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1. Introduction

We consider the singular boundary value problem with singular perturbation of the form

ε
d2 y

dx2
− 1

x − λ
f (x, y)

dy

dx
+ g(x, y) = 0, x ∈ (0, λ) ∪ (λ,1), (1.1)

y(0) = A, y(λ) = μ, y(1) = B, (1.2)

where ε is a small and positive parameter, and A, B , μ and λ ∈ [0,1] are given constants. The
functions f (x, y) and g(x, y) are smooth on [0,1] × R. For λ = 0 or 1, μ = A or B , respectively.
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A special example with f (x, y) = −1, g(x, y) = −y and λ = 0 which exhibits a right boundary layer
was investigated by Bender and Orszag [3], and its asymptotic solution was obtained using the match-
ing procedures. Singular boundary value problems arise in many physical models, such as plasma
physics [8], the nonlinear circular membrane [20], Homann flow [21], and so on. Recently, many the-
ories and numerical techniques have been developed and applied to study various singular boundary
value problems; see for instance [1,2,8,12,17–19] and references therein.

The singular perturbation theory originating from celestial mechanics has been an important tool
for dealing with nonlinear problems. An important character of singularly perturbed problems is that
the solution rapidly changes on a very narrow interval, which is called a boundary layer or an interval
layer. The study on singularly perturbed problems has been always a hot topic since the last century,
and considerable literature has grown up relating to these problems. Singularly perturbed boundary
value problems having no singular coefficients have been understood very well; see for instance [4,
6,7,13,15]. However, singular boundary value problems with singular perturbation have received few
attention. There are only a few literatures of research on this kind of problem, and they focus mainly
on numerical aspect [9,14,16].

Singular boundary value problems with singular perturbation can be traced to the well-known
Lagerstrom model for flow at low Reynolds number [11]

y′′ + k

x
y′ + cyy′ + b

(
y′)2 = 0,

y(ε) = 0, y(∞) = 0,

for k � 1, c > 0, b � 0. In [10], Kelley extended the above equation to more general case but limited
on a finite interval [ε,1] by using the theory of differential inequalities, and established the sufficient
condition ensuring the existence of a solution which asymptotically approximates the solution of the
reduced problem on the interval (0,1].

In the present paper, we are devoted to the asymptotic analysis of (1.1)–(1.2). Due to the singularity
at x = λ, Eq. (1.1) subject to a two-point boundary condition may generally have infinitely many
solutions. Therefore we add a condition at the singularity. An interesting phenomenon is that the
solution of (1.1)–(1.2) exhibits two boundary layers at two endpoints for an internal singularity, which
generally occurs for semi-linear problems (namely, having no first order derivative in the equation) of
smooth second order differential equations.

Our analysis proceeds in two steps: constructing a formal approximation of the solution and prov-
ing the uniformly validity of this approximation. The first step is almost standard. However we make
a modification on the correction of boundary layers, which yields a better approximation. In order
to prove the validity of asymptotic solution and obtain an estimate of the remainder term we need
to establish the lower–upper solutions theory, which is contained in Section 2. It should be noticed
that although some lower–upper solutions theorems for singular boundary value problems have been
obtained (see [5], for instance), our case has not been covered.

The remainder of this paper is organized as follows. In Section 2 we establish the lower–upper so-
lutions theory for a class of singular three-point boundary value problems by the Schauder fixed point
theorem, which will be used to prove the existence and uniqueness for the corresponding singularly
perturbed problems. By the asymptotic expansions and the lower–upper solutions theory established
in Section 2, the existence, asymptotic estimates and uniqueness of solutions for the problem (1.1)–
(1.2) are obtained in Section 3. Several illustrating examples are given in Section 4.

2. Two basic lemmas

Let us consider the singular three-point boundary value problem

d2 y

dx2
= F (x, y)

x − λ

dy

dx
+ G(x, y), x ∈ (a, λ) ∪ (λ,b), (2.1)

y(a) = A, y(λ) = μ, y(b) = B, (2.2)
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for λ ∈ [a,b], for given constants A, B , μ, and for continuous functions F (x, y) and G(x, y) on the
domain [a,b] × R. For λ = a or b, μ = A or B , respectively.

Definition 2.1. We say that a function α ∈ C([a,b]) ∩ C1([a, λ) ∪ (λ,b]) is a lower solution of the
problem (2.1) and (2.2) if

α′′(x) � F (x,α)

x − λ
α′(x) + G(x,α), for x ∈ (a, λ) ∪ (λ,b),

α(a) � A, α(λ) � μ, α(b) � B. (2.3)

We say that a function β ∈ C([a,b]) ∩ C1([a, λ) ∪ (λ,b]) is an upper solution of the problem (2.1)
and (2.2) if

β ′′(x) � F (x, β)

x − λ
β ′(x) + G(x, β), for x ∈ (a, λ) ∪ (λ,b),

β(a) � A, β(λ) � μ, β(b) � B. (2.4)

Lemma 2.1. Assume that α and β are lower and upper solutions of the problem (2.1) and (2.2) such that α � β ,
and the functions F (x, y) and G(x, y) are continuous on the set Dβ

α = {(x, y) ∈ [a,b]×R | α(x) � y � β(x)}.
Then the problem (2.1) and (2.2) has at least one solution y ∈ C([a,b]) ∩ C1([a, λ) ∪ (λ,b]) such that for all
x ∈ [a,b]

α(x) � y(x) � β(x).

