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Abstract

In this paper, we investigate steady inviscid compressible flows with radial symmetry in an annulus. The 
major concerns are transonic flows with or without shocks. One of the main motivations is to elucidate 
the role played by the angular velocity in the structure of steady inviscid compressible flows. We give a 
complete classification of flow patterns in terms of boundary conditions at the inner and outer circle. Due to 
the nonzero angular velocity, many new flow patterns will appear. There exists accelerating or decelerating 
smooth transonic flows in an annulus satisfying one side boundary conditions at the inner or outer circle 
with all sonic points being nonexceptional and noncharacteristically degenerate. More importantly, it is 
found that besides the well-known supersonic-subsonic shock in a divergent nozzle as in the case without 
angular velocity, there exists a supersonic-supersonic shock solution, where the downstream state may 
change smoothly from supersonic to subsonic. Furthermore, there exists a supersonic-sonic shock solution 
where the shock circle and the sonic circle coincide, which is new and interesting.
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1. Introduction

In this paper, we consider two-dimensional steady compressible Euler flows in an annulus 

� = {(x1, x2) : r0 < r =
√

x2
1 + x2

2 < r1}, which are governed by the following system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂x1(ρu1) + ∂x2(ρu2) = 0,

∂x1(ρu2
1) + ∂x2(ρu1u2) + ∂x1p = 0,

∂x1(ρu1u2) + ∂x2(ρu2
2) + ∂x2p = 0,

∂x1(ρu1E + u1p) + ∂x2(ρu2E + u2p) = 0,

(1.1)

where u = (u1, u2)
t is the velocity, ρ is the density, p is the pressure, E is the energy. Here 

we consider only the polytropic gas, therefore p = A(S)ργ , where A is a smooth function of 
the entropy A(S) = ReS with R > 0, γ ∈ (1, +∞) are positive constants. Denote the Bernoulli 
function by B = 1

2 |U|2 + γp
(γ−1)ρ

.
The study on the steady compressible Euler system is not only of fundamental importance in 

developing the mathematical theory of partial differential equations arising from fluid dynamics, 
but also has been making a great contribution to the design of projectiles, rockets, aircrafts etc. 
Courant and Friedrichs [11, Section 104] used the Hodograph transformation to rewrite the Euler 
system (1.1) into a linear second order PDE on the plane of the flow speed and angle, and obtained 
some special flows without concerning the boundary conditions. These special flows include 
circulatory flows and purely radial flows, which are symmetric flows with only angular and radial 
velocity respectively. Their superpositions are called spiral flows. It had been proved in [11, 
Section 104] that spiral flows can take place only outside a limiting circle where the Jacobian 
of the hodograph transformation is zero and may change smoothly from subsonic to supersonic 
or vice verse. However, few results are available concerning properties of transonic spiral flows 
on the physical plane. This motivates us strongly to investigation of the effects of the angular 
velocity on general radially symmetric transonic flows with/or without shocks on the physical 
plane in this paper. The focus will be to find some new transonic flow patterns in the presence of 
shocks compared with the case without angular velocity.

We will study radially symmetric transonic spiral flows in an annulus with suitable boundary 
conditions on the inner and outer circle. We will classify all possible transonic radially symmetric 
flow patterns in terms of physical boundary conditions and study their detailed properties. To this 
end, we introduce the polar coordinate (r, θ) as

x = r cos θ, y = r sin θ, (1.2)

and decompose the velocity as u = U1er + U2eθ with

er =
(

cos θ

sin θ

)
, eθ =

(− sin θ

cos θ

)
. (1.3)

Therefore the system (1.1) can be rewritten as
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂r (ρU1) + 1
r
∂θ (ρU2) + 1

r
ρU1 = 0,

(U1∂r + U2
r

∂θ )U1 + 1
ρ
∂rp − U2

2
r

= 0,

(U1∂r + U2
r

∂θ )U2 + 1
rρ

∂θp + U1U2
r

= 0,

(U1∂r + U2
r

∂θ )A = 0.

(1.4)

For the radially symmetric solutions to (1.4) of the form u = U1(r)er + U2(r)eθ , ρ = ρ(r), 
A = A(r) in �, the steady Euler system (1.4) reduces to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d
dr

(ρU1) + 1
r
ρU1 = 0, r0 < r < r1,

U1U
′
1 + 1

ρ
d
dr

p − U2
2
r

= 0, r0 < r < r1,

U1U
′
2 + U1U2

r
= 0, r0 < r < r1,

U1A
′ = 0, r0 < r < r1.

(1.5)

We start with smooth solutions to (1.5) with one side boundary conditions prescribed on the 
inner or outer circle and give a classification of possible flow patterns in an annulus including 
purely smooth supersonic, subsonic flows, and smooth decelerating or accelerating transonic 
flows. We further analyze the detailed properties of these solutions and their dependence on the 
boundary data. If the boundary data is prescribed on the outer circle and the fluid moves from 
outer circle to the inner one, there exists a limiting circle such that the acceleration will blow 
up when the fluid moves to the limiting circle. The sonic circle and the limiting circle are also 
determined by boundary data. Although these smooth transonic spiral flows are essentially same 
as the ones obtained by Courant-Friedrichs [11] on the hodograph plane, the detailed behaviors 
of these solutions would be very helpful for the investigation of structural stability of symmetric 
transonic flows under suitable perturbations on the boundaries [27].

An important fact is on the degeneracy type of the sonic points in the smooth radially symmet-
ric transonic spiral flows. Recall the definition by Bers [2], a sonic point in a C2 smooth transonic 
flow is exceptional if and only if the velocity is orthogonal to the sonic curve at this point. Then 
all sonic points of smooth transonic spiral flows here are nonexceptional and noncharacteris-
tically degenerate due to the nonzero angular velocity. This is different from smooth transonic 
flows constructed by Wang and Xin [22–25] in De Laval nozzles. In particular, the authors in [24]
proved that if the nozzle is suitably flat at its throat, then there exists a unique smooth transonic 
irrotational flow of Meyer type with all sonic points being exceptional in De Laval nozzles. The 
sonic points must be located at the throat of the nozzle and are strongly degenerate in the sense 
that all the characteristics from sonic points coincide with the sonic line and can not approach the 
supersonic region. It should be mentioned that Kuzmin [15] had studied the structural stability 
of accelerating smooth transonic flows with some artificial boundary conditions on the potential 
and stream function plane. The existence of subsonic-sonic weak solutions to the 2-D steady po-
tential equation were proved in [6,28] by utilizing the compensated compactness and later on the 
subsonic-sonic limit for multidimensional potential flows and steady Euler flows were examined 
in [7,14]. However, the solutions obtained by the subsonic-sonic limit only satisfied the equations 
in the sense of distribution and the regularity of the solutions and the properties of sonic points 
are not clear at all.

