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Abstract

The existence of strong solutions of Cauchy problem for the following evolution equation
du(t)/dt + 6(pl(u(t)) - agoz(u(z)) > f(r) is considered in a real reflexive Banach spate
where dpl and dp? are subdifferential operators frov into its dual V*. The study for this
type of problems has been done by several authors in the Hilbert space setting.

The scope of our study is extended to te&/* setting. The main tool employed here is a
certain approximation argument in a Hilbert space and for this purpose we need to assume that
there exists a Hilbert spadd such thatV ¢ H = H* c V* with densely defined continuous
injections.

The applicability of our abstract framework will be exemplified in discussing the existence
of solutions for the nonlinear heat equationix, t) — Apu(x, 1) — [l 2u(x, 1) =f(x,1), x €
Q, 1>0, ul,p=0, whereQ is a bounded domain ifR". In particular, the existence of local
(in time) weak solution is shown under the subcritical growth conditioa p* (Sobolev’'s
critical exponent) for all initial data:g € W&’”(Q). This fact has been conjectured but left as
an open problem through many years.
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1. Introduction

Let V be a real reflexive Banach space and Wt be its dual. The main purpose
of this paper is to investigate the solvability of the following Cauchy problem in the
V-V* setting, i.e., to find a solution(r) in V satisfying the equation iv*:

du (1) + 09 (u(t)) — 89*(u(t)) 3 f(r) In V¥, O0<t<T,
(CP) dt
u(0) = uo,

wheredpl, 0¢p?:V — 2V are the subdifferential operators of proper lower semicon-
tinuous convex function®!, ¢?:V — (—oo, +00].

The existence and the asymptotic behavior of strong solutions are already studied
by Koi-Watanabe[8], Ishii [6] and Otani[10-12]in the Hilbert space framework. In
particular, the following initial-boundary value problem falls within the scope of the
nonmonotone perturbation theory developed1,12}

aa—b;(x, 1 —Apu(x,t) — |u|q_2u(x, 1) = f(x,1), (x,t) e 2x (0, T),
(NHE) Y wx, 1) =0, (x,1) € 0Q x (0, T),
I/l(x, 0) = MO(x)a X € Q,

where A,u(x) := div(|Vu(x)|?~?Vu(x)) and Q is a bounded domain ifR" with
smooth boundaryQ.

On the other hand, Faedo—Galerkin’s method gives another useful tool to study (NHE)
such as in Liong9] and Tsutsumi13].

The theory of perturbation for subdifferential operators in the Hilbert space setting
has an advantage over Faedo—Galerkin's method in that it can assure a better regularity
of solutions such as,, A,u € L2(0, T; L?(Q)).

For the quasilinear case whege# 2, however, it requires a strong restriction on
the growth order of the perturbed terniu|?9—2u, which is caused by the loss of the
elliptic estimate forA,,.

As is well known, the theory of elliptic equations bears close relations with the theory
of evolution equations, and in the theory of elliptic equations, the Fréchet deriviative
of a C1-function ¢ from V into R is usually regarded as the operator frafinto V*.

We also recall that the statement of “Palais—Smale” condition or Mountain Pass lemmas
is formulated in theV-V* setting; this setting plays a natural and essential role to derive
the well-known fact that the equaticrA ,u(x) = lul9%u(x), x € Q, ulpo = 0 admits

a nontrivial positive solution if and only ifj is subcritical, i.e., 1< ¢ < p*, where

p* denotes the so-called Sobolev’s critical exponent, provided ¢has a bounded
star-shaped domain. From this point of view, it would be very natural and important
to investigate the solvability of (CP) in thé-V* setting. However the study in this
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direction is not fully pursued yet even for the nonperturbed case whete= 0, except
in [2] and [7].

Moreover it is readily suggested from the study of nonlinear elliptic equations that
the perturbation theory for subdifferentials in theV* setting should remedy the
deficiency in the Hilbert space setting mentioned above. In fact, as an application
of our abstract results, it is shown that (NHE) admits a local (in time) weak solution
under the subcritical growth conditiop < p* for all ug € W&”’(Q). This fact is
already known for the semilinear cage= 2. For the general case, however, this fact
has been conjectured but left as an open problem through many years.

The content of this paper is as follows. In the next section, our main results on
the existence of local or global (in time) solutions are formulated and some related
materials to be used later are prepared. The proofs for main results are given in Section
3, and the applicability of our abstract results are exemplified in Section 4.

2. Main results

Let V be a real reflexive Banach space andWétbe its dual. Throughout this paper,
we assume that there exists a real Hilbert spdocahose dual spacél* is identified
with H such that

VCH=H"CV* 1)

where the natural injection frod into H as well as that from* into V* are densely
defined and continuous.

To formulate our results, we need the notion of subdifferential operators from a
Banach space« into its dual X* defined below. Let®(X) be the set of allproper
lower semicontinuous convex functidinem X into (—oco, +00], where ‘proper’ means
that theeffective domainD(¢) of ¢ defined byD(¢) := {u € X; ¢(u) < 400} is not
empty. Thesubdifferentialdx (1) of ¢ atu in X is defined by

Oxo) :={f € X*5 o) — o) =x+(f,v—u)x for all v e D(p)}

with domain D(0x @) := {u € D(¢); Oxp(u) # @}, wherex«(-, -)x denotes the duality
pairing betweenX and X*. For simplicity of notation, we writede and (-, -) instead
of dxe and (-, -)x, respectively, if no confusion arises.