Proof. For a < λ < b, the problem (2.1) and (2.2) can be divided into the following two boundary
value problems

d2 y

dx2
= F (x, y)

x − λ

dy

dx
+ G(x, y), x ∈ (a, λ), (2.5)

y(a) = A, y(λ) = μ, (2.6)

and

d2 y

dx2
= F (x, y)

x − λ

dy

dx
+ G(x, y), x ∈ (λ,b), (2.7)

y(λ) = μ, y(b) = B, (2.8)

with α(λ) � μ � β(λ). Clearly, α and β are lower and upper solutions of the above two problems
such that α � β . For λ = b or λ = a, the original problem can be reduced to the problem (2.5) and
(2.6) or the problem (2.7) and (2.8), respectively. In the following proof, we only consider the problem
(2.5) and (2.6) for a < λ < b.

Let us define the following modifications of the functions in the right-hand side of (2.5)

R(x, y, v) =

⎧⎪⎪⎨
⎪⎪⎩

F (x,α(x))
x−λ

v + G(x,α(x)) + y−α(x)
1+|y−α(x)| , if y < α(x),

F (x,y)
x−λ

v + G(x, y), if α(x) � y � β(x),

F (x,β(x)) v + G(x, β(x)) + y−β(x)
, if y > β(x),
x−λ 1+|y−β(x)|
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and

H(x, y, z) =

⎧⎪⎪⎨
⎪⎪⎩

R(x, y, −N
x−λ

), if z < −N,

R(x, y, z
x−λ

), if −N � z � N,

R(x, y, N
x−λ

), if z > N,

where N > 0 is a large enough number such that

N > max
{

sup
x∈[a,λ]

∣∣(x − λ)α′(x)
∣∣, sup

x∈[a,λ]
∣∣(x − λ)β ′(x)

∣∣} + |A − μ|,

and

N∫
|A−μ|

1

s + 1
ds >

M1 + 1

|A − μ| + 1
max

x∈[a,λ]
∣∣β(x) − α(x)

∣∣ + M2

|A − μ| + 1
, (2.9)

while

M1 = max
(x,y)∈[a,λ]×Dβ

α

∣∣F (x, y)
∣∣, M2 = max

(x,y)∈[a,λ]×Dβ
α

∣∣(x − λ)G(x, y)
∣∣(λ − a).

Consider the modified problem

y′′(x) + H
(
x, y, (x − λ)y′) = 0, (2.10)

y(a) = A, y(λ) = μ. (2.11)

Let us write the boundary value problem (2.10) and (2.11) as an integral equation

y(x) =
λ∫

a

G(x, s)H
(
s, y(s), (s − λ)y′(s)

)
ds + w(x),

where

G(x, s) =
{

(λ−s)(x−a)
λ−a , a � x � s � λ,

(λ−x)(s−a)
λ−a , a � s � x � λ,

and

w(x) = λA − μa

λ − a
+ μ − A

λ − a
x.

Define an operator T : X → X as follows

(T y)(x) =
λ∫

G(x, s)H
(
s, y(s), (s − λ)y′(s)

)
ds + w(x),
a
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where X is a Banach space defined by X = {y ∈ C([a, λ])∩ C1([a, λ)), (x−λ)y′(x) ∈ C([a, λ])} endowed
with the norm

‖y‖ = max
{

sup
x∈[a,λ]

∣∣y(x)
∣∣, sup

x∈[a,λ]
∣∣(x − λ)y′(x)

∣∣}.

It can be shown that T is completely continuous and bounded by the Arzelà–Ascoli theorem. It
follows from the Schauder fixed point theorem that T has at least one fixed point y(x) ∈ X .

We are now ready to prove that any solution y(x) of the problem (2.10) and (2.11) satisfies α(x) �
y(x) � β(x) and |(x − λ)y′(x)| � N for x ∈ [a, λ]. Let us first prove that α(x) � y(x). Suppose, on the
contrary, that the function h(x) = α(x)− y(x) has a positive maximum at some x0 ∈ [a, λ]. Considering
the fact h(a) = α(a) − y(a) � A − A = 0 and h(λ) = α(λ) − y(λ) � μ − μ = 0, we have x0 ∈ (a, λ),
which implies that h(x0) > 0,h′(x0) = 0,h′′(x0) � 0. On the other hand, in view of |(x0 − λ)y′(x0)| =
|(x0 − λ)α′(x0)| < N , we have

h′′(x0) = α′′(x0) − y′′(x0)

� F (x0,α(x0))

x0 − λ
α′(x0) + G

(
x0,α(x0)

)

−
[

F (x0,α(x0))

x0 − λ
y′(x0) + G

(
x0,α(x0)

) + y(x0) − α(x0)

1 + |y(x0) − α(x0)|
]

> 0,

which yields a contradiction. This shows that α(x) � y(x) for x ∈ [a, λ]. In a similar way, we can prove
that y(x) � β(x) for x ∈ [a, λ].