More importantly, we study transonic solutions with shocks to (1.4) by prescribing suit-
able boundary conditions on the inner and out circle. Recall that, a piecewise smooth solution 
(U±, U±, ρ±, A±) ∈ C1(�±) with a jump on the curve r = f (θ) is a shock solution to the 
1 2
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system (1.4), if (U±
1 , U±

2 , ρ±, A±) satisfy the system (1.4) in �± respectively, and the entropy 
condition [p] > 0 and the following Rankine-Hugoniot jump conditions hold on r = f (θ):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[ρU1] − f ′(θ)
f (θ)

[ρU2] = 0,

[ρU2
1 + p] − f ′(θ)

f (θ)
[ρU1U2] = 0,

[ρU1U2] − f ′(θ)
f (θ)

[ρU2
2 + p] = 0,

[B] = 0,

(1.6)

where [v] = v+(f (θ), θ) −v−(f (θ), θ). For radially symmetric transonic solutions with shocks, 
we would consider the system (1.5) supplemented with suitable boundary conditions on both 
inner and outer circle and the shock curve will be a circle r = rb and the Rankine-Hugoniot jump 
conditions reduce to

{
[ρU1](rb) = [ρU2

1 + p](rb) = 0,

[ρU1U2](rb) = [B](rb) = 0.
(1.7)

The existence and uniqueness of radially symmetric supersonic-subsonic shock solutions 
without angular velocity in a divergent nozzle have been proved in [11,31]. The dynamical 
and structural stability of these symmetric transonic shock solutions have been an important 
and difficult research topic in the mathematical studies of gas dynamics. Symmetric transonic 
shocks are shown in [31] to be dynamically stable in divergent nozzles and are dynamically un-
stable in convergent nozzles. The transonic shock problem with given exit pressure was shown 
to be ill-posed for the potential flow model in [29,30]. The authors in [17,20] proved that, for 
the two-dimensional steady compressible Euler system, the symmetric transonic shock solu-
tions in [11,31] are structurally stable under the perturbation of the exit pressure and the nozzle 
wall. They further investigated the existence and monotonicity of the axi-symmetric transonic 
shock by perturbing axi-symmetrically exit pressure in [18,19]. The authors in [26] examined 
the structural stability under axi-symmetric perturbations of the nozzle wall by introducing a 
modified invertible Lagrangian transformation. There have been many interesting results on 
transonic shock problems in flat or divergent nozzles for different models with various exit 
boundary conditions, such as the non-isentropic potential model, the exit boundary condition 
for the normal velocity, the spherical symmetric flows without solid boundary, etc. One may 
refer to [1,3–5,8–10,12,13,16,21] and the references therein.

However, in the presence of the nonzero angular velocity, many new wave patterns appear in 
the annulus. It follows from (1.7) that the radial velocity will jump from supersonic to subsonic 
and the angular velocity experiences no jump across the shock. Therefore the total velocity after 
the shock may be supersonic, sonic and subsonic. We will give a complete classification of flow 
patterns according to the exit pressure and the position of the outer circle. Besides the well-known 
supersonic-subsonic shock solutions in a divergent nozzle as in the case without the angular 
velocity, we find that there are supersonic-supersonic shock solutions and the flow at downstream 
may change smoothly from supersonic to subsonic. Furthermore, there exists also a supersonic-
sonic shock solution where the shock front and the sonic circle coincide, which is new and 
surprising.

The structure of the paper will be organized as follows. In Section 2, we will consider the 
one side boundary value problem to (1.5) and show that there are accelerating or decelerating 
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smooth transonic flows. In Section 3, the precise description of transonic flows with shocks and 
new wave patterns will be presented by studying (1.5) with two sides boundary values.

2. Smooth radially symmetric flows with nonzero angular velocity

In this section, we will construct a radially symmetric smooth solution to (1.1) in an annulus 

� = {(x1, x2) : r0 < r =
√

x2
1 + x2

2 < r1}, where the fluid flows from the inner circle to the outer 
one. Thus we consider the following problem:

Problem I. Find smooth functions u(x) = U1(r)er + U2(r)eθ , ρ(x) = ρ(r) and p(x) =
p(r), A(x) = A(r), which solve the system (1.5) with the boundary conditions on r = r0:

ρ(r0) = ρ0, U1(r0) = U10 > 0, U2(r0) = U20, A(r0) = A0. (2.1)

It is easy to see that the problem (1.5) with (2.1) is equivalent to

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρU1 = κ1

r
, κ1 = r0ρ0U10,

B ≡ B0,B0 = 1

2
(U2

10 + U2
20) + A0γ

γ − 1
ρ

γ−1
0 ,

U2 = κ2

r
, κ2 = r0U20,

A ≡ A0.

(2.2)

Theorem 2.1. There are three distinguished cases.

(1) If the incoming flow at the entrance is supersonic in the r-direction, that is U2
1 (r0) > c2(r0), 

then there exists a unique supersonic smooth solution to Problem I in �.
(2) If the incoming flow at the entrance is subsonic, that is |U|2(r0) < c2(r0), then there exists a 

unique subsonic smooth solution to Problem I in �.
(3) If the incoming flow at the entrance is supersonic but subsonic in the r-direction, that is 

|U|2(r0) > c2(r0) > U2
1 (r0), there exists a constant rc > r0 defined in (2.10), which depends 

only on r0, γ and the incoming flow, such that
(a) if r1 > rc , there exists a unique smooth transonic solution to Problem I in �;
(b) if r1 < rc , there exists a unique smooth supersonic solution to Problem I in �;
(c) if r1 = rc , there exists a unique smooth supersonic-sonic solution to Problem I in � with 

sonic circle located at r = rc .

Remark 2.2. If c2(r0) = U2
1 (r0), then the derivatives of ρ and U1 at r0 become infinite. If 

|U|2(r0) = c2(r0) > U2
1 (r0), then there exists a unique smooth sonic-subsonic solution to Prob-

lem I in � with sonic circle located at r = r0.

Remark 2.3. If U10 = 0, then U1 ≡ 0, A(r) ≡ A0, U2(r) = κ2
r

and

ρ(r) =
(

γ − 1

A0γ

) 1
γ−1

(
B0 − κ2

2

2r2

) 1
γ−1

.
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If U2
20 < A0γρ

γ−1
0 , then the flow is purely subsonic in [r0, ∞). If U2

20 > A0γρ
γ−1
0 , then the 

flow changes smoothly from supersonic to subsonic as r > r0 goes to infinity with a sonic circle 

located at r = rc =
√

γ+1
2(γ−1)B0

|κ2|.

Remark 2.4. In [23], the authors have analyzed the geometric property and degeneracy types of 
sonic points for general C2 smooth subsonic-sonic flows and transonic steady potential flows. 
It is shown that a sonic point satisfying the interior subsonic circle condition is exceptional if 
and only if the governing equation is characteristically degenerate at this point. Moreover, they 
proved the existence and uniqueness of smooth transonic flows of Meyer type in [24], in which 
all sonic points are exceptional and characteristically degenerate. It should be remarked here that 
the smooth transonic flows constructed in Theorem 2.1 have nonzero angular velocities, and thus 
all sonic points are nonexceptional and noncharacteristically degenerate. The structural stability 
of this special solution will be investigated in [27].

Denote M2
i := U2

i

c2 for i = 1, 2, M = (M1, M2)
t and set

K(r) = 2(γ − 1)

γ + 1
B − γ − 1

γ + 1
U2

2 (r).

Now we prove Theorem 2.1.

