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1. Introduction

In this paper we study the following nonlinear periodic problem:

{
−(∣∣u′(t)

∣∣p−2
u′(t)

)′ = f
(
t, u(t)

)
a.e. on T = [0,b],

u(0) = u(b), u′(0) = u′(b), 1 < p < ∞.
(1)
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The aim of this work is to prove existence and multiplicity results when double resonance is
possible. To make this situation more transparent, suppose that

f (t, x) = λ̂m|x|p−2x + g(t, x) for all (t, x) ∈ T ×R,

with λ̂m m � 0 an eigenvalue of the negative scalar p-Laplacian with periodic boundary conditions
and g(t, x) is a Caratheodory function (i.e., for all x ∈ R, t → g(t, x) is measurable and for a.a. t ∈ T ,
x → g(t, x) is continuous) such that lim|x|→∞ g(t,x)

|x|p−2x
= 0 uniformly for a.a. t ∈ T . Then problem (1)

is said to be “resonant at infinity” with respect to the eigenvalue λ̂m . If this resonance phenomenon
can occur with respect to two successive eigenvalues λ̂m < λ̂m+1, then we have “double resonance”,
a term coined by Berestycki and de Figueiredo [4] who examined such problems in the context of
semilinear (i.e., p = 2) Dirichlet elliptic equations.

Scalar periodic problems with double resonance were investigated primarily for semilinear equa-
tions. In this direction we mention the works of Fabry and Fonda [11], Gasiński and Papageorgiou
[15], Omari and Zanolin [21] and Su and Zhao [26]. Fabry and Fonda [11], Gasiński and Papageor-
giou [15] and Su and Zhao [26], use Landesman–Lazer type conditions, while Omari and Zanolin
[21] use certain nonresonance conditions involving the quotient 2F (t,x)

x2 where F (t, x) = ∫ x
0 f (t, s)ds

is the potential function corresponding to f (t, x). In Fabry and Fonda [11] and Omari and Zanolin
[21] the approach is degree theoretic, while in Gasiński and Papageorgiou [15] and Su and Zhao [26]
the authors use variational methods coupled with techniques from Morse theory. From the aforemen-
tioned works Fabry and Fonda [11] and Omari and Zanolin [21] prove only existence theorems, while
Gasiński and Papageorgiou [15] and Su and Zhao [26] have multiplicity results. Gasiński and Papageor-
giou [15] produce four solutions, while Su and Zhao [26] obtain two solutions. We also mention the
recent works on semilinear (i.e., p = 2) partial differential equations of Gasiński and Papageorgiou [16]
(Dirichlet problems) and O’Regan, Papageorgiou and Smyrlis [22] (Neumann problems), where simi-
lar multiplicity results are proved. The orthogonal direct sum decomposition of the ambient Sobolev
Hilbert space in terms of the eigenspaces, makes the analysis of the semilinear problem easier. For
equations driven by the periodic scalar p-Laplacian, to the best of our knowledge, there is only the
works of Fabry and Fayyad [12] and Kyritsi–Papageorgiou [18]. In Fabry and Fayyad [12] the authors
prove an existence theorem for problems with asymmetric nonlinearities using an alternative inter-
esting approach based on degree theory. The asymptotic conditions at ±∞ are similar using this time
the Fucik spectrum and the a priori bounds for the solutions are obtained by means of a count of
the number of revolutions in the phase plane. In Kyritsi and Papageorgiou [18] the authors prove an
existence theorem using asymptotic conditions similar to those employed by Omari and Zanolin [21].

Our approach here combines minimax arguments based on the critical point theory, with Morse
theoretic techniques. We prove a multiplicity theorem and an existence theorem. In the existence the-
orem the asymptotic double resonance condition is essentially complementary to the corresponding
one used in the multiplicity theorem.

2. Mathematical background

In this section, for the convenience of the reader, we recall some of the main mathematical tools
which we will use in the sequel.

We start with critical point theory. So, let X be a Banach space and X∗ its topological dual. By
〈·,·〉 we denote the duality brackets for the pair (X∗, X). Given ϕ ∈ C1(X), we say that ϕ satisfies the
“C-condition”, if the following is true:

“Every sequence {un}n�1 ⊆ X such that {ϕ(un)}n�1 ⊆ R is bounded and (1+‖un‖)ϕ′(un) → 0 ∈ X∗ ,
admits a strongly convergent subsequence”.

