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Abstract

We propose a direct method to control the first-order fractional difference quotients of
solutions to quasilinear subelliptic equations in the Heisenberg group. In this way we
implement iteration methods on fractional difference quotients to obtain weak differentiability
in the T-direction and then second-order weak differentiability in the horizontal directions.
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1. Introduction

This paper contains second-order horizontal differentiability results for weak
solutions of the non-degenerate p-Laplacian equation

2n p=2
=3 X(A+ | Xu’) 2 Xu) =0, in Q, (1.1)

i=1

where Q is an open subset of the Heisenberg group H", Xu = (Xju, ..., X>,u) denotes
the horizontal gradient of u#, p>1 and A > 0. Our results are an intermediate step to
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show second-order differentiability of solutions to the p-Laplacian equation

2n
=N Xi(|XulP 2 Xu) =0, in Q. (1.2)
i=1

Toward this goal we will use a method based on difference quotients, considering as
test functions in the weak form of Eq. (1.1)

i /Q(/l + IXu(x)|2)[%2Xiu(x)/\’i90(x) dx =0, forall pe HWy”(Q) (1.3)

fractional difference quotients of the weak solution multiplied by a corresponding
cut-off function. In the Euclidean setting, this method was widely used and gave
complete answers for regularity problems in the nonlinear setting. For the Euclidean
counterpart of Eq. (1.1)

" 0 2222 Qu .
_ —((a 27— ) = QcR"
; 8x,~(( + |Vul”) 8x-> 0, in Qc

1

weak solutions have C* interior regularity (see [9—11,13,15,24] and the references
therein).

We should point that the main difference between the Euclidean and the
subelliptic cases is that any time we use the difference quotients in the horizontal
directions (in the Euclidean case any direction can be considered horizontal) we get
extra terms involving difference quotients in the non-horizontal directions, which
cannot be absorbed or controlled by using the assumptions on the weak solutions.

In the Heisenberg group there are no complete answers yet. In the case p = 2 the
left-hand side of the Eq. (1.1) is the real part of the Kohn Laplacian and the C*
regularity follows from Ho&rmander’s celebrated theorem [12]. The fractional
difference quotients were present already in the paper of Héormander [12] and used
together with the tools useful for linear equations like pseudo-differential operators
and Fourier transform. For results connected to this case we also mention the papers
by Xu and Zuily [27,28] and by Cutri and Garroni [6].

For the nonlinear p#2 case we quote the papers of Capogna [3,4], Capogna and
Garofalo [5] and Marchi [17-19]. In the papers [3—5] the a priori assumption on the
boundedness of the horizontal gradient allows the use of some aspects of linear
theory like L? spaces or fractional derivatives defined via Fourier transform to gain
control on difference quotients and to prove interior C* regularity for the weak
solutions of (1.1) and (1.2). Due to the noncommutativity of the horizontal vector
fields in the Heisenberg group, the first thing to be proved is the differentiability in
the non-horizontal direction 7. Under the boundedness condition of the horizontal
gradient it is possible to prove for any p>2 not just that TuelLl (Q) but

loc
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TueHWIL’CZ(Q). This opens the way to the proof of ueHWé’f(Q) and then
differentiating Eq. (1.1) or (1.2) we can prove C*-regularity.

The general case is more difficult. In the Euclidean case for the degenerate
equation corresponding to 4 = 0 we have C'* regularity for 1 <p< oo, but second
order differentiability is valid just for a bounded interval around 2. For example, the
W2 regularity has been proven for the interval 1<p<3+-%. As references we
quote [1,8,9,13,15,16,21,23,24]. In the Heisenberg group C%* regularity is valid for
1 <p< oo and was proved by several people during the 90’s [2,14,27]. Marchi [17-19]

proved that Tue Lf, (Q) for 1 + \/L§<p<l ++/5 and that X?ue L} (Q) for2<p<1 +

V/5. She used the fractional difference quotients to show that a weak solution is in
some truncated versions of fractional Besov and Bessel-potential spaces. Marchi
used the embedding among these spaces (see [20,22,25,26]) to obtain more
information on the differentiability of weak solutions.

It is clear that the way we manage the fractional difference quotients constitutes a key
point in the further development of this theory. In this paper we propose a direct method to
bound the first-order difference quotients. Using the semi-group properties hidden in the
second-order difference quotients we will able to control the first-order fractional difference
quotients and hence to get a complete nonlinear treatment of the regularity problems. Our
main contributions are Theorem 1.1 and the implementation of several iteration schemes
on fractional difference quotients. The point here is that using an appropriate test function,
and exploiting the geometry of vector fields in the Heisenberg group described by the
Baker—Campbell-Hausdorff formula, we get information on the second order difference
quotients. Using Theorem 1.1 we transfer these information to the first order difference
quotients and do our iterations. In this way first we will extend Marchi’s results by proving
that Tue L (Q) for 1<p<4. Our method can be used also to give a new proof of

loc
Tue H Wllocz(Q) for 1 <p< oo under the boundedness assumption of the papers [3-5].

The following step is to prove second-order differentiability in the horizontal
directions. By applying Theorem 1.1 we do modified, detail oriented and at the same
time relatively simple versions of Marchi’s proofs, that are independent of the
embedding properties of Besov and Bessel-potential spaces.

We remark that our HW?>? estimates for 2<p <4 and the HW?? estimates for @
<p<2 are essential in [7] to be able to differentiate Eq.(1.1) and use the Cordes
conditions in order prove uniform HW?? bounds, which leads to interior HW?>?-regu-
larity of p-harmonic functions in an interval that contains p = 2 and depends on 7 (see [7]).

Here is the plan of the paper. In Section 2 we introduce the first- and second-order
difference quotients and prove the next result about their connections.

Theorem 1.1. Let ue I?(H"), 0<a, 0<og, 0SM < o0 and Z a left-invariant vector
field. Suppose that

2
|| A Z,su| |U
sup ————5—

0<|s|<eo ‘SV

<M. (1.4)
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Define f as follows:

® f=aif 0<a<l,
® [ any number in (0,1) if o = 1, and
o f=11ifua>1.