Proof. Direct calculations show that

ρ′ = |M|2
r(1 − M2

1 )
ρ, U ′

1 = − 1 + M2
2

r(1 − M2
1 )

U1, U ′
2 = −U2

r
, (2.3)

(M2
1 )′ = M2

1

r(M2
1 − 1)

(
2 + (γ − 1)M2

1 + (γ + 1)M2
2

)
(2.4)

(M2
2 )′ = M2

2

r(M2
1 − 1)

(
2 + (γ − 3)M2

1 + (γ − 1)M2
2

)
(2.5)

(|M|2)′ = |M|2
r(M2

1 − 1)

(
2 + (γ − 1)|M|2

)
. (2.6)

(1) Suppose that M2
1 (r0) − 1 > 0. Then by (2.4), M2

1 (r) − 1 increases as r increases. So 
|M|2(r) > M2

1 (r) > 1 for any r > r0 and the flow is always supersonic. The existence and 
uniqueness of the solution follow directly from the standard theory of ODE system. Fur-

thermore, one has d
dr

logρ < − 1
r
, which implies that ρ(r) ≤ ρ0

r0

r
→ 0 as r → ∞. Also 

|U2(r)|, |U ′
2(r)| → 0 as r → +∞, by the Bernoulli’s law, as r → +∞. (2.4) implies that 

(M2
1 )′ ≥ γ − 1

r
M2

1 , which yields

M2
1 (r) ≥ M2

1 (r0)(
r

)γ−1. (2.7)

r0
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(2) Suppose that M2
1 (r0) < |M|2(r0) < 1. Then by (2.4), d

dr
M2

1 (r) < 0 and thus M2
1 (r) < 1 for 

any r > r0. This together with (2.6) and |M|2(r0) < 1, implies that |M|2(r) < 1 for any 

r > r0 and the flow is always subsonic. Furthermore, |M|2(r) ≤ r2
0 |M|2(r0)

r2 → 0, U1(r) → 0, 
c2(r) → (γ − 1)B0, |U2(r)|, |U ′

2(r)| → 0 as r → +∞.
(3) Suppose that M2

1 (r0) < 1 < |M|2(r0). Then one can get a unique smooth solution with 
M2

1 (r) < 1 for any r > r0 by same arguments as in (2). Also there holds |M|2(r) ≤
r2
0 |M|2(r0)

r2 → 0 as r → ∞. The position of the sonic circle can be determined as follows. 
Define the critical density

ρc =
(

2(γ − 1)B0

(γ + 1)γA0

) 1
γ−1

. (2.8)

Note that U2 and A are already obtained. Since U1 = κ1
rρ

, it is easy to see that ρ is a root of 
the following algebraic equation

Fr(ρ) := γ

γ − 1
A0ρ

γ+1 − (B0 − 1

2

κ2
2

r2 )ρ2 + κ2
1

2r2 = 0. (2.9)

The sonic circle r = rc is a root of Fr(ρc) = 0, which can be calculated explicitly

rc =
√

(γ + 1)(κ2
1 + κ2

2ρ2
c )

2(γ − 1)B0ρ2
c

. (2.10)

Therefore if r1 > rc one obtains a transonic smooth solution on �; if r1 = rc one gets a 
supersonic-sonic flow; if r1 < rc , there exists a purely hyperbolic flow. �

Next, we consider the existence of radially symmetric smooth solutions to (1.1) in an annulus 
�, where the fluid moves from the outer circle to the inner circle. That is

Problem II. Find smooth functions u(x) = U1(r)er + U2(r)eθ , ρ(x) = ρ(r) and p(x) =
p(r), A(x) = A(r), which solve the system (1.5) supplemented with the boundary conditions 
at the outer circle

ρ(r1) = ρ0, U1(r1) = U10 < 0, U2(r1) = U20, A(r1) = A0. (2.11)

Slightly different from Problem I, there exists a limiting circle r = r� < r1 such that the 
acceleration of the solution to Problem II will blow up as r tends to r�. The main results for
Problem II can be stated as follows.

Theorem 2.5. For a given incoming flow at the outer circle r = r1, there exists a limiting circle 
r� < r1 depending only on r1, γ and the incoming flow state at r1 such that the flow develops 
singularities when r → r� in the sense that if r0 < r� there does not exist any global C1-smooth 
solution to Problem II in �. If r0 ≥ r�, there exists a smooth solution to Problem II in �, the flow 
pattern in � can be divided into the following cases.
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(1) Suppose that M2
1 (r1) > 1 or |M|2(r1) > 1 > M2

1 (r1), then there exists an unique smooth 
supersonic solution to Problem II in �.

(2) Suppose that |M|2(r1) < 1, there exists a constant 0 < r = rc < r1 defined in (2.10), which 
depends only r1, γ and the incoming flow, such that
(a) if r0 > rc , there exists a unique smooth subsonic solution to Problem II in �;
(b) if r0 < rc , there exists a unique smooth transonic solution to Problem II in �;
(c) if r0 = rc, there exists an unique smooth subsonic-sonic solution to Problem II in � with 

sonic circle located at r = rc .

Remark 2.6. If c2(r1) = U2
1 (r1), then the derivatives of ρ and U1 at r1 become infinite. If 

|U|2(r1) = c2(r1) > U2
1 (r1), then there exists a unique smooth sonic-supersonic solution to Prob-

lem II in � with the sonic circle located at r = r1.

Remark 2.7. The existence results of smooth supersonic and transonic flows in Theorem 2.5
are essentially same as the ones obtained by Courant-Friedrichs [11] on the hodograph plane. 
Here we study the boundary value problem (1.5) with one side boundary conditions on the phys-
ical plane, and analyze the dependence of the solutions on boundary data, which also suits our 
purpose for the investigation of structural stability of symmetric transonic flows under suitable 
perturbations of boundary conditions [27].

Note that for smooth solutions, Problem II and (2.2) are equivalent, where κ1 = r1ρ10U10

and κ2 = r1U20.

Lemma 2.8. There exists a 0 < r� < r1 such that

(1) for any r ∈ (r�, r1), the algebraic system (2.2) has exactly two solutions (ρ−(r), U−
1 (r),

U2(r), A(r)) and (ρ+(r), U+
1 (r), U2(r), A(r)) with (M−

1 )2(r) > 1 and (M+
1 )2(r) < 1.

(2) for r = r�, the algebraic system (2.2) has exactly one solution (ρ−(r�), U−
1 (r�), U2(r

�),

A(r�)) = (ρ+(r�), U+
1 (r�), U2(r

�), A(r�)) with (M−
1 )2(r�) = 1 = (M+

1 )2(r�).
(3) for any r ∈ (0, r�), the algebraic system (2.2) has no solution.

Proof. Recall that ρ satisfies the algebraic equation Fr(ρ) = 0 with Fr(ρ) defined by (2.9). Set 
r̃ = r1U20/

√
2B0. Then for each 0 < r ≤ r̃ , Fr(ρ) is monotonically increasing in ρ, Fr(ρ) ≥

Fr(0) = κ2
1 /(2r2) > 0 and Fr(ρ) = 0 has no solution in [0, +∞).

