figure’s legend in this section, we refer to the PDF version of 
this article).

where we still use w(r, θ, t), ŵ(r, θ, t), d̂(r, θ, t) and z(r, θ, t) to denote the states under the 
polar coordinate for notation simplicity, which is clear from the context. The function a(r, θ) in 
(4.1) is defined by a(r, θ) = max{0, min{1, 1000(r − √

3.9 − 0.001), −1000(r − 1.999)}} with 
r ∈ [1, 2], θ ∈ [0, 2π ].

The initial value (4.1) is taken as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(r, θ,0) = (r2 − 1) cos(5θ), 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π,

wt (r, θ,0) = 4 sin(r − 1) sin(5θ), 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π,

d̂(r, θ,0) = −3(r − 1) cos(5θ), 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π,

d̂t (r, θ,0) = 4 sin(r − 1) sin(5θ), 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π,

ŵ(r, θ,0) = −(r2 − 1) cos(5θ), 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π,

ŵt (r, θ,0) = −4 sin(r − 1) sin(5θ), 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π,

z(r, θ,0) = zt (r, θ,0) = 0, 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π.

(4.2)

It is clear that the above initial value satisfies the compatible condition (2.23). The backward 
Euler method in time and the Chebyshev spectral method for polar variables are used to discretize 
system (4.1). Here, we take the grid size rN = 30 for r , the grid size θN = 50 for θ , and the time 
step dt = 5 × 10̃−4. The numerical algorithm is programmed by Matlab [22] and the numerical 
results are plotted in Figures 1–5.

Figs. 1(a) and 1(b) display the displacement w(r, θ, t) and the velocity wt(r, θ, t) at the initial 
time t = 0 and the time t = 15, respectively. It is seen that the convergence for both w(r, θ, t)
and wt(r, θ, t) is very satisfactory.

We plot (w(r, π, t), wt(r, π, t)) and (ŵ(r, π, t), ̂wt(r, π, t)) (there is no speciality for π which 
can be any angle) in the polar coordinate for system (4.1) in Figs. 2 and 3, respectively. It is 
clearly seen that in both cases, the convergence is fast and satisfactory.
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Fig. 2. The evolution of (w(r, π, t), wt (r, π, t)) under the polar coordinate (for interpretation of the references to color 
of the figure’s legend in this section, we refer to the PDF version of this article).

Fig. 3. The evolution of (ŵ(r, π, t), ̂wt (r, π, t)) under the polar coordinate (for interpretation of the references to color 
of the figure’s legend in this section, we refer to the PDF version of this article).

We plot (d̂(r, π, t), ̂dt (r, π, t)) and (z(r, π, t), zt (r, π, t)) in the polar coordinate for sys-
tem (4.1) in Figs. 4 and 5, respectively. It is clearly seen that in both cases, the state 
(d̂(r, π, t), ̂dt (r, π, t)) and (z(r, π, t), zt (r, π, t)) are bounded.

The total disturbance f (w) + d and the error between total disturbance and its estimation 
∂d̂
∂ν

+ kd̂t − F(w) are plotted in Fig. 6. The convergence is quite fast.

5. Concluding remarks

In this paper, we consider output feedback stabilization for a multi-dimensional wave equation 
with Neumann boundary control and control matched disturbance suffered from the bound-
ary disturbance and the nonlinear internal uncertainty. We propose a new infinite-dimensional 
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Fig. 4. The evolution of (d̂(r, π, t), ̂dt (r, π, t)) under the polar coordinate (for interpretation of the references to color of 
the figure’s legend in this section, we refer to the PDF version of this article).

Fig. 5. The evolution of (z(r, π, t), zt (r, π, t)) under the polar coordinate (for interpretation of the references to color of 
the figure’s legend in this section, we refer to the PDF version of this article).

extended state observer to estimate unknown total disturbance. The disturbance d(x, t) is partic-
ularly supposed to satisfy d ∈ L∞(0, ∞; L2(�1)) only. This type of disturbance is much more 
general than the existing works by active disturbance rejection control where the derivative of 
disturbance with respect to time variable t is required to be bounded and the disturbance with 
respect to spatial variable x is supposed to be Hölder continuous [8]. Moreover, we remove the 
limitation of active disturbance rejection control of using high-gain to estimate the disturbance, 
which avoids consequently the peaking value problem. Mathematically, the proposed scheme has 
two additionally merits. First, the convergence rate of the extended state observer is independent 
of the total disturbance (2.5)–(2.6), and second, the actual nonlinear closed-loop system is solved 
by linear method (2.28).
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Fig. 6. The evolution of (f (w) + d, ∂d̂
∂ν

+ kd̂t − F(w)) under the polar coordinate (for interpretation of the references to 
color of the figure’s legend in this section, we refer to the PDF version of this article).
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