In particular, whenX is a Hilbert spaceH and ¢ € ®(H), then

Ogow) :={f € H; p(v) — o) =>(f,v—u)y for all ve D(p)},

where (-, )y denotes the inner product éf. It is well known that the subdifferential
operatordy ¢ becomes a (possibly multi-valued) maximal monotone operator Xom
into X* (see[3-5]). Especially, in the Hilbert space setting, various nice properties are
known. We summarize some of them without their proofs for later use.
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Let ¢ € @(H). Then the Yosida approximatiofdy @), of g coincides with the
subdifferential of theMoreau—Yosida regularizatiop, of ¢ given by

. 1 2
Q) = UIQL 27 lu — vy + o).

More precisely, the following lemma holds.

Proposition 1. Let ¢ € #(H). Then¢; becomes a Fréchet differentiable convex func-
tion from H into R and is characterized by

1 A
P7(0) = ol Ll + o(Ju) = §|<0H<p>;,<u>|§, + o(J;u),

where (0y @), and J, are the Yosida approximation and the resolventgfp, respec-
tively, i.e., J; = (I+20¢y) "t and (0g¢); = (I—J;) /A Moreoverdy (¢;) = (0 ®);,
wheredy (¢;) denotes the subdifferenti@ifréchet derivativeof ¢, o(Ju) <@, u) <
@) forall ue H, A>0and ¢, (u) - ¢(u) asi— O forall u € H.

The following proposition yields an information on the chain rule §ar

Proposition 2. Let ¢ € ®(H) and suppose that € W12(0, T; H), u(t) € D0y @)
for a.e.r € (0, T) and that there existg € L2(0, T; H) such thatg(t) € 0y o(u(r))
for a.e.t € (0, T). Then the functiorr — ¢@(u(¢)) is absolutely continuous of0, T']
and the following holds

d du
— o)) = (h(t), — (t)) Vh(t) € Ogo(t)) for ae. te(0,T).
dt dt %

In the present paper, we are concerned witong solutionf (CP) in the following
sense.

Definition 1. A function u € C([0, T]; V*) is said to be a strong solution of (CP) on
[0, T, if the following conditions are satisfied:

(i) u(r) is a V*-valued absolutely continuous function ¢@, 7'].
(i) u(r) — ug strongly in H ast — +0.
(i) u(r) € DY) N D(@¢p?) for a.e.r € (0,T) and there exist sectiong'(r) €
¢! (u(r)) (i =1, 2) satisfying:

ill_btt (1) + g*(t) — g%(t) = f(t) in V* for a.e.t € (0, T). 2)

Throughout the present paper, we denoteCbgr C; (i = 1, 2,...) positive constants
which do not depend on the elements of the corresponding space or set. Moreover let
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us denote byl the set of all monotone nondecreasing functions fridyH-oo) into
itself. For p € (1, +00), p’ designates the Holder conjugatemfi.e., p’ = p/(p —1).
Our basic assumptions are the following:

(Al) [ulf) — C1lul?, — C2<C3p ()  Vu € D(pY), 1< p < +oo0.

(A2) D(pY) c D(3¢?). Furthermore if{u,} is a sequence such that
SUBcio, 7 {0 Wn (1) + lun (D]} + fg 1dun()/dt13 dt is bounded,
then for everyg,(-) € d¢%(u,(-)), {g,} forms a precompact subset in
C(0,T]; V™).

(A3) There exists an extensionbl2 € ®(H) of (pz, ie., <7)2(u) = (pz(u) Yu eV,
such thatp! (Jyu) <i1 () + L(lulw)) Y24 € (0,11, Yu € D(gph),
wherel; € £ (i =1,2) and J, denotes the resolvent (zf}ngbz, that is,
Jy =+ 0> L.

(A% %) <k@(u) + Calul?, + Cs Vu € D(pl), 0<k < 1.

Remark 1. (A3) is weaker than the well-known sufficient condition for the maximality
of Ayl + onp*:

0} (L) <@l w) + CL Yi e (0,11, Yu € D(p}).

where (p}_l denotes the extension @' onto H which will be given in the proof of
Theoreml.

We note that (A2) assures the continuity f in the following sense.

Proposition 3. Assume that{A2) is satisfied. Let{u,} be a sequence i (pl) such
that u,, — u weakly in V andpl(u,) is bounded. Then it follows that?(u,) — ¢@°(u).

Proof of Proposition 3. Let {u,} be a sequence i®(¢') such thatu, — u weakly
in Vasn — +oo and ¢(u,) is bounded. Then from the fact that? € &(V), it
follows that:

*(u) < lim inf @2 (). ®)

On the other hand, for each € N, let g, € dp?(u,) and setv,(t) = u, and
h,(t) = g, for all r € [0, T]. Then we see that sper[)O_T]{(pl(vn(t)) + v |E) =
©Yun) + |un|y is bounded,dv,/dt = 0 and h,(-) € dp?(v,(-)). By (A2), we can
extract a subsequende’} of {n} such thatk, — h strongly in C([0, T']; V*), which
implies {g,/} becomes a strongly convergent sequenc# fn
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Hence sincep?(u,) < p2(u) + (gu, uy — u), we get

lim sup @?(u,) < p?(u) + s Uy — 1) = Q%(u). 4

lim (
n'—+00 n'—+00

Therefore it follows from 8) and @) that ¢2(u,’) — @?(u). Since the limit is unique,
we find thatg?(u,) — @?w). O
Now our main results are stated as follows.

Theorem 1. Assume thafAl1)—(A4) hold. Then for allug € D(¢?) and f € Wi?'(0,
T:;V*), (CP)has a strong solution u of0, T'] satisfying

u € Cy(0,T]; V)N W20, T; H),
u(t) € D@PYH N D@9?) for a.e. t € (0,T),

¢l € L2(0,T: V¥), g¢2e C(0,T]; VY, ®)
sup @(u(r) < +oo, @*(u() € C([0, T,
t€[0,T]

where g’ (i = 1,2) are the sections of¢’ satisfying(2) and C,, ([0, T]; V) denotes
the set of all V-valued weakly continuous functions[OnT].
Moreover the following energy estimate holds true.