For each r > r̃ , one has

F ′
r (ρ) = γ (γ + 1)

γ − 1
A0ρ

γ − 2(B0 − 1

2

κ2
2

r2 )ρ. (2.12)

Then Fr(ρ) attains its minimum at ρ = ρ∗(r), where

ρ∗(r) =
(

K(r)

γA0

) 1
γ−1

. (2.13)
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Some direct computations yield

Fr(ρ∗(r)) = −1

2
(γA0)

− 2
γ−1 K(r)

γ+1
γ−1 + 1

2
r−2κ2

1 ,

Fr̃ (ρ∗(r̃)) = κ2
1

2r̃2 > 0,

Fr1(ρ∗(r1)) = −1

2
ρ2

0U2
10

⎛
⎝(

γ − 1

γ + 1
M

4
γ+1

10 + 2

γ + 1
M

− 2(γ−1)
γ+1

10

) γ+1
γ−1

− 1

⎞
⎠ ,

d

dr
Fr(ρ∗(r)) = −

(
(γA0)

− 2
γ−1 K(r)

2
γ−1 κ2

2 + κ2
1

)
r−3 < 0, ∀r > r̃.

Thus Fr(ρ∗(r)) is monotonically decreasing as a function of r . Furthermore, Young’s inequality 
implies that Fr1(ρ∗(r1)) < 0 whenever M2

10 �= 1. Hence there exists a unique r� ∈ (r̃, r1) such that 
Fr�(ρ∗(r�)) = 0. And if r ∈ (r̃, r�), Fr(ρ∗(r)) > 0; if r ∈ (r�, r1), then Fr(ρ∗(r)) < 0. Note that 
for each r ∈ [r�, r1), Fr(ρ) decreases first as ρ increases from 0 to ρ∗(r) and then increases when 
ρ increases further. Therefore for each r ∈ (r�, r1), Fr(ρ) = 0 has exactly two solution ρ±(r)

with 0 < ρ−(r) < ρ∗(r) < ρ+(r). For r = r�, Fr(ρ) = 0 has exactly one solution ρ = ρ∗(r). For 
each r ∈ (r̃, r�), Fr(ρ) = 0 has no solution in [0, +∞). In addition, ρ−(r) < ρ∗(r) < ρ+(r) is 
equivalent to M+

1 (r) < 1 < M−
1 (r). �

By Lemma 2.8 and a similar argument as in the proof of Theorem 2.1, one can establish 
Theorem 2.5.

Remark 2.9. Note that r̃ is the position where c2(r̃) = U2
1 (r̃) = 0 and U2

2 (r̃) = 2B0.

Remark 2.10. r� is the position where U2
1 (r�) = c2(r�) and there is another estimate of r� as 

follows. U2
1 (r�) = c2(r�) implies γA0(

κ1
r� )

γ−1 = U
γ+1
1 (r�) = (

2(γ−1)B0
γ+1 − γ−1

γ+1U2
2 (r�))(γ+1)/2 ≤

(
2(γ−1)B0

γ+1 )(γ+1)/2. Thus r� ≥ (γA0)
1/(γ−1)(

γ+1
2(γ−1)B0

)
γ+1

2(γ−1) κ1.

3. Transonic shock flows in an annulus

In this section, we will prove the existence of radially symmetric transonic solutions with 
shocks and nonzero angular velocity to (1.5) satisfying suitable boundary conditions both at the 
inner and outer circle. Especially, motivated by previous studies due to Courant-Friedrichs [11], 
we prescribe the pressure at the exit. Therefore the problem to be solved can be formulated 
precisely as

Problem III. Construct a piecewise smooth radially symmetric flow on an annulus � =
{(x1, x2) : r0 < r =

√
x2

1 + x2
2 < r1} which moves from the inner circle to the outer one with a 

shock at r = rb ∈ (r0, r1). More precisely, one looks for smooth functions (U±
1 , U±

2 , ρ±, p±, A±
on �± respectively with �+ = {(x1, x2) : rb < r < r1} and �− = {(x1, x2) : r0 < r < rb}, which 
solves (1.5) on �± with a discontinuity r = rb satisfying the physical entropy condition [p] > 0
and the Rankine-Hugoniot conditions (1.7) and satisfy the boundary conditions
441



S. Weng, Z. Xin and H. Yuan Journal of Differential Equations 286 (2021) 433–454
ρ(r0) = ρ0, U1(r0) = U10 > 0, U2(r0) = U20(�= 0), A(r0) = A0, (3.1)

p(r1) = pex. (3.2)

By Theorem 2.1, there exists a unique smooth solution (U−
1 , U−

2 , ρ−, A−) to (1.5) with the 
boundary condition (3.1). Define

f1(r) =
(

1 − (U−
2 )2

2(γ−1)
γ+1 B0 − γ−1

γ+1 (U−
2 )2

)
(U−

1 )2

(c−)2 , (3.3)

f2(ρ) = γpex

γ − 1
ρ − (B0 − 1

2

κ2
2

r2
1

)ρ2 + κ2
1

2r2
1

, (3.4)

and

r∗ =
√

γ κ2
2

(γ − 1)B0
, ρ� = γ (γ + 1)pex

2(γ − 1)B0
.

Suppose that κ2 �= 0. It will be proved that f1(r) increases monotonically in r > r∗. Since 
f1(r∗) = 0 and lim

r→∞f1(r) = ∞, there exists a unique r ′∗ > r∗ such that f1(r
′∗) = 1. Note that 

r ′∗ is uniquely determined by the incoming flow and the system (1.5).
Now the main results can be stated as follows.

Theorem 3.1. For a given incoming flow which is supersonic in the r-direction and has a 
nonzero angular velocity at the entrance, there exist two constants p1 < p0 such that, for any 
pex ∈ (p1, p0), there exist a unique piecewise smooth solution to Problem III in � with a shock 
located at r ≡ rb and satisfying U−

1 (r) > c−(r) for r ∈ (r0, rb), U
+
1 (r) < c+(r) for r ∈ (rb, r1). 

Furthermore, the solution has the following properties.

(A) The shock position r = rb increases as the exit pressure pex decreases. In addition, the shock 
position rb tends to r1 if pex goes to p1 while rb approaches to r0 if pex goes to p0.

(B) The flow patterns in �+ can be classified in terms of the boundary conditions as follows:
1. If r0 < r1 ≤ r ′∗ and pex ∈ (p1, p0), then

Subcase 1.1. for f2(ρ
�) > 0, there exists a supersonic-supersonic shock and the flow is 

supersonic in �+.
Subcase 1.2. for f2(ρ

�) < 0, there exists a supersonic-supersonic shock and the flow 
changes smoothly from supersonic to subsonic in �+.
Subcase 1.3. for f2(ρ

�) = 0, there exists a supersonic-supersonic shock and the flow is 
supersonic in �+ but degenerates to a sonic state at the exit.

2. If r0 < r ′∗ < r1, then there exists a p′∗ ∈ (p1, p0) such that,
Subcase 2.1. for pex ∈ (p′∗, p0) with f2(ρ

�) > 0, a supersonic-supersonic shock exists 
and the flow is supersonic in �+.
Subcase 2.2. for pex ∈ (p′∗, p0) with f2(ρ

�) < 0, a supersonic-supersonic shock exists 
and the flow changes smoothly from supersonic to subsonic in �+.
Subcase 2.3. for pex ∈ (p′∗, p0) with f2(ρ

�) = 0, a supersonic-supersonic shock exists 
and the flow is supersonic in �+ but degenerates to a sonic state at the exit.
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Subcase 2.4. for pex ∈ (p1, p′∗), a supersonic-subsonic shock exists and the flow is sub-
sonic in �+.
Subcase 2.5. for pex = p′∗, there exists a supersonic-sonic shock and the flow is subsonic 
in �+ but degenerates to a sonic state at the shock position.

