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Abstract

For a model system of two conservation laws, we show that singular shocks have Defermos
profiles.
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1. Introduction

Keyfitz and Kranzer[10,13] showed that the Riemann problem for the strictly
hyperbolic, genuinely nonlinear system of conservation laws

uty + U —uz)y =0, (1.1)
uz + (3u3 —u1)y =0 (1.2)

does not always have a solution consisting of combinations of rarefactions and shock
waves. They could, however, always produce a unique solution to the Riemann problem
for (1.1)—(1.2) if they allowed singular shocks Singular shocks satisfy only a modi-
fied form of the Rankine—Hugoniot condition; thus they do not have viscous profiles.
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Roughly speaking, a shock wave is a Heaviside function, whereas a singular shock is
a Heaviside function plus a-function concentrated at the discontinu[tyl1,22]

Keyfitz and Kranzer proposed an approach to singular shocks via the Dafermos
regularization of 1.1)—(1.2), which is the artificial system

uty + (Us — u2)y = etuey, (1.3)
1.3 _
uz + (U7 — u1)x = eluoyx. (1.4)

They conjectured that the singular shocks they wanted to use could be approximated,
for smalle > 0, by self-similar solutiongu®, v*)(7) of (1.3—(1.4) that grow arbitrarily

large near the discontinuity as— 0. On the assumption that su@uafermos profiles

exist, Keyfitz and Kranzer constructed their asymptotic approximations to lowest order
in e.

The result of this paper is that the conjectured self-similar solutionsl.&—(1.4)
exist. The proof avoids the problem of matching difficult asymptotic expansions by
using geometric singular perturbation the@y7]. More precisely, we use the blowing-
up approach to geometric singular perturbation problems that lack normal hyperbolicity
[4,5,15] The idea of using this method to study self-similar solutions of the Dafermos
regularization is due to Szmolyd@5]; see alsq19-21,16]

A generalization of the Keyfitz—Kranzer syster%I (eplace by% with0 <y <1)is
discussed ifi17]. The results of the present paper hold for this generalization. $22r
identifies a class of problems for which the lowest-order asymptotic approximations to
Dafermos profiles can be constructed. Another example of a system that admits singular
shocks is treated ifL2]. We have not checked that our result holds for these problems.

In order to provide a context for the idea of Keyfitz and Kranzer, let us review some
background about systems of conservation laws.

A system of conservation lavirs one-space dimension is a partial differential equation
of the form

Uz + f(u)x = 07 (15)

with t >0, x € R, u(x,r) € R, and f : R* — R" a smooth map. Ashock waveor
(1.9 is given by

u_ for x < st,
ux, 1) = { uy for x > st. (1.6)
The triple (u_, s, u4) is required to satisfy th&ankine—Hugoniot condition
fuy)— flu-) —suy —u-)=0. (1.7)

This condition follows from the requirement that.@) be a weak solution of1(5)
[23].
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Too many shock waves satisfy the Rankine—Hugoniot condition; an additional crite-
rion is needed to select the physically realistic oneszigcous regularizatiorof (1.5
is a partial differential equation of the form

ur + f)y = (Bwuy)x, (1.8)

where B(u) is ann x n matrix whose eigenvalues all have positive real part. The shock
wave (L.6) satisfies theviscous profile criteriorfor B(u) if (1.8) has a traveling wave
solution u(x — st) that satisfies the boundary conditions

u(—oo) =u_, u(+o0)=ruy. (1.9)

A traveling wave solution ofX.8) satisfying the boundary condition$.9) exists if and
only if the traveling wave ODE

= B) H(fu) — fu) — s —u_)) (1.10)

has an equilibrium at_ (it automatically has one at_) and a connecting orbit from
u_ to uy. The condition that {.10 have an equilibrium at is just the Rankine—
Hugoniot condition 1.7).

A Riemann problenfor (1.5 is (1.5 together with the initial condition

u(x,O):{uL for x <0, (1.11)

ugr for x > 0.

One seeks piecewise continuous weak solutions of Riemann problems in the scale-
invariant formu(x, 1) = i (), £ = 7. Usually, one requires that the solution consist of

a finite number of constant parts, continuously changing parts (rarefaction waves), and
jump discontinuities (shock waves). Shock waves occur when

im () =u_ #uy = lim i),

E—s—

One way to decide which shock waves to allow is to have in mind a fixed regularization
(1.8). For a Riemann solution associated with the viscosity), the triple (u_, s, u)
is required to satisfy the viscous profile criterion Bfu).

An alternative approach to Riemann problems usesDiermos regularizatiorof a
system of conservation lawjg]. The Dafermos regularization ofl.6) associated with
the viscosity matrixB(u) is

ur+ fu)x = et (B(u)uy)y. (1.12)
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Like the Riemann problem, but unlikd.g), (1.12 has many scale-invariant solutions
u(x,t) = (&), ¢ = 7. They satisfy the nonautonomous second-order ODE

du d du
(Df () = D2 = <B(M)dé) , (1.13)

where we have writteny instead ofii. Corresponding to the initial conditiori.(L1),
we use the boundary conditions

u(—oo) =uyp, u(+o00) =ug. (1.14)

For up close touy, Tzavaras24] has shown that Riemann solutions associated with
B(u) = I can be approximated by solutions of the boundary-value probledB)¢
(1.14 with B(u) = I ande¢ > 0 small.

A structurally stableRiemann solution is one that is stable to perturbation: pf
ug and f, in the sense that nearby Riemann problems have solutions with the same
number of waves, of the same typlds8]. It appears to be the case that the structurally
stable Riemann solutions associated with a giB&n) have, for small > 0, solutions
of (1.13—(1.149 nearby. For results in this direction, s§25,19,21] for some non-
structurally stable Riemann solutions, $&6]. In these papers, a Riemann soluti})
of (1.5, (1.1)) that is associated with a giveB(u) is viewed as a singular solution of
(1.13—(1.14 with ¢ = 0. This singular solution includes lines of normally hyperbolic
equilibria (corresponding to constant states in the Riemann solution), curves of equilibria
that are not normally hyperbolic (corresponding to rarefactions), and orbits connecting
equilibria (shock waves; the orbits correspond to the solutiond.4f) associated with
the shock waves). The proofs that for smal- 0 there are nearby solutions of the
boundary-value probleml(13—(1.14) use geometric singular perturbation theory.

