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Abstract

The existence of strong solutions of Cauchy problem for the following evolution equation
du(t)/dt + ��1(u(t)) − ��2(u(t)) � f (t) is considered in a real reflexive Banach spaceV,
where ��1 and ��2 are subdifferential operators fromV into its dual V ∗. The study for this
type of problems has been done by several authors in the Hilbert space setting.

The scope of our study is extended to theV-V ∗ setting. The main tool employed here is a
certain approximation argument in a Hilbert space and for this purpose we need to assume that
there exists a Hilbert spaceH such thatV ⊂ H ≡ H∗ ⊂ V ∗ with densely defined continuous
injections.

The applicability of our abstract framework will be exemplified in discussing the existence
of solutions for the nonlinear heat equation:ut (x, t)−�pu(x, t)− |u|q−2u(x, t)= f (x, t), x ∈
�, t > 0, u|�� = 0, where� is a bounded domain inRN . In particular, the existence of local
(in time) weak solution is shown under the subcritical growth conditionq <p∗ (Sobolev’s

critical exponent) for all initial datau0 ∈ W
1,p
0 (�). This fact has been conjectured but left as

an open problem through many years.
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1. Introduction

Let V be a real reflexive Banach space and letV ∗ be its dual. The main purpose
of this paper is to investigate the solvability of the following Cauchy problem in the
V-V ∗ setting, i.e., to find a solutionu(t) in V satisfying the equation inV ∗:

(CP)




du

dt
(t)+ ��1(u(t))− ��2(u(t)) � f (t) in V ∗, 0 < t < T,

u(0) = u0,

where��1, ��2 : V → 2V ∗
are the subdifferential operators of proper lower semicon-

tinuous convex functions�1, �2 : V → (−∞,+∞].
The existence and the asymptotic behavior of strong solutions are already studied

by Koi-Watanabe[8], Ishii [6] and Ôtani[10–12] in the Hilbert space framework. In
particular, the following initial-boundary value problem falls within the scope of the
nonmonotone perturbation theory developed in[10,12]:

(NHE)




�u
�t

(x, t)− �pu(x, t)− |u|q−2u(x, t) = f (x, t), (x, t) ∈ � × (0, T ),

u(x, t) = 0, (x, t) ∈ �� × (0, T ),

u(x, 0) = u0(x), x ∈ �,

where �pu(x) := div(|∇u(x)|p−2∇u(x)) and � is a bounded domain inRN with
smooth boundary��.

On the other hand, Faedo–Galerkin’s method gives another useful tool to study (NHE)
such as in Lions[9] and Tsutsumi[13].

The theory of perturbation for subdifferential operators in the Hilbert space setting
has an advantage over Faedo–Galerkin’s method in that it can assure a better regularity
of solutions such asut ,�pu ∈ L2(0, T ;L2(�)).

For the quasilinear case wherep �= 2, however, it requires a strong restriction on
the growth orderq of the perturbed term|u|q−2u, which is caused by the loss of the
elliptic estimate for�p.

As is well known, the theory of elliptic equations bears close relations with the theory
of evolution equations, and in the theory of elliptic equations, the Fréchet derivatived�
of a C1-function � from V into R is usually regarded as the operator fromV into V ∗.
We also recall that the statement of “Palais–Smale” condition or Mountain Pass lemmas
is formulated in theV-V ∗ setting; this setting plays a natural and essential role to derive
the well-known fact that the equation−�pu(x) = |u|q−2u(x), x ∈ �, u|�� = 0 admits
a nontrivial positive solution if and only ifq is subcritical, i.e., 1< q < p∗, where
p∗ denotes the so-called Sobolev’s critical exponent, provided that� is a bounded
star-shaped domain. From this point of view, it would be very natural and important
to investigate the solvability of (CP) in theV-V ∗ setting. However the study in this
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direction is not fully pursued yet even for the nonperturbed case where��2 ≡ 0, except
in [2] and [7].

Moreover it is readily suggested from the study of nonlinear elliptic equations that
the perturbation theory for subdifferentials in theV-V ∗ setting should remedy the
deficiency in the Hilbert space setting mentioned above. In fact, as an application
of our abstract results, it is shown that (NHE) admits a local (in time) weak solution
under the subcritical growth conditionq < p∗ for all u0 ∈ W

1,p
0 (�). This fact is

already known for the semilinear casep = 2. For the general case, however, this fact
has been conjectured but left as an open problem through many years.

The content of this paper is as follows. In the next section, our main results on
the existence of local or global (in time) solutions are formulated and some related
materials to be used later are prepared. The proofs for main results are given in Section
3, and the applicability of our abstract results are exemplified in Section 4.

2. Main results

Let V be a real reflexive Banach space and letV ∗ be its dual. Throughout this paper,
we assume that there exists a real Hilbert spaceH whose dual spaceH ∗ is identified
with H such that

V ⊂ H ≡ H ∗ ⊂ V ∗, (1)

where the natural injection fromV into H as well as that fromH ∗ into V ∗ are densely
defined and continuous.

To formulate our results, we need the notion of subdifferential operators from a
Banach spaceX into its dual X∗ defined below. Let�(X) be the set of allproper
lower semicontinuous convex functionsfrom X into (−∞,+∞], where “proper” means
that theeffective domainD(�) of � defined byD(�) := {u ∈ X;�(u) < +∞} is not
empty. Thesubdifferential�X�(u) of � at u in X is defined by

�X�(u) := {
f ∈ X∗;�(v)− �(u)�X∗〈f, v − u〉X for all v ∈ D(�)

}
with domainD(�X�) := {u ∈ D(�); �X�(u) �= ∅}, whereX∗〈·, ·〉X denotes the duality
pairing betweenX and X∗. For simplicity of notation, we write�� and 〈·, ·〉 instead
of �X� and 〈·, ·〉X, respectively, if no confusion arises.

In particular, whenX is a Hilbert spaceH and � ∈ �(H), then

�H�(u) := {f ∈ H ;�(v)− �(u)�(f, v − u)H for all v ∈ D(�)} ,

where (·, ·)H denotes the inner product ofH. It is well known that the subdifferential
operator�X� becomes a (possibly multi-valued) maximal monotone operator fromX
into X∗ (see[3–5]). Especially, in the Hilbert space setting, various nice properties are
known. We summarize some of them without their proofs for later use.
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Let � ∈ �(H). Then the Yosida approximation(�H�)� of �H� coincides with the
subdifferential of theMoreau–Yosida regularization�� of � given by

��(u) := inf
v∈H

{
1

2�
|u− v|2H + �(v)

}
.

More precisely, the following lemma holds.