3. If r1 > r0 ≥ r ′∗, then for any pex ∈ (p1, p0), there exists a supersonic-subsonic shock 
and the flow is uniformly subsonic in �+.

Remark 3.2. The value f2(ρ
�) is completely determined by the boundary conditions, while 

f1(r1) is determined by the incoming flow and the steady Euler system a priori.

Remark 3.3. In subcase 2.5, there is a new flow pattern that is not observed before, where the 
shock front and the sonic curve coincide due to the nonzero angular velocity. This supersonic-
sonic shock is structurally unstable in general.

Remark 3.4. If κ2 = 0, then r∗ = 0 and f1(r) = (M−
1 (r))2. Therefore f1(r) > 1 for any r > r0

and only the case 3 in Theorem 3.1 happens. This coincides with the results obtained in [31].

Remark 3.5. The stability of these transonic flows with shocks will be studied in the future.

3.1. Proof of Theorem 3.1

In �−, it holds that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρ−U−
1 = κ1

r
, κ1 = r0ρ0U10,

B− ≡ B0,B0 = 1

2
(U2

10 + U2
20) + A0γ

γ − 1
ρ

γ−1
0 ,

U−
2 = κ2

r
, κ2 = r0U20,

A− ≡ A0 ≡ A−
0 .

(3.5)

It follows from (1.7) that κ1, κ2 and B0 are unchanged across the shock. Therefore, in �+, one 
can get that

{
(ρ+U+

1 )(r) = κ1

r
, U+

2 (r) = κ2

r
,

B+ ≡ B0, A+ ≡ A+
0 ,

(3.6)

where A+
0 is to be determined by (1.7).

First, we solve (1.7) for fixed rb ∈ (r0, r1). It follows from the first two equations in (1.7)

that [U1 + c2

γU1
] = 0, which further implies that [U1 + K0

U1
] = 0 with K0 = K(rb), where K(r) =

2(γ−1)
γ+1 B − γ−1

γ+1U2
2 (r) has no jump across the shock since κ2 and B0 are unchanged across the 

shock. Thus on the shock

U+
1 (rb) = K0

U−
1 (rb)

. (3.7)

If U−(rb) > c−(rb), then U+(rb) < c+(rb). By the first equation in (3.6),
1 1
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ρ+(rb) = κ1U
−
1 (rb)

rbK0
= κ2

1

K0r
2
bρ−(rb)

. (3.8)

Moreover, one can conclude from [B] = 0 and [ρU2
1 + p] = 0 that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A+
0 (U−

1 (rb))
γ−1 − A−

0 (U+
1 (rb))

γ−1

= (
rb
κ1

)γ−1 γ−1
2γ

((U−
1 (rb))

2 − (U+
1 (rb))

2)(U−
1 (rb)U

+
1 (rb))

γ−1

A+
0 (U−

1 (rb))
γ − A−

0 (U+
1 (rb))

γ

= (
rb
κ1

)γ−1(U−
1 (rb) − U+

1 (rb))(U
−
1 (rb)U

+
1 (rb))

γ .

Thus

A+
0 =(

rb

κ1
)γ−1(U+

1 (rb))
γ (

γ + 1

2γ
U−

1 (rb) − γ − 1

2γ
U+

1 (rb))

=(
rb

κ1
)γ−1(

K0

U−
1 (rb)

)γ (
γ + 1

2γ
U−

1 (rb) − γ − 1

2γ

K0

U−
1 (rb)

)

and

A+
0

A−
0

= xγ

γ + 1
(−(γ − 1) + 4γ

(γ + 1)x − (γ − 1)
) =: T1(x),

p+
0 (rb)

p−
0 (rb)

= xγ

γ + 1
(−(γ − 1) + 4γ

(γ + 1)x − (γ − 1)
) =: T2(x),

where x = U+
1 (rb)

U−
1 (rb)

∈ (
γ−1
γ+1 , γ+1

γ−1 ). It is easy to see that both T1(x) and T2(x) monotonically de-

crease as x ∈ (
γ−1
γ+1 , γ+1

γ−1 ) increases and T1(1) = T2(1) = 1. And A+
0 > A−

0 , p+
0 (rb) > p−

0 (rb) if 

and only if U−
1 (rb) > U+

1 (rb).
Next, we consider the relationship between the shock position r = rb and the exit pressure 

p(r1) = pex . In the following, pex is regarded as a function of rb.
On the exit r = r1,

⎧⎪⎨
⎪⎩

pex = A+
0 (ρ+(r1))

γ ,

B0 = 1

2
(

κ2
1

(ρ+(r1))2r2
1

+ κ2
2

r2
1

) + γ

γ − 1
A+

0 (ρ+(r1))
γ−1,

which implies,

⎧⎪⎪⎨
⎪⎪⎩

dpex

drb
= dA+

0

drb
(ρ+(r1))

γ + A+
0 γ (ρ+(r1))

γ−1 dρ+(r1)

drb
,

dρ+(r1)

drb
= γ (ρ+(r1))

γ

(γ − 1)((U+
1 (r1))2 − (c+(r1))2)

dA+
0

drb
.

Thus,
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dpex

drb
= (ρ+(r1))

γ (γ − 1)(M+
1 (r1))

2 + 1

(γ − 1)((M+
1 (r1))2 − 1)

dA+
0

drb

with M±
i (r) = U±

1 (r)

c±(r)
, i = 1, 2. Note that (ρ+(r1))

γ
(γ − 1)(M+

1 (r1))
2 + 1

(γ − 1)((M+
1 (r1))2 − 1)

< 0 due to 

M+
1 (r1) < 1.
On the shock r = rb , one has that

B0 = 1

2
(

κ2
1

(ρ+(rb))2r2
b

+ κ2
2

r2
b

) + γ

γ − 1
A+

0 (ρ+(rb))
γ−1,

which implies

dA+
0

drb
= γ − 1

γ (ρ+(rb))γ−1

(
(U+

1 (rb))
2 − (c+(rb))

2

ρ+(rb)

dρ+(rb)

drb
+ (U+

1 (rb))
2 + (U+

2 (rb))
2

rb

)

= (γ − 1)A+
0

(
(M+

1 (rb))
2 − 1

ρ+(rb)

dρ+(rb)

drb
+ (M+

1 (rb))
2 + (M+

2 (rb))
2

rb

)
.

On the other hand, (3.8) implies that

dρ+(rb)

drb
= − κ2

1

K0r
2
b (ρ−(rb))2

dρ−(rb)

drb
− 2κ2

1

K0r
3
bρ−(rb)

− ρ+(rb)

K0

dK0

drb
.

By B0 = 1

2
(

κ2
1

(ρ−(rb))2r2
b

+ κ2
2

r2
b

) + γ

γ − 1
A−

0 (ρ−(rb))
γ−1, one has

dρ−(rb)

drb
= −

κ2
1

ρ−(rb)
+ ρ−(rb)κ

2
2

r3
b ((U−

1 (rb))2 − (c−(rb))2)
.