These results suggest that in looking for solutions of the Riemann proklesy (
(1.1) that are associated with the viscosigyu), one should accept any functiaé)
that arises as the limit as— 0 of solutions of the Dafermos boundary-value problem
(1.13—(1.14. This is essentially the idea of Keyfitz and Kranzer, wBku) = I, that
leads to singular shocks. The solutions df13—(1.14) that they use become unbounded
as¢ — 0. Nevertheless, they converge pointwise to a function that is discontinuous at
a single point, and in measure to this function plug-function concentrated at the
discontinuity.

The rest of the paper is organized as follows. The geometry of the Dafermos regu-
larization is reviewed in SectioB. In Section3 we specialize to the Keyfitz—Kranzer
system. Blow-up is performed in Sectigh A useful lemma on flow past a “corner
equilibrium” is proved in Sectiorb. Manifolds of corner equilibria arise in blown-up
geometric singular perturbation problems precisely where inner and outer solutions must
be matched. When such equilibria are normally hyperbolic, this lemma plays the same
role in tracking the flow past them that the Exchange Lenif8] plays at certain
other manifolds of equilibria. Finally, the result on existence of Dafermos profiles for
singular shocks is stated precisely and proved in Sedion
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2. Dafermos regularization

We consider the nonautonomous second-order ODE3(with B(u) = I. Following
[25], we convert it into an autonomous first-order ODE by letting: sfl—‘é and treating

£ as a state variable:

eu = v, (2.1)
e = (Df () — ED, 2.2)
g=1 2.3)

As an autonomous ODE, the syster@.1j—(2.3) is a singular perturbation problem

written in the slow timef, with Z—g =1 (i.e.,, ¢ = 0+ &y). Here, the prime symbol
denotes derivative with respect tb
We let 0 = ¢t, and we use a dot to denote differentiation with respect. t8ystem

(2.)—(2.3 becomes

i =v, (2.4)
0 = (Df () — <D, (2.5)
E=e (2.6)

System 2.4)—(2.6) is system 2.1)—(2.3) written in the fast timer. The boundary con-
ditions (1.14 become

(M, v, f)(_oo) = (ML, 0’ _OO), (I/l, v, é)(oo) = (MR, 07 OO) (27)

Settinge = 0 in (2.4—(2.6) yields the fast limit system

=, (2.8)
v = (Df(u) — &N, (2.9)
E=0. (2.10)

System 2.8—(2.10 has the(n + 1)-dimensional space of equilibria= 0.
We now restrict to the case = 2. For a smalld > 0, let

So = {(u, v, : lull = <, v=0and< < A41(u) — 0},

S1 = {(u, v, : llull 0 andA1(u) + 6 < ¢ < A2(u) — o},

, U

So = {(u,v, %) : 0, and Zx(u) + 6 < &}.

=
IA

, U

IA
Xl 2R 2l
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L N \\ S
u &=M(U)  E=AR(U)

Fig. 1. Phase space for the fast limit syste?i8—(2.10. The three-dimensional spaae= 0 consists of
equilibria. This space is divided by the surfacés= /1(«) and & = lo(u) into sets equilibria with two
positive eigenvalues, one positive and one negative eigenvalue, and two negative eigenvalues.

For the system2.8—(2.10, eachSy is a three-dimensional normally hyperbolic man-
ifold of equilibria [6,7]. Every point of S; has a stable manifold of dimensidnand
an unstable manifold of dimension-2k. Thus the unstable manifold ¢ for (2.8)—
(2.10, which is the union of the unstable manifolds of the equilibria that comfiise
has open interior ifR°. Similarly the stable manifold of, for (2.8)—(2.10), which is
the union of the stable manifolds of the equilibria that compisehas open interior
in R® (S will not be important to us.) See Fid.

According to[6], for ¢ near 0, the systen2(4)—(2.6) has normally hyperbolic invari-
ant manifolds near eachy. Since the three-dimensional space- 0 is invariant under
(2.4—(2.6) for everye, the perturbed manifolds can be taken to be $pe themselves.
On S, the system 2.4)—(2.6) reduces to

For each fixedig in R?, let Sk (o) be the set of point irf; with u = ug, a (portion of
a) line. Then for 2.4—(2.6), each lineSp(«) has a three-dimensional unstable manifold
W (So(u)), and each lineSz(u) has a three-dimensional stable manifdif(So(u)).
These manifolds depend smoothly an ¢).

Geometrically, for a fixece > 0, a solution of the boundary-value probler?.4)—
(2.7) corresponds to a solution o2.4)—(2.6) that lies in the intersection oV (So(uL))
and W3(S2(ug)). These are three-dimensional manifolds in a five-dimensional space,
so they are expected to intersect in isolated curves. See?Fig.

In (2.9—(2.6) we letw = f(u) — éu — v, i.e., we make the invertible coordinate
transformation

(M,U,é/) - (M,u),é) :(M1 f(l/t)—él/i_v, é) (211)
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v
WE(S(ug))
W' (So(uL))
— &
S
S)(=UL)
u E=A(U) &=

Fig. 2. Phase space for the Dafermos syst@w){(2.6) with ¢ > 0. The three-dimensional spaee= 0
is invariant but no longer consists of equilibria. A solution W¥(So(uz)) N W3(Sa(ug)) is shown.

Also, from now on we shall treat as a state variable. Thus, we obtain the system

= f(u) —Eu—w, (2.12)
W = —eu, (2.13)
E=¢, (2.14)
¢ =0. (2.15)

In six-dimensional:w e-space, each subspage- constant is invariant. Corresponding
to the three-dimensional subspace- 0 of uvé-space, which is invariant unde2.4)—
(2.6) for eache, we have the four-dimensional invariant surfage= f(u) — u in
uwée-space. Corresponding to the three-dimensional subgetsf v = 0, we have
four-dimensional normally hyperbolic subséis of the surfacew = f(u) — u. Ty and
T» (we shall not needy) are foliated into invariant lines

T§w) = {(u,w, &, ¢) :u ande fixed, & < A1(u) — 0, w = f(u) — ul,
T5w) = {(u,w, &, ¢) :u ande fixed, Aa(u) +0 < & w = f(u) — ul.