Then there exists ¢ >0 independent of u and a possibly different ¢ from that one in (1.4)
such that

wp 1220l

< o(llull,, + M). (L.5)
0<|s|<o |S|

In Sections 3 and 4 we develop iteration schemes on fractional difference quotients
to prove the following theorem on the differentiability in the T-direction.

Remark 1.1. In the next theorems, the constant ¢>0 depends on n and p. The
constant 6 >0 is the Holder exponent of the weak solution as found in [2,14,27] and
depends on xy and the I” norm of u in a ball around xy. Both constants are
independent of A when we consider 4 —0 and the weak solution of (1.1) converging
locally in the HW'* norm to a weak solution of (1.2).

Theorem 1.2. Let 1<p<4 and ueHWILé’(Q) be a weak solution of (1.1). Consider
X0 €Q and r> 0 such that B(xy,3r) = Q. Then there exist a number k e N depending only
on p and a constant ¢>0 such that we have

/ | Tu(x)? dx<c/ (A + X)) + )P dx (1.6)
B(xo,5%57) B(xo,2r)

and hence Tue Ll (Q).

In Section 5 we prove second-order differentiability in the case 2<p<4.

Theorem 1.3. Let 2<p<4 and ueHWllof(Q) be a weak solution of (1.1). Consider
X0 €Q, r>0 such that B(xy,3r)€ Q. Then there exist a number keN depending only on
p and a constant ¢>0 such that we have

2222 2
[ P e
B(*‘Ovzk%)
P
<c / (A + | Xu(x) P + () dx, (1.7)
B(x,2r)

and hence ue HW>2(Q).

loc

To prove the second-order differentiability for p<2 we need first to show that
Tuel} (Q).

loc



A. Domokos | J. Differential Equations 204 (2004) 439-470 443

Theorem 1.4. Let \/q’l <p<2and ueHVI/ILf(Q) be a weak solution of (1.1). Consider
X0€Q, r>0 such that B(xy,3r)€Q. Then there exist ke N depending only on p and
constants ¢>0 and 6 >0 such that we have

/ | Tu(x)|* dx
B(Xo-,zk%)

<c| %P, (A + [Xu()P)? + [u(x)P) dx
= Cﬁ(B(xO'Zk’ﬁ)) B(x¢,2r)

2
+ |u|L2(B(xn.2k’ﬁ))>' (18)

For the interval given by Theorem 1.4 we can prove the following theorem.

Theorem 1.5. Let @’1 <p<2and ueHWlL’f(Q) be a weak solution of (1.1). Consider
X0€Q, r>0 such that B(xy,3r)eQ. Then there exist keN depending only on p and
constants ¢>0 and 6 >0 such that we have

/ X Pu(x)) dx
B(xovzklﬂ)
< AT W ey [ (@ PP+ o) d
= C(S(B(XO"#» B(x9,2r)
p=2 5 PN »
AT gty | PR ) (19)

and hence ue HW:?(Q).

loc

2. Fractional difference quotients in the Heisenberg group

Let us consider the Heisenberg group H” as R"” x R” x R endowed with the group
multiplication

(X], ...,in,l) : ()’1» ---7)’2mu)

l n
- (xl erl, ceey X2 +y2nat+ u— i;(anﬁyi - xiyl1+i)> .

Throughout this paper x - y will denote the group multiplication in H".
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The left invariant vector fields corresponding to the canonical basis of the Lie
algebra are

0 Xn+i 0

X = — —

! 8x,» 2 817

0 Xi 0

X, = 4t
= s | 2 0t

and they are called horizontal vector fields. Denote by

0
=g

and observe that [X;, X,;] = T, otherwise [X;, X;] = 0.
Let Q@ be a domain in H” and let p>1. Recall that the Haar measure in H”"

is the Lebesque measure of R*!, therefore the space L7(Q) is defined in the usual
way. Consider the following Sobolev space with respect to the horizontal vector
fields X;

HW'(Q) = {ue?(Q): Xuel?(Q), for all ie{l,...,2n}}.

HW'P(Q) is a Banach space with respect to the norm

2n

[l s = Ml + D 11 X
i=1

173
We denote by HW,”(Q) the closure of Cg°(Q) in HW'?(Q).
If Z is a left invariant vector field then for some
z= (ZH;ZT) = (Zla "'722n72T)
we can write
2n
7= Z 2 Xi+ z7T.
i=1
The exponential mapping in canonical coordinates is defined by
z

e =_Z.

Recall that in the Heisenberg group the Baker—Campbell-Hausdorff formula for two
left invariant vector fields Z and V is

1
eV = VY]
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Let Q<H" be a bounded domain. For xeQ, a left invariant vector field Z, se R
sufficiently small, 0<o, <1, and u: Q— R let us define:

A zu(x) =u(x - ) — u(x),

Azzﬁsu(x) =u(x-e%) +u(x-e %) — 2u(x),

l&mwoﬁ=wx{iﬁ_””,
Dz _ou(x) = u(x - e_sz>0_ u(x)
—|s|

Then
DZ,fs,otDZ,s,Ou(x) = DZ,s,ODZ,fs,otu(x)

u(x- %) +u(x-e %) —2u(x) AZ u(x)
|S|a+6 - ‘S|1+9

We will use the following result [3,12]:

Proposition 2.1. Let Q<=H" be an open set, K a compact set included in Q, Z a left
invariant vector field and ue Ll (Q). If there exist ¢ and C two positive constants

such that

loc

sup / |Dzsqu(x)[” dx< C?
K

0<ls|<ao

then Zue L7 (K) and ||Zul| ) < C.
Conversely, if Zue L?(K) then for some ¢ >0

SW(AW@M@WW<@VWMME

0<|s|<a

The following result is a direct consequence of the Baker—Campbell-Hausdorff
formula (see [3,12]).