Substituting this into the last formula yields

dρ+(rb)

drb
= ρ+(rb)

rb

2 + (M−
2 (rb))

2 − (M−
1 (rb))

2

(M−
1 (rb))2 − 1

− ρ+(rb)

K0

dK0

drb
.

Thus,

1

(γ − 1)A+
0

dA+
0

drb
= (M+

1 (rb))
2 − 1

rb((M
−
1 (rb))2 − 1)

(
2 + (M−

2 (rb))
2 − (M−

1 (rb))
2)

+ (M+
1 (rb))

2 + (M+
2 (rb))

2

rb
− (M+

1 (rb))
2 − 1

K0

dK0

drb

= 1

r
(
(M−(r ))2 − 1

)(
(M+

1 (rb))
2 + (M−

1 (rb))
2 − 2
b 1 b
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+ (M+
1 (rb))

2(M−
2 (rb))

2+(M−
1 (rb))

2(M+
2 (rb))

2−(M+
2 (rb))

2−(M−
2 (rb))

2
)

+ 1 − (M+
1 (rb))

2

K0

dK0

drb
.

We claim that

(M+
1 (rb))

2 + (M−
1 (rb))

2 − 2 > 0, (3.9)

(M+
1 (rb))

2(M−
2 (rb))

2 + (M−
1 (rb))

2(M+
2 (rb))

2 − (M+
2 (rb))

2 − (M−
2 (rb))

2 ≥ 0, (3.10)

dK0

drb
≥ 0. (3.11)

This claim can be verified as follows. Since K0 = 2(γ−1)
γ+1 B − γ−1

γ+1 (U±
2 (rb))

2, direct calculations 
show that

dK0

drb
= 2(γ − 1)

γ + 1

(U−
2 (rb))

2

rb
≥ 0,

and

1

(M±
1 (rb))2

= γ + 1

2

K0

(U±
1 (rb))2

− γ − 1

2
.

On the other hand, the inequality (3.9) is equivalent to

2 − (M−
1 (rb))

2

(M+
1 (rb))2

< 1. (3.12)

Simple computations yield

2 − (M−
1 (rb))

2 =
(γ + 1)

K0
(U−

1 (rb))
2 − γ

γ+1
2

K0
(U−

1 (rb))
2 − γ−1

2

,

1

(M+
1 (rb))2

= γ + 1

2

(U−
1 (rb))

2

K0
− γ − 1

2
.

Since K0 = γ−1
γ+1 (U−

1 (rb))
2 + 2

γ+1 (c−(rb))
2, γ+1

2
K0

(U−
1 (rb))

2 − γ−1
2 = (c−(rb))

2

(U−
1 (rb))

2 > 0. Thus (3.12)

is equivalent to

(
(γ + 1)

K0

(U−
1 (rb))2

− γ

)(
γ + 1

2

(U−
1 (rb))

2

K0
− γ − 1

2

)
<

γ + 1

2

K0

(U−
1 (rb))2

− γ − 1

2
.

That is,
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K0

(U−
1 (rb))2

+ (U−
1 (rb))

2

K0
> 2,

which is always valid. Thus (3.9) holds. To verify (3.10), one needs only to consider κ2 �= 0 since 
κ2 = 0 is trivial. Then the inequality (3.10) is equivalent to

(M−
1 (rb))

2 − 1

1 − (M+
1 (rb))2

>
(M−

2 (rb))
2

(M+
2 (rb))2

= (c+(rb))
2

(c−(rb))2 ,

i.e.,

(U−
1 (rb))

2 − (c−(rb))
2 > (c+(rb))

2 − (U+
1 (rb))

2. (3.13)

Since K0 = 2
γ+1 (c±(rb))

2 + γ−1
γ+1 (U±

1 (rb))
2, so (3.13) is equivalent to

(U−
1 (rb))

2 − γ + 1

2
K0 + γ − 1

2
(U−

1 (rb))
2 >

γ + 1

2
K0 − γ − 1

2
(U+

1 (rb))
2 − (U+

1 (rb))
2

That is,

2K0 < (U+
1 (rb))

2 + (U−
1 (rb))

2 = (U−
1 (rb))

2 + K2
0

(U−
1 (rb))2

,

which is always valid. Thus (3.10) holds true.

In summary, we have shown that 
dA+

0

drb
> 0 and thus, 

dpex

drb
< 0, which implies that the shock 

position r = rb increases as the exit pressure pex decreases. So the following result holds.

Proposition 3.6. For any given incoming flow U−
1 (r0), U−

2 (r0), ρ−(r0), p−(r0) satisfying 
U−

1 (r0) > c−(r0), there exist two constants p1 < p0 such that, for any pex ∈ (p1, p0), there 
exists a unique solution to Problem III with a shock located at r ≡ rb satisfying U−

1 (r) > c−(r)

for r ∈ (r0, rb), U
+
1 (r) < c+(r) for r ∈ (rb, r1). In addition, the shock position r = rb increases 

as the exit pressure pex decreases. Furthermore, the shock position rb approaches to r1 if pex

goes to p1 and rb tends to r0 if pex goes to p0.

It remains to clarify the flow state just behind the shock. That is, to determine the sign of

(U+
1 )2 + (U+

2 )2 − c2(ρ+,A+
0 )

at r = rb . It follows from (3.6)-(3.8) that

(U+
1 )2 + (U+

2 )2 − c2(ρ+,A+
0 ) = U2

1 − γ + 1

2
(K0 − γ − 1

γ + 1
U2

1 ) + U2
2

= γ + 1

2
(U2

1 − K0) + U2
2 = γ + 1

2

K0
− 2

(K0 − (U−
1 )2) + U2

2

(U1 )
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= K0

(U−
1 )2

(
c2(ρ−,A−

0 ) − (U−
1 )2 + (U−

1 U−
2 )2

K0

)

= K0

(M−
1 )2

(
1 − (M−

1 )2 + (M−
1 )2(M−

2 )2

2
γ+1 + γ−1

γ+1 (M−
1 )2

)

= K0

(M−
1 )2( 2

γ+1 + γ−1
γ+1 (M−

1 )2)

(
(1 − (M−

1 )2)(
2

γ + 1
+ γ − 1

γ + 1
(M−

1 )2) + (M−
1 )2(M−

2 )2
)

Since B0 = 1
2 ((U−

1 )2 + (U−
2 )2) + (c−)2

γ−1 , thus

(M−
2 )2 = (U−

2 )2

2B0 − (U−
2 )2

((M−
1 )2 + 2

γ − 1
).

Assume that κ2 �= 0. Define

x(r) = (M−
1 (r))2, a(r) = κ2

2

2r2B0 − κ2
2

> 0,

ga(x) = (1 − x)(
2

γ + 1
+ γ − 1

γ + 1
x) + ax(x + 2

γ − 1
)

= 2

γ + 1
+ (

2a

γ − 1
+ γ − 3

γ + 1
)x + (a − γ − 1

γ + 1
)x2.

The definition of f1 in (3.3) shows f1(r) = (1 − γ+1
γ−1a(r))x(r). To clarify different cases, one 

introduces two positive constants r ′∗ > r∗ > 0, which are determined as follows. Since

a′(r) < 0, lim
r→+∞a(r) = 0, (3.14)

there exists a unique r∗ =
√

γ κ2
2

(γ−1)B0
such that a(r∗) = γ−1

γ+1 .