Proposition 1. Let � ∈ �(H). Then�� becomes a Fréchet differentiable convex func-
tion from H intoR and is characterized by

��(u) =
1

2�
|u− J�u|2H + �(J�u) = �

2
|(�H�)�(u)|2H + �(J�u),

where(�H�)� and J� are the Yosida approximation and the resolvent of�H�, respec-
tively, i.e., J� = (I+���H )−1 and (�H�)� = (I−J�)/�. Moreover�H (��) = (�H�)�,

where�H (��) denotes the subdifferential(Fréchet derivative) of ��, �(J�u)���(u)�
�(u) for all u ∈ H , � > 0 and ��(u) → �(u) as � → 0 for all u ∈ H .

The following proposition yields an information on the chain rule for�.

Proposition 2. Let � ∈ �(H) and suppose thatu ∈ W1,2(0, T ;H), u(t) ∈ D(�H�)

for a.e. t ∈ (0, T ) and that there existsg ∈ L2(0, T ;H) such thatg(t) ∈ �H�(u(t))

for a.e. t ∈ (0, T ). Then the functiont �→ �(u(t)) is absolutely continuous on[0, T ]
and the following holds:

d

dt
�(u(t)) =

(
h(t),

du

dt
(t)

)
H

∀ h(t) ∈ �H�(u(t)) f or a.e. t ∈ (0, T ).

In the present paper, we are concerned withstrong solutionsof (CP) in the following
sense.

Definition 1. A function u ∈ C([0, T ];V ∗) is said to be a strong solution of (CP) on
[0, T ], if the following conditions are satisfied:

(i) u(t) is a V ∗-valued absolutely continuous function on[0, T ].
(ii) u(t) → u0 strongly in H as t → +0.

(iii) u(t) ∈ D(��1) ∩ D(��2) for a.e. t ∈ (0, T ) and there exist sectionsgi(t) ∈
��i (u(t)) (i = 1, 2) satisfying:

du

dt
(t)+ g1(t)− g2(t) = f (t) in V ∗ for a.e. t ∈ (0, T ). (2)

Throughout the present paper, we denote byC or Ci (i = 1, 2, . . .) positive constants
which do not depend on the elements of the corresponding space or set. Moreover let
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us denote byL the set of all monotone nondecreasing functions from[0,+∞) into
itself. Forp ∈ (1,+∞), p′ designates the Hölder conjugate ofp, i.e., p′ = p/(p−1).

Our basic assumptions are the following:

(A1) |u|pV − C1|u|2H − C2�C3�1(u) ∀u ∈ D(�1), 1 < p < +∞.

(A2) D(�1) ⊂ D(��2). Furthermore if{un} is a sequence such that
supt∈[0,T ]{�1(un(t))+ |un(t)|H } + ∫ T

0 |dun(t)/dt |2H dt is bounded,
then for everygn(·) ∈ ��2(un(·)), {gn} forms a precompact subset in
C([0, T ];V ∗).

(A3) There exists an extensioñ�2 ∈ �(H) of �2, i.e., �̃2(u) = �2(u) ∀u ∈ V,

such that�1 (J�u) � l1
(
�1(u)+ l2(|u|H )

) ∀� ∈ (0, 1], ∀u ∈ D(�1),

where li ∈ L (i = 1, 2) and J� denotes the resolvent of�H �̃2, that is,
J� = (I + ��H �̃2)−1.

(A4) �2(u)�k�1(u)+ C4|u|2H + C5 ∀u ∈ D(�1), 0�k < 1.

Remark 1. (A3) is weaker than the well-known sufficient condition for the maximality
of �H�1

H + �H �̃2:

�1
H (J�u)��1

H (u)+ C� ∀� ∈ (0, 1], ∀u ∈ D(�1
H ),

where �1
H denotes the extension of�1 onto H which will be given in the proof of

Theorem1.

We note that (A2) assures the continuity of�2 in the following sense.

Proposition 3. Assume that(A2) is satisfied. Let{un} be a sequence inD(�1) such
that un → u weakly in V and�1(un) is bounded. Then it follows that�2(un) → �2(u).

Proof of Proposition 3. Let {un} be a sequence inD(�1) such thatun → u weakly
in V as n → +∞ and �1(un) is bounded. Then from the fact that�2 ∈ �(V ), it
follows that:

�2(u)� lim inf
n→+∞ �2(un). (3)

On the other hand, for eachn ∈ N, let gn ∈ ��2(un) and setvn(t) = un and
hn(t) = gn for all t ∈ [0, T ]. Then we see that supt∈[0,T ]{�1(vn(t)) + |vn(t)|H } =
�1(un) + |un|H is bounded,dvn/dt ≡ 0 and hn(·) ∈ ��2(vn(·)). By (A2), we can
extract a subsequence{n′} of {n} such thathn′ → h strongly in C([0, T ];V ∗), which
implies {gn′ } becomes a strongly convergent sequence inV ∗.



G. Akagi, M. Ôtani / J. Differential Equations 209 (2005) 392–415 397

Hence since�2(un′)��2(u)+ 〈gn′ , un′ − u〉, we get

lim sup
n′→+∞

�2(un′)��2(u)+ lim
n′→+∞

〈gn′ , un′ − u〉 = �2(u). (4)

Therefore it follows from (3) and (4) that �2(un′) → �2(u). Since the limit is unique,
we find that�2(un) → �2(u). �

Now our main results are stated as follows.

Theorem 1. Assume that(A1)–(A4) hold. Then for allu0 ∈ D(�1) and f ∈ W1,p′
(0,

T ;V ∗), (CP) has a strong solution u on[0, T ] satisfying:



u ∈ Cw([0, T ];V ) ∩W1,2(0, T ;H),

u(t) ∈ D(��1) ∩D(��2) f or a.e. t ∈ (0, T ),

g1 ∈ L2(0, T ;V ∗), g2 ∈ C([0, T ];V ∗),
sup

t∈[0,T ]
�1(u(t)) < +∞, �2(u(·)) ∈ C([0, T ]),

(5)

where gi (i = 1, 2) are the sections of��i satisfying (2) and Cw([0, T ];V ) denotes
the set of all V-valued weakly continuous functions on[0, T ].
Moreover the following energy estimate holds true.

∫ t

0

∣∣∣∣dud�
(�)

∣∣∣∣
2

H

d� + �1(u(t))+ �2(u0)

��1(u0)+ �2(u(t))+ 〈f (t), u(t)〉 − 〈f (0), u0〉 −
∫ t

0

〈
df

d�
(�), u(�)

〉
d� (6)

for all t ∈ [0, T ].

As for the existence of local (in time) strong solutions, we do not need to assume
(A4), which might be somewhat restrictive from the view point of applications to P.D.E.

Theorem 2. Assume that(A1)–(A3) hold. Then for allu0 ∈ D(�1) and f ∈ W1,p′
(0,

T ;V ∗), there exists a numberT0 ∈ (0, T ] such that(CP) has a strong solution u on
[0, T0] satisfying(5) with T replaced byT0.