We turn to prove |(x − λ)y′(x)| � N for x ∈ [a, λ]. Thanks to |y(a) − y(λ)| = |A − μ|, there exists a
τ ∈ (a, λ) such that (λ−a)|y′(τ )| � |A −μ|. So, |(τ −λ)y′(τ )| � |A −μ|. Suppose that |(x −λ)y′(x)| �
N is not satisfied. Without loss of generality, we assume that there exist x1 ∈ [a, τ ) and x2 ∈ (x1, τ )

such that

(x1 − λ)y′(x1) = |A − μ|, (x2 − λ)y′(x2) = N, |A − μ| � (x − λ)y′(x) � N, x ∈ [x1, x2].
Then we have

N∫
|A−μ|

1

s + 1
ds =

x2∫
x1

d(x − λ) y′(x)

(x − λ)y′(x) + 1

=
x2∫

x1

(x − λ)y′′(x) + y′(x)

(x − λ)y′(x) + 1
dx

=
x2∫

x1

(x − λ)[ F (x,y(x))
x−λ

y′(x) + G(x, y(x))] + y′(x)

(x − λ)y′(x) + 1
dx

� (M1 + 1)

|A − μ| + 1

x2∫
x1

y′(x)dx +
λ∫

a

max
(x,y)∈Dβ

α
|(x − λ)G(x, y(x))|

|A − μ| + 1
dx

� M1 + 1

|A − μ| + 1
max

x∈[a,λ]
∣∣β(x) − α(x)

∣∣ + M2

|A − μ| + 1
,

which is contradictory to (2.9).
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Therefore, the solution of (2.10) and (2.11) is also that of (2.5) and (2.6) and satisfies α(x) �
y(x) � β(x) for x ∈ [a, λ]. In a similar fashion, we can show that (2.7) and (2.8) has at least a solution
y ∈ C([λ,b]) ∩ C1((λ,b]) such that α(x) � y(x) � β(x) for all x ∈ [λ,b]. The proof of the lemma is
completed. �
Lemma 2.2. Assume that α and β are lower and upper solutions of the problem (2.1) and (2.2), respectively,
and one of the inequalities (2.3) and (2.4) is strict. If the functions F (x, y) and G(x, y) are continuous on
(x, y) ∈ [a,b] × R and satisfy

(x − λ)
∂ F

∂ y
(x, y) � 0,

∂G

∂ y
(x, y) � 0, for (x, y) ∈ [a,b] × R, (2.12)

then the solution of the problem (2.1) and (2.2) is unique.

Proof. To establish the uniqueness, it suffices to show that α(x) � β(x) for x ∈ [a,b]. Let w(x) =
α(x) − β(x), for x ∈ [a,b]. Suppose that w(x) � 0 is not true for x ∈ [a,b]. Then, noting that w(a) =
α(a)−β(a) � 0, w(λ) = α(λ)−β(λ) � 0, and w(b) = α(b)−β(b) � 0, w(x) has a positive maximum
at some x0 ∈ (a, λ) ∪ (λ,b), which implies w(x0) > 0, w ′(x0) = 0 and w ′′(x0) � 0. Without loss of
generality, we assume

α′′(x0) >
F (x0,α(x0))

x0 − λ
α′(x0) + G

(
x0,α(x0)

)
.

On the other hand, with (2.12) we have

α′′(x0) � β ′′(x0) � F (x0, β(x0))

x0 − λ
β ′(x0) + G

(
x0, β(x0)

)
� F (x0,α(x0))

x0 − λ
α′(x0) + G

(
x0,α(x0)

)
,

which yields a contradiction. Therefore, α(x) � β(x) for x ∈ [a,b]. This ends the proof. �
3. Main results

In this section, we are interested in the asymptotic behavior of solution with respect to the small
parameter ε, as well as the existence and uniqueness for the singular boundary value problem (1.1)
and (1.2). To avoid tedious bookkeeping we only consider the approximation of zero order.

We first make two basic assumptions.

(H1) The functions f (x, y) and g(x, y) are C1-smooth on [0,1] × R.
(H2) There exists a positive constant σ0 such that f (x, y) � σ0 > 0 for (x, y) ∈ [0,1] × R.

Because the case λ = 1 reduces to that λ = 0 by the transformation x = 1 − x, in what follows, we
distinguish two cases: 0 < λ < 1 and λ = 0.

3.1. Case 0 < λ < 1

For 0 < λ < 1, the boundary layers occur at the two endpoints x = 0 and x = 1. We further assume
that:

(H3) The reduced problem

f (x, y)
dy

dx
= (x − λ)g(x, y), y(λ) = μ

has a solution y = ϕ(x) ∈ C2([0,1]).
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Noting that the solution ϕ(x) of the reduced problem do not generally meet the boundary condi-
tions y(0) = A and y(1) = B , we need introduce the boundary layer correcting terms u(τ ) and v(t)
with τ = x/ε and t = (1 − x)/ε. Setting y(x) = ϕ(x) + u(τ ) + v(t) in (1.1), we obtain

εϕ′′(x) + 1

ε

d2u

dτ 2
+ 1

ε

d2 v

dt2
− f (x,ϕ(x) + u(τ ) + v(t))

x − λ

(
ϕ′(x) + 1

ε

du

dτ
− 1

ε

dv

dt

)

+ g
(
x,ϕ(x) + u(τ ) + v(t)

) = 0.

Considering the approximation of zero order for the boundary layer terms, we have

d2u0

dτ 2
− f (0,ϕ(0) + u0(τ ))

ετ − λ

du0

dτ
= 0, (3.1)

d2 v0

dt2
+ f (1,ϕ(1) + v0(t))

1 − εt − λ

dv0

dt
= 0. (3.2)

Here we have retained ε-term in the denominators. As we will see, in doing so, a better approxi-
mation for the boundary layer terms u0(τ ) and v0(t) can be obtained. The corresponding boundary
conditions become

u0(0) = A − ϕ(0), u0

(
λ

ε

)
= 0, (3.3)

v0(0) = B − ϕ(1), v0

(
1 − λ

ε

)
= 0. (3.4)

Due to the continuity of f (x, y) we denote by

σ1 = max
{

f
(
0,ϕ(0) + u

)
: −∣∣A − ϕ(0)

∣∣ � u �
∣∣A − ϕ(0)

∣∣},
σ2 = max

{
f
(
1,ϕ(1) + v

)
: −∣∣B − ϕ(1)

∣∣ � v �
∣∣B − ϕ(1)

∣∣}.
The following two lemmas are concerned with the asymptotic behavior of the boundary layer terms.