IAF
0

u 1 2
o | dt+ @) + ¢=(uo)
T

2
H

tld
<OMuo) + 92t + (F©). u(®) — (£(0), ug) — fo <d—f<r>,u(r>> v (6)

for all + € [0, T].

As for the existence of local (in time) strong solutions, we do not need to assume
(A4), which might be somewhat restrictive from the view point of applications to P.D.E.

Theorem 2. Assume thatA1)—(A3) hold. Then for allug € D(¢') and f € W7'(0,
T; V*), there exists a numbefy € (0, T'] such that(CP) has a strong solution u on
[0, To] satisfying(5) with T replaced byTy.

As for the global (in time) existence, we introduce the following assumption:

(A5)  ap(u) < (¢ —n, u) + l3(@2W)) - @ () Vlu, & € dp, Viu, nl € dg?,
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whereo > 0 andl3 denotes a nondecreasing continuous function ffmt-oo) to R
satisfyingi3(0) = 0.
The following theorem ensures the existence of small global solutions.

Theorem 3. In addition to all the assumptions in Theoré&nassume thaC; = C2 =0
in (A1), 9?>>0 and (A5) is satisfied. Letg be a positive number such thai(do) < a.
Then for all R > 0, there exists a positive numbeér such that for allT > 0 and
(ug, f) belonging to

XAR:{WmﬂGDWBXW“ﬂQﬂvW

T , T4 i
www+ﬁ umwun+ﬁ 40

dt<R,
drt

V*

1/p
} < 5R ,
1T

®?(uo) < do,

1 ’
luol i + {max(l, ?> H|f(.)|l’*

where
T !/
/ | o i<
lrow] =1 . ,
LT sup | 1f@b.dtif T>1
te[l,T] /-1

(CP) has a strong solution u of0, 7] satisfying(5).

Remark 2. All results described above hold true even if ,%lfl@T]{(/)l(u,,(t))—l-mn(t)lH}
in (A2) and @(J;u) in (A3) are replaced by SWRo. 7y lun(Mlv and |Jzuly,
respectively.

3. Proof of main results
3.1. Proof of Theorem 1

The first step of our proof is to introduce suitable approximation problems for (CP)
in the Hilbert spaceH. To this end, we first define the extensitp@{ to ¢! on H by

L o) if ueVv,
Qg ) = ]
4+oo fueH/V.

Then, by virtue of (Al), we can easily verify thai}, € ®(H) (see[2]).
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Now our approximation problems for (CP) are given by

dM;L A 1 ~2 .
— () + 0oy ;) —0gp5u;) > f,t) inH, O0<t<T,
cp),{ g

u;(0) = uo,

where f; belongs toC([0, T]; H) such thatf; — f strongly in W?'(0, T; V*) as
. — 40, @* is the extension ofp? on H given in (A3) anddy »3 denotes the Yosida
approximation ofdy »?. We note by Propositiorl thatay(j)f1 = aH(q;f).

Since&quf is Lipschitz continuous imH, it is well known (see e.g. Proposition 3.12
and Theorem 3.6 db]) that there exits a unique strong solutiep of (CP); on [0, T']
satisfying:

u; € W20, T; H), u,;(1) € D(0pgt,) for ae.r € (0, T),

t— (p%{(u;h(t)), (7)%(u,1(t)) are absolutely continuous d®@, T'].

Here we can assume thaf >0 without any loss of generality. Indeed, sinqaél €
®(H), there existvg € H and yg € R such that

@} )= (o, Wy + 1y Yu € H

(see[3]). Now set(™ (u) := ¢ (u) — (vo, ) — - Then sincepl, (u) — (v, u) — 119 >0
for all u € H and gl(u) = ¢% ) for all u € V, it follows that »*(u) >0 for all
u € V. Moreover we can easily get

DY = D(pY), D@dY) = D@gY), 09 w) = dprw) —vo Vu € D(e?).

Hence (CP) is equivalent to Cauchy problem for the following evolution equation with
an initial conditionu(0) = uo.

‘;—L: ) + 0o () — 09®u(t)) > f(t) —vo N V*, 0<rt<T.

Moreover it is easy to see that if (A1)—(A4) hold, then (A1)—(A4) with replaced
by ¢ also hold.
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We are going to establish a priori estimates in the following Lemmas 1-3.

Lemma 1. There exists a constai; such that

sup fu;(H)lg < My, (7)
te[0,T]
sup o'(uy(1) < Ma, ®)
te[0,T]
du
/ “2 dt < My, 9)
0 H
sup fu;(0)ly < Ma. (10)
t€[0,T]

Proof of Lemma 1. Multiply (CP), by du,(t)/dt. Then, by Propositior2, we obtain

du; (t)

d
+d—<pH(uA(t)) —wﬂ(uﬂ(t))—<f;(t) (t)) : (11)

Hence, integrating1(1) over (0, ), we have by Proposition 1,

¢
J
<o) + P2y (1) + (f1(1), u () — (£2(0). uo)

- /0 <i @, um)> dr. (12)

By (Al) and (A4), it follows that

du; 2
74 (7)
H

- dt+ ot u; (1) + P3(uo)

4 du/l 2 1
/ Wi de+ @ = ket
0 ldrt H
<@ uo) — P5(uo) + Calu; (1)|% + Cs
H £l {C30 (1)) + Clu; (0)1F + C23YP + 1 £,(0) v+ |uoly

+/0 af;

1
ar @ {esotwon + il +caof T an
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Then, by Young'’s inequality, there exists a const@néiepending only ork, p, C1 and
C3 such that

[

<C {|u0|€ + (o) + |P5(uo)| + C2+ Cs + sup [ £,(0)}.