As for the global (in time) existence, we introduce the following assumption:

(A5) ��1(u)�〈� − 	, u〉 + l3(�2(u)) · �1(u) ∀[u, �] ∈ ��1, ∀[u, 	] ∈ ��2,
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where� > 0 and l3 denotes a nondecreasing continuous function from[0,+∞) to R

satisfying l3(0) = 0.
The following theorem ensures the existence of small global solutions.

Theorem 3. In addition to all the assumptions in Theorem2, assume thatC1 = C2 = 0
in (A1), �2�0 and (A5) is satisfied. Let
0 be a positive number such thatl3(
0) < �.
Then, for all R > 0, there exists a positive number
R such that for allT > 0 and
(u0, f ) belonging to

XT

R,R

:=
{
(u0, f ) ∈ D(�1)×W1,p′

(0, T ;V ∗);

�1(u0)+
∫ T

0
|f (�)|p′

V ∗ d� +
∫ T

0

∣∣∣∣dfd�
(�)

∣∣∣∣
p′

V ∗
d��R,

�2(u0) < 
0,

|u0|H +
{

max

(
1,

1

T

)∥∥∥|f (·)|p′
V ∗

∥∥∥
1,T

}1/p

< 
R

}
,

where

∥∥∥|f (·)|p′
V ∗

∥∥∥
1,T

:=




∫ T

0
|f (�)|p′

V ∗ d� if T < 1,

sup
t∈[1,T ]

∫ t

t−1
|f (�)|p′

V ∗ d� if T �1,

(CP) has a strong solution u on[0, T ] satisfying(5).

Remark 2. All results described above hold true even if supt∈[0,T ]{�1(un(t))+|un(t)|H }
in (A2) and �1(J�u) in (A3) are replaced by supt∈[0,T ] |un(t)|V and |J�u|V ,
respectively.

3. Proof of main results

3.1. Proof of Theorem 1

The first step of our proof is to introduce suitable approximation problems for (CP)
in the Hilbert spaceH. To this end, we first define the extension�1

H to �1 on H by

�1
H (u) =

{
�1(u) if u ∈ V,

+∞ if u ∈ H/V.

Then, by virtue of (A1), we can easily verify that�1
H ∈ �(H) (see[2]).
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Now our approximation problems for (CP) are given by

(CP)�




du�

dt
(t)+ �H�1

H (u�(t))− �H �̃2
�(u�(t)) � f�(t) in H, 0 < t < T,

u�(0) = u0,

wheref� belongs toC1([0, T ];H) such thatf� → f strongly in W1,p′
(0, T ;V ∗) as

� → +0, �̃2 is the extension of�2 on H given in (A3) and�H �̃2
� denotes the Yosida

approximation of�H �̃2. We note by Proposition1 that �H �̃2
� = �H (�̃2

�).
Since�H �̃2

� is Lipschitz continuous inH, it is well known (see e.g. Proposition 3.12
and Theorem 3.6 of[5]) that there exits a unique strong solutionu� of (CP)� on [0, T ]
satisfying:

u� ∈ W1,2(0, T ;H), u�(t) ∈ D(�H�1
H ) for a.e. t ∈ (0, T ),

t �→ �1
H (u�(t)), �̃2

�(u�(t)) are absolutely continuous on[0, T ].

Here we can assume that�1�0 without any loss of generality. Indeed, since�1
H ∈

�(H), there existv0 ∈ H and �0 ∈ R such that

�1
H (u)�(v0, u)H + �0 ∀u ∈ H

(see[3]). Now set�̂1
(u) := �1(u)− (v0, u)H −�0. Then since�1

H (u)− (v0, u)−�0�0
for all u ∈ H and �1(u) = �1

H (u) for all u ∈ V , it follows that �̂1
(u)�0 for all

u ∈ V . Moreover we can easily get

D(�̂1
) = D(�1), D(��̂1

) = D(��1), ��̂1
(u) = ��1(u)− v0 ∀u ∈ D(��1).

Hence (CP) is equivalent to Cauchy problem for the following evolution equation with
an initial conditionu(0) = u0.

du

dt
(t)+ ��̂1

(u(t))− ��2(u(t)) � f (t)− v0 in V ∗, 0 < t < T .

Moreover it is easy to see that if (A1)–(A4) hold, then (A1)–(A4) with�1 replaced
by �̂1 also hold.
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We are going to establish a priori estimates in the following Lemmas 1–3.

Lemma 1. There exists a constantM1 such that

sup
t∈[0,T ]

|u�(t)|H � M1, (7)

sup
t∈[0,T ]

�1(u�(t)) � M1, (8)

∫ T

0

∣∣∣∣du�

dt
(t)

∣∣∣∣
2

H

dt � M1, (9)

sup
t∈[0,T ]

|u�(t)|V � M1. (10)

Proof of Lemma 1. Multiply (CP)� by du�(t)/dt . Then, by Proposition2, we obtain

∣∣∣∣du�

dt
(t)

∣∣∣∣
2

H

+ d

dt
�1

H (u�(t))− d

dt
�̃2

�(u�(t)) =
(
f�(t),

du�

dt
(t)

)
H

. (11)

Hence, integrating (11) over (0, t), we have by Proposition 1,

∫ t

0

∣∣∣∣du�

d�
(�)

∣∣∣∣
2

H

d� + �1(u�(t))+ �̃2
�(u0)

��1(u0)+ �̃2(u�(t))+ 〈f�(t), u�(t)〉 − 〈f�(0), u0〉

−
∫ t

0

〈
df�

d�
(�), u�(�)

〉
d�. (12)

By (A1) and (A4), it follows that

∫ t

0

∣∣∣∣du�

d�
(�)

∣∣∣∣
2

H

d� + (1− k)�1(u�(t))

��1(u0)− �̃2
�(u0)+ C4|u�(t)|2H + C5

+|f�(t)|V ∗{C3�1(u�(t))+ C1|u�(t)|2H + C2}1/p + |f�(0)|V ∗ |u0|V

+
∫ t

0

∣∣∣∣df�

d�
(�)

∣∣∣∣
V ∗

{
C3�1(u�(�))+ C1|u�(�)|2H + C2

}1/p
d�.
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Then, by Young’s inequality, there exists a constantC depending only onk, p, C1 and
C3 such that

∫ t

0

∣∣∣∣du�

d�
(�)

∣∣∣∣
2

H

d� + 1− k

2
�1(u�(t))

�C

{
|u0|pV + �1(u0)+ |�̃2

�(u0)| + C2 + C5 + sup
�∈[0,t]

|f�(�)|p
′

V ∗

+
∫ t

0

∣∣∣∣df�

d�
(�)

∣∣∣∣
p′

V ∗
d�

}
+ (C4 + 1)|u�(t)|2H

×
∫ t

0

{
|u�(�)|2H + �1

H,�(u�(�))
}
d�. (13)