Since a(r) < γ−1
γ+1 for any r > r∗ and decreases as r increases, x(r) > 1 and x′(r) > 0 for any 

r > r0, one has that f ′
1(r) > 0 for all r > r∗. It follows from (2.7) and (3.14) that

lim
r→+∞f1(r) = +∞.

Since f1(r∗) = 0, there exists a unique r ′∗ > r∗ such that f1(r
′∗) = 1.

To distinguish whether the state behind the shock is subsonic or supersonic, it suffices to check 
whether ga(rb)(x(rb)) > 0 or < 0. It is easy to find the roots of ga(x) = 0, which are denoted by

x1(r) ≡ − 2

γ − 1
< 0, x2(r) = 1

1 − γ+1
γ−1a(r)

.

First, we determine the sign of ga(r )(x(rb)) by the values of a and f1 at r = rb as follows.

b
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(1) a(rb) >
γ−1
γ+1 . Then x1 < x2(rb) < 0, and ga(rb)(x(rb)) ≥ ga(0) = 2

γ+1 > 0 for all x ≥ 0, 
which implies that the flow behind the shock is supersonic.

(2) a(rb) = γ−1
γ+1 . Then ga(rb)(x(rb)) = 2

γ+1 + γ−1
γ+1x(rb) ≥ 2

γ+1 > 0 for all x(rb) ≥ 0. Thus the 
flow behind the shock is supersonic also.

(3) a(rb) <
γ−1
γ+1 . Then x1 = − 2

γ−1 < 0 < 1 < x2(rb) = 1
1− γ+1

γ−1 a(rb)
, and ga(rb)(x(rb)) > 0 for 

0 ≤ x(rb) < x2(rb), while ga(rb)(x(rb)) < 0 for x(rb) > x2(rb). Thus, it follows that
(i) if f1(rb) < 1, then the state behind the shock is supersonic;

(ii) if f1(rb) > 1, then the state behind the shock is subsonic;
(iii) if f1(rb) = 1, then the state behind the shock is sonic.

Since the position rb of the shock is unknown, one needs to use the properties of a, f1

and the monotonicity between the shock position and the exit pressure to determine the sign 
of ga(rb)(x(rb)) in the following cases:

Case a: r0 < r∗ (i.e. a(r0) >
γ−1
γ+1 ). The flow is supersonic (subsonic) behind the shock if 

the shock occurs at r0 < rb < r ′∗ (rb > r ′∗), and is sonic behind the shock if rb = r ′∗. Since the 
exit pressure pex depends monotonically on the shock position r = rb , there exists an interval 
(p1, p0) such that if the exit pressure pex ∈ (p1, p0), there exists a unique shock solution with a 
shock at rb ∈ (r0, r1).

If r1 ≤ r ′∗, one obtains a supersonic-supersonic shock. Note that the flow at downstream can 
change smoothly from supersonic to subsonic after crossing the shock.

If r1 > r ′∗, then there exists a p′∗ ∈ (p1, p0) corresponding to r ′∗ such that

(i) if pex ∈ (p1, p′∗), one has a supersonic-subsonic shock located at rb ∈ (r ′∗, r1);
(ii) if pex ∈ (p′∗, p0), one gets a supersonic-supersonic shock located at rb ∈ (r0, r ′∗) and the 

flow at downstream can change smoothly from supersonic to subsonic after crossing the 
shock.

(iii) if pex = p′∗, one obtains a supersonic-sonic shock with a shock and the sonic circle both 
located at rb = r ′∗.

Case b: r∗ ≤ r0 < r ′∗. The flow is supersonic behind the shock if the shock occurs at r0 < rb <

r ′∗, and is subsonic (sonic) behind the shock if the shock occurs at rb > r ′∗(rb = r ′∗). Therefore 
there exists an interval (p1, p0) such that if the exit pressure pex ∈ (p1, p0), there exists a unique 
shock solution with a shock at rb ∈ (r0, r1).

If r1 ≤ r ′∗, then the shock is supersonic-supersonic, the flow at downstream can change 
smoothly from supersonic to subsonic crossing the shock.

If r1 > r ′∗, then there exists a p′∗ ∈ (p1, p0) corresponding to r ′∗ such that

(i) if pex ∈ (p1, p′∗), one gets a supersonic-subsonic shock with the shock located at rb ∈
(r ′∗, r1);

(ii) if pex ∈ (p′∗, p0), one has a supersonic-supersonic shock with the shock located at rb ∈
(r0, r ′∗), the flow at downstream can change smoothly from supersonic to subsonic crossing 
the shock;

(iii) if pex = p′∗, one obtains a supersonic-sonic shock with the shock and the sonic line both 
located at rb = r ′ .
∗
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Case c: r0 ≥ r ′∗ > r∗. Since f1(r0) ≥ f1(r
′∗) = 1, f1(r) > 1 for any r > r0. The flow is sub-

sonic behind the shock if the shock occurs at rb > r0. Therefore, there exists an interval (p1, p0)

such that, for any pex ∈ (p1, p0), there exists a unique supersonic-subsonic shock solution with 
the shock located at rb ∈ (r0, r1).

In summary, we have proved

Proposition 3.7. For the solutions in Proposition 3.6, the flow state just behind the shock can be 
divided into the following three cases.

1. If r0 < r1 ≤ r ′∗, then |M+|2(rb) > 1 for any pex ∈ (p1, p0).
2. If r0 < r ′∗ < r1, there exists a p′∗ ∈ (p1, p0) such that |M+|2(rb) > 1 for any pex ∈ (p′∗, p0), 

|M+|2(rb) < 1 for any pex ∈ (p1, p′∗) and |M+|2(rb) = 1 for pex = p′∗.
3. If r0 ≥ r ′∗, then |M+|2(rb) < 1 for any pex ∈ (p1, p0).

Finally one can determine the flow state at the exit by examining the sign of

(U+
1 )2 + (U+

2 )2 − c2(ρ+,A+
0 )

at r = r1.
Since κ1, κ2 and B0 are unchanged across the shock, it follows from the Bernoulli’s law and 

the exit pressure pex = A+
0 (ρ+(r1))

γ that ρ+(r1) satisfies f2(ρ
+(r1)) = 0, where f2 is defined 

in (3.4).

Since f ′
2(ρ) = γpex

γ − 1
− 2(B0 − 1

2

κ2
2

r2
1

)ρ, f2(ρ) increases on (0, ρ�) and decreases on (ρ�, ∞)

as ρ increases, where

ρ� = γpex

2(γ − 1)(B0 − 1
2

κ2
2

r2
1
)

.

Note that f2(0) > 0, thus ρ < ρ+(r1) if and only if f2(ρ) > 0 and ρ > ρ+(r1) if and only if 
f2(ρ) < 0.

The flow is supersonic at r = r1 if and only if 
2(γ − 1)

γ + 1
B0 >

γpex

ρ+(r1)
, that is,

ρ+(r1) >
γ (γ + 1)pex

2(γ − 1)B0
=: ρ�, (3.15)

which is equivalent to f2(ρ
�) > 0. And the flow is subsonic at r = r1 if and only if ρ+(r1) < ρ�, 

which is equivalent to f2(ρ
�) < 0.

In summary, we have shown the following proposition.