Lemma 3.1. Under the assumptions (H1) and (H2), for sufficiently small ε > 0, the boundary value problem
(3.1) and (3.3) has a solution u0(τ ) satisfying the following estimates:

(
A − ϕ(0)

)(λ − ετ

λ

) σ+ε
ε

� u0(τ ) �
(

A − ϕ(0)
)(λ − ετ

λ

) σ+ε
ε

(3.5)

and

∣∣∣∣du0

dτ

∣∣∣∣ � 2
∣∣A − ϕ(0)

∣∣(σ1 + ε)

(
λ − ετ

λ

) σ0
ε

, (3.6)

where

σ =
{

σ1, if A − ϕ(0) > 0,

σ0, if A − ϕ(0) < 0,
σ =

{
σ0, if A − ϕ(0) > 0,

σ1, if A − ϕ(0) < 0.
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Lemma 3.2. Under the assumptions (H1) and (H2), for sufficiently small ε > 0, the boundary value problem
(3.2) and (3.4) has a solution v0(t) satisfying the following estimates:

(
B − ϕ(1)

)(1 − εt − λ

1 − λ

) σ+ε

ε

� v0(t) �
(

B − ϕ(1)
)(1 − εt − λ

1 − λ

) σ+ε
ε

(3.7)

and

∣∣∣∣dv0

dt

∣∣∣∣ � 2
∣∣B − ϕ(1)

∣∣(σ2 + ε)

(
1 − εt − λ

1 − λ

) σ0
ε

, (3.8)

where

σ =
{

σ2, if B − ϕ(1) > 0,

σ0, if B − ϕ(1) < 0,
σ =

{
σ0, if B − ϕ(1) > 0,

σ2, if B − ϕ(1) < 0.

The proofs of the above lemmas are essentially similar, so we only present the proof of Lemma 3.2.

Proof of Lemma 3.2. We choose the auxiliary functions

α(t) = (
B − ϕ(1)

)(1 − εt − λ

1 − λ

) σ+ε

ε

,

β(t) = (
B − ϕ(1)

)(1 − εt − λ

1 − λ

) σ+ε
ε

.

It is easy to see that

α(t) � β(t), 0 � t � 1 − λ

ε
,

α(0) = β(0) = B − ϕ(1), α

(
1 − λ

ε

)
= β

(
1 − λ

ε

)
= 0.

Moreover, we have

α′′(t) + f (1,ϕ(1) + α(t))

1 − εt − λ
α′(t)

= (
B − ϕ(1)

) (σ + ε)

(1 − λ)2

(
1 − εt − λ

1 − λ

) σ−ε

ε (
σ − f

(
1,ϕ(1) + α(t)

))
� 0

and

β ′′(t) + f (1,ϕ(1) + β(t))

1 − εt − λ
α′(t)

= (
B − ϕ(1)

) (σ + ε)

(1 − λ)2

(
1 − εt − λ

1 − λ

) σ−ε
ε (

σ − f
(
1,ϕ(1) + α(t)

))
� 0.
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It follows from Lemma 2.1 that the problem (3.2) and (3.4) has a solution v0(t) such that (3.5) holds.
Now we turn to (3.8). Using the definition of limits and (3.7) we obtain

(σ + ε)(B − ϕ(1))

1 − λ
� dv0

dt
(0) � (σ + ε)(B − ϕ(1))

1 − λ
. (3.9)

Let z = v ′
0(t). With (H2), from (3.2) we have

dz

z dt
= − f (1,ϕ(1) + v0(t))

1 − εt − λ
� − σ0

1 − εt − λ
.

With (3.9) and integrating the above inequality from 0 to t we have the desired bound

∣∣z(t)∣∣ � |B − ϕ(1)|(σ2 + ε)

1 − λ

(
1 − εt − λ

1 − λ

) σ0
ε

.

This ends the proof of Lemma 3.1. �
Remark. From the estimates (3.5) and (3.7) we see that the boundary layer terms u0(x/ε) and
v0((1 − x)/ε) decay exponentially within the right neighborhood of x = 0 and within the left neigh-
borhood of x = 1, respectively. As a matter of fact, here u0(x/ε) and v0((1 − x)/ε) decay faster than
the usual boundary layer terms in the problem having no singular coefficients. This can be seen from
the following facts

(
λ − x

λ

) σ
ε

= exp

(
σ

ε
ln

λ − x

λ

)
� exp

(−σ

λ

x

ε

)

for 0 � x < λ, and

(
x − λ

1 − λ

) σ
ε

= exp

(
σ

ε
ln

x − λ

1 − λ

)
� exp

( −σ

1 − λ

1 − x

ε

)

for λ < x � 1 and σ > 0.