Proposition 2.2. Let Qe H" be an open set, 1<p< o, ue HW(Q), xoe Q and r>0
such that B(xo,3r)<=Q. Then there exists a positive constant ¢ independent of u such
that

/ |DT,lu(x)|de<c/ (ul? + | Xul’) dx. (2.1)
B(xo,r) ) B(x0,2r)
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Remark 2.1. Let us observe that if g is a cut-off function between B(x(,r) and
B(x,2r) then

[, guwraxs [ b, @@ ds
B(X(),l‘) T"si T,S‘z

B(xo,2r)

< c/ (lu” + | Xul") dx. (2.2)
B(x,2r)

We will prove now Theorem 1.1 which constitutes our main result on fractional
difference quotients. The proof is based on a classical argument of Zygmund [29,
Theorem 3.4]. Let us observe that a similar proof can be carried out in a nilpotent
stratified Lie group.

Proof of Theorem 1.1. Using uel”(H") we have that A uel”(H") and
| A zull;, <2||ull;, for all 0<|s|<o. Let us denote g(s)(x) = u(x - e%) — u(x).
Condition (1.4) implies that

[lu(x - &%) +u(x - e%) = 2u(x)l|, <M |s|".

Without loss of generality we can work just with s>0. Replacing s by 5 and then
changing the variables x—x - &% in the integral gives

M
<—s*

, s
lJu(x - %) + u(x) — 2u(x - 2%)] AT

Denoting M’ = 4L we get

oo -2(3)

Replacing s by § in formula (2.3) we get

| <y (2.3)

o) - 203, <5

and hence

o)) ~Zol) ], =t 24
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Repeating this procedure we obtain

n—1 S n S oA (1—o)(n—1
o) ~ 2ol <ot 23)
Adding the above inequalities we get
P n—1 (—ajk
n ! o —a)k
Hg(s) -2 q(i) ‘USMS ; 2 . (2.6)
If 0<a<1 then
. s 2(1705) 1 2(17a)n
Hg(s) -2 g(ﬁ) ‘U\Mlsx o1 MY
and hence
loGe)|[<ga 2ty + err2
9\5n ) || S 2l + M .

Consider now 0<a<$ fixed. For all #>0 sufficiently small there exist neN and

se[§,a] such that & = 5;. Then

4h .
gl <~ llully + MR

Dividing this last inequality by #* we get (1.5).
If « = 1, then inequality (2.6) implies that

’ ‘g(s) — 2”g(2s—n) < M'sn. (2.7)

8

S

Consider now /& = 5; in a similar way as for the previous case and observe that
n = O(logh) to get

4
gl < Allull, + hO(log h) (2.8)

and hence we can use any <1 to get (1.5).
If «>1 then inequality (2.6) implies that
s 1
~29(3)
Hg(S) 95

1 o
<M's T a0

‘U’
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Therefore, we have

[
oGl 2 + 35 05§55
and hence for 2 = 3; and se[§, a] we obtain
4h %, 1,
lg0ll < e+ M s (210

Now we can use f =1 to get (1.5). O

Remark 2.2. Proposition 2.1 together with Theorem 1.1 implies that if # has compact
support K and (1.4) is satisfied with a> 1, then Zue L?(K).

3. Iterations in the T-direction, for p>2

Let us rewrite Eq. (1.1) in the following way:
2n
> Xi(ai(Xu)) =0, in Q (3.1)

i=1

where

a;i(&) = (A + [¢] )Tzf,, for all £éeR™.

We will use the following properties of the functions «;:

(i) There exists a constant ¢>0 such that

2n
Oa; (& .
c(A+ |§| Z e q,q,, for all & geR™. (3.2)
ij= J

(i1) there exists a constant ¢>0 such that

—2
<c(A+|EA)T, for all EeR™. (3.3)

‘(%li(f)
9¢;

We prove a general lemma, that constitutes the key step in our iteration. In an

informal way, we can say that if u has locally % + o derivatives in the L”-sense in the
T direction, then it also has %4—[1)4—[%05 derivatives in the LP-sense in the same
direction.
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Lemma 3.1. Let ueHWlL’f(Q) be a weak solution of (1.1), xo€Q, r>0 such that

B(x0,3r)€Q. Let us suppose that there exists a constant ¢>0, ¢>0 and a€|0,})
such that

sup / D_ . u(x)]"dx
B(X()J‘)| T,.\,TLaz ( )l

0#|s|<eo
p
<c[ (@ PP+ uor) d (3.4
B(,\‘(),zi‘)
If we have
1+ 20¢<1
p 2

then for possibly different ¢>0, ¢>0 holds

sup [ 1D 1wl dx
B(xo,%) T,s,2+p+p o

0#|s|<o
)
e[ (AP + P d (:3)
B(x0,2r)
In the case
1+ 20521
P 2
we have that
V4
/ Tu(x)P dx<c / (A + 1 Xu(x)2)2 + [u(x)P) dx. (3.6)
B(xo.3) B(x0,2r)

Proof. Let us consider

1
_+OC7

V=3

and let g be a cut-off function between B(x¢,%) and B(xo,r). We use now the test
function

¢ =Dr_yy (gzDT,mf'”) (3.7)

to get

i ai(Xu(x)) Xi(Dr,—s;(9° Dr s yu(x))) dx = 0 (3.8)
Q
i=1
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and from here, by the fact that X; commutes with D7, and Dr _,,, we obtain

2n
[_ZI/QDT,S,}' ai(Xu(x))gz(x)DT,S”(Afiu(x)) dx

+ i/ DT.s,y ai(Xu(x))DT,.w u(x)zg(x)/\/ig(x) dx = 0.
i—1 JQ

(3.9)

We can use now the properties of the functions @; and [11, Lemma 8.3] to get

2 2 Ty 22 2
g (X)(A + [Xu(x)|" + [Xu(x - 7)) 2 [Dr sy Xu(x)|" dx
B(xo,i')

p=2
<c/ (A + [Xu(x) + [Xu(x - 7)) 2 | Dy sy Xu(x)|
B(xo,r)

X |Dr g yu(x)[|g(x)|| Xg(x)| dx.
Using the fact that p>2 we get
2 2 STy (2 p=2 2
g~ () (A + [Xu(x)[" + [Xu(x - 7)) 2 [Dr sy Xu(x)|" dx
B(xo,r)

p—2
<c [ (X + e Dr u(oP g0 d
B(xo,r)

Denoting by RHS the right-hand side of (3.10) we have that

RES<c [ (A [Xu(P + [XuCx- D)+ [Dry u(o)) d

B(xo,r)