TG[O;[]
t
+/

t
x fo {1 + o}, dx. (13)

T (0] dr+ — ¢ (u;(1))

2
H

af; |"
E (1)

dr} + (Ca+ Du; (0%
V*

du
dt

Here using the fact tha%|ui(t)|H<| ")y, we get

d ) d
MEIM;.(I)IH 2,u|’/‘/l(t)|HE|u).(t)|H

N

du
— (1
7 O

2plu; () g
H

N

2
Vu > 0. (14)
H

du
2 2 s

, (1t + | —(
W lu; (O ‘ It )

Hence, puttingu = C4 + 2 and combining 13) with (14), we obtain by Gronwall's
inequality,

lu; ()13 + @ u, (1))

<c{|uo|%, + (o) + |3 uo)| + luoll, + C2 + Cs

p/
dty,
V*
where C depends ork, p, C1, C3, C4 and T. Therefore sincef; is bounded in

wLr', T; v*) and @ﬁ(uo) is bounded, it follows that?@) and @) hold. Moreover, )
and (3) imply (9). Furthermore, by (Al), we get

df)
e (1)

, T
+ sup |fx(r)|”*+/o

1€[0,T]

lu; (015 < Caluy ()15 + C2 + Ca9tu,(1).

Hence, {) and @) imply (10). O



402 G. Akagi, M. Otani / J. Differential Equations 209 (2005) 392-415

Lemma 2. There exists a constari/> such that

sup [Ju; (0Ol < Mo, (15)
te[0,T]
sup @ (Ju; (1) < My, (16)
te[0,T]
sup |Ju,(t)ly < Ma, a7
1€[0,T]
T d 2
/ —Ju, ()| dt < Ma. (18)
o |dt H

Proof of Lemma 2. Since J; is nonexpansive irH (see[4, p. 102), we can derive
(15 from (7). By (A3), (7) and @) yield (16), which together with (Al) and1)
implies (17). Moreover sinceJyu;(t +h) — Jyu,;(t)|g/h<|u)(t +h) —u,()|g/h for
all h e R with r +h €[0, T], we have

T g 2 r du 2
—Ju,(t dt < —=(t dt,
L5 | | o
which together with §) implies (18). O
Lemma 3. There exists a constari/s such that
sup [0n @30 < Ma, (19)
1€[0,T] 14
T 2
/ g%(t)]v dt < Ms, (20)
O *

where g(t) = f;(t) — du,(t)/dt + dpd5(u; (1)) € Oyl (u;(1).

Proof of Lemma 3. Since Jyu;(t) € D(6H<7)2) NV for all ¢+t € [0,T], we get
(9H<7)2(J,1ui(t)) C 09%(J;u, (1)) for all t € [0, T]. Furthermore, since?H(ﬁf(u;v()) €
6H¢2(J,~Lui(-)) (see[4, p. 104), it follows from (A2), (15), (16) and (L8) that

{aygbf(u,l(-))} forms a precompact subset 6f([0, T']; V*), (22)

which yields (9).



G. Akagi, M. Otani / J. Differential Equations 209 (2005) 392-415 403

Since f; is bounded inWw%-? (0, T; V*) andg/%(z) = f;n(t)—du;.(t)/dt—{—@[-[(p%(ug(t))
for a.e.t € (0,T), (9) and (9) imply (20). O

From Lemmasl-3, we can extract a sequendg,} such thati, — 0 and the
following Lemmas 4-6 hold.

Lemma 4. There exists: € C,, ([0, T1; V) N W2(0, T; H) such that

u;, — u weakly in L0, T; V)N W20, T; H), (22)
u;, (t) — u(t) weakly in H for all t € [0, T], (23)
Jyu;, — u weakly in L?(0,T; V)N W2(0, T; H). (24)

Moreoveru(t) — ug strongly in H ast — +0.

Proof of Lemma 4. SinceH andV are reflexive, 7), (9) and (10) imply 22), which
also yieldsu € C([0, T]; H). Moreover, letg € [1, +00) be fixed. Then by7¥), we can
extract a subsequen¢g?} of {/,} depending org such thatu;s —uo — u —ug weakly
in L9(0, T; H). Hence it is obvious thatiz —ugp — u—ug wéakly in L9(0, t; H) for
anyt € [0, T]. Therefore sincetiz (0) = uo, it follows from (9) that

lu —wollLaqo,r;my < liminf fluze —wollLaco,r m)
M—0 "

t T
< liminf f f
M0 0 0

1/q
< M11/2< 2 ) [ W241/g)
q+2

du yq

Thus we have

lu(t) —uolyg < sup |u(t) —uoly
7€[0,1]

= lim flu—uollLe.sm <My*? forall 1 €0, T],
q—+o0

which impliesu(r) — ug strongly inH ast — +0.
Now let ¢ € [0, T'] be fixed. Sincex;, (0) = u(0) = uo, (22) shows that

! du;m du
(M/l,,(t)_u(t)’ d))H - A <7 (T)_E(T)9 qs)HdT
0 VdeH, Viel0T],

which yields @3).
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By (10) and @3), for any t € [0,T], we can take a subsequen¢d,} of {4}
depending ort such that

e (t) - u(®) weakly inV. (25)

It then follows from (0) that |u(z)|y < liminf ;. o |u; (1)|y <M1, where My is in-
dependent ot. Therefore we conclude that(t)ne v for all 1 e [0, T] and sup.(o 1)
lu(t)|ly <My < +oo. Hence, for allt € [0, T] and {t,} with 1, - t asn — +o0,
there exist a subsequengg,} of {r,} andw € V such thatu(s,,) — w weakly in
V asny — +oo. On the other handu(t,,) — u(t) strongly inH as ny — +oo,
sinceu € C([0,T]; H). Then, by virtue of (1), we findv = u(t), whence follows
ue Cy(0,T]; V).