Theorem 3.1. Let the conditions (H1), (H2) and (H3) hold. Moreover, we assume that

∂ f

∂ y

(
x,ϕ(x) + u0(x/ε)

)(
A − ϕ(0)

)
� 0, for x ∈ (0, λ), (3.10)

∂ f

∂ y

(
x,ϕ(x) + v0

(
(1 − x)/ε

))(
B − ϕ(1)

)
� 0, for x ∈ (λ,1). (3.11)

Then for sufficiently small ε > 0 the boundary value problem (1.1) and (1.2) has a solution y(x, ε) satisfying:

y(x, ε) = ϕ(x) + u0

(
x

ε

)
+ v0

(
1 − x

ε

)
+ O(ε), (3.12)

where u0(x/ε) and v0((1 − x)/ε) are defined in Lemmas 3.1 and 3.2.
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Proof. It follows from the assumptions (H1) and (H3) that there exists a positive constant K such
that for sufficiently small ε > 0

∣∣ϕ′′(x)
∣∣ � K , x ∈ [0,1],

∣∣ f
(
ετ ,ϕ(ετ ) + u0

) − f
(
0,ϕ(0) + u0

)∣∣ � Kτε

2(σ1 + ε)
, τ ∈

[
0,

λ

ε

]
,

∣∣ f
(
1 − εt,ϕ(1 − εt) + v0

) − f
(
1,ϕ(1) + v0

)∣∣ � K (1 − λ)tε

2(σ2 + ε)
, t ∈

[
0,

1 − λ

ε

]
,

∣∣∣∣ ∂ g

∂ y
(x, y) − g(x,ϕ(x))

f (x,ϕ(x))

∂ f

∂ y
(x, y)

∣∣∣∣ � K , (x, y) ∈ [0,1] × [−ϑ − Kε,ϑ + Kε],

where ϑ = max{|ϕ(x)| + |A − ϕ(0)| + |B − ϕ(1)|, 0 � x � 1}.
From the construction of asymptotic solution we select the barrier functions

α(x) =
{

ϕ(x) + u0(
x
ε ) − εu1(

x
ε ) − γ (x)ε, x ∈ [0, λ],

ϕ(x) + v0(
1−x
ε ) − εv1(

1−x
ε ) − γ (x)ε, x ∈ [λ,1],

β(x) =
{

ϕ(x) + u0(
x
ε ) + εu1(

x
ε ) + γ (x)ε, x ∈ [0, λ],

ϕ(x) + v0(
1−x
ε ) + εv1(

1−x
ε ) + γ (x)ε, x ∈ [λ,1],

where

u1(τ ) = K |A − ϕ(0)|p(τ )

2(σ0 + ε)(σ0 + 2ε)(σ0 + 3ε)

(
λ − ετ

λ

) σ0
ε

, τ ∈
[

0,
λ

ε

]
, τ = x

ε
,

v1(t) = K |B − ϕ(1)|(1 − λ)q(t)

2(σ0 + ε)(σ0 + 2ε)(σ0 + 3ε)

(
1 − εt − λ

1 − λ

) σ0
ε

, t ∈
[

0,
1 − λ

ε

]
, t = 1 − x

ε
,

and

γ (x) =
⎧⎨
⎩

L
K [exp(

K (x−λ)2

2σ1
) − 1], x ∈ [0, λ],

L
K [exp(

K (x−λ)2

2σ0
) − 1], x ∈ [λ,1],

for p(τ ) = 2λ2(λ+σ0 +3ε)+2λσ0(λ+σ0 +3ε)τ +(σ0 +ε)(λσ0 −2σ0ε−6ε2)τ 2 −ε(σ0 +ε)(σ0 +2ε)τ 3

and q(t) = 2(1 − λ)(1 − λ + σ0 + 3ε) + 2(σ0 + ε)(1 − λ + σ0 + 3ε)t + (σ0 + ε)(σ0 + 2ε)t2, and for a
positive constant L to be determined later.

It can be immediately verified that the following properties hold:

(1)
du1

dτ
= −K |A − ϕ(0)|τ (τ + 2)

2

(
λ − ετ

λ

) σ0
ε

� 0,

0 � u1(τ ) � K |A − ϕ(0)|(2 + σ0)

σ 3
0

, for τ ∈
[

0,
λ

ε

]
;
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(2)
dv1

dt
= −K |B − ϕ(1)|t(t + 2)

2

(
1 − εt − λ

1 − λ

) σ0
ε

� 0,

0 � v1(t) � K |B − ϕ(1)|(2 + σ0)

σ 3
0

, for t ∈
[

0,
1 − λ

ε

]
;

(3) 0 � γ (x) � L

K

[
exp

(
K

2σ0

)
− 1

]
,

∣∣γ ′′(x)
∣∣ � L(σ1 + K )

σ 2
0

exp

(
K

2σ0

)
, for x ∈ [0,1],

γ ′(x) � 0 for x ∈ [0, λ] and γ ′(x) � 0 for x ∈ [λ,1];

(4) u1(τ ) is a solution of the equation

d2u

dτ 2
+ σ0

λ − ετ

du

dτ
+ K

∣∣A − ϕ(0)
∣∣(τ + 1)

(
λ − ετ

λ

) σ0
ε

= 0;

(5) v1(t) is a solution of the equation

d2 v

dt2
+ σ0

1 − εt − λ

dv

dt
+ K

∣∣B − ϕ(1)
∣∣(t + 1)

(
1 − εt − λ

1 − λ

) σ0
ε

= 0;

(6) γ (x) is a solution of the equation

σ

x − λ

dγ

dx
− Kγ (x) − L = 0,

where σ = σ1 for 0 < x < λ, and σ = σ0 for λ < x < 1.