From the theory of normally hyperbolic invariant manifolifs7], each line7§(u) has
a three-dimensional unstable manifold"(7§(x)), and each lineT}(u) has a three-
dimensional stable manifol/*(T; (u)); these manifolds depend smoothly @n ¢). In

these coordinates, we wish to find, for each small 0, a solution of 2.12—(2.15

that lies in the intersection o' (7§ (uy)) and WS(T5 (ug)).
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3. Keyfitz—Kranzer system

For the system of conservation lawk.1)—(1.2), the corresponding Dafermos system

(2.4-(2.6) is

i1 = vy, (3.1)
Uy = v2, (3-2)
v1 = (2u1 — vy — v, (3.3)
v = (u? — vy — vy, (3.4)
E== (3.5)

The corresponding alternate Dafermos syst@m3—(2.19 is

U1 = ud —up — Eug — wa, (3.6)
Uy = %u% —uy — Eup — woy, 3.7)
w1 = —éu, (3.8)
Wy = —éup, 3.9
E=c¢ (3.10)
& =0. (3.11)

Motivated by[10,13] in (3.6—(3.11) we introduce the new variables
yi=eu1, 2= eus. (3.12)

We multiply the resulting system by, i.e., we rescale time by = ¢, and we use
a prime to denote derivative with respect §qThis differs from the use of prime in
Section2.) We obtain

Vi = Y3 — 2 — by — &2, (3.13)
Yo = %yf — &y1 — ely2 — 2wy, (3.14)
wy = —ey1, (3.15)
wyH = —y2, (3.16)
g =é, (3.17)

¢ = 0. (3.18)
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Note that this change of variables collapses the five-dimensional subspace of
uwée-space to a three-dimensional subspacef ywcée-space,

E={y,we:y=0 ¢=0}

Each two-dimensional set(u, w, &, ¢) : w = wg, & = &y, ¢ = 0} collapses to the
point (0, wo, &g, 0) of E. The advantage of this change of variables is that for small
¢ > 0, some solutions that take on very langevalues take on only moderatevalues.
In [10,13] the singular shock profiles consist of two outer solutions, expressed in
that satisfy the boundary condition$.14), and an inner solution, expressed)inthat
represents a large excursion in the solution. The difficulty lies in matching them.

In this paper we shall take systen(3.13—(3.18 to be the fundamental one to
analyze.

Settinge = 0 in system 8.13—(3.18, we obtain

Y= yf—ya (3.19)
/ 1 3

Y2 = 301 (3.20)

wj =0, (3.21)

wy = —y2, (3.22)
) (3.23)
¢ = 0. (3.24)

This five-dimensional system (recalk= 0) has the three-dimensional space of equilibria
E. The equilibria inE have all eigenvalues equal to 0.

The phase portrait of the two-dimensional syste8r9—(3.20 is shown in Fig.3.
There is a unique equilibrium at the origin. Through it are two invariant parabolas
y2 = ciy? with cx = 23+ +/3). Above y, = c4)y? is a one-parameter family of
homoclinic orbits. They are all tangent tp = c+y§ at both ends; each orbit is
represented by a unique solutiom (), y2(£)) with y1(0) = 0; y2({) is integrable; and
the homoclinic solutions are parameterized by ff"oo y2(0)df, 0 <y < 0o [17].

Proposition 3.1. Let go = (0, 0, wo1, woz, {g, 0) and ¢1 = (0, 0, wo1, w12, &y, 0) be
two points of E with wg2 > wi2. Then there is a unique solution (3.19—(3.24) that
goes fromgg to g1 and hasy1(0) = 0.

Proof. Let (y1(0), y2()) be the unique solution 0f3(19-(3.20 that is homaoclinic to
the origin, satisfiesy1(0) = 0, and hasfi’oOO v2(0) d{ = wo2 — w12. Then the desired
solution of 3.19—(3.29) is

G
10, y2(0), wo1, woz — / y2(n) dn, &o, 0). O

—00

We remark thaty1({) is an odd function and({) is even.
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Yz Y2=C. Y’

y,=C.y;
/ Y1

Fig. 3. Phase portrait of] = y2 — yp, yj = 33.

4. Blow up

Corresponding to the line%j(x) and 75 (1) in uwle-space, we have inwce-space
the lines

Mgu) = {(y,w, &, &)1 y1 = eug, yo = uz, & < da(u) — 8, w = f(u) — Eu, ¢ fixed),
M) = {(y,w, & &) 1 y1 = eu1, yo = e2up, Jo(u) + 0 < &, w = f(u) — Eu, ¢ fixed),

For smalle > 0, we wish to find a solution 0f3(13—(3.18 that lies in the intersection
of WY(M§(ur)) and WS(M5(ug)).

Notice thatMg(uL) and MS(uR) are lines in the three-dimensional spagewhich
consists entirely of equilibria with all eigenvalues equal to 0. A blow-up is necessary
to resolve the behavior of the system néaif15].

We shall blow upE, which is the product of the origin i yse-space withwiwo&-
space, to the product of a two-sphere withw,¢-space. The two-sphere is a blow-up
of the origin in y1yse-space.

The blow-up transformation is a map froff x R, x R3 to ywée-space defined as
follows. Let ((y1, y2, &), 7, (w1, w2, &)) be a point of $2 x R, x R3 we havey;? +
y22 + & = 1. Then the blow-up transformation is

y1 =y, (4.1)
2 = F2¥a, (4.2)
w1 = wi, (4.3)
w2 = wo, (4.4)

E=¢, (4.5)

& = Tre&. (4.6)
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Under this transformation the systerB.13—(3.18 becomes one for which the five-
dimensional sef = 0, which is the product of? with wiwoé-space, consists entirely
of equilibria. The system we shall study is this one divided /byDivision by 7
desingularizes the system on the get 0 but leaves it invariant.