By (17) and (18), there exists € L%(0, T; V) N WL2(0, T; H) such that/; u; —
v weakly in L2(0, T; V) n WL2(0, T; H). Here, by (9), we notice that

), (1) = T 15, (Dlye = Inl O @5 (s, () v+ < dn M3

for all ¢ € [0, T'], which impliesu,; —J; u; — 0 strongly inC([0, T]; V*) as4, — 0.
Hence it follows from 22) thatv =u. O

Lemma 5. There existx? € C([0, T']; V*) such that
o5, (u;, () — g% strongly in C([0,T1; V¥)
and g%(t) € 0p*(u(t)) for a.e. t € (0, T). (26)

Proof of Lemma 5. By (21), there existg? € C([0, T]; V*) such thataHgbi (uy, ()

— g2 strongly inC([0, T]; V*). Hence sincéy @5 (u;, (1) € dpd*(J;,u,, (1)) C 02
(J;,uy, (1)), by the demiclosedness of maximal monotone operators (se¢3eQhap-
ter 11]) and Proposition 1.1 of7], it follows from (24) that g2(r) € dp?(u(r)) for a.e.
te 0, 7). O

Lemma 6. There existg! € L2(0, T; V*) such that
g&l” — gt weakly in L%, T; V¥

and g~1) = f(1) + g2(t) — fl—”t‘ (t) € 0 (u(r)) for a.e. t € (0,T). (27)
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Proof of Lemma 6. By (20), it is obvious that there exists® € L2(0, T; V*) such
that

g; — g' weakly in L0, T; V*). (28)

Moreover, by(CP); , it follows from (22) and @6) that g* = f + g% — du/dt.
Hence it remains to prove that(r)+g(r) —du(t)/dt € 0o (u(r)) for a.e.r € (0, T).
To do this, integrating the product gf/% (t) andu, (1) over (0, T), we get by(CP), ,

T T T
/o (g%n(t),uzn(l))dt=f0 (fzn(l),u;.n(t)>dt+/o (0@, (s, (), uy, (1) dt

1 2 1 5
3 [y, (T) |5 + > luolg.

Since f; — f strongly in wLr' O, T; v*), it follows from (22), (23) and @6) that

T

limsup [ (g} (1), u;, (1)) dt
n—0 JO "

T T
~ lim /0 (3 0,03, @) dir + T /O (Or % (s, (1), us, () di

An—>

1. . 2 1 2
-5 I|?1|nf qun(T)|H+§|“0|H

—0

T
</ <f<r),u<t>>dr+/
0 0

T 2 dl/l
=/ <f(t)+g (1) — d—(t),u(t)> dt. (29)
0 t

! 2 1 2 1 2
(82(0). u(®) dt = Su(T)|F; + 5 luol;

By Lemma 1.3 of[3, Chapter llJand Proposition 1.1 of7], it follows from (22) and
(28) that g(r) = f(t) + g2(t) — du(r)/dt € dp (u(r)) for a.e.r € (0, 7). O

Now, let r € [0, T] be arbitrarily fixed. Then since! € ®(V), (8) and @5) im-
ply otu(r)) < liminf ;i _ q)l(u% (1)) <M1, where M; is independent of. Hence we
conclude thatu(r) € D(¢h) for all ¢ € [0, T] and sup. 7y () <M1 < +o0.
Moreover let{t,} be a sequence if0, T] such thats, — ¢. From the fact that: €
C ([0, T1; V), it follows that u(r,) — u(r) weakly inV. Since ot(u(t,)) < SUR¢0.7]
¢ (u(r)) < M1, where M7 is independent oh, Proposition3 assures thap?(u(t,)) —
©%(u(1)), whence followsp?(u(-)) € C([0, T]).
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Finally we provide an energy estimate for the strong solutiorTo this end, we
claim that

@ (uy (1) = @*u(1)) Vi [0, T1.
Indeed, letr € [0, T] be fixed. Then, by &), (25 and the fact thaU;_zn (1) € D(pY),

Proposition3 assures the assertion above. Hence putfing 2/, in (12) and noting
that qbf, (uo) — ¢?(ug) as 4, — 0, we obtain

[

“d
<@ uo) + 9% u(0)) + (£ (1), u(t)) — (f(0), ug) — /O <d—f (r),u<r)> dt.

du

dt + () + ¢*(uo)
drt

()

2
H

This completes the proof.(]
3.2. Proof of Theorem 2

To prove Theoren®, we need another type of auxiliary problem:

d_u () + 5(p1’r(u(t)) - 6(p2(u(t)) > f@) invV* 0<t<T,
u(0) = uop.

Herer € R is chosen so that > ¢?(ug) and " denotes the cut-off function ap*
given by

o) if p?w)<r,

o (u) = { _
400 otherwise

Then it is easy to see thail” € ®(V) and D(p*") = D(eY) N{u € V; %) <r)
and that (A1) and (A2) are satisfied with® replaced byel”. Since (A3) assures
that J, D(p1) c D(¢b), we find by Propositionl that ¢p2(J,u) = d>(J,u) < p2(u) =
@%(u)<r for all u € D(e"), which impliesJ,u € D(p™") and p*" (Jyu) = @*(J u).
Hence (A3) is satisfied witlp! replaced bypl”. Furthermore, since?(u) <r for all

u € D(o*"), (A4d) is satisfied withk =0, C4 =0, Cs=r andp® = ¢1". Noting that
©%(uo) < r andug € D(pl) yield ug € D(¢p"), we observe that Theorerh assures
the existence of strong solution 6¢€P)" on [0, T'] as follows:

Lemma 7. Assume tha(Al), (A2) and (A3) are satisfied. Then for alkg € D(¢p?),
f e wir' 0, T; v*) and r € R with r > ¢%(ug), (CP)" has a strong solution u on
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[0, T'] satisfying(5) with ¢! replaced byp!” and the following inequality

"du 1r 2
/ @] drt oM @) + ¢*(wo)
0 1t

2
H

"d
<@ uo) + @? () + (f (1), u(t)) — (£(0), ug) — /0 <d—f<r>,u(r)> dt

(30)

for all + € [0, T].