Using the above properties (1)–(6) and the assumptions (H1)–(H3) and with (3.10), we have that
for x ∈ (0, λ)

εα′′(x) − f (x,α(x))

x − λ
α′(x) + g

(
x,α(x)

)

= εϕ′′(x) + 1

ε

d2u0

dτ 2
− d2u1

dτ 2
− f (x,α(x))

x − λ
ϕ′(x) − 1

ε

f (x,α(x))

x − λ

du0

dτ
+ f (x,α(x))

x − λ

du1

dτ

+ f (x,α(x))

x − λ
γ ′(x)ε + g

(
x,α(x)

) − γ ′′(x)ε2

= −d2u1

dτ 2
+ f (x,α(x))

x − λ

du1

dτ
− 1

ε

f (x,ϕ(x) + u0) − f (0,ϕ(0) + u0)

x − λ

du0

dτ

+ f ′
y(x,ϕ(x) + u0 + θ1u1ε + θ1γ ε)(u1 + γ )

x − λ

du0

dτ
+ f (x,α(x))

x − λ
γ ′(x)ε − γ ′′(x)ε2

+
(

∂ g

∂ y
(x, ·) − g(x,ϕ(x))

f (x,ϕ(x))

∂ f

∂ y
(x, ·)

)(
u0 − u1ε − γ (x)ε

) + εϕ′′(x)

� −d2u1

dτ 2
+ σ0

ετ − λ

du1

dτ
− K

∣∣A − ϕ(0)
∣∣(τ + 1)

(
λ − ετ

λ

) σ0
ε
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+ σ0

x − λ
γ ′(x)ε − K |u1|ε − Kγ (x)ε − γ ′′(x)ε2 + εϕ′′(x)

� σ0

x − λ
γ ′(x)ε − Kγ (x)ε − K 2|A − ϕ(0)|(2 + σ0)

σ 3
0

ε − Kε − γ ′′(x)ε2

�
[

L − K 2|A − ϕ(0)|(2 + σ0)

σ 3
0

− K − L(σ1 + K )

σ 2
0

exp

(
K

2σ0

)
ε

]
ε,

where (x, ·) denotes (x,ϕ(x) − θ2(u0 + u1ε + γ ε)), and 0 < θ1, θ2 < 1.
Similarly, we have for x ∈ (λ,1)

εα′′(x) − f (x,α(x))

x − λ
α′(x) + g

(
x,α(x)

)

= εϕ′′(x) + 1

ε

d2 v0

dt2
− d2 v1

dt2
− f (x,α(x))

x − λ
ϕ′(x) + 1

ε

f (x,α(x))

x − λ

dv0

dt
− f (x,α(x))

x − λ

dv1

dt

+ f (x,α(x))

x − λ
γ ′(x)ε + g

(
x,α(x)

) − γ ′′(x)ε2

= −d2 v1

dt2
− f (x,α(x))

x − λ

dv1

dt
+ 1

ε

f (x,ϕ(x) + v0) − f (1,ϕ(1) + v0)

x − λ

dv0

dt

− f ′
y(x,ϕ(x) + v0 − θ3 v1ε − θ3γ ε)(v1 + γ )

x − λ

dv0

dt
+ f (x,α(x))

x − λ
γ ′(x)ε − γ ′′(x)ε2

+
(

∂ g

∂ y
(x, ··) − g(x,ϕ(x))

f (x,ϕ(x))

∂ f

∂ y
(x, ··)

)(
v0 − v1ε − γ (x)ε

) + εϕ′′(x)

� −d2 v1

dt2
− σ0

1 − εt − λ

dv1

dt
− K

∣∣B − ϕ(1)
∣∣(t + 1)

(
1 − εt − λ

1 − λ

) σ0
ε

+ σ0

x − λ
γ ′(x)ε − K |v1|ε − Kγ (x)ε − γ ′′(x)ε2 + εϕ′′(x)

� σ0

x − λ
γ ′(x)ε − Kγ (x)ε − K 2|B − ϕ(1)|(2 + σ0)

σ 3
0

ε − Kε − γ ′′(x)ε2

�
[

L − K 2|B − ϕ(1)|(2 + σ0)

σ 3
0

− K − L(σ1 + K )

σ 2
0

exp

(
K

2σ0

)
ε

]
ε,

where (x, ··) denotes (x,ϕ(x) − θ4(v0 + v1ε + γ ε)), and 0 < θ3, θ4 < 1. Hence, we can choose

L > K + K 2(2 + σ0)

σ 3
0

max
{∣∣A − ϕ(0)

∣∣, ∣∣B − ϕ(1)
∣∣}

such that for small enough ε > 0

εα′′(x) − f (x,α(x))

x − λ
α′(x) + g

(
x,α(x)

)
� 0, x ∈ (0, λ) ∪ (λ,1).

We can prove in a similar fashion that for sufficiently small ε > 0

εβ ′′(x) − f (x, β(x))
β ′(x) + g

(
x, β(x)

)
� 0, x ∈ (0, λ) ∪ (λ,1).
x − λ
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Moreover, it is evident that

α(x) � β(x), 0 � x � 1,

α,β ∈ C
([0,1]) ∩ C1([0, λ) ∪ (λ,1]),

α(0) � A � β(0), α(λ) = β(λ), α(1) � B � β(1).

It follows from Lemma 2.1 that the boundary value problem (1.1) and (1.2) has a solution y(x, ε) such
that α(x) � y(x, ε) � β(x) for x ∈ [0,1]. The proof is completed. �

We remark that the conditions (3.10) and (3.11) are not essential to the existence of asymptotic
solution for the singular boundary value problem (1.1) and (1.2). If we relax the estimate of asymptotic
solution we can remove the conditions (3.10) and (3.11). We state the following theorem.