Proposition 3.8. For the solutions given in Proposition 3.6, the flow state at the exit can be 
classified as:

1. If f2(ρ
�) > 0, then |M+|2(r1) > 1.

2. If f2(ρ
�) < 0, then |M+|2(r1) < 1.
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3. If f2(ρ
�) = 0, then |M+|2(r1) = 1.

By Propositions 3.6, 3.7 and 3.8, the proof of Theorem 3.1 is completed.

3.2. Transonic shock flows moving from the outer to inner circle

Finally, we consider the transonic shock wave patterns when a supersonic flow moves from 
the outer to the inner circle.

Problem IV. Construct smooth functions (U−
1 , U−

2 , ρ−, p−, A−) and (U+
1 , U+

2 , ρ+, p+, A+), 
which satisfy the system (1.5) in �− = {(x1, x2) : rb < r < r1} and �+ = {(x1, x2) : r0 < r < rb}
respectively, supplemented with the boundary conditions

ρ(r1) = ρ−
0 , U1(r1) = U−

10 < 0, U2(r1) = U−
20 �= 0, A(r1) = A−

0 , (3.16)

p(r0) = pex. (3.17)

The discontinuity occurs at r = rb ∈ (r0, r1) which is unknown, and across the discontinuity 
r = rb , the Rankine-Hugoniot condition (1.7) holds and the entropy increases.

In this case, κ1 = r1ρ0U
−
10 and κ2 = r1U

−
20 �= 0. Recall that

f1(r) =
(

1 − (γ − 1)κ2
2

(γ + 1)(2r2B0 − κ2
2 )

)
(M−

1 )2(r),

ρ� = γ (γ + 1)pex

2(γ − 1)B0
,

and modify f2 as

f2(ρ) = γpex

γ − 1
ρ − (B0 − 1

2

κ2
2

r2
0

)ρ2 + κ2
1

2r2
0

.

Denote the limit circle defined in Problem II with boundary condition (3.16) at r = r1 by r =
r�,−, which is uniquely determined by (U−

1 )2(r�,−) = (c−)2(r�,−). Therefore r�,− is the unique 
root of the following equation in R+

2(γ − 1)B0

γ + 1
x2 = (γA−

0 )
2

γ+1 κ

2(γ−1)
γ+1

1 x
4

γ+1 + γ − 1

γ + 1
κ2

2 . (3.18)

Denote the limit circle defined in Problem II with boundary data (U+
1 (rb), U

+
1 (rb), ρ+(rb),

A+
0 ) at r = rb by r = r�,+, then r�,+ is the unique root to (3.18) with A−

0 replaced by A+
0 . Since 

A+
0 > A−

0 , it is easy to verify that r�,− < r�,+.
First, to compare r0 and r�,+, one defines

ρ�� = γpex

K(r0)
≥ ρ�. (3.19)

The flow is supersonic in r-direction at r = r0 if and only if K(r0) >
γpex

+ , that is,

ρ (r0)
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ρ+(r0) > ρ��, (3.20)

which is equivalent to f2(ρ
��) > 0. And the flow is subsonic in r-direction at r = r0 if and only if 

ρ+(r0) < ρ��, which is equivalent to f2(ρ
��) < 0. Therefore, r0 ≥ r�,+ if and only if f2(ρ

��) ≤ 0, 
which is independent of the location of the shock rb.

For fixed r0 ∈ (r�,+, r1), the monotonicity between the shock position r = rb and the exit 

pressure p(r0) = pex is also valid in this case, that is, 
dpex

drb
< 0. Then there exist two positive 

constants p0 = pex(r0) > p1 = pex(r1) such that if the exit pressure pex belongs to (p1, p0), 
there exists a piecewise smooth solution to Problem IV with a shock r = rb ∈ (r0, r1).

To determine the flow patterns of the shock r = rb , as in Problem III, one needs to in-
troduce some parameters. Since f1(r) is indeed well-defined in (r�,−, ∞), and (M−

1 )2(r) > 1

and d
dr

(M−
1 )2(r) > 0 for any r > r�,−, one has f ′

1(r) > 0 for all r > r∗ =
√

γ
(γ−1)B0

κ2. Due to 

f1(r∗) = 0 and limr→+∞ f1(r) = +∞, there exists a unique r ′∗ > r∗ such that f1(r
′∗) = 1.

Then we can obtain the following theorem by using Propositions 3.7 and 3.8.

Theorem 3.9. For a given incoming flow, which is supersonic in the r-direction with nonzero 
angular velocity at the entrance r = r1 and exit pressure pex at r = r0, then there exist two 
positive constants p0 < p1 such that if f2(ρ

��) > 0 or f2(ρ
��) ≤ 0 but pex /∈ (p1, p0), there 

does not exist any piecewise smooth solution to the Problem IV in �; if f2(ρ
��) ≤ 0 and pex ∈

(p1, p0), there exists a unique piecewise smooth weak solution to Problem IV in � with a shock 
located at r = rb ∈ (r0, r1) with the following properties.

(A) The shock position r = rb increases as the exit pressure pex decreases. In addition, the shock 
position rb tends to r1 if pex goes to p1 and rb approaches to r0 if pex goes to p0.

(B) The flow patterns in �+ can be classified in terms of the boundary conditions as follows.
1. If r1 > r0 ≥ r ′∗, then

Subcase 1.1. for f2(ρ
�) < 0, it is a supersonic-subsonic shock and the flow is uniformly 

subsonic in �+.
Subcase 1.2. for f2(ρ

�) > 0, it is a supersonic-subsonic shock and the flow changes 
smoothly from subsonic to supersonic in �+.
Subcase 1.3. for f2(ρ

�) = 0, it is a supersonic-subsonic shock and the flow is subsonic in 
�+ but degenerates to sonic state at the exit.

2. If r1 > r ′∗ > r0, there exists a p′∗ ∈ (p1, p0) such that,
Subcase 2.1. for pex ∈ (p1, p′∗) with f2(ρ

�) < 0, it is a supersonic-subsonic shock and 
the flow is uniformly subsonic in �+.
Subcase 2.2. for pex ∈ (p1, p′∗) with f2(ρ

�) > 0, it is a supersonic-subsonic shock and 
the flow changes smoothly from subsonic to supersonic in �+.
Subcase 2.3. for pex ∈ (p1, p′∗) with f2(ρ

�) = 0, it is a supersonic-subsonic shock and 
the flow is subsonic in �+ but degenerates to sonic state at the exit.
Subcase 2.4. for pex ∈ (p′∗, p0), there exists a supersonic-supersonic shock and the flow 
is uniformly supersonic in �+.
Subcase 2.5. for pex = p′∗, there is a supersonic-sonic shock and the flow is supersonic 
in �+ but degenerates to the sonic state at the shock position.

3. If r1 ≤ r ′∗, then, for any pex ∈ (p1, p0), there exists a supersonic-supersonic shock and 
the flow is uniformly supersonic in �+.
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Remark 3.10. Since M2
1 (r ′∗) = 1

1−(γ+1)a(r ′∗)/(γ−1)
≥ 1 = M2

1 (r�,+), thus r ′∗ ≥ r�,+ and “=” is 

reached if and only if κ2 = 0, which is equivalent to ρ�� = ρ�. Thus, only the subcase 1.1 and 1.3 
in Theorem 3.9 can occur when κ2 = 0 in Problem IV.
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