Using (3.4) we get that

y4
RHS<C/ (A + [ Xu() )P + [u(x)|? dx
B(x“,Zr)

and therefore
2 2 T 2452 2
g~ (X) (A + [Xu(x)[" + [Xu(x - €7)[7) 2 |Dry Xu(x)|" dx
B(xo,r)

)4
<c/ (A + | Xu(x) )2 + |u(x) [ dx.
B(x0,2r)

(3.10)

(3.11)
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Using
Dy Xul” = |Dr s Xul’ ™ - |Drg, Xul*

and the inequality
1
15" D Xu(x) | < V(A + | Xu(x) P + [Xu(x - & T)))2,

formula (3.11) gives
/ G D Xu(x)
B(xo,r

P
<c / (A + [ Xu() )5 + [u(x)? dx.
B(x0,2r)

Since
D1 X(¢%0)(x) = Dr.o, X (¢2) (x)ux - &) + X(6%)(x) Doy yu(x)
+ Dryg? (0)Xu(x - &T) + ¢ (x) Dy, Xu(x)

it follows that

/ D, 2 X(gPu)(x) dx
Blxow) T

<c/ (A + [ Xu(x) D)2 + Ju(x)P) dx. (3.12)
B(x0,2r)

Let us denote the right-hand side of (3.12) by M?. Using Proposition 2.2 we get

/ 1D, D 2 (gu) ()" dx<M?. (3.13)
B(x0,r) Bt ) T,S,;

Therefore, for all s sufficiently small we have

2
127 ,(g%u)]
1, 1420

27

Lr(H")

<M,

so there exists >0 such that

2
1A7,(g%u)]
1, 1420

0<|s|<o S§+ P

(")

<M. (3.14)
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If it happens that

1+ 2oc< 1
p 2
then by Theorem 1.1 we get (3.5).
If we have
1+2a 1
P 2

then, by Remark 2.2 we have TueL!

1oc(2) and estimate (3.6) is valid.
In the remaining case

1420 1
p 2
and then using that 0€[0,1) we get
p—2 1
o<l =<2
4 2

which gives 2<p<4. Theorem 1.1 implies that we can use o arbitrarily close to %, in
particular o >1%2, and the following form of (3.4)

D 4
Sup / r | T,S,l+0(/ u | dx
B(xo.5) 2

0#|s|<a

<"/ (A + Xu()P)2 + lu(x)) dx.
B(xq,2r)

Using a cut-off function g between B(xo,7) and B(xo,5) we get back (3.14) with

1420 1

P 2

and then use the previous case. [

Remark 3.1. The proof shows that in the case

1+20 1

P 2

we can have a larger radius on the left hand side of (3.6), namely

/ | Tu(x)? dec/ (A + [ Xu()P)? + )P dxe. (315
B(x0.5) B(x0,2r)
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Proof of Theorem 1.2 for 2<p<4. Proposition 2.2 implies that we can start with
o9 = 0 in the assumption (3.4) to get a; = 1]7 in (3.5). Now we can use o, in (3.4) to get

1 2
0y =—+—0

such that estimate (3.5) is true. In general, if we already found «y, ..., o, then we get

k
1 k=2 k-1 =N 11*(1%>
—+"'+ﬁ+ﬁ°‘1:‘z<;> “r -2
p

1 2
Lyl =~ + —0k =
p p 4 4 P =

Therefore, for a given p>2 the upper bound for oy is given by

p—2

Hence, for pe[2,4), after a number sufficiently large of & iterations, we get that oy >%
and this means that Tue L} (Q). O

Remark 3.2. If we ask for a, >% then we get the inequality
PP —2p—4<0
that leads to Marchi’s result pe[2,1 ++/5).

In the case p>=4 our iterations give the following result.

Proposition 3.1. For p>=4 and weak solutions u of (1.1) we have

sup /( . |DT,S‘%+1’M(X)|p dx
X0,

0+#|s|<a J B(x %)

<c/ (A + 1 Xu(x)2)2 + [u(x)P?) dx. (3.16)
B(x0,2r)

for o less then, but arbitrarily close to ﬁ, and a corresponding number k of iterations.

4. Iterations in the T-direction for 1 <p<2

Proof of Theorem 1.2 for 1<p<2. Let g be a cut-off function between B(xo,?)
and B(xo,r). We can follow then the proof of Lemma 3.1 for o =0 and y =1
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until we get
> 2 Ty 22 2
g~ () (A + [Xu(x)[” + [Xu(x - 7)|7) 2 |Dr g, Xu(x)|” dx
B(xq,r)
) p=2
<c [ (@A XuP + Xutx eT)T D )
B(xq,r)

X | Drsyu(x)||g(x)|| Xg(x)| dx. (4.1)

Let us denote by RHS the right-hand side of (4.1). We will keep using y instead of %
to get a general iteration formula. Then

S

‘“c
S5}

RHS< Si/ (A + | Xu(x)]* + [Xu(x - &T)[?)
*J B(xo,)

x | Xu(x - eT) — Xu(x)||Dr s u(x)| dx

C
<< (A + [ Xu(x)]* + [Xu(x - 7))
7 B(xq,r)

1
X (A+ [ Xu(x) + [Xu(x - &) 2|Drsyu(x)| dx

p=2
2

C 2 sT 217;1
<5 [ (A X + [Xu(x- @T)P) 2 [Drggu(x)|dx
B(xo,r)

p—1

)4 P
<< / (A + | Xu(x) + | Xu(x - &T)P)2 dx
7 B(xo,r)
1
)4
X / |Dr s yu(x)|” dx
B(xo,r)
p—1
C 2 sT (2 p p
<= (A + [Xu(x)|” + [ Xu(x - " )[7)2 dx
s’ B(xo,r)
v
([ Quer + xueor) s
B(xo,Zr)
c N .
<— (A + [Xu(x)]")2 + |u(x)[” dx.
S" J B(x,2r)

Therefore,

2
/ g (xX)(A + [ Xu(x)* + | Xu(x - €5T)|2)pT | Xu(x - ™) = Xu(x)|” dx
B(xo.r)

)4
<es' / (A + [ Xu(x)P)E + [u(x)]? d. (42)
B(x0,2r)