Theorem 3.2. Under the assumptions (H1), (H2) and (H3), for sufficiently small ε > 0 the boundary value
problem (1.1) and (1.2) has a solution y(x) such that for all x ∈ [0, λ]

(
A − ϕ(0)

)(λ − x

λ

) σ+ε
ε

− 
1ε � y(x, ε) − ϕ(x) �
(

A − ϕ(0)
)(λ − x

λ

) σ+ε
ε

+ 
1ε,

and for all x ∈ [λ,1]

(
B − ϕ(1)

)( x − λ

1 − λ

) σ+ε

ε

− 
1ε � y(x, ε) − ϕ(x) �
(

B − ϕ(1)
)( x − λ

1 − λ

) σ+ε
ε

+ 
1ε,

where σ , σ , σ and σ are defined in Lemmas 3.1 and 3.2, and 
1 is a positive constant.

Proof. Define

α(x) =
⎧⎨
⎩

ϕ(x) + (A − ϕ(0))( λ−x
λ

)
σ+ε

ε − γ (x)ε, x ∈ [0, λ],
ϕ(x) + (B − ϕ(1))( x−λ

1−λ
)

σ+ε

ε − γ (x)ε, x ∈ [λ,1],

β(x) =
⎧⎨
⎩

ϕ(x) + (A − ϕ(0))( λ−x
λ

)
σ+ε

ε + γ (x)ε, x ∈ [0, λ],
ϕ(x) + (B − ϕ(1))( x−λ

1−λ
)

σ+ε
ε + γ (x)ε, x ∈ [λ,1],

where γ (x) is defined as in the proof of Theorem 3.1. To apply Lemma 2.1, it remains only to show
that α(x) and β(x) are lower and upper solutions of the problem (1.1) and (1.2), which follows the
similar lines as the proof of Theorem 3.1, and is omitted here. �
Remark. If the functions f (x, y) and g(x, y) are sufficiently smooth on [0,1] × R, asymptotic expan-
sions of arbitrary order for the solution y(x, ε) can be derived:

y(x, ε) =
∞∑

i=0

[
yi(x) + ui

(
x

ε

)
+ vi

(
1 − x

ε

)]
εi .

Under some additional conditions, we have the following uniqueness result.
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Theorem 3.3. Assume the conditions in Theorem 3.2 hold, and

(x − λ)
∂ f

∂ y
(x, y) � 0,

∂ g

∂ y
(x, y) � 0, for (x, y) ∈ [0,1] × R.

Then for sufficiently small ε > 0 the boundary value problem (1.1) and (1.2) has a unique solution y(x) ∈
C([0,1]) ∩ C1([0, λ) ∪ (λ,1]).

Proof. From the construction of lower and upper solutions α(x) and β(x) we know that for suffi-
ciently small ε > 0 the inequalities (2.3) and (2.4) are strict. The conclusion follows directly from
Lemma 2.2. �
3.2. Case λ = 0

For the case λ = 0, (1.1) and (1.2) reduces to the following singular two-point boundary value
problem

ε
d2 y

dx2
− 1

x
f (x, y)

dy

dx
+ g(x, y) = 0, x ∈ (0,1), (3.13)

y(0) = A, y(1) = B. (3.14)

As in nonsingular two-point boundary value problems [6], under the assumption (H2) the bound-
ary layer occurs at x = 1. We assume that:

(H3′) The reduced problem

f (x, y)
dy

dx
= xg(x, y), y(0) = A

has a solution y = ψ(x) ∈ C2([0,1]).

Introducing the boundary layer term v(t) with t = (1 − x)/ε we obtain the equation for the ap-
proximation of zero order v0(t)

d2 v0

dt2
+ f (1,ψ(1) + v0(t))

1 − εt

dv0

dt
= 0, (3.15)

subject to the boundary conditions

v0(0) = B − ψ(1), v0

(
1

ε

)
= 0. (3.16)

We state the existence, asymptotic estimates and uniqueness results for the boundary value prob-
lem (3.13) and (3.14) as the following theorems whose proofs are completely similar to those in
Section 3.1.

Theorem 3.4. Under the assumptions (H1), (H2) and (H3′), for sufficiently small ε > 0 the boundary value
problem (3.13) and (3.14) has a solution y(x) such that for all x ∈ [0,1]

(
B − ψ(1)

)
x

σ+ε

ε − 
2ε � y(x, ε) − ψ(x) �
(

B − ψ(1)
)
x

σ+ε
ε + 
2ε,
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where σ and σ are defined in Lemma 3.2, and 
2 is a positive constant. Further if

∂ f

∂ y

(
x,ψ(x) + v0

(
(1 − x)/ε

))(
B − ψ(1)

)
� 0, for x ∈ (0,1),

then the solution of (3.13) and (3.14) has the following more precise estimate

y(x, ε) = ψ(x) + v0

(
1 − x

ε

)
+ O(ε),

where v0((1 − x)/ε) is the solution to (3.15) and (3.16).

Theorem 3.5. Assume the conditions (H1), (H2) and (H3′) hold, and

∂ f

∂ y
(x, y) � 0,

∂ g

∂ y
(x, y) � 0, for (x, y) ∈ [0,1] × R.

Then for sufficiently small ε > 0 the boundary value problem (3.13) and (3.14) has a unique solution y(x) ∈
C([0,1]) ∩ C1((0,1]).

Let us turn to the situation that the condition (H2) is replaced by

(H2′) There exists a positive constant δ0 such that f (x, y) � −δ0 < 0 for (x, y) ∈ [0,1] × R.

It is known that the boundary value problem

ε
d2 y

dx2
− f (x, y)

dy

dx
+ g(x, y) = 0, x ∈ (0,1),

y(0) = A, y(1) = B

has a left boundary layer at x = 0, under the assumption (H2′) (see [4,6], for example). However, it
is not expected that this kind of situation appears for the problem (3.13) and (3.14). The following
example

ε
d2 y

dx2
+ 1

x

dy

dx
+ y = 0, y(0) finite, y(1) = e−1/2

is checked in [3]. It is shown that the solution does not exhibit a boundary layer at x = 0 for the
problem above, although a unique solution does exist.