Here using the fact thatd
dt
|u�(t)|H � | du�

dt
(t)|H , we get

�
d

dt
|u�(t)|2H = 2�|u�(t)|H d

dt
|u�(t)|H

� 2�|u�(t)|H
∣∣∣∣du�

dt
(t)

∣∣∣∣
H

� �2|u�(t)|2H +
∣∣∣∣du�

dt
(t)

∣∣∣∣
2

H

∀� > 0. (14)

Hence, putting� = C4 + 2 and combining (13) with (14), we obtain by Gronwall’s
inequality,

|u�(t)|2H + �1(u�(t))

�C

{
|u0|2H + �1(u0)+ |�̃2

�(u0)| + |u0|pV + C2 + C5

+ sup
�∈[0,T ]

|f�(�)|p
′

V ∗ +
∫ T

0

∣∣∣∣df�

d�
(�)

∣∣∣∣
p′

V ∗
d�

}
,

where C depends onk, p, C1, C3, C4 and T. Therefore sincef� is bounded in
W1,p′

(0, T ;V ∗) and �̃2
�(u0) is bounded, it follows that (7) and (8) hold. Moreover, (7)

and (13) imply (9). Furthermore, by (A1), we get

|u�(t)|pV �C1|u�(t)|2H + C2 + C3�1(u�(t)).

Hence, (7) and (8) imply (10). �
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Lemma 2. There exists a constantM2 such that

sup
t∈[0,T ]

|J�u�(t)|H � M2, (15)

sup
t∈[0,T ]

�1(J�u�(t)) � M2, (16)

sup
t∈[0,T ]

|J�u�(t)|V � M2, (17)

∫ T

0

∣∣∣∣ ddt J�u�(t)

∣∣∣∣
2

H

dt � M2. (18)

Proof of Lemma 2. SinceJ� is nonexpansive inH (see[4, p. 102]), we can derive
(15) from (7). By (A3), (7) and (8) yield (16), which together with (A1) and (15)
implies (17). Moreover since|J�u�(t + h)− J�u�(t)|H/h� |u�(t + h)− u�(t)|H/h for
all h ∈ R with t + h ∈ [0, T ], we have

∫ T

0

∣∣∣∣ ddt J�u�(t)

∣∣∣∣
2

H

dt�
∫ T

0

∣∣∣∣du�

dt
(t)

∣∣∣∣
2

H

dt,

which together with (9) implies (18). �

Lemma 3. There exists a constantM3 such that

sup
t∈[0,T ]

∣∣∣�H �̃2
�(u�(t))

∣∣∣
V ∗ � M3, (19)

∫ T

0

∣∣∣g1
�(t)

∣∣∣2
V ∗ dt � M3, (20)

whereg1
�(t) = f�(t)− du�(t)/dt + �H �̃2

�(u�(t)) ∈ �H�1
H (u�(t)).

Proof of Lemma 3. Since J�u�(t) ∈ D(�H �̃2) ∩ V for all t ∈ [0, T ], we get
�H �̃2(J�u�(t)) ⊂ ��2(J�u�(t)) for all t ∈ [0, T ]. Furthermore, since�H �̃2

�(u�(·)) ∈
�H �̃2(J�u�(·)) (see[4, p. 104]), it follows from (A2), (15), (16) and (18) that

{�H �̃2
�(u�(·))} forms a precompact subset ofC([0, T ];V ∗), (21)

which yields (19).
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Sincef� is bounded inW1,p′
(0, T ;V ∗) andg1

�(t) = f�(t)−du�(t)/dt+�H �̃2
�(u�(t))

for a.e. t ∈ (0, T ), (9) and (19) imply (20). �

From Lemmas1–3, we can extract a sequence{�n} such that�n → 0 and the
following Lemmas 4–6 hold.

Lemma 4. There existsu ∈ Cw([0, T ];V ) ∩W1,2(0, T ;H) such that

u�n
→ u weakly in L2(0, T ;V ) ∩ W1,2(0, T ;H), (22)

u�n
(t) → u(t) weakly in H f or all t ∈ [0, T ], (23)

J�n
u�n

→ u weakly in L2(0, T ;V ) ∩W1,2(0, T ;H). (24)

Moreoveru(t) → u0 strongly in H ast → +0.

Proof of Lemma 4. SinceH andV are reflexive, (7), (9) and (10) imply (22), which
also yieldsu ∈ C([0, T ];H). Moreover, letq ∈ [1,+∞) be fixed. Then by (7), we can
extract a subsequence{�q

n} of {�n} depending onq such thatu�q
n
−u0 → u−u0 weakly

in Lq(0, T ;H). Hence it is obvious thatu�q
n
− u0 → u− u0 weakly in Lq(0, t;H) for

any t ∈ [0, T ]. Therefore sinceu�q
n
(0) = u0, it follows from (9) that

‖u− u0‖Lq(0,t;H) � lim inf
�q
n→0

‖u�q
n
− u0‖Lq(0,t;H)

� lim inf
�q
n→0



∫ t

0

(∫ �

0

∣∣∣∣du�q
n

ds
(s)

∣∣∣∣
2

H

ds

)q/2

�q/2 d�




1/q

� M
1/2
1

(
2

q + 2

)1/q

t(1/2+1/q).

Thus we have

|u(t)− u0|H � sup
�∈[0,t]

|u(�)− u0|H

= lim
q→+∞ ‖u− u0‖Lq(0,t;H)�M

1/2
1 t1/2 for all t ∈ [0, T ],

which impliesu(t) → u0 strongly inH as t → +0.
Now let t ∈ [0, T ] be fixed. Sinceu�n

(0) = u(0) = u0, (22) shows that

(
u�n

(t)− u(t),�
)
H

=
∫ t

0

(
du�n

d�
(�)− du

d�
(�),�

)
H

d�

→ 0 ∀� ∈ H, ∀t ∈ [0, T ],

which yields (23).
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By (10) and (23), for any t ∈ [0, T ], we can take a subsequence{�t
n} of {�n}

depending ont such that

u�t
n
(t) → u(t) weakly in V. (25)

It then follows from (10) that |u(t)|V � lim inf �t
n→0 |u�t

n
(t)|V �M1, where M1 is in-

dependent oft. Therefore we conclude thatu(t) ∈ V for all t ∈ [0, T ] and supt∈[0,T ]
|u(t)|V �M1 < +∞. Hence, for all t ∈ [0, T ] and {tn} with tn → t as n → +∞,
there exist a subsequence{tnk } of {tn} and w ∈ V such thatu(tnk ) → w weakly in
V as nk → +∞. On the other hand,u(tnk ) → u(t) strongly in H as nk → +∞,
since u ∈ C([0, T ];H). Then, by virtue of (1), we findw = u(t), whence follows
u ∈ Cw([0, T ];V ).