A. Domokos | J. Differential Equations 204 (2004) 439-470 455
We need the following inequalities used initially in the Euclidean case (see [15]).
2 STy (1202
(A + | Xu(x)|” + | Xu(x - &™)])2
P
< (A + [Xu(x) + [Xulx - 7)) (A + [Xu(x) + [Xu(x - @T)P)
P
<3(A + [Xu(x) + [Xu(x - &T)[7)27"
X (A + | Xu(x)]* + [ Xu(x - &T) — Xu(x)]*)
<3(A 2,8 2 STy (2\5-1
<3(A + [ Xu(x)[)2 + 3(4 + [ Xu(x)|” + [Xu(x - €7)[7)2
X | Xu(x - &) — Xu(x)|*.
Therefore,

P
/ () (A + | Xu(x) + [Xu(x - &T)P)2 dx
B(xo,r)
2 2.2
<3 / (A + [Xu(x) )2 d
B(xo,r)
V4
* C/ (A + [ Xu(x)[)2 + |u(x) P dx
B(x0,2r)
)4
<c / (A + | Xu(x) P + [u(x)]? dx.

B(x0,2r)

Also, by Holder’s inequality we get

/ g*(x)| Xu(x - &T) — Xu(x)|? dx
B(X()J')

[STpS]

- / (PC + 1Xu(x) P+ Y- &) P)T [Xu(x - ) = Xu(x) )
B(xo,r)

< (PO + XU + X))

[STpS]

) </ P (A + [Xu() + [ Xux - @)D Xulx - ) — Xu(x)P dx>
B(xq,r)
)
’ </B< .>(g;4’(x)(/1+ Xu(x) + [ Xu(x - €T)P))2 dX>

P
2
<[es / (A + [Xu() )2 + [u(x) ] dx
B(xo,2r)
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P
-3

X </ g (x)(A + \Xu(x)|2 + | Xu(x - esT)|2)§ dx)
B(xo,r)

V4
2

y 2
<cs’2 (/ (A + | Xu(x)[H)2 + |u(x) ] dx)
B(X(),2r>

» s
« </ (A + X)) + |u(x)” dx)
B(x9,2r)

Y 4
<"S”§/ (A + [ Xu(x) )2 + |u(x) [ dx.
B(X(),zl‘)

Therefore,

)4
/ F(X)ID, _y Xu(x) dr<c / (A + [Xu(x) P + ()l d.
B(xo,r) ™2 B(x0,2r)

In the same way as we have obtained inequality (3.12), we get
P
/ D, 2 X (gu) () deC/ (A + [Xu(x) )2 + [u(x) " dx. (4.3)
B(x0.r) ) B(x0.,2r)
Let us denote the right-hand side of (4.3) by M?”. Proposition 2.2 implies that

D D "y 2u X pdngp 44
/B(xo,r)| T"_S’% T’S‘%(g >( >| ( )

and this means for a sufficiently small o

127l

0<lsi<o s

<M (4.5)

We started with y:% and therefore in (4.3) we have a fractional exponent
of %, while in (4.5) we have a power of% for s. Using Theorem 1.1 and cut-off
functions between B(xo,5r) and B(xo,5-) we can do iterations to obtain after
k steps that

/ D o [ X(g*u)(x)]” dx< M? (4.6)
B(xo,zk%l) T,s, ST
and
A 75(F W) gy
0<|s|<a 2] M. (4.7)

Ui
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Let us consider now ke N such that

! < 1
kP
Then for
2k 1 2k+1 _
a=—pr and b=—p5
we have
alp—1)+b>1.
Let us consider
_alp—-1)+b_1
S

and return to (4.1) with a cut-off function g between B(xo,s%r) and B(xo,r).
Then
p—2
RHS< c/ . (A + | Xu(x)]* + [Xu(x - D)) 7 | Xu(x - eT) = Xu(x)|*?
B(Xo,ﬁ)

| u(x o) = Xu@)P Jutx-¢) - u(x)|

sap—1) & dx

Xu(x - &T) — Xu(x)]P!
o f e S
B(xo-sz) 5

p—1

p—1 1
X T — X 14 p p
< </ | M(x e Z M(X)| dx) (/ ‘ |DT,s,bu(x)|p dx>
B(xo. %) s B(x0.37)

P
s c/ (A + [Xu(x)]*)? + [u(x)[" dx.
B(x0,2r)

Therefore,

p=2
/ A+ [Xu(x)P + [Xulx - eT)P) 7 [Xulx - €)= Xu(x)| dx
B(XO’ZI_I()

P
<csz7’/ (A + | Xu(x)[))2 + [u(x) dx. (4.8)
B(x0,2r)
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Doing a similar proof as we did starting from formula (4.2) we get that

2
1 A7 (@)l

0<|s|<o |S|%+7

<M (4.9)

Using the fact that %—F 7>1, Theorem 1.1 implies now that Tue L (Q). O
5. Proof of Theorem 1.3
We present an extension of Marchi’s proof [17] taking into consideration our
iterations and the extended range 2<p<4.
Let ipe{l, ...,n}, s>0 and use the test function
¢ = Dy, —51Dx, s.1(g"u),

where g is a cut-off function between B(xo, 5+) and that B(xo, 37)-
For i#i, we have

Xi(Dx, 51Dy, s1(9*u)) = Dy, —s1Dx, s1(Xi(g*u)),
while for i = iy + n we have
Xiytn(Dxy —s1Dx, 51 (9*)) (x) = Dy, 1Dy, 51 (Xio+n(g4u))(x)
1
- Tt ) = Tl 7)) (51)
To see that formula (5.1) is true it is enough to observe that
Xiyen((ghu) (x - €%0)) = X pu(ghu) (x - %) — 5T (g*u) (x - €0)
and
Xiyen((g*u) (x - e7%0)) = X n(ghu) (x - €7¥0) 4 5T (ghu) (x - e*¥0).