We shall need two charts of? x R, x RS,

4.1. Chart fore > 0

Chart 1 uses the coordinates = y—gl Uy = % and (w1, wa, &, &) on the set of points
in $2 x Ry x R® with ¢ > 0. Thus we have

y1 = éut, (4.7)
2 = &%ua, (4.8)
w1 = wi, (4.9)
w2 = wa, (4.10)
¢=2¢, (4.11)
e =c¢. (4.12)

After division by ¢ (equivalent to division byr up to multiplication by a positive
function), the system3(13—(3.18 becomes the systen8.6)—(3.11). This is not sur-
prising; compare 4.7)—(4.8) and @.12. Thus, in our approach to singular shocks the
system 8.6)—(3.11) is a blow-up of the system3(13—(3.18 in one-coordinate patch.
Also, note that division bye is equivalent to changing the time coordinate frdm
back tor.

4.2. Chart fory, > 0

i — L . _F /5 — _E_
Chart 2 uses the coordinates= ik Fa/v2, b 75 and (w1, wp, &) on the

set of points ins? x R, x R® with 3, > 0). Thus, we have

y1 = ra, (4.13)
2 = r?, (4.14)
w1 = wi, (4.15)
w2 = wa, (4.16)

¢=¢ (4.17)

e =rb. (4.18)
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It is the use of this chart that enables the geometric matching of the two parts of
the solution ¢ and y, or outer and inner). It is the key advantage of the blowing-up
approach to singular shocks.

We divide by r (equivalent to division byr up to multiplication by a positive
function), and, by a small abuse of notation, as in chart 1 we ws$e denote the
rescaled time variable and a dot to represent derivative with respectTbe system
(3.13—(3.18 becomes

i=a?—1- éa“ + %b (—ﬁa — 2bwy + ba® + bzaw2> : (4.19)
=1 (a3 — 3p¢ — 3b%a — 3b3w2) , (4.20)
w1 = —rab, (4.22)
wp = —r, (4.22)
& = rb? (4.23)
h=—-1b (a3 — 3¢ — 32 — 3b3w2) . (4.24)

If we setb =0 in (4.19, we find thata = 0 at the four points

—\/3+«/§<a2:—\/3—«/§<ag:\/3—\/§<a4:\/3+\/§.

Forj=1,...,4, let
={(a’r7waéab):a=aj,r:0,b=0}.

Each P; is a three-dimensional manifold of equilibria ¢f.19—(4.24). These are “cor-
ner equilibria™: They lie in the intersection of the invariant sets- 0, corresponding
to $2 x {0} x R3, andb = 0, corresponding to the “plang’'= 0 in 52 x R, x R3. See
Fig. 4.

At the equilibrium (a, O, w1, w2, £,0), there is an eigenvalue 0, with the three-
dimensional eigenspace = 7 = b = 0; an elgenvalu%a(S — a?) with eigenvector
(1,0,0,0,0,0); an elgenvalu%a with eigenvecton(, & 5a 8,0, —1,0,0); and an eigen-

value —%a?’ with eigenvector(éz, 0,0,0,0,1). Thus the manifoldsP; are normally

hyperbolic.

The manifoldsP3 and P, will be most important to us.
Each point(as, 0, wo1, woz, £g, 0) of P3 has:

e A one-dimensional stable manifold tangent(tﬁ%, 0,0,0,0,1). This curve is con-
tained in the two-dimensional invariant plaﬁ(a;,r, wi, w2, &, b) r = 0,wy =
wo1, w2 = wo2, ¢ = &} The union of these curves WS(P3), a four-dimensional
manifold contained in the five-dimensional plane= 0.
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L
FTITY

Fig. 4. Phase portrait 0f4(19-(4.24, with w;, wy and ¢ coordinates suppressed. For= 0 and fixed
(w1, wo, &) we haver = w1 = wo = ¢ = 0; the phase portrait in this two-dimensional space is as shown.
For b =0 we haveb =iy = f =0 but wp # 0 for r # 0. Thus along the solutions shown in the space
b =0 with r > 0, wo decreases.

e A two-dimensional unstable manifold tangent to the plane spanné€d, iy 0, 0, O, 0)
and (0, lag’, 0, —1, 0, 0). This surface is contained in the three-dimensional invariant
plane{(a, r, w1, wz, &, b) : w1 = wo1, & = &y, b = 0}. The union of these surfaces is
WY (P3), which is the five-dimensional spade= 0.
Each point(az, 0, wo1, woz, &g, 0) of P, has:
e A one-dimensional unstable manifold tangent(tﬁf—l,o, 0,0,0,1). This curve is
2

contained in the two-dimensional invariant plafie, r, w1, w2, &,b) : r = 0, w1 =
wo1, w2 = wo, & = &g}. The union of these curves ®Y(Py), a four-dimensional
manifold contained in the five-dimensional plane= 0.

e A two-dimensional stable manifold tangent to the plane spanne@liy, O, 0, 0, 0)
and (0, %ag, 0, —1, 0, 0). This surface is contained in the three-dimensional invariant
plane{(a, r, w1, w2, &, b) : w1 = wo1, ¢ = &y, b = 0}. The union of these surfaces is
W2(P,), which is the five-dimensional spade= 0.

5. Corner Lemma

In blown-up geometric singular perturbation problems, at manifolds of normally
hyperbolic corner equilibria such as the; of the previous section, the following
problem arises: Given a normally hyperbolic manifatdof equilibria and a manifold
N that is transverse taVS(P), track the flow of N past P. At corner equilibria the
differential equation cannot be regarded as a parameterized family, so the Exchange
Lemma [9,8] is not relevant. The following lemma plays the role of the Exchange
Lemma for such points. Like the Exchange Lemma, it is a consequence of a result of
Deng [3] about solutions of Silnikov problems near nonhyperbolic points.

(The Exchange Lemma was originally proved using differential fofgjs The fact
that it is a consequence of Deng’s result is observedlih p. 58] The paper[l]
proves a result similar to Deng’s and then gives the argument by which it implies the
Exchange Lemma.)

The notation of this section is independent of that of the remainder of the paper.
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Consider a differential equatioth = f(w) on a neighborhood of 0 ifR? that is
c't4 | r>1, and:

(1) The origin is an equilibrium.