By (17) and (18), there existsv ∈ L2(0, T ;V )∩W1,2(0, T ;H) such thatJ�n
u�n

→
v weakly in L2(0, T ;V ) ∩W1,2(0, T ;H). Here, by (19), we notice that

|u�n
(t)− J�n

u�n
(t)|V ∗ = �n|�H �̃2

�n
(u�n

(t))|V ∗ ��nM3

for all t ∈ [0, T ], which impliesu�n
−J�n

u�n
→ 0 strongly inC([0, T ];V ∗) as�n → 0.

Hence it follows from (22) that v = u. �

Lemma 5. There existsg2 ∈ C([0, T ];V ∗) such that

�H �̃2
�n
(u�n

(·)) → g2 strongly in C([0, T ];V ∗)

and g2(t) ∈ ��2(u(t)) f or a.e. t ∈ (0, T ). (26)

Proof of Lemma 5. By (21), there existsg2 ∈ C([0, T ];V ∗) such that�H �̃2
�n
(u�n

(·))
→ g2 strongly inC([0, T ];V ∗). Hence since�H �̃2

�n
(u�n

(t)) ∈ �H �̃2(J�n
u�n

(t)) ⊂ ��2

(J�n
u�n

(t)), by the demiclosedness of maximal monotone operators (see e.g.[3, Chap-
ter II]) and Proposition 1.1 of[7], it follows from (24) that g2(t) ∈ ��2(u(t)) for a.e.
t ∈ (0, T ). �

Lemma 6. There existsg1 ∈ L2(0, T ;V ∗) such that

g1
�n

→ g1 weakly in L2(0, T ;V ∗)

and g1(t) = f (t)+ g2(t)− du

dt
(t) ∈ ��1(u(t)) f or a.e. t ∈ (0, T ). (27)
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Proof of Lemma 6. By (20), it is obvious that there existsg1 ∈ L2(0, T ;V ∗) such
that

g1
�n

→ g1 weakly in L2(0, T ;V ∗). (28)

Moreover, by(CP)�n
, it follows from (22) and (26) that g1 = f + g2 − du/dt .

Hence it remains to prove thatf (t)+g2(t)−du(t)/dt ∈ ��1(u(t)) for a.e.t ∈ (0, T ).
To do this, integrating the product ofg1

�n
(t) andu�n

(t) over (0, T ), we get by(CP)�n
,

∫ T

0
〈g1

�n
(t), u�n

(t)〉 dt =
∫ T

0
〈f�n

(t), u�n
(t)〉 dt +

∫ T

0
〈�H �̃2

�n
(u�n

(t)), u�n
(t)〉 dt

−1

2
|u�n

(T )|2H + 1

2
|u0|2H .

Sincef�n
→ f strongly in W1,p′

(0, T ;V ∗), it follows from (22), (23) and (26) that

lim sup
�n→0

∫ T

0
〈g1

�n
(t), u�n

(t)〉 dt

= lim
�n→0

∫ T

0
〈f�n

(t), u�n
(t)〉 dt + lim

�n→0

∫ T

0
〈�H �̃2

�n
(u�n

(t)), u�n
(t)〉 dt

−1

2
lim inf
�n→0

|u�n
(T )|2H + 1

2
|u0|2H

�
∫ T

0
〈f (t), u(t)〉 dt +

∫ T

0
〈g2(t), u(t)〉 dt − 1

2
|u(T )|2H + 1

2
|u0|2H

=
∫ T

0

〈
f (t)+ g2(t)− du

dt
(t), u(t)

〉
dt. (29)

By Lemma 1.3 of[3, Chapter II] and Proposition 1.1 of[7], it follows from (22) and
(28) that g1(t) = f (t)+ g2(t)− du(t)/dt ∈ ��1(u(t)) for a.e. t ∈ (0, T ). �

Now, let t ∈ [0, T ] be arbitrarily fixed. Then since�1 ∈ �(V ), (8) and (25) im-
ply �1(u(t))� lim inf �t

n→0 �1(u�t
n
(t))�M1, whereM1 is independent oft. Hence we

conclude thatu(t) ∈ D(�1) for all t ∈ [0, T ] and supt∈[0,T ] �1(u(t))�M1 < +∞.
Moreover let {tn} be a sequence in[0, T ] such thattn → t . From the fact thatu ∈
Cw([0, T ];V ), it follows that u(tn) → u(t) weakly in V. Since�1(u(tn))� supt∈[0,T ]
�1(u(t))�M1, whereM1 is independent ofn, Proposition3 assures that�2(u(tn)) →
�2(u(t)), whence follows�2(u(·)) ∈ C([0, T ]).
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Finally we provide an energy estimate for the strong solutionu. To this end, we
claim that

�2(u�t
n
(t)) → �2(u(t)) ∀t ∈ [0, T ].

Indeed, lett ∈ [0, T ] be fixed. Then, by (8), (25) and the fact thatu�t
n
(t) ∈ D(�1),

Proposition3 assures the assertion above. Hence putting� = �t
n in (12) and noting

that �̃2
�t
n
(u0) → �2(u0) as �t

n → 0, we obtain

∫ t

0

∣∣∣∣dud�
(�)

∣∣∣∣
2

H

d� + �1(u(t))+ �2(u0)

��1(u0)+ �2(u(t))+ 〈f (t), u(t)〉 − 〈f (0), u0〉 −
∫ t

0

〈
df

d�
(�), u(�)

〉
d�.

This completes the proof.�

3.2. Proof of Theorem 2

To prove Theorem2, we need another type of auxiliary problem:

(CP)r




du

dt
(t)+ ��1,r (u(t))− ��2(u(t)) � f (t) in V ∗, 0 < t < T,

u(0) = u0.

Here r ∈ R is chosen so thatr > �2(u0) and �1,r denotes the cut-off function of�1

given by

�1,r (u) =
{

�1(u) if �2(u)�r,

+∞ otherwise.

Then it is easy to see that�1,r ∈ �(V ) and D(�1,r ) = D(�1) ∩ {u ∈ V ;�2(u)�r}
and that (A1) and (A2) are satisfied with�1 replaced by�1,r . Since (A3) assures
that J�D(�1) ⊂ D(�1), we find by Proposition1 that �2(J�u) = �̃2(J�u)��̃2(u) =
�2(u)�r for all u ∈ D(�1,r ), which impliesJ�u ∈ D(�1,r ) and�1,r (J�u) = �1(J�u).
Hence (A3) is satisfied with�1 replaced by�1,r . Furthermore, since�2(u)�r for all
u ∈ D(�1,r ), (A4) is satisfied withk = 0, C4 = 0, C5 = r and�1 = �1,r . Noting that
�2(u0) < r and u0 ∈ D(�1) yield u0 ∈ D(�1,r ), we observe that Theorem1 assures
the existence of strong solution of(CP)r on [0, T ] as follows:

Lemma 7. Assume that(A1), (A2) and (A3) are satisfied. Then for allu0 ∈ D(�1),
f ∈ W1,p′

(0, T ;V ∗) and r ∈ R with r > �2(u0), (CP)r has a strong solution u on
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[0, T ] satisfying(5) with �1 replaced by�1,r and the following inequality:

∫ t

0

∣∣∣∣dudt (�)

∣∣∣∣
2

H

d� + �1,r (u(t))+ �2(u0)

��1(u0)+ �2(u(t))+ 〈f (t), u(t)〉 − 〈f (0), u0〉 −
∫ t

0

〈
df

d�
(�), u(�)

〉
d�

(30)

for all t ∈ [0, T ].