Using this compactness-type condition on ϕ , we can have the following minimax characterization
of certain critical values of ϕ . The result is known in the literature as the “mountain pass theorem”.
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Theorem 2.1. If X is Banach space, ϕ ∈ C1(X) and satisfies the C-condition, u0, u1 ∈ X, r > 0, ‖u1 − u0‖ > r,

max
{
ϕ(u0),ϕ(u1)

}
< inf

[
ϕ(u): ‖u − u0‖ = r

] = ηr,

c = inf
γ ∈Γ

max
0�t�1

ϕ
(
γ (t)

)
where Γ = {

γ ∈ C
([0,1], X

)
: γ (0) = u0, γ (1) = u1

}
,

then c � ηr and c is a critical value of ϕ .

Let ϕ ∈ C1(X) and c ∈ R. We introduce the following sets:

ϕc = {
u ∈ X: ϕ(u) � c

}
, Kϕ = {

u ∈ X: ϕ′(u) = 0
}
, K c

ϕ = {
u ∈ Kϕ: ϕ(u) = c

}
.

If Y2 ⊆ Y1 ⊆ X and k � 0 is an integer, then by Hk(Y1, Y2) we denote the kth relative singular
homology group for the pair (Y1, Y2) with integer coefficients. Then the critical groups of ϕ at an
isolated critical point u0 with c = ϕ(u0) (i.e., u0 ∈ K c

ϕ ), are defined by

Ck(ϕ, u0) = Hk
(
ϕc ∩ U ,ϕc ∩ U \ {u0}

)
, k � 0.

Here U is a neighborhood of u0 such that Kϕ ∩ ϕc ∩ U = {u0}. The excision property of singular
homology theory, implies that the above definition of critical groups is independent of the particular
choice of the neighborhood U .

Suppose that ϕ ∈ C1(X) satisfies the C-condition and −∞ < infϕ(Kϕ). Let a < infϕ(Kϕ). The crit-
ical groups of ϕ at infinity, are defined by

Ck(ϕ,∞) = Hk
(

X,ϕa) for all k � 0.

We know that the deformation theorem is still valid under the C-condition (see, for example,
Papageorgiou and Kyritsi [23]). So, using the deformation theorem, we see that the above definition
of critical groups at infinity, is independent of the particular choice of the level a < infϕ(Kϕ). If for
some integer m � 0, Cm(ϕ,∞) �= 0, then exists u ∈ Kϕ such that Cm(ϕ, u) �= 0.

In the study of problem (1) we will use the Sobolev space

W 1,p
per (0,b) = {

u ∈ W 1,p(0,b): u(0) = u(b)
}
.

Recall that W 1,p(0,b) is embedded compactly in C(T ) (Sobolev embedding theorem) and so in the
above definition, the evaluations at t = 0 and t = b make sense. We shall also use the Banach space
Ĉ1(T ) = {u ∈ C1(T ): u(0) = u(b)} = C1(T )∩ W 1,p

per (0,b). This is an ordered Banach space with positive
cone Ĉ+ given by

Ĉ+ = {
u ∈ Ĉ1(T ): u(t) � 0 for all t � 0

}
.

This cone has a nonempty interior given by

int Ĉ+ = {
u ∈ Ĉ+: u(t) > 0 for all t � 0

}
.

Let A : W 1,p
per (0,b) → W 1,p

per (0,b)∗ be the nonlinear map defined by

〈
A(u), y

〉 = b∫ ∣∣u′(t)
∣∣p−2

u′(t)y′(t)dt for all u, y ∈ W 1,p
per (0,b). (2)
0
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We have (see Gasiński and Papageorgiou [14] and Kyritsi and Papageorgiou [19]):

Proposition 2.2. The map A : W 1,p
per (0,b) → W 1,p

per (0,b)∗ defined by (2) is bounded, continuous, strictly

monotone (hence maximal monotone too) and of type (S)+ , i.e., if un
w→ u in W 1,p

per (0,b) and

lim supn→∞〈A(un), un − u〉 � 0, then un → u in W 1,p
per (0,b).