(2) There are integerg > 0, ¢ > 0, m > 1, andn > 1 such thatDf(0) hask + ¢
eigenvalues equal to Oy eigenvalues with negative real part, andeigenvalues
with positive real part, withk + £ +m +n = p.

(3) A codimension one subspadeof R? is invariant.

(4) The restriction ofDf(0) to S hask + ¢ eigenvalues equal to @ eigenvalues with
negative real part, and — 1 eigenvalues with positive real part.

(5) The origin is part of & + ¢-dimensional manifold of equilibrigP.

P is a normally hyperbolic manifold of equilibria. Each point &f has a stable
manifold of dimensionn and an unstable manifold of dimensiaen The union of the
stable manifolds of points of is WS(P), which has dimensioit + ¢ + m; the union
of the unstable manifolds of points @t is WY(P), which has dimensiom + ¢ + n.
P and WS(P) are necessarily contained

Assumption (3) is probably not necessary. However, it holds in the applications we
have in mind (in chart 2 of Sectio#, S is the setr = 0), and it simplifies the proof.

Let N be aC"** manifold of dimensiork +n that is transverse t&#S(P) at a point
p in W3(0)\ {0} and such that, N N T, WS(0) = {0}. Then the intersection oV and
WS(P) is a manifold of dimensiork that projects, along the fibration d¥/S(P) by
the stable manifolds of points, to f/adimensional submanifold of P. Let y, be a
coordinate orR? that vanishes oi§, and, foro > 0, let Ng = NN{y, = ¢}, a manifold
of dimensionk+n —1. Letq be a point inW"(Q) with y,(g) > 0. Notice thatW"(Q)
has dimensiork 4+ n. Under the flow ofi» = f(w), N5 becomes a manifoldVy of
dimensionk + n that passes near. Let U be a small neighborhood af.

Theorem 5.1 (Corner Lemma)Asd — 0, NsNU — WY(Q)NU in the C" topology

To prove the Corner Lemma, we define coordinaiesv, x, y) on a neighborhood
of 0 in R” with u € R¥, v € R, x € R", y € R". The coordinatey, has already
been chosen, an@:, v, x, y1, ..., y,—1) are Fenichel coordinates ¢h More precisely,
and ignoring the fact that we are working locally near the origih,is u-space;P
is uv-space;WS(P) is uvx-space;WY(P) is uvy-space. MoreoverlWSu?, 1°,0,0) =
{(u,v,x,y) :u= u v =9, y = 0}, andW“(uO, v, 0, 0)={(u,v,x,y):u= u% v =
0, x = 0}. See Fig.5. Therefore

o= x' Ay, i=1,...,k, (5.1)
b =x"Biy, i=1....¢ (5.2)
x = Cx, (5.3)
= Dy, (5.4)

where A; and B; arem x n matrices,C is m x m and D is n x n. The entries of these
matrices are functions df, v, x, y). The eigenvalues of have negative real part, and



S. Schecter / J. Differential Equations 205 (2004) 185-210 199

N

Ny /

p

V7

Fig. 5. Phase portrait of5(1)—(5.4) with k =0 and¢ =m =n = 1. ThusQ = {0}, N is one-dimensional
and N5 is a point. In this simple situation, the Corner Lemma just says that the solution through this
point passes neaj and is C"-close to the one-dimensional unstable manifold of the origin rear

those of D have positive real part. The coordinate change can be chosen @fe
[3], so the system5(1)—(5.4) is C"*2, and the manifoldV is now C"+2.

Denote the entries ab by d; ;. Since the space, = 0 is invariant, we may assume
thatd,1=---=du -1 =0, so thaty, = d, ,y, andd, , is a function of(u, v, x, y)
with d, , > 0. After division byd, , we may assume tha, , = 1. Sinced, , is crti,
the system §.1)—(5.4) is now C"*1, but N is still C"*2.

Let t > 0. The solution of %.1)—(5.4) on the interval 0< ¢ < t with boundary
conditions

1

u(t) =u-,
v(0) = W0,
x(0) = X0,
Y@ =yt

is (u, v, x, y)(t, 7, ut, 00, x0, y1), 0<r < 7. From[3], (u, v, x, y) is aC” function of
(¢, 7, ut, 00, x9, y1); moreover, there exist > 0, A < 0 < x and K > 0 such that for
max(|ut|, |v°], [x°], |y1]) < p and for any multi-index with |i| <,

ID'x| < Ke*, (5.5)
ID'y| < Ket'—™, (5.6)
ID'(u — ub)| < KeH =D, (5.7)
ID' (v — WO < KeHHHi=D, (5.8)

Here, D' represents repeated differentiatipih times with respect to any sequence of
the variables(t, 7, u®, v°, x0, y1).
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In the remainder of the proof we shall assume for simplicity that 1. Then N
meets WS(0) at p = (u,v,x,y) = (0,0, x% 0) with x° a nonzero real number. We
may assume that & [x° < p, and we fixx? for the remainder of the proof. We
may assume thaV is the set{(x, v, x,y) : x = x% and v = h(u, y)} with h a C"*+2
function andh(u, 0) = 0. Therefore there is ahx n matrix H, whose entries ar€”+1
functions of (u, y), such thath(u, y) = H(u, y)y.

(If m > 1, the functionhs must also givem — 1 components ofc as functions of

(u, y).)
Let

A = (@l ot 2t yY sl < g max(|v2]. [x]. [y}]) < p. andg <yl <ol
1 .1y.,..1 P 1 P 1
B = {@hyh: 'l < 5.1y < p, and 5 <y < pl,
P
Cor = {@® %) : max(u® — ul, 00)) < Sh

We may assume thate A andU C A.
1 _
Given (u', y}) € B and a smallb > 0, let 7 = In 2% and defineF, 15 : C,0 —
Rk—i—@ by

Fay 5@ 00 = @(©, 7, ut, 0% x%, y1), h(@®, y(0, 7, u®, v°, %, y1)).