Now we are going to show thatu(t) becomes a strong solution of (CP) on[0, T0] for
someT0 > 0. To do this, it is sufficient to prove that there exists a numberT0 ∈ (0, T ]
such that��1,r (u(t)) = ��1(u(t)) for a.e.t ∈ (0, T0). To this end, we prepare a couple
of lemmas.

Lemma 8. If u ∈ D(��1,r ) and �2(u) < r, thenu ∈ D(��1) and ��1,r (u) = ��1(u).

Proof of Lemma 8. Let [u, �] ∈ ��1,r be such that�2(u) < r and take an arbitrary
elementv ∈ D(�1). Then sinceus := (1− s)u+ sv ∈ D(�1), �1(us)�(1− s)�1(u)+
s�1(v)� |�1(u)| + |�1(v)| for all s ∈ [0, 1] and us → u strongly in V as s → 0,
Proposition 3 assures that�2(us) → �2(u) as s → 0. Hence from the fact that
�2(u) < r, there exists a numbers0 ∈ (0, 1) such that�2(us0)�r. Sinceus0 ∈ D(�1,r ),
we get�1(us0)− �1(u) = �1,r (us0)− �1,r (u)�〈�, us0 − u〉. Hence, by the convexity
of �1, we haves0(�1(v)− �1(u))�〈�, s0(v − u)〉. By dividing both sides bys0 > 0,
we deduce�1(v)−�1(u)�〈�, v − u〉 for all v ∈ D(�1), whence followsu ∈ D(��1)

and � ∈ ��1(u).
On the other hand, it is obvious that��1(u) ⊂ ��1,r (u) for all u ∈ D(��1,r ) with

�2(u) < r, which completes the proof.�

Lemma 9. There exists a numberT0 ∈ (0, T ] such that�2(u(t)) < r for all t ∈ [0, T0).

Proof of Lemma 9. For the case where maxt∈[0,T ] �2(u(t)) < r, we can takeT0 = T .
For the case where maxt∈[0,T ] �2(u(t))�r, since�2(u(·)) ∈ C([0, T ]) and�2(u0) < r,
there exists a numberT0 ∈ (0, T ] such that�2(u(t)) attains r at t = T0 for the first
time. �

By Lemmas8 and 9, there exists a numberT0 ∈ (0, T ] such thatu(t) ∈ D(��1) and
��1,r (u(t)) = ��1(u(t)) for a.e. t ∈ (0, T0). Consequently we deduce thatu becomes
a strong solution of (CP) on[0, T0]. Thus the proof of Theorem2 is completed. �
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3.3. Proof of Theorem 3

We first note that�i �0 (i = 1, 2) by assumptions of Theorem3. Moreover from the
assumption onl3 in (A5), we can take a number
1 > 
0 such that maxx∈[0,
1] l3(x)�
(� + �0)/2 ∈ (�0, �), where �0 := maxx∈[0,
0] l3(x) < �. Hence, by (A5), it follows
that:

� − �0

2
�1(u)�〈� − 	, u〉 (31)

for all [u, �] ∈ ��1 and [u, 	] ∈ ��2 satisfyingu ∈ D2

1

:= {u ∈ D(�2);�2(u)�
1}.
Put r = 
1 and recall the auxiliary problem(CP)r . Moreover define

XT

,R :=

{
(u0, f ) ∈ D(�1)×W1,p′

(0, T ;V ∗);

�1(u0)+
∫ T

0
|f (�)|p′

V ∗ d� +
∫ T

0

∣∣∣∣dfd�
(�)

∣∣∣∣
p′

V ∗
d��R,

�2(u0) < 
0, |u0|H +
{

max

(
1,

1

T

)∥∥∥|f (·)|p′
V ∗

∥∥∥
1,T

}1/p

< 


}

for all 
, R, T > 0, where

∥∥∥|f (·)|p′
V ∗

∥∥∥
1,T

:=




∫ T

0
|f (�)|p′

V ∗ d� if T < 1,

sup
t∈[1,T ]

∫ t

t−1
|f (�)|p′

V ∗ d� if T �1

and ST

,R := {u ∈ Cw([0, T ];V ) ∩ W1,2(0, T ;H); u is a strong solution of(CP)r

on [0, T ] satisfying (30) and �2(u(·)) ∈ C([0, T ]) with (u0, f ) ∈ XT

,R}. Here, by

Lemma 7, we note thatST

,R �= ∅ when XT


,R �= ∅. We then defineTr(u) := sup{T0 ∈
(0, T ];�2(u(t)) < r for all t ∈ [0, T0]} for all u ∈ ST


,R.
Now by Lemma8, to complete the proof, it suffices to show that

∀R > 0, ∃
R > 0; ∀T > 0, ∀u ∈ ST

R,R

, Tr(u) = T , (32)

where we note that
R is independent ofT. Suppose that the above claim were false,
i.e.,

∃R0 > 0; ∀
 > 0 ∃T
 > 0, ∃u
 ∈ S
T


,R0

; Tr(u
) < T
,

which implies�2(u
(Tr(u
))) = r and �2(u
(t)) < r for all t < Tr(u
).
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In particular, by taking
 = 1/n for each n ∈ N, we put vn := u1/n ∈ S
T1/n
1/n,R0

and Tr,n := Tr(u1/n). We then find thatvn becomes a strong solution of the following
Cauchy problem(CP)n on [0, Tr,n]:

(CP)n




dvn

dt
(t)+ ��1(vn(t))− ��2(vn(t)) � fn(t) in V ∗, 0 < t < Tr,n,

vn(0) = u0,n,

where (u0,n, fn) ∈ X
T1/n
1/n,R0

.
Multiplying (CP)n by vn(t) and using (31), we obtain

1

2

d

dt
|vn(t)|2H + � − �0

2
�1(vn(t))�〈fn(t), vn(t)〉 for a.e. t ∈ (0, Tr,n), (33)

sincevn(t) ∈ D2

1

for all t ∈ [0, Tr,n). Hence, by (A1) and (1), it follows that

1

2

d

dt
|vn(t)|2H + �̃|vn(t)|pH �C|fn(t)|p

′
V ∗ for a.e. t ∈ (0, Tr,n),

where �̃ and C denote positive constants independent ofn. Then, by Lemma 4.3 of
[2], we have

|vn(Tr,n)|H � sup
t∈[0,Tr,n]

|vn(t)|H � l

(
|u0,n|H +

∥∥∥|fn(·)|p
′

V ∗
∥∥∥1/p

1,Tr,n

)
� l

(
1

n

)
,

where l(·) is a monotone increasing function independent ofn satisfying limx→0 l(x)