Now we are going to show that(zr) becomes a strong solution of (CP) @ 7p] for
someTp > 0. To do this, it is sufficient to prove that there exists a nuniyee (0, T']
such thatdp™” (u(r)) = dpt(u(r)) for a.e.r € (0, Tp). To this end, we prepare a couple
of lemmas.

Lemma 8. If u € D(d¢*") and ¢2(u) < r, thenu € D(0pl) and 1" (1) = dp(u).

Proof of Lemma 8. Let [u, &] € 0@1” be such tha’tpz(u) < r and take an arbitrary
elementv € D(¢l). Then sinceu, := (1 —s)u +sv € D(¢Y), ¢ (uy) <(1—s)p ) +
sot(w)<lotw)| + |@t(v)| for all s € [0,1] and uy; — u strongly inV ass — 0,
Proposition 3 assures thaip?(u;) — %) ass — 0. Hence from the fact that
®?(u) < r, there exists a numbep < (0, 1) such thaip?(u,) <r. Sinceuy, € D(p'"),
we getopl(ug,) — otu) = @b (uy,) — @ (u) = (¢, uy, — u). Hence, by the convexity
of ¢!, we haveso(ot(v) — @) > (£, so(v — u)). By dividing both sides by > 0,
we deducept(v) — @ (u) > (¢, v —u) for all v € D(¢'), whence followsu € D(0¢pl)
and ¢ € dpt(u).

On the other hand, it is obvious thétl(u) c d¢L" (1) for all u € D(0pL") with
@%(u) < r, which completes the proof.[]

Lemma 9. There exists a numbdh € (0, T'] such thatp?(u(t)) < r for all ¢ € [0, To).

Proof of Lemma 9. For the case where maxo, 1 @?(u(r)) < r, we can takelp = 7.
For the case where maxo, 71 @%(u(t)) >r, sincep?(u(-)) € C([0, T]) and ¢?(ug) < r,
there exists a number, € (0, T'] such thatq)z(u(t)) attainsr at r = Ty for the first
time. O

By Lemmas8 and9, there exists a numbéf € (0, T'] such thatu(r) € D(d¢t) and
oY (u(t)) = dpt(u(r)) for a.e.r € (0, Tp). Consequently we deduce thatbecomes
a strong solution of (CP) of0, Tp]. Thus the proof of Theorerd is completed. [J
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3.3. Proof of Theorem 3

We first note thatp’ >0 (i = 1, 2) by assumptions of TheoreB Moreover from the
assumption oriz in (A5), we can take a numbern > Jo such that max.o 5,1 /3(x) <
(o + 20) /2 € (op, ), Where og := MaX<(o, 5, [3(x) < a. Hence, by (A5), it follows
that:

o — 0

Tcpl(u) <(E—n,u) (31)

for all [u, &] € 0! and [u, ] € d¢? satisfyingu e Dgl = {u € D(¢?); p%(u) <51).
Putr = d1 and recall the auxiliary problenaiCP)". Moreover define

Xon = {(uo’ f) € D(eY x W70, T; v¥);

T df i
E ()

dt<R,

1/p
} <0
1.7

T /
ol uo) + /0 F O de+ fo

V*

1 .y
92(u0) < do. ol + {max(l, 7) [Fzol

for all 6, R, T > 0, where

T ’
K / [ f (O, dt if T <1,
sup [f(Dydt if T>1

te[1,T]Jt—1

and S({R = {u € Cu([0,T]; V) N WE2(0, T; H); u is a strong solution of(CP)"
on [0, 7] satisfying 80) and ¢2(u(-)) € C([0, T1) with (uo, f) € XgR}. Here, by
Lemma7, we note thatS{ . # ¢ when X[ , # ¢. We then define; (u) := sup{To €

(0, T1; 92(u(t)) < r for all t € [0, Tol} for all u € ST .
Now by Lemmas8, to complete the proof, it suffices to show that

VR >0, 3o >0; VI >0, Vu € S(STR’R, Ty(u) =T, (32)

where we note thady is independent off. Suppose that the above claim were false,
ie.,

IRy > 0; V3> 03T >0, Juse S ; Trus) < T,

which implies p?(us(T, (us))) = r and ¢?(us(r)) < r for all t < Ty (us).
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In particular, by takingé = 1/n for eachn € N, we putv, := uy/, € SlT/leRO

andT7,, := T,(u1/,). We then find that,, becomes a strong solution of the following
Cauchy problem(CP),, on [0, 7,1

dv,
P, § @

v, (0) = Uo,n,

() + 09 (W (1) — 0Q*(Wa (1) 3 fu(1) In V¥, 0<t < Ty,

T
where (1o, fu) € X1/, po-

Multiplying (CP),, by v,(z) and using 81), we obtain

0a (013 + “_—zf“‘) Pn ()< fu(). va(0))  for ae.re (0. Ty,  (33)

NI -
S

sincev, (t) € D2 for all ¢ € [0, T,,). Hence, by (Al) and (1), it follows that
51 ;