Lemma 5.2. For § > 0 sufficiently small independent o#!, y) € B, Fuiyig is a
contraction ofC,1. Moreover there is a constant/ independent ofu®, y!) € B such
that for all ®, v%) € C,1, IDF1 145w v <M ()"

Proof. In this proof only, to simplify the notation, lef = F,1 1 5 with (u', y%, 9)
fixed, (u!, y}) € B. By (5.7),

1\ H _
|F1® %) —ul| < Ke™# < K (%) <K (%) " (5.9)

Also, by (6.6), [y(0, 7, u®, 1%, x0, y1)| < Ke™#* < K (4)". For § sufficiently small,
this is less tharp.

Let L = max(|a, | DAll, [ HIl, IDHI|) on {(«, y) : max(ul, |y]) < p}. Then, using
h = Hy, we see that

|Fw® %) < LKe ™™ < LK (%)_”. (5.10)

It follows from (5.9—(5.10 that for § sufficiently small independent af:!, y') € B,
F mapsC,: into itself.
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To estimate|| D F,1 1 5 %, v%)|, we consider the partial derivatives #f We have
6F1 =0, and, using §.8),

0,0 ou 0.0 .1 - PNTH
|| < >||—|| <0ru 00, 0, yh|| < Ke SK(25> .
Also,
OF oh o(H
Eg(uo,vo)za(u (0, 7, ul, by = (auy)( . v(0, 7, ut, 00, x0, y1))

OH
= a—(uo, y(0, 7, ut, 00, x% y1))y(0, 7, ul, v0, x°, yh,
u

so by 6.6), 1220 v0)|| < LKe™# < LK (£)7". Finally,

oud

0F> Oh
a0(" °)—ay< Ly, 7t 00 x yl» 50w ut v% a0y,

so by 6.6), [15% 6’72 2% 0| < LKe " < LK (£)™". From these estimates, the estimate
on |[DF 1,14 (uO, 19| follows, and hence the fact thdf,: ,1 5 is a contraction of
C,a for § > 0 sufficiently small independent @i, yY). O

Lemma 5.3. The fixed point(u®, v°) of Fui s satisfies the foIIowing estimates
There is a constan such that|u® — ul|, [9], |2 — 7], || o, 1S dli %
oul 1 l

are bounded by (4) " independent ofu®, y*) € B.

oul ”

Proof. The estimates omu® — u!| and [v9] follow from setting (x°, v%) equal to the
fixed point in 6.9 and 6.10.
To estimate the derivatives, let= (12, v9), p = (1, y1), and let

Fs(z, p) = F(;(uo, 00, ul, yl) = F1 415 w®, vY).

The fixed pointz(p) of Fs(z, p) satisfiesz(p) = Fs5(z(p), p), SO

-1

d OF OF;s
< (I——(z(p) p)) a—:(z(p),p)- (5.11)

dp
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0F}

— OFs -1 .
Lo pll = M ()" s0 (1= Lp).p) =1+ P with
Pl <M (2%)_“ for a possibly largem. Therefore we can rewrites(11) as

By Lemmab5.2 ||

(5 H)un(@ 5)
oul oyl out oyl
Calculating as in the proof of Lemnf2, we find
0F1 p\—H
- < K ur < K (_) ,
I L I e %5
18 < ke <k (£)
oyl" — - 20 ’
1 P2y ke < mk (ﬁ)_“
oul” — - 20 '
OF -
1521 = MKe ™™ < MK (25)
oyt 26

The estimates on the derivatives follow easily, again for a possibly lavger ]

As in Lemma5.3 let the fixed point be ofF,1 15 be % 1%, and lety® =
y(0, 7, ut, vp, %9, yb). Then 00 = h(ud, yo), so (9, 00, x0, yo) € N.
Define g% : B - R*! by

St yh =, 0@ ut 00, 10y = 1 1Y),

Then (u!, v1, x%, y1) € A. Moreover, if we denote the timemap ofw = f(w) by ¢.,
. . rl

then (ut, vt x1, y1) = ¢, 10, x%, ). Sincej, = y,, we haveyy = e*y? = 2,9,
s0y% = §. Therefore(u®, v°, x0, y0) € Ns and (u?, v1, x1, y1) € N;. Therefore NsNU

is part of the graph of°. To complete the proof of the Corner Lemma, we need only
to show that a® — 0, g° — 0 in the C”-topology.

We consider onlyg$. By (5.8) and Lemma5.3,
P

R ) —u 2
lgdh yhl = (e w0, 0y < 0+ ke < M (£5) T+ K (55)

Therefore,g® approaches 0 uniformly i, v1) asdé — 0.
Also, by (6.7) and Lemma5.3,

ov ov oo
157G ut, 00, X0, yh + 6T ut, 00, x°, yl)ﬁ(ul, yHll

8gi§ 1.1
IIﬁ(u,y)ll

IA

Ke™ + Ke''™M (%)7” <K (%)i +KM (%)H‘ .
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Similar estimates hold foiﬁ, except that additional terms occur in the partial derivative

N0
with respect toy! because of the dependencewbn y!. Indeed, in calculating;%,
we must include the terms '

v

—(‘c,f,ulv %0 y) (u y)—i——(rru 0 x y)ﬁ1
ot oy,

@, yb.

The size of each of these terms is boundedky™ ; < K (L) (%)
Similar estimates hold through order This Completes the proof of the Corner

Lemma.

6. Proof of main result

We return to using the notation of Sectiohs4.

Theorem 6.1. In the Keyfitz—Kranzer system of conservation lq&vs)—(1.2), let u
and uz be points ofR? with w1 # ug1. Let

éO — M’ Yo = fZ(ML) — fZ(MR) - 60(“L2 - uRZ)- (61)
Urli —Uugri

Assume

(1) &g < Ai(uy) fori =1, 2.
(2) Ai(ug) < &g fori =1, 2.

Then there is a singular shock with Dafermos profile framto ug. In other words
for small ¢ > O there is a solutionu (&) of the boundary-value problert2.4)—(2.7),
and as ¢ — 0, u.(¢) becomes unbounded

Let us make several remarks about this theorem.
1. Foré < &g, limgou() = ur, and foré > &g, limg_ou:(&) = ug. The limiting
function

ug for &> &g,

wo(E) = {ML for & < &o,

can be regarded as a shock wave with spggdissumptions (1) and (2) say that this
shock wave is overcompressive.
2. From 6.1), the first Rankine—Hugoniot condition for the shock wang¢),

filur) — faur) — Eo(upr —ugy) =
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is satisfied. The second, however, is not: Fra@rl)(and assumption (3),

fo(ur) — fa(ur) — Co(ur2 —ugr2) =79 > 0.