Next let us recall some basic facts concerning the spectrum of the negative scalar periodic
p-Laplacian. So, we consider the following nonlinear eigenvalue problem:

{
−(∣∣u′(t)

∣∣p−2
u′(t)

)′ = λ̂
∣∣u(t)

∣∣p−2
u(t) a.e. on T = [0,b],

u(0) = u(b), u′(0) = u′(b), λ̂ ∈R, 1 < p < ∞.
(3)

A number λ̂ ∈ R for which problem (3) has a nontrivial solution u ∈ C1(T ), is said to be an eigen-
value of (3) and u is a corresponding eigenfunction. It is easy to see from (3) that, if λ̂ ∈ R is an
eigenvalue, then λ̂ � 0. In fact λ̂0 = 0 is the smallest eigenvalue, with corresponding eigenspace R

(the space of constant functions). Moreover, if u ∈ C1(T ) is an eigenfunction corresponding to an
eigenvalue λ̂ > 0, then u is necessarily nodal (i.e., sign changing). In addition u(t) �= 0 for a.a. t ∈ T
(in fact u(·) has finitely many zeros).

Let πp = 2π(p−1)
1
p

p sin π
p

. Note that if p = 2, then π2 = π . The sequence

{̂
λn =

(
2nπp

b

)p}
n�0

is the set of all eigenvalues of (3). If p = 2 (linear eigenvalue problem), then we recover the well-
known spectrum of the negative scalar Laplacian with periodic boundary conditions, which is the
sequence {̂λn = ( 2nπ

b )2}n�0.
In addition to the eigenvalue problem (3), we will also consider the following weighted nonlinear

eigenvalue problem:

{
−(∣∣u′(t)

∣∣p−2
u′(t)

)′ = (
μ̂ + β(t)

)∣∣u(t)
∣∣p−2

u(t) a.e. on T = [0,b],
u(0) = u(b), u′(0) = u′(b), 1 < p < ∞, β ∈ L1(T ).

(4)

As before μ̂ ∈ R is an eigenvalue, if problem (4) admits a nontrivial solution u ∈ C1(T ). This eigen-
value problem was investigated by Zhang [28] and Binding and Rynne [5,6]. In fact it was shown
by Binding and Rynne [6] that problem (4) can have nonvariational eigenvalues, answering this way
a question left open by Zhang [28]. Concerning the eigenvalues of (4), we will need the following
observation which can be found in Aizicovici, Papageorgiou and Staicu [1].

Proposition 2.3. If β ∈ L∞(T )+ satisfy λ̂m � β(t) � λ̂m+1 a.e. on T for some integer m � 0 and λ̂m �= β ,
λ̂m+1 �= β , then all eigenvalues of (4) are nonzero and do not have zero as a limit point.

Let û0 denote the positive Lp-normalized eigenfunction corresponding to λ̂0 = 0. Then û0 = 1

b
1
p

∈
(0,+∞). Using ±û0, we can have an alternative variational characterization of λ̂1 > 0 (the first
nonzero eigenvalue of (3)), distinct from the one provided by the Ljusternik–Schnirelmann theory.
This alternative characterization can be found in Kyritsi and Papageorgiou [19] and will be used in
the proof of the existence theorem (see Section 4).



3682 E.H. Papageorgiou, N.S. Papageorgiou / J. Differential Equations 255 (2013) 3678–3702
Proposition 2.4. If ∂ B Lp

1 = {u ∈ Lp(T ): ‖u‖p = 1}, M = W 1,p
0 (0,b) ∩ ∂ B Lp

1 and

Γ̃ = {
γ̃ ∈ C

([−1,1], M
)
: γ̃ (−1) = −û0, γ̃ (1) = û0

}
,

then λ̂1 = infγ ∈Γ̃ max−1�s�1 ‖ d
dt γ̃ (s)‖p

p .

In Kyritsi and Papageorgiou [19] we can also find the following simple lemma:

Lemma 2.5. If θ ∈ L1(T ), θ � 0 a.e. on T and θ �= 0, then there exists ξ0 > 0 s.t.

∥∥u′∥∥p
p −

b∫
0

θ(t)
∣∣u(t)

∣∣p
dt � ξ0‖u‖p for all u ∈ W 1,p

per (0,b).