Using the test function ¢ in equation (1.3) we get

2n
> [ alXu()Dx, -aD, i Xilgt ) (x)
i=1 JQ

- /Qai”Jr”(Xu(x)) % (T(g4u) (x- esxio) - T(g4u) (x- e_SXio))
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and hence
2n
/DX, Slal Xu ))DX[(J’S’]AII‘({}A‘”)(X) dx
i=1

= /Qa:o+n(Xu( )) (D, 51 T(g"u)(x) + D, 1 T (g*u) (x)). (52)

We use that
Dy, s1Xi(g*u)(x) = Dy, 41 (4g" (x) Xig(x)u(x) + g* (x) Xju(x))

= 4Dy, 19(x)g (x - ¢¥0) Xig (x - ¥ Ju(x - o)
+4g(x) D 519(x)g(x - €¥0) Xig(x - o Ju(x - o)
+4gz(x)DXfomg(X)Xig(x-eSXfo)u(x.e‘vx,-o)

+ 493(X)D)GO-,S.1Xig(x)u(x o)
+4g° (x)Xig(x) Dy, s1u(x)
+ Dy s1g(3)g (x - €0) Xou(x - )
* g(x)D%s.,lg<X>gz(x o) Xiu(x - )
g (x x) Dy, 519(x)g(x - o) Xou(x - e¥o)
+ 93(X)D&0,s,lg(x)X,-u(x e
g*(x) Dy, sa Xiu(x).

Therefore, Eq. (5.2) has the form

2n
> [ Dy (Xu() D 1 Xi(0)g* () d (L
i=1 v
= [ Dty catie (o) T x)
/ Dy, 16t (X)) Tg0) () (R1)

-3 /Q Dy, s1ai(Xu(x))4Dy, ;19(x)

x g?(x - eX0) Xig(x - eXo)u(x - e¥o) dx (R2)
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/ Dy, s 1:(Xu(x))4g(x) D, 419(x)

x g(x - e¥0) X;g(x - X0 Yu(x - X)) dx (R3)

2n
=3 [ D s (X044 (6D s

x Xig(x - Yo Ju(x - e“'X"O) dx (R4)

/ Dy s 1(Xu(x))4g* (x)

X DXI.OYS_lXig(x)u(x e dx (R5)

2n
-3 / Dy 51 Xu(x))4g° (x)
x Xig(x)Dy; s 1u(x) dx (R6)

211
/DX X1Cl Xu ))DX,.O“YJg(x)

X g (x-e‘ Yo) Xju(x - ) dx (R7)

2n
_Z;/QDX,.O.s.,lai(Xu(x))g(x)DXio,Mg(x)

X g*(x - € ¥0) Xu(x - X0 ) dx (R8)

/ D s 1:(Xu(x))g(x) D, 519(x)

x g(x - e¥0) Xju(x - %0 dx (R9)

2n
-3 / Dy, caai(Xu(x))g* (x) D, 519(x)
x Xju(x - e¥0) dx (R10)

We estimate now each of the above lines. We will use 6 >0 as a sufficiently small
number.

p—2
(L1)=c / (A + [ Xu(x)] + [Xu(x - eX0) )2 Dy, 51 Xu(x)]*g*(x) dx.
Q
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v 2 222
(R1)< C/Q(/l+ | Xu(x)[* + | Xu(x - e ¥0) ) 2 [ Dy —g1 Xu(x)|g* (x)| Tu(x)| dx

p=2
+C/(A+|XM(X)I2+\Xu(x~e*”"ﬂ)|2) 2 Dy s Xu(x)|
Q

x 41g* ()| Tg(x)|lu(x)] dx

2 X 2052
* C/<A+|Xu(x>| | Xu(x - o)) 2
Q

X | D 1 Xu(x)|g* ()| Tu(x)| dx
+ ¢ /Q (A + [ Xu(x)|* + | Xu(x - eSX"O)|2)I%2 Dy, s Xu(x)]
x 41g* ()| Tg(x)|lu(x)] dx

<0 [ (A XU+ X e 50)) S Do X0 (o)
+¢(9) /Q (A + [ Xu(x)]” + | Xu(x - e*sto)F)'%z g* (x)| Tu(x))* dx
+¢(0) /Q(A XU+ [Xu(x- e Ko)P) T 20 Tg(o)Pluo) d
+6 /Q (A + | Xu(x)|* + | Xu(x - eA‘Xfo)|2)‘”%2 Dy, o1 Xu(x)Pg* (x) dx
+¢(9) /Q (A + | Xu(x)|* + | Xu(x - esto)\z)’%zg“(x)|Tu(x)\2 dx

+¢(9) /Q(/l + | Xu(x)[* + [ Xu(x - ESX”O)\z)p%zgzwlTg(X)\Z\M(X)I2 dx.

p=2
(R2)< C/Q(/l + | Xu(x)P + | Xu(x - ™)) 2 | Dy, 1 Xu(x)|| D 519()]

X g (x)| Xg(x - o) [u(x - o )| dx

p=2
+c/(/1+ | Xu(x)]” + | Xu(x - ¢0) )2 Dy, o1 Xu(x)||Dx, 519(x)]
Q

Flx-eMo) - g2 (x)
S

X § | Xg(x - eXo)|ju(x - e¥0)| dx

2 X\ (2122 2 4
<O | (A+ [Xu(x)[” + [Xu(x - €70)[7) 2 |Dy, 51 Xu(x)["g" (x) dx
Q
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2 sxi 2Bt 2
+¢(8) [ (A+ [Xu(x)]" + [Xu(x - 0)[7) 2 |Dx, 519(x)]
Q

X [ Xg(x - &%) Plu(x - o) dx

2 x5t 2
o [ (A+ [Xu(x)]" + [Xu(x - 70) ") 2Dy, s19(x)]
Q

x | Xg(x - €%0)||u(x - ¢¥0)] dx.