Let us consider a slight modification of Eq. (3.13)

ε
d2 y

dx2
− 1

x + ρε
f (x, y)

dy

dx
+ g(x, y) = 0, x ∈ (0,1), (3.17)

with ρ > 0. (3.17) has the same reduced equation with (3.13). We assume:

(H3′′) The reduced problem

f (x, y)
dy

dx
= xg(x, y), y(1) = B

has a solution y = φ(x) ∈ C2([0,1]).
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Introducing the boundary layer term ω(ξ) with ξ = x/ε2 we obtain the equation for the approxi-
mation of zero order ω0(ξ)

d2ω0

dξ2
− f (0, φ(0) + ω0(ξ))

ρ + εξ

dω0

dξ
= 0, (3.18)

subject to the boundary conditions

ω0(0) = A − φ(0), ω0

(
1

ε

)
= 0. (3.19)

The following lemma is concerned with the existence and the decaying estimate for ω0(ξ).

Lemma 3.3. Under the assumptions (H1) and (H2′), for sufficiently small ε > 0, the boundary value problem
(3.18) and (3.19) has a solution ω0(ξ) satisfying the estimate:

(
A − φ(0)

)
(ρ + εξ)

−δ+ε
ε � ω0(ξ) �

(
A − φ(0)

)
(ρ + εξ)

−δ+ε
ε ,

where

δ =
{

δ1, if A − φ(0) > 0,

δ0, if A − φ(0) < 0,
δ =

{
δ0, if A − φ(0) > 0,

δ1, if A − φ(0) < 0,

and

δ1 = max
{− f

(
0, φ(0) + ω

)
: −∣∣A − φ(0)

∣∣ � ω �
∣∣A − φ(0)

∣∣}.
Proof. A straightforward computation gives

α(ξ) = (
A − φ(0)

)
(ρ + εξ)

−δ+ε
ε and β(ξ) = (

A − φ(0)
)
(ρ + εξ)

−δ+ε
ε

are lower and upper solutions of the problem (3.18) and (3.19). �
We close this subsection by stating the following theorem.

Theorem 3.6. Under the assumptions (H1), (H2′) and (H3′′), for sufficiently small ε > 0 the boundary value
problem (3.17) and (3.14) has a solution y(x) such that for all x ∈ [0,1]

(
A − φ(0)

)(
ρ + x

ε

)−δ+ε
ε

− 
3ε � y(x, ε) − φ(x) �
(

A − φ(0)
)(

ρ + x

ε

)−δ+ε
ε

+ 
3ε,

where δ and δ are defined in Lemma 3.3, and 
3 is a positive constant.

Proof. The proof is similar to that of Theorem 3.2. �
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4. Examples

In this section, we present several examples to illustrate our results.

Example 1. Consider a singular three-point boundary value problem

ε
d2 y

dx2
− 2(1 + x)

(2x − 1)

dy

dx
+ xe−y = 0, x ∈ (0,1/2) ∪ (1/2,1),

y(0) = 1, y(1/2) = 0, y(1) = 3

2
ln 2.

The reduced problem

2(1 + x)
dy

dx
= x(2x − 1)e−y, y(1/2) = 0

has a unique solution

ϕ(x) = ln

(
1

2
x2 − 3

2
x + 13

8
+ 3

2
ln

(
2(1 + x)

3

))
.

The problems (3.1), (3.3) and (3.2), (3.4) for the boundary layer terms u0(τ ) and v0(t) have exact
solutions

u0(τ ) = (
1 − ϕ(0)

)
(1 − 2ετ )

1+ε
ε , v0(t) = (

1 − ϕ(1)
)
(1 − 2εt)

1+ε
ε .

By Theorem 3.1 the above problem has a solution

y(x, ε) = ϕ(x) +
(

5

8
− 3

2
ln

2

3

)
|1 − 2x| 1+ε

ε + O(ε), x ∈ [0,1].

In fact, this solution is also unique from Theorem 3.3.

Example 2. Consider a linear singular two-point boundary value problem in [3]

ε
d2 y

dx2
− 1

x

dy

dx
− y = 0, x ∈ (0,1),

y(0) = 1, y(1) = 1.

It follows from Theorems 3.4 and 3.5 that the above problem has a unique solution y(x, ε) such that

y(x, ε) = exp

(−x2

2

)
+

[
1 − exp

(−1

2

)]
x

1+ε
ε + O(ε), x ∈ [0,1],

which accurate to order ε agrees with the solution obtained using the matching method

ymatching = exp

(−x2

2

)[
1 + ε

4

(
x2 − 1

)2
]

+
[

1 − exp

(−1

2

)]
6ε − 4εx − (1 − x)2

2ε
exp

(
x − 1

ε

)
.
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Example 3. Consider a linear singular two-point boundary value problem with boundary perturbation
in [3]

ε
d2 y

dx2
+ 1

x

dy

dx
+ y = 0, x ∈ (ε,1),

y(ε) = 0, y(1) = e−1/2.

After a transformation x = x − ε, the above problem becomes

ε
d2 y

dx2
+ 1

x + ε

dy

dx
+ y = 0, x ∈ (0,1 − ε),

y(0) = 0, y(1 − ε) = e−1/2.

From Theorem 3.6 we have

y(x, ε) = exp

(−x2

2

)
− exp

(−1

2

)(
1 + x

ε

) ε−1
ε

+ O(ε), x ∈ [0,1 − ε].
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