Finally in what follows by ‖ · ‖ we denote the norm of the Sobolev space W 1,p
per (0,b) and by 〈·,·〉

the duality brackets for the pair (W 1,p
per (0,b)∗, W 1,p

per (0,b)). Also, if x ∈R, we set x± = max{±x,0}.

3. Multiplicity theorem

The hypotheses on the reaction term f (t, x) are:

H f : T ×R→ R is a Caratheodory function s.t. for a.a. t ∈ T , f (t,0) = 0 and
(i) | f (t, x)| � a(t)(1 + |x|p−1) for a.a. t ∈ T , all x ∈ R, with a ∈ L1(T )+;

(ii) there exists an integer m � 1 s.t.

λ̂m � lim inf|x|→∞
f (t, x)

|x|p−2x
� lim sup

|x|→∞
f (t, x)

|x|p−2x
� λ̂m+1

uniformly for a.a. t ∈ T , and

lim|x|→∞
[

f (t, x)x − pF (t, x)
] = +∞ uniformly for a.a. t ∈ T ;

(iii) there exists a function θ ∈ L1(T ), θ(t) � 0 a.e. on T , θ �= 0 such that

lim sup
x→0

pF (t, x)

|x|p
� θ(t) uniformly for a.a. t ∈ T ,

where F (t, x) = ∫ x
0 f (t, s)ds;

(iv) for every r > 0, there exists ξr > 0 s.t. f (t, x)x + ξr |x|p � 0 for a.a. t ∈ T , all x ∈ [−r, r].

Remark. Hypothesis H(ii) implies that we have double resonance in the spectral interval [̂λm, λ̂m+1],
m � 1. We emphasize that in contrast to the semilinear works of Gasiński and Papageorgiou [15]
and Su and Zhao [26], where as we already mentioned in the Introduction, multiplicity results are
proved, we do not require that f (t, ·) ∈ C1(R). This together with the fact that the ambient space is
not Hilbert, create difficulties in the use of the Morse theoretic methods.

Example. The following function f (x) satisfies hypotheses H (for the sake of simplicity we drop the
t-dependence):
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f (x) =
{

λ̂m|x|r−2x − |x|p−2x if |x| � 1,

λ̂m|x|p−2x − |x|q−2x if |x| > 1,

with m � 1 and 1 < q < p < r < ∞.
First we will produce two constant sign solutions for problem (1). To this end, we choose ε ∈

(0, λ̂2) and consider the following truncations–perturbations of the reaction f (t, x):

g+(t, x) =
{

0 if x � 0,

f (t, x) + εxp−1 if x > 0,

and

g−(t, x) =
{

f (t, x) + ε|x|p−2x if x < 0,

0 if x � 0.
(5)

Both are Caratheodory functions. We set G±(t, x) = ∫ x
0 g±(t, s)ds and consider the C1-functionals

ψ± : W 1,p
per (0,b) →R defined by

ψ±(u) = 1

p

∥∥u′∥∥p
p + ε

p
‖u‖p

p −
b∫

0

G±
(
t, u(t)

)
dt for all u ∈ W 1,p

per (0,b).

Also, let ϕ : W 1,p
per (0,b) →R be the energy functional for problem (1) defined by

ϕ(u) = 1

p

∥∥u′∥∥p
p −

b∫
0

F
(
t, u(t)

)
dt for all u ∈ W 1,p

per (0,b).

We know that ϕ ∈ C1(W 1,p
per (0,b)).

Proposition 3.1. If hypotheses H hold, then ψ± satisfy the C-condition.

Proof. We do the proof for ψ+ , the proof for ψ− being similar.
We consider a sequence {un}n�1 ⊆ W 1,p

per (0,b) s.t.

∣∣ψ+(un)
∣∣ � M1 for some M1 > 0, all n � 1 (6)

and

(
1 + ‖un‖

)
ψ ′+(un) → 0 in W 1,p

per (0,b)∗ as n → ∞. (7)

From (7) we have

∣∣∣∣∣〈A(un),h
〉 + ε

b∫
0

|un|p−2unh dt −
b∫

0

g+(t, un)h dt

∣∣∣∣∣ � εn‖h‖
1 + ‖un‖ (8)

for all h ∈ W 1,p
per (0,b) with εn → 0+ .
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In (8) we choose h = −u−
n ∈ W 1,p

per (0,b). Then

∥∥(
u−

n

)′∥∥p
p + ε

∥∥u−
n

∥∥p
p � εn for all n � 1

(
see (5)

)
,

⇒ u−
n → 0 ∈ W 1,p

per (0,b). (9)

Claim. {u+
n }n�1 ⊆ W 1,p

per (0,b) is bounded.