[a (D15 + &lva (D5, <Clfu (DI for ae.t € (0, Ty,

NI
S

where & and C denote positive constants independentnofThen, by Lemma 4.3 of

[2], we have
1/p ) (1)
gl - )
LTyn n

wherel(-) is a monotone increasing function independenndatisfying lim,_.o/(x)
= 0. Therefore we find

|Un(Tr,n)|H< Sup v, ()| <1 <|MO,H|H + Hlfn()|p*
1€[0,7;.n1

v (Trn) — 0 strongly inH asn — +o0. (34)

On the other hand, integratin@3) over (0, 7,.,) and using (Al), we get

1 o—og [Trn
> [ (T ) |3 + 2 / @ (va (1)) dt
0

1 Tr,n /
< §|uo,n|i + C/O | (D)5 dt

1
<53+ CRo, (35)
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whence follows

Tin
/ @' (0a(1)) dT< Ma, (36)
0

where M4 denotes a constant independentnof

. Ty
Since (1o, fn) € Xl/n’fRO, we can show

sup [ fu(0)|y. < Ms, (37)
tE[QTl/n]

where M5 denotes a constant independentofindeed, we first note that the Sobolev-
type embedding theorem assures that e W17 (0, T1/n; V¥) C C([O, Tyynl; V).
Hence there exists, € [0, T1/,] such that

[fu@)lvs = min | f(®)]vs,

1€[0,T1/x]

SO

[7, Tl/" p/
Tl/n|fn(tn)|v*</0 |fn(T)|V* dt.

For the case wheré&y,, >1, it then follows that

/ / ! d ’
a1y = 1faly- +f @Iy dr
1, at

dfn
dt

drt

Ty/n / , [Tn 1
/0 | fu @Iy dT+p /o TGS (™

T/, v

Ti/n ,
< /0 | (O} dT

Ti/n , 1/p Ti/n
+p' ( / @1} df) /
0 0

< CRo Vt €0, Tyl

df,

10 ()

% 1/p'
dt
V*

where C denotes a constant independentroffFor the case wher&y,, < 1, noticing
(1/T1/n)f0Tl/” |f,,(r)|"}* dt < (1/n)?, we can verify the same assertion above.
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Therefore, by (Al), it follows from 30), (36) and @7) that

Tr.n
o 0n(Ton)) < c{<p1<uo,n>+r+ / o (vn(0)) d
0

/ TN
O + (T *+/ ool ar
0 T V*
< C{Ro+r + Mg+ Ms}.
Hence, by (Al), we find
{v, (T, ,)} is bounded inV. (38)

Therefore, by 84) and @8), we can extract a subsequeng€} of {n} such that
v (Tr.) — 0 weakly inV. Moreover, by (A2), it follows from 88) that there exists
a subsequencé:”} of {n'} and g2, € dp?(v,(T,,,»)) such thatg?, — g2 strongly in
V* asn” — +o0.

Since ug ,» — 0 weakly inV, we find that (g,f,,, U (Ty ) — ug,7) — 0. Hence
there exists a numbeNg € N such that|(g12\,0, o (T Ng) — U0, Ng)| < 01 — dp. From
the fact thatp?(uo, n,) < do, it follows that

O? (N (Tr.Np)) < 92 (u0,Np) + (855 UNo(TrNo) — UO.NG) < 01 =1

which contradicts the definition of}. y, = T, (vn,). Therefore we conclude thaB8%)
holds true. O

4. Application

In this section, we exemplify the applicability of our abstract results obtained in
the present paper by discussing the existence of local or global (in time) solutions of
(NHE). Here solutions of (NHE) mean:

Definition 2. A function u € C([0, T]; W17 (Q)) is said to be a weak solution of
(NHE) on [0, T'] if the following conditions are satisfied.

(i) u(r) is a W17 (Q)-valued absolutely continuous function on [0,T].
(i) u(t) — ug strongly in L?(Q) ast — 0.
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(i) —Apu(r), lul?2u(t) € WP (Q) for a.e.t € (0,T) and the following holds

true.
<8M >
0
ot WO [’(Q)

~(jul"=2uc. 1), )

/|Vu|” 2Vu(x,t) - V(x)dx

= (f(a t)v ¢>WO]']7(Q)

Wy (@)

for a.e.t € (0, T) and for all ¢ € W&”’(Q).

The existence of local or global solutions of (NHE) is already studied by Tsutsumi
[13] for the casef(x,t) = 0 and by Otani[10,12] for the casef e L?(0, T; L%(Q)).

The argument iM13] is based on Faedo—Galerkin’s method and requires the growth
condition ¢ < 2p/(N + p) for the existence of local solutions, and < p* for

the existence of small global solutions, whegé = Np/(N — p) if p < N; p* =

400 if p>N. On the other hand, the method [10,12] is based on a nonmonotone
perturbation theory for subdifferential operators in a real Hilbert spacdl@jdequires

the growth conditiony < p*/2+1 for the existence of local and small global solutions.
As for the semilinear casg = 2, however, it is shown ifl12] that (NHE) admits local
solution and small global solution under the subcritical growth condijion 2*.

Since the abstract setting jh2] as well as in10] is chosen in the Hilbert space and
the knowledge of elliptic estimate fok, in L?(Q) is insufficient, [10,12] could not
assure the existence of local solutions of (NHE) under the subcritical growth condition
q <p*

Nevertheless, it is quite natural to conjecture that (NHE) should admit local solutions
in a suitable space (larger thdrf(©2)) under the subcritical growth condition < p*,
which has been left as an open problem for long time. It would be noteworthy that
our abstract framework enables us to give an affirmative answer to this open problem
(see Theoremt below).