The numbery, is called the “Rankine—Hugoniot deficit” i[22].

3. For fixeduy, the set ofug for which assumptions (1)—(3) hold is an unbounded
open set. For a precise description $&@] or [13].

4. Sevel[22] observed that the system of conservation lav){(1.2) has the convex
entropy p = e%“f‘uz, with entropy flux pu. However, we shall make no use of this
fact.

To prove the theorem, we shall work with the syst&8m8—(3.18 in ywée-space. As
explained at the start of Secti@h we seek solutions in the intersection W'IU(MS(ML))
and WS(M5(ug)), ¢ > 0. In fact, we shall work in the blowup ofwée-space that was
defined in Sectiord.

We shall first describe the subset $f x R, x R3 near which the solutions we seek
are to lie. The description uses the two charts of Section

In chart 1, the linesM{(u;) of Section4 correspond to lineg(u;) described in
Section2. We have

WH(TQ L)) = (e, w, &, 6) u € Ug, & < Ja(ur), w = fur) — Cur, e =0},
where U: is an open subset ofi-space that depends of (and u.). Therefore,

WYU(Td(uy)) is three-dimensional.
In chart 2, the linesV§(u;) correspond to lines

Ni@ur) = {(arw, & b) 1a = % r =il w= fur) — up, & < jaur).
b = ! }
o Jurz
We have

WYNGuL)) = {(a,r,w, & b) < (a,b) € Ve, r =0, w = f(ur) — Cup, & < Aa(up)},

where V: is an open subset ofb-space that depends of (and u;). Therefore,
WY(NQ(uy)) is three-dimensional.
In chart 2, let

Cz3={(a,r,w,{,b):a=az,r=0,w= f(ur) —Cur,& < Ja(ur), b =0},
a line of equilibria in the three-dimensional space of equilibPia WS(C3) is a two-

dimensional surface in the five-dimensional space 0, the union of the stable man-
ifolds of the points ofCs.
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We claim that the intersection cWU(Ng(uL)) and WS(P3) is an open subseP3 of
W3(C3), namely the points o##S(C3) with b > 0. To see this, le§ = (a3, 0, w, £, 0)
be a point 0fC3, so¢ < A1(ur) andw = f(ur)—Cuy . In chart 2, the stable manifold of
g is a solution of 4.19—(4.249 of the form (a(7), 0, w, &, b(1)) in the two-dimensional
invariant plane{(a,r,w, &, b) : r = 0,w = w,{ = £}, a copy ofab-space. In chart
1, this solution corresponds to a solutign(t), w, £, 0) of (3.6—(3.11) in the two-
dimensional invariant plang¢(u, w, &, ¢) : w = w, ¢ = £,¢ = 0}, a copy ofu-space.
In [17], Section 3.3, it is shown that in backward time this solution approaches the
equilibrium uy, which is a repeller becausé < A1(u;). Therefore, in chart 1 it is
contained inWY(7Q(uy)); in chart 2 it is contained iIWY(N3(up)).

Similarly, in chart 1, the linesV5(ug) of Section4 correspond to linedy (ug) of
Section2. We have

WSTDur)) = {(u, w, &, &) 1 u € U, Ja(ug) < &, w = f(ug) — Cug, &= O},

where U: is an open subset ofi-space that depends ofi (and ug). Therefore,
WS(T2(ug)) is three-dimensional.
In chart 2, the lines\5(ug) correspond to lines

u . A
N5(ug) = {(a,r,w, & b) 1a = \/%, r=eéyugrz, w = f(ug) — Cug, l2(ug) < ¢,
1
b = ).
JUuR2
We have

WS(NS(ug) = {(a,r,w, &,b) : (a,b) € Ve, r =0, w = f(ug) — Eug, i2(ug) < &},

where V: is an open subset ofib-space that depends of (and ug). Therefore
WS(NQ(ug)) is three-dimensional.
In chart 2, let

Co={(a,r,w,¢,b):a=ax,r =0,w= f(ur) — Cug, 22(ur) < ¢, b =0},

a curve of equilibria in the three-dimensional space of equililftia WY(C>») is two-
dimensional, the union of the stable manifolds of its points. The intersectid®'of,)
and WS(Ng(uR) is an open subseP, of WY(C»), namely the points of¥!(C2) with
b > 0.

Let

wr = f(ur) —Eour, wgr = fur) — Eour.
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From 6.1, wg1 = wr1 and wg2 = wr2 — 7g. Also, let
qr = (a3, 0, wr1, wro, £, 0), gr = (a2, 0, wr1, wr2, &p, 0).

By assumption (1)¢g; € C3, and by assumption (2}r € Ca.
Sinceyy > 0 by assumption (3), Propositid® 1 yields a unique solution

P

6

3200, y2(0), w1, wrz — / y2(n) dn. éo.0) 6.2)

of (3.19—(3.29 that goes from(0, 0, wr1, wr2, &, 0) to (O, 0, wgr1, wga, &g, 0) and
hasy1(0) = 0.
In chart 2, 6.2 corresponds to a solution
T
q(t) = (a(7), r (1), wr1, sz—/ r(o)da, &y, 0). (6.3)

—00

As t — oo, r(t) — 0. Also, recall that ag — o0,

y2(0) .
y1(0)? *
Therefore
. : y1(O) 1
lim a(r) = lim = —— =a3,
T—>—00 {—>—00 m ﬁ 3
y1(D) 1

lim a(r) = lim =
T—>00 C

S 2O ex

Hence,q(t) approaches;; ast — —oo andgg ast — oo. From the remark after
Proposition3.1 and @.2)—(4.3), we see that(t) is an even function and(t) is odd.