The estimates of (R3) is similar to that of (R2).
2 sXi\[2 22 2
(R4)< ¢ Q(/H | Xu(x)|” + [Xu(x - ¢70)[7) 2 | Dy, 51 Xu(x)|g(x)
% | D s 19()[| Xg(x - €Fo)[[u(x - o) | dx
S 5/(A+ | Xu(x)* + IXu(x-ESX"“)IZ)I%2 | D 1 Xu(x)* g (x) dx
Q o
2 sXi V(2 P2 2
+¢(0) [ (A+ [ Xu(x)[" + [Xu(x - ¢70)[%) 2 [ Dy, s19(x))|
Q
X |u(x - eSX’0)|2|Xg(x . eSX"0)|2 dx.
The estimate of (RS) is similar to that of (R4).
(RO)< 3 [ (A-+ X)X - &))" D 1 i) P 3)
< 0 ig %

+¢(9) /Q(A + | Xu ()| + [ Xu(x 6’”"0)|2)p%2

x g% (x)| Xg(x)|*| Dy, s1u|* dx.

iy »

p—2
(R7)< C/(/l+ | Xu(x)[” + [Xu(x - X)) 2 | Dy, 1 Xu(x)|| Dy, s19(x)]
Q

% |g* ()| Xu(x - o) dx

. p=2
+C/(/1+ | Xu(x)]” + | Xu(x - ¢¥0)*) 2 Dy, o1 Xu(x)|| Dy, 519(x)]
Q

g lx-e™) — ¢’(x)
s

X s

| Xu(x - eSX"0)| dx

2 IS PR 2 4
<O [ (A [Xu(x)[" + [Xu(x - 70)|7) 2 [Dy, o1 Xu(x)|"g" (x) dx
Q



A. Domokos | J. Differential Equations 204 (2004) 439-470 463

+¢(9) /Q(A + | Xu(x) + | Xu(x - e“("‘))lz)p%2 | Xu(x - %)’

X |Dx, 519(x) " (x) dx

i 2 BONEN 2 SX,
o [ (A+[Xu(x)|]" + [Xu(x - %0)|7) 2 |Dy, 519(x)|"|Xu(x - e 0)| dx
Q

The estimates of (R8)—(R10) are similar to that of (R7). We can go back now to the
beginning of the proof and use a test function

@ = Dy, s1Dx, —s1(g"u)

sX; —sX;

to get similar results with x - ¢**o changed to x - e **%. Adding the two inequalities,
embedding the terms with J coefficient into the left-hand side and using that u, Xu

and Tu are in L (Q) we get that for all s>0 sufficiently small we have

2 X, (24252 2 4
(A + [Xu(x)|” + [Xu(x - €70)[7) 2 |Dy, 51 Xu(x)["g" (x) dx
Q
2 Caxo 2 252 2 4
+/(/1+ | Xu(x)|” + [ Xu(x - e7*%0)|7) 2 | Dy, —s1 Xu(x)["g" (x) dx
Q

P
<C/ (A+ [ Xul’)? + Ju(x)|” dx.
B(x0,2r)

We can repeat the proof for n<iy<2n and then we get that X?ue L’

ioc(€2) and this
leads to (1.7). O

E

6. Second-order differentiability in the case 2’1 <p<2

Proof of Theorem 1.4. Let us use in Eq. (1.3) a test function
o(x) = A1 (g’ (x) Arsu(x)),

where ¢ is a cut-off function between B(xo, 5z) and B(xo, 5t7), to get

/ G (x) (A + | Xu(x)|* + | Xu(x - efT)|2)’%2 | Xu(x - ¢T) = Xu(x)|* dx
Q

<C/Q(/1 + | Xu(x) + [Xu(x- 6’”)\2)1%2 |[Xu(x - &) — Xu(x)|2]g(x)]

X | Xg(x)||u(x - eT) — u(x)] dx. (6.1)
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Following a method from [11,18] and using Young’s inequality we estimate the right-
hand side as follows.

2 T 2p;2+2;p
RHS:c/(A+|Xu(x)| 1 Xu(x- T T
Q

X (A + | Xu(x)]* + | Xu(x - e“'T)|2)pz;1’2|Xu(x ') — Xu(x)|

x 2lg(x)[[Xg(x)[Ju(x - &T) — u(x)| dx

5 5 (r=2)(p—1) 2(p—1)
<"/(A+|Xu(>c)l +Xu(x - SN2 [ Xu(x - eT) = Xu(x)| 2
Q

x |g(0)|| Xg(x)|[u(x - &) — u(x)| dx
<6 / (A + | Xu(x)]* + | Xu(x - esT)|2)”%2 | Xu(x - eT) — Xu(x)|*g*(x) dx
Q

+C(5)/QIg(X)szpng(X)lplu(x-6’”) —u(x)" dx.

Therefore,
-2
/ g% (x) (A + [ Xu(x)* + | Xu(x - EST)IZ)IJTIXM(X <) = Xu(x)| dx
Q

Sc/ lu(x - eT) — u(x)|? dx.
B(XOBZI«’%)

The method used after formula (4.2) for handling the left-hand side while getting the
pth power gives

/ng(x)|Xu(x ') — Xu(x)|P dx

<c / u(x €T —u(x) P dx
B(xo55777)

3 2 ST 12002 -
x ( [ @@+ P + a7 >>2dx) .

T3S

Theorem 1.2 implies that we can control locally D u, hence we have

|1 pX uep dv< (6.2
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where we have denoted again

M7= C/ (A + [Xu()P)2 + fu(x)?) dx
B(xp,2r)

We use Proposition 2.2 to get that for a sufficiently small >0 we have

2
1A7(g* W)l
sup —————

0<s<o 5

<M. (6.3)

We will use the fact that for a for small >0 we have that u is locally C° (see
[2,14,27]) and that for ‘/TZ" <p<2 we have

2
p_p
- L .K0.
2 5~ 3 0
Therefore, for all 0 <s<¢ and for ¢' = 6(2 — p) we have

|AT€ g I/l |
|s|2+()’

_ / | AT (Pu()) [ AT, (gPu(x
Q

Iz”

8]
< |
o

I

NI

2—
<eM?||gulfi,

Theorem 1.1 gives now (1.8) and that Tue L} (Q).

Corollary 6.1. For @s p<2 we have that

/ | TXu(x)|” dx
B(xo.5¢73)
P
<e P A+ [Xu(x) )2 Nax) . (64
<ed 5 (10 ey [ (@5 P b)) (6

Therefore, XTue L, (£).