= 0. Therefore we find

vn(Tr,n) → 0 strongly inH as n → +∞. (34)

On the other hand, integrating (33) over (0, Tr,n) and using (A1), we get

1

2
|vn(Tr,n)|2H + � − �0

4

∫ Tr,n

0
�1(vn(�)) d�

� 1

2
|u0,n|2H + C

∫ Tr,n

0
|fn(�)|p

′
V ∗ d�

� 1

2n2 + CR0, (35)
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whence follows

∫ Tr,n

0
�1(vn(�)) d��M4, (36)

whereM4 denotes a constant independent ofn.

Since (u0,n, fn) ∈ X
T1/n
1/n,R0

, we can show

sup
t∈[0,T1/n]

|fn(t)|p
′

V ∗ �M5, (37)

whereM5 denotes a constant independent ofn. Indeed, we first note that the Sobolev-
type embedding theorem assures thatfn ∈ W1,p′

(0, T1/n;V ∗) ⊂ C([0, T1/n];V ∗).
Hence there existstn ∈ [0, T1/n] such that

|fn(tn)|V ∗ = min
t∈[0,T1/n]

|fn(t)|V ∗ ,

so

T1/n|fn(tn)|p
′

V ∗ �
∫ T1/n

0
|fn(�)|p

′
V ∗ d�.

For the case whereT1/n�1, it then follows that

|fn(t)|p
′

V ∗ = |fn(tn)|p
′

V ∗ +
∫ t

tn

d

dt
|fn(�)|p

′
V ∗ d�

� 1

T1/n

∫ T1/n

0
|fn(�)|p

′
V ∗ d� + p′

∫ T1/n

0
|fn(�)|p

′−1
V ∗

∣∣∣∣dfn

d�
(�)

∣∣∣∣
V ∗

d�

�
∫ T1/n

0
|fn(�)|p

′
V ∗ d�

+p′
(∫ T1/n

0
|fn(�)|p

′
V ∗ d�

)1/p (∫ T1/n

0

∣∣∣∣dfn

d�
(�)

∣∣∣∣
p′

V ∗
d�

)1/p′

� CR0 ∀t ∈ [0, T1/n],

whereC denotes a constant independent ofn. For the case whereT1/n < 1, noticing

(1/T1/n)
∫ T1/n

0 |fn(�)|p
′

V ∗ d� < (1/n)p, we can verify the same assertion above.
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Therefore, by (A1), it follows from (30), (36) and (37) that

�1(vn(Tr,n)) � C

{
�1(u0,n)+ r +

∫ Tr,n

0
�1(vn(�)) d�

+|fn(0)|p
′

V ∗ + |fn(Tr,n)|p
′

V ∗ +
∫ Tr,n

0

∣∣∣∣dfn

d�
(�)

∣∣∣∣
p′

V ∗
d�

}

� C{R0 + r +M4 +M5}.

Hence, by (A1), we find

{vn(Tr,n)} is bounded inV. (38)

Therefore, by (34) and (38), we can extract a subsequence{n′} of {n} such that
vn′(Tr,n′) → 0 weakly inV. Moreover, by (A2), it follows from (38) that there exists
a subsequence{n′′} of {n′} and g2

n′′ ∈ ��2(vn′′(Tr,n′′)) such thatg2
n′′ → g2 strongly in

V ∗ as n′′ → +∞.
Since u0,n′′ → 0 weakly in V, we find that 〈g2

n′′ , vn′′(Tr,n′′) − u0,n′′ 〉 → 0. Hence
there exists a numberN0 ∈ N such that|〈g2

N0
, vN0(Tr,N0) − u0,N0〉| < 
1 − 
0. From

the fact that�2(u0,N0) < 
0, it follows that

�2(vN0(Tr,N0))��2(u0,N0)+ 〈g2
N0

, vN0(Tr,N0)− u0,N0〉 < 
1 = r,

which contradicts the definition ofTr,N0 = Tr(vN0). Therefore we conclude that (32)
holds true. �

4. Application

In this section, we exemplify the applicability of our abstract results obtained in
the present paper by discussing the existence of local or global (in time) solutions of
(NHE). Here solutions of (NHE) mean:

Definition 2. A function u ∈ C([0, T ];W−1,p′
(�)) is said to be a weak solution of

(NHE) on [0, T ] if the following conditions are satisfied.

(i) u(t) is a W−1,p′
(�)-valued absolutely continuous function on [0,T].

(ii) u(t) → u0 strongly in L2(�) as t → +0.
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(iii) −�pu(t), |u|q−2u(t) ∈ W−1,p′
(�) for a.e. t ∈ (0, T ) and the following holds

true.

〈
�u
�t

(·, t),�
〉
W

1,p
0 (�)

+
∫
�
|∇u|p−2∇u(x, t) · ∇�(x) dx

−
〈
|u|q−2u(·, t),�

〉
W

1,p
0 (�)

= 〈
f (·, t),�〉

W
1,p
0 (�)

for a.e. t ∈ (0, T ) and for all � ∈ W
1,p
0 (�).

The existence of local or global solutions of (NHE) is already studied by Tsutsumi
[13] for the casef (x, t) ≡ 0 and by Ôtani[10,12] for the casef ∈ L2(0, T ;L2(�)).
The argument in[13] is based on Faedo–Galerkin’s method and requires the growth
condition q < 2p/(N + p) for the existence of local solutions, andq < p∗ for
the existence of small global solutions, wherep∗ = Np/(N − p) if p < N ; p∗ =
+∞ if p�N . On the other hand, the method in[10,12] is based on a nonmonotone
perturbation theory for subdifferential operators in a real Hilbert space and[10] requires
the growth conditionq < p∗/2+1 for the existence of local and small global solutions.
As for the semilinear casep = 2, however, it is shown in[12] that (NHE) admits local
solution and small global solution under the subcritical growth conditionq < 2∗.

Since the abstract setting in[12] as well as in[10] is chosen in the Hilbert space and
the knowledge of elliptic estimate for�p in L2(�) is insufficient, [10,12] could not
assure the existence of local solutions of (NHE) under the subcritical growth condition
q < p∗.