In $2x R, x R, we search for solutions near the union of the following five curves:
(1) the portion ong(uL) with & < &q; (2) the branch of the stable manifold gf in
b > 0, (3) the solution §.3) from ¢, to gg, (4) the branch of the unstable manifold
of gg in b > 0; (5) the portion Ong(uR) with & > &;. As we have seen, curve (2)
is in WY(N(ur)), and curve (4) is inWS(N(ug)).

The solutions we seek are to lie in the intersectio8f(N§(uy)) and WS(N5(ug))
for ¢ > 0. They correspond to solutions d3.13—(3.18 that lie in the intersection of
WY(M§(ur)) and WS(M5(ug)).

Let No(ur) be the union of theVj(uz) with 0 < & < &9, a two-dimensional set. Its
unstable manifoldV"(No(u)) is the union of theW"(N§(ur)) and is four-dimensional.
We haveWY(No(uy)) N WS(P3) = Qs.

as.
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Similarly let N2(ug) be the union of theV5(ug) with 0 < ¢ < ¢, a two-dimensional
set. Its stable manifoldV3(N2(ug)) is the union of theWs(N5(ug)) and is four-
dimensional. We havéVS(No(ug)) N WY(P2) = Qo.

Proposition 6.2. WY(Ng(u1)) is transverse tdVS(P3) along Q3. Similarly, WS (ug))
is transverse toW"(P,) along Q».

Proof. We prove only the first statement. At a point @f3, the tangent space to
WHY(No(ur)) is spanned by(1,0,0,0,0,0), (0,0, —ur1, —ur2,1,0), (0,0,0,0,0,1)

(all tangent vectors th”(Ng(uL))), and a vector with nonzere-component. Among

the tangent vectors tavVS(P3) at that point are(x,0,1,0,0, %) and (x,0,0, 1,0, %),

where the values of the starred entries are unimportant. These six vectors are linearly
independent. [

Proposition 6.3. Within the five-dimensional spade= 0, W"(C3) and W5(C2) meet
transversally alongy (7).

Proof. We work in the spacé = 0, with coordinateqa, r, w1, wo, £). The differential
equation is therefored(19—(4.23 with b = 0. Letg(a) = a>~1—2a*. The linearization
alongqg(1) is

a g'(a(7)) 0 0 0O a
G 3a(0?r(t) %a(m® 0 0 O] 7
d
il B 0 0 0 0 of|w (6.4)
t
w2 0 -1 0 0 O w2
é 0 0o 00 o \¢
The adjoint equation is therefore
a —g'(a(®) —a@?() 0 0 0\ (a
7 0 —ta@®® 0 1 0 7
d
il 0 0 0 0 o] w1 (6.5)
W 0 0 0 0 O] w
& 0 0 00 0o \¢

T,, WY(C3) is spanned by the vectorgl, 0,0, 0, 0), (O, %ag,o, —1,0) and (0, 0,
—ur1, —ur2, 1). SinceT, ) W"(C3) approaches,, WY(C3) ast — —oo, the orthogo-
nal complement of,;, W"(C3) approaches the space spanned;by= (0,0, 1,0, u.1)
and g2 = (0,1,0, a3, 2adu2) ast — —oo. As 1 — —oo, the unique solution of
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(6.5 that approacheg; is the constant solutiogs; and the unique solution of6(5)
that approachess; is

151
(a(7), (1), 0, a3, aguLz)

6 ° 6

where
T . l
Flr) = 1— / e Js sam3dp ~(a(0)® — dd) do,
o 6

a(t) = — / e~ Jo &' @pndp %r(a)a(a)zf(a) do.

—00

Therefore these two solutions d@.6) span the orthogonal complementl;}f(r)W”(Cg)

Similarly, 7, WS(C>) is spanned by the vector4, 0, 0, 0, 0), 0, % 6az, 0,—-1,0) and
(0,0, —ug1, —ug2,1). Thus its orthogonal complement is spannedghy= (0,0, 1, O,
ug1) and g4 = (0,1,0, 2a3, 2adug2). As 1 — oo, the unique solution ofg(5) that
approachegs is the constant solutiogs. The unique solution of6(5) that approaches
qa 8ST —> 00 IS

151
a(0), #(1), 0, az, —a3ug2)

6

where
[o/e] . 1
o) = 1+/ ¢~ Jo 5ap)*dp ém@s—ag)da,
T

ar) = / e~ Js g'@p)dp %r(a)a(a)zf(a)da.

T

Therefore these two solutions @.6) span the orthogonal complement®f;) W3(C2).

We wish to check thafl, o) W"(C3) and T, W3(C2) are transverse. It suffices to
check that the four vector®, 0, 1, 0, uz1), (@(0), 7(0), 0, 3a3, 2adu;2), (0,0, 1,0, ug1)
and (a(0), 7(0), O, gag, gagum) that span their orthogonal complements are linearly in-
dependent. Using the last four components of these vectors and the fagt thatas,
we have

0O 1 O url
FO 0 %a§ %adurz Lo as
det 893 893 _ _6(,-(0)+r(0))a§’(uR1—MLl)-
0O 1 O UR1
PO 0 3af Gadur
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Sincea(t) is an odd function and, = —as, we see that

: 1
e—/(? Fa(p)®dp 6<a(a)3 _ ag) do

0
F(0) +7(0) = 2—/

—0oQ

o0 1
+f0 eI §a3dp é(a(a)?’ —dd)do =2.

Also, ug1 — ur1 # 0 by assumption. Therefore, the determinant is nonzeld.

Proof of Theorem 6.1.Let ¢ > 0 be small and choos& >> 0. In chart 2, by
Proposition6.2 and the Corner Lemmay"(N§(uz)) passes;; and arrives neag(—T)
C! close toWY(C3). (In using the Corner Lemma, take the origin at, take N to
be a codimension one slice a¥"(No(ur)) transverse to the vector field, takg to
ber, and takeQ to be C3.) Similarly, W3(N§(ur)) passesjr (in backward time) and
arrives nearg(T) C! close toWS(C»,). Both WY(N§(ur)) and WS(N§(ug)) lie in the
five-dimensional spaceb = ¢. With the aid of Propositio.3 we see thaW"(N§(u 1))
and WS(N§(ug)) meet transversally within that space. The result follows.
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