In order to reduce (NHE) to (CP), we choo¥e= Wol”’(Q) and H = L?(Q) with
norms| - |y :=1|V - [rp and | - |g =1 - [L2(q), respectively. We further put

1 , 1
¢,u) =~ [Vu(x)|? dx, Y, ) =~ lu(x)|? dx VYueV.
pPJQ qJQ
Here we assume that

Np .
2N — if N ,
(C)qu 2<p<—i—oo and l<g<p*={ N-p > P

+00 if N<p.

Then it is easy to see that (1) is satisfied ahts compactly embedded in?(Q) (see
[1D. Henceo, and lpq belong to®(V), 6<pp(u) and aq)q(u) coincide with—A,u and
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lu|9~2u respectively in the distribution sense, whebdop,) = D(0¢p,) = D(},) =
D(0y,) = V. Thus (NHE) is reduced to (CP) with! = ¢, and % = . Moreover
(A1)—(A3) are all assured by the following lemma.

Lemma 10. Assume(CP), , is satisfied then (A1), (A2) and (A3) hold true with
(plz(pp, (pzzqu and C1 = Co =0.

Proof of Lemma 10. Sinceg,(u) = |u|€/p, (Al) with C1 = C2 =0 andC3 = p fol-
lows at once. To check (A2), take any sequefieg satisfying supg 71{¢, (un (1)) +
lu, ()|} + fOT |dun(t)/dt|§1 dt<C. Then, sinceV is compactly embedded in? (L)
and [u, (t) — un ()| g < lldun /dtll 20,711t — s1¥2, {un(t)} forms a precompact set in
L1(Q) for all t € [0, T] and an equi-continuous set @[O0, T']; H). Moreover, by virtue
of Gagliardo—Nirenberg’s inequaIiMu|Lq(Q)<C|u|%|u|%,_0, 0,1, VueV, we
observe that{u,(r)} is also equi-continuous irC ([0, T']; L7(LQ)). Therefore by As-
coli's lemma, there exists a subsequere& of {n} such thatu,, — u strongly in
C([0, T]; L1(Q)), whence easily follows:

|92, () — u|?2u(:)  strongly in C([0, T1; L9 (Q)).

Henceawq(un/(-)) — 6lpq(u(-)) strongly in C([0, T']; V*).

As for (A3), we putqbz(u) = @) if ueV; gbz(u) =+4ooif u e H\V. Then itis
easily seen thap? € ®(H) and p?|y = ¢2. Furthermore, since the mappings R —
I+ i&mﬁz)r = Jyr becomes nonexpansive dd we find that|VJu(x)|<|Vu(x)|
holds for a.e.x € Q. Hence p(Ju) <¢(u) which implies (A3) (see the proof for
Corollary 16 of[4]). O

4.1. The case wherp<q and ug € Wol”’(Q)

By applying Theorem® and 3, we obtain the following Theoremé and 5.

Theorem 4 (Local existence Assume(C), , holds and p<g. Then for all up €
WyP(@) and f € Whr'(0, T; WL (Q)), there exists a numbefy € (0, T] such
that (NHE) has a weak solution u ofD, Tp] satisfying

u € Cy ([0, Tol; Wy'” () N C(I0, Tol; L9(R)) N WH2(0, To; L2(R)). (39)

Proof of Theorem 4. By Lemmal0 and Theoren?2, there exists a numbéh € (0, T']
such that (NHE) has a solutianon [0, Tp]. Moreover since//q(u(~)) € C([0, To)), the
uniformly convexity of L(2) ensuresu € C([0, Tp]; L9(2)). O
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Theorem 5 (Global existence AssumgC), , holds andp < g. Let R be an arbitrary

positive numberand letd be a positive number such that< C(p, ¢)~?/@—P), where
C(p,q) denotes the best possible constant for the Sobolev—Poincaré-type inequality
lulra@) <C(p,@)luly. Then there exists a positive numbgg independent of T such
that if up and f satisfy

T P

df

E (v)

1 T ,
—Iuo|€+/ If(r)l”*d7:+/ dt<R,
p 0 0

V*

1/p
OR,
) o

then (NHE) has a weak solution u ofD, T'] satisfying(39) with Tp replaced by T

1 X /
wolzacey < 0. luol 20 + {max(l, ;) lrom.

Proof of Theorem 5. By the Sobolev—Poincaré-type inequality, it follows thalt. o) <
C(p,q)|uly for all u € V. Hence we find that

<8(pp(u) - 81//q(u), M)

p q
|M|V - |u|Lq(Q)

> ul}) — C(p. @) lulf ulls

Po, ) [1=Cp, @) {av, )} "],

which implies

PO, () < (00, ) — A, (), u) + pC(p, ) {q, )} """ ¢, w)

for all u € V. Therefore (A5) holds withu = p, I3(r) = pC(p,q)P(qgr)4—P/e
and 59 = 67/q < C(p,q)~P?/4=P)/q. Thus Theorem3 ensures the existence of
weak solutions on[0, T'] for (NHE) when ug and f satisfy the suitable conditions
above. [

4.2. The case wherp > ¢ and ug € Wol”’(Q)
The case where > g can be covered by Theorefn

Theorem 6 (Global existence Assume(C), , holds andp > ¢. Then for all ug €

W&”’(Q) and f € WiP'(0, T; W17 (Q)), (NHE) has a weak solution u of0, T']
satisfying(39) with Tp replaced by T
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Proof of Theorem 6. Conditions (A1)—(A3) are already assured by Lemh@a More-
over, sincep > ¢, we find

1, 1 sig 1
Uy = Zlulfy ) < Cp @) luly <5 0,0 +C Vu e,

which implies (A4) withk = 1/2. Therefore, by Theorerh, (NHE) has a global weak
solution on[0, 7]. O
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