Proof. We wuse a cut-off function g between B(xo,5%) and  B(Xo,557)-
Theorem 1.4 allows us to estimate the right-hand side of Eq.(6.1) in the
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following way:

2 2 sTY |2 p2 sT 2
RHS< 6 | ¢°(x)(A+ | Xu(x)|" + | Xu(x - )]7) 2 | Xu(x-€e") — Xu(x)|” dx
Q

§ 2 2 ST |2 p2 sT 2
+¢(8) | [Xg(x)["(4 + [Xu(x)[" + [Xu(x - 7)[7) 2 fu(x - €) — u(x)|” dx.
Q
Therefore,
p—2
/ () (A + [Xu(x)F + | Xu(x- ")) T [ Xu(x- T) = Xu(x) dx
Q
2 2 ST |2 p=2 sT 2
<c [ [Xg(xX)[7(A+ [Xu(x)]" + [Xu(x - €7)7) 2 fu(x-e™) —u(x)|" dx
Q
and hence
p=2
/ () (A + [ Xu(x))* + | Xu(x - @T)) 2 | Xu(x - T) — Xu(x)|* dx
Q
p=2 2 T 2
<cA 2 /|Xg(x)| lu(x - e") —u(x)| dx.
Q
Using again the method that follows formula (4.2) we get

/ 7> ()| Xu(x - &T) — Xu(x)|” dx
o

P
p2 >\
<c AZ/ u(x - eT) — ()P dx (6.5)
B(Xo,ﬁ)

which gives (6.4) and that XTueL! (Q). O

loc

We will prove now Theorem 1.5. A similar theorem was announced in [18].

Proof of Theorem 1.5. Let g be a cut-off functions between B(xo,s#s) and that
B(x0,5t)- The proof begins in the same way as the proof of Theorem 1.3, until we
get the extended form of our inequality with the lines (L1) and (R1)-(R10). We can
remark that although we could use a test function ¢ = D;(,.O_,S,l(gzDX,.0 s1u), but we
cannot avoid estimates similar to that of line (R6).

For the line (L1) the estimate is the same as in the proof of Theorem 1.3. For the
lines (R1)~(R5) we keep the same estimates and use Theorem 1.4 with the facts that
for p<2 we have

p=2  p=2
2 <A 2.

(A + | Xu(x)* + [Xu(x- 7))
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For (R7) we have
p—1
(R7)< C/(/l+ | Xu(x) + | Xu(x - %)) 27| Dy, 51 Xu(x)|[ Dy, 19(x)|
Q
X |g3(x-e‘VX10)| dx
2 SN 2
=C/(/1+ [ Xu(x)|" + [ Xu(x - 0)[7) 4 | Dy, 51 Xu(x)|g”(x)
Q
X L
X (A + [ Xu(x)]” + [Xu(x - ¢¥0) )| Dy, 519(x)]]g(x)| dx

. p—1
+C/(/1+ | Xu(x)]” + | Xu(x - o)) 2 | Dy, 1 Xu(x)|[Dx, 519(x)|
Q

io »
g (x-eo) — g (x)
S

X S dx

2 sx, 20252 2 4
<O [ (A4 [ Xu(x)|” + [Xu(x - €70)[7) 2 [Dy, 1 Xu(x)|"g"(x) dx
Q
2 sXi \ |12\ 2 2 2
+C(5)/(/1+|XM(X)| + [Xu(x - €70)[7)2| Dy, 519(x)|"g~(x) dx
Q

2 SX (22 3
+C/(/1+|Xu(x)| + [Xu(x - €70)[7)2| Dy, 519(x)|" dx.
Q

The estimates for (R8)—-(R10) are similar. It is left the estimate for (R6). Following
the methods in [11,18] we consider for small >0 and a.e. xe€ B(xo, 4r) the function

2i(x) = / (X (1)) di
0
and

Y(x) = /I(A + | Xu(x - (leSX"0)|2))p;1 dt.
0

In the distributional sense we have

Dy

0

s1ai(Xu(x)) = Xj06(x).
Also,

loi(x)| < Y(x), a.e xeB(xg,4r).
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Therefore, we can estimate (R6) in the following way:
(R6) = 37 [ DKl g() D )
i=1
=4 Z/ X)X;9(x) Dy, c1u(x)) dx
2n
=4 Z/ oc,»(x)3g2(x)XiOg(x)X,-g(x)DX,.Oﬁsﬁlu(x) dx
— Jo

+ 4 Z O(,'( )g (x )X;()XJ( )DX,’()~S~,1u(x) dx

< [ @YDy aau(o)] dv (R6))
+e [P @IY0IDy, caXu(o)] dy (R6)
Because of
—1
YGL{?OC (Q)
and Xuell (Q) we get that (R6;) is finite. Let us estimate (R6,) (see [11]

Section 8.2).

(R62) = /ng(x)(/l—&—\Xu( X+ [Xu(x - e¥o)| )I%IDX,O,.Y,IXL!(X)I

% g0 ¥ () (4 + [Xu()P + | Xulx - )Y T dx

2 ox 2222 2

5/ YA+ [Xu(x) + [Xu(x - ) )T Dy, o1 Xu(w)|? dx

27
T e(6) / () V() (A + [Xu()? + [ Xu(x - %) 2) 7" dx
Q
) 202
<5 / g () (A + | Xu(x)|? + [Xu(x - %) 1) T | Dy, o1 Xu(x)| dx
Q

+ () /Q POV T(x) + (A + [ Xu() + | Xu(x - %) )2) dx.
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We can now continue the proof in the same way as we did in the case p>2, going
back to the beginning of the proof and use a test function

¢ = Dy, s1Dx, —s.1(g"u),

then adding the two inequalities and embedding the terms with § coefficient into the
left hand side. In this way we get

p=2
/ (A + [ Xu(x) | + [ Xu(x - X)) 2 Dy, 51 Xu(x)|* dx
B(*‘ﬂvzk%)

p
2

p=2 _
<[ A% / (A P o) e
X0,

C°(B(xo ,zkr«u )

p
2

p—2
+A2 Hu||iz<B(x0’2k»ﬁ>) + /B(XO 2:-)((/1 + \Xu(x)|2) + |u(x)[P) dx (6.6)

and quoting again the method used after formula (4.2) we get (1.9) and hence
ue HW:' (Q). O

loc
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