Nevertheless, it is quite natural to conjecture that (NHE) should admit local solutions
in a suitable space (larger thanL2(�)) under the subcritical growth conditionq < p∗,
which has been left as an open problem for long time. It would be noteworthy that
our abstract framework enables us to give an affirmative answer to this open problem
(see Theorem4 below).

In order to reduce (NHE) to (CP), we chooseV = W
1,p
0 (�) and H = L2(�) with

norms | · |V := |∇ · |Lp(�) and | · |H := | · |L2(�), respectively. We further put

�p(u) =
1

p

∫
�
|∇u(x)|p dx, �q(u) =

1

q

∫
�
|u(x)|q dx ∀u ∈ V.

Here we assume that

(C)p,q
2N

N + 2
�p < +∞ and 1< q < p∗ =




Np

N − p
if N > p,

+∞ if N �p.

Then it is easy to see that (1) is satisfied andV is compactly embedded inLq(�) (see
[1]). Hence�p and �q belong to�(V ), ��p(u) and ��q(u) coincide with−�pu and
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|u|q−2u respectively in the distribution sense, whereD(�p) = D(��p) = D(�q) =
D(��q) = V . Thus (NHE) is reduced to (CP) with�1 = �p and �2 = �q . Moreover
(A1)–(A3) are all assured by the following lemma.

Lemma 10. Assume(CP)p,q is satisfied, then (A1), (A2) and (A3) hold true with
�1 = �p, �2 = �q and C1 = C2 = 0.

Proof of Lemma 10. Since�p(u) = |u|pV /p, (A1) with C1 = C2 = 0 andC3 = p fol-
lows at once. To check (A2), take any sequence{un} satisfying supt∈[0,T ]{�p(un(t))+
|un(t)|H } + ∫ T

0 |dun(t)/dt |2H dt�C. Then, sinceV is compactly embedded inLq(�)

and |un(t)− un(s)|H �‖dun/dt‖L2(0,T ;H)|t − s|1/2, {un(t)} forms a precompact set in
Lq(�) for all t ∈ [0, T ] and an equi-continuous set inC([0, T ];H). Moreover, by virtue
of Gagliardo–Nirenberg’s inequality:|u|Lq(�)�C|u|
H |u|1−


V , 
 ∈ (0, 1), ∀u ∈ V, we
observe that{un(t)} is also equi-continuous inC([0, T ];Lq(�)). Therefore by As-
coli’s lemma, there exists a subsequence{n′} of {n} such thatun′ → u strongly in
C([0, T ];Lq(�)), whence easily follows:

|un′ |q−2un′(·) → |u|q−2u(·) strongly in C([0, T ];Lq ′(�)).

Hence��q(un′(·)) → ��q(u(·)) strongly in C([0, T ];V ∗).
As for (A3), we put�̃2(u) = �2(u) if u ∈ V ; �̃2(u) = +∞ if u ∈ H \V . Then it is

easily seen that̃�2 ∈ �(H) and �̃2|V = �2. Furthermore, since the mappingr ∈ R �→
(I + ��H �̃2)r = J�r becomes nonexpansive onR, we find that |∇J�u(x)|� |∇u(x)|
holds for a.e.x ∈ �. Hence�1(J�u)��1(u) which implies (A3) (see the proof for
Corollary 16 of [4]). �

4.1. The case wherep�q and u0 ∈ W
1,p
0 (�)

By applying Theorems2 and 3, we obtain the following Theorems4 and 5.

Theorem 4 (Local existence). Assume(C)p,q holds and p�q. Then, for all u0 ∈
W

1,p
0 (�) and f ∈ W1,p′

(0, T ;W−1,p′
(�)), there exists a numberT0 ∈ (0, T ] such

that (NHE) has a weak solution u on[0, T0] satisfying:

u ∈ Cw([0, T0];W1,p
0 (�)) ∩ C([0, T0];Lq(�)) ∩W1,2(0, T0;L2(�)). (39)

Proof of Theorem 4. By Lemma10 and Theorem2, there exists a numberT0 ∈ (0, T ]
such that (NHE) has a solutionu on [0, T0]. Moreover since�q(u(·)) ∈ C([0, T0]), the
uniformly convexity ofLq(�) ensuresu ∈ C([0, T0];Lq(�)). �
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Theorem 5 (Global existence). Assume(C)p,q holds andp < q. Let R be an arbitrary
positive number, and let
 be a positive number such that
 < C(p, q)−p/(q−p), where
C(p, q) denotes the best possible constant for the Sobolev–Poincaré-type inequality:
|u|Lq(�)�C(p, q)|u|V . Then there exists a positive number
R independent of T such
that if u0 and f satisfy

1

p
|u0|pV +

∫ T

0
|f (�)|p′

V ∗ d� +
∫ T

0

∣∣∣∣dfd�
(�)

∣∣∣∣
p′

V ∗
d��R,

|u0|Lq(�) < 
, |u0|L2(�) +
{

max

(
1,

1

T

)∥∥∥|f (·)|p′
V ∗

∥∥∥
1,T

}1/p

< 
R,

then (NHE) has a weak solution u on[0, T ] satisfying(39) with T0 replaced by T.

Proof of Theorem 5. By the Sobolev–Poincaré-type inequality, it follows that|u|Lq(�)�
C(p, q)|u|V for all u ∈ V . Hence we find that

〈��p(u)− ��q(u), u〉 = |u|pV − |u|q
Lq(�)

� |u|pV − C(p, q)p|u|pV |u|q−p

Lq(�)

= p�p(u)
[

1− C(p, q)p
{
q�q(u)

}(q−p)/q
]
,

which implies

p�p(u)�〈��p(u)− ��q(u), u〉 + pC(p, q)p
{
q�q(u)

}(q−p)/q �p(u)

for all u ∈ V. Therefore (A5) holds with� = p, l3(r) = pC(p, q)p(qr)(q−p)/q

and 
0 = 
q/q < C(p, q)−pq/(q−p)/q. Thus Theorem3 ensures the existence of
weak solutions on[0, T ] for (NHE) when u0 and f satisfy the suitable conditions
above. �

4.2. The case wherep > q and u0 ∈ W
1,p
0 (�)

The case wherep > q can be covered by Theorem1.

Theorem 6 (Global existence). Assume(C)p,q holds andp > q. Then, for all u0 ∈
W

1,p
0 (�) and f ∈ W1,p′

(0, T ;W−1,p′
(�)), (NHE) has a weak solution u on[0, T ]

satisfying(39) with T0 replaced by T.
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Proof of Theorem 6. Conditions (A1)–(A3) are already assured by Lemma10. More-
over, sincep > q, we find

�q(u) =
1

q
|u|q

Lq(�)
� 1

q
C(p, q)q |u|qV � 1

2
�p(u)+ C ∀u ∈ V,

which implies (A4) withk = 1/2. Therefore, by Theorem1, (NHE) has a global weak
solution on[0, T ]. �
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