We proceed by contradiction. So, suppose that ‖u+
n ‖ → ∞. We set yn = u+

n

‖u+
n ‖ , n � 1. Then ‖yn‖ = 1

for all n � 1 and so we way assume that

yn
w→ y in W 1,p

per (0,b) and yn → y in C(T ). (10)

For (8) and (9) we have

∣∣∣∣∣〈A(yn),h
〉 + ε

b∫
0

|yn|p−2 ynh dt −
b∫

0

g+(t, u+
n )

‖u+
n ‖p−1

h dt

∣∣∣∣∣ � ε′
n‖h‖ with ε′

n → 0+. (11)

Choose h = yn − y ∈ W 1,p
per (0,b), pass to the limit as n → ∞ and use (10). We obtain

lim
n→∞

〈
A(yn), yn − y

〉 = 0,

⇒ yn → y in W 1,p
per (0,b), hence ‖y‖ = 1, y � 0 (see Proposition 2.2). (12)

Note that because of H(i) and (10), we have that { g+(·,u+
n (·))

‖u+
n ‖p−1 }n�1 ⊆ L1(T ) is uniformly integrable.

So, by virtue of the Dunford–Pettis theorem, we may assume that

g+(·, u+
n (·))

‖u+
n ‖p−1

w→ θ̂+ in L1(T ). (13)

Using hypothesis H(ii) and reasoning as in the proof of Proposition 14 of Aizicovici, Papageorgiou
and Staicu [2], we show that

θ̂+ = (ξ + ε)yp−1 with λ̂m � ξ(t) � λ̂m+1 a.e. on T . (14)

So, if we return to (11), pass to the limit as n → ∞ and use (12), (13) and (14), then

〈
A(y),h

〉 = b∫
0

ξ yp−1h dt for all h ∈ W 1,p
per (0,b),

⇒ A(y) = ξ yp−1,

⇒ −(∣∣y′(t)
∣∣p−2

y′(t)
)′ = ξ(t)y(t)p−1 a.e. on T,

y(0) = y(b), y′(0) = y′(b). (15)
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Recall that λ̂m � ξ(t) � λ̂m+1 a.e. on T . If ξ �= λ̂m and ξ �= λ̂m+1, then from Proposition 2.3 it follows
that y = 0, which contradicts (12). If ξ(t) = λ̂m a.e. on T or ξ(t) = λ̂m+1 a.e. on T then from (15) and
since m � 1, we infer that y must be nodal, which, contradicts (12). Therefore {u+

n }n�1 ⊆ W 1,p
per (0,b)

is bounded. This proves the Claim.
From (9) and the Claim we infer that {un}n�1 ⊆ W 1,p

per (0,b) is bounded. So, we may assume that

un
w→ u in W 1,p

per (0,b) and un → u in C(T ). Hence, if in (8) we let h = un − u and pass to the limit as
n → ∞, then

lim
n→∞

〈
A(un), un − u

〉 = 0,

⇒ un → u in W 1,p
per (0,b) (see Proposition 2.2).

This proves that ψ+ satisfies the C-condition. Similarly for ψ− . �
Proposition 3.2. If hypotheses H hold, then ϕ satisfies the C-condition.

Proof. We consider a sequence {un}n�1 ⊆ W 1,p
per (0,b) s.t.∣∣ϕ(un)

∣∣ � M2 for some M2 > 0, all n � 1 (16)

and

(
1 + ‖un‖

)
ϕ′(un) → 0 in W 1,p

per (0,b)∗ as n → ∞. (17)

From (17) we have

∣∣∣∣∣〈A(un),h
〉 − b∫

0

f (t, un)h dt

∣∣∣∣∣ � εn‖h‖
1 + ‖un‖ (18)

for all h ∈ W 1,p
per (0,b) with εn → 0+ .

In (18) we choose h = un and obtain

−∥∥u′
n

∥∥p
p +

b∫
0

f (t, un)un dt � εn for all n � 1. (19)

On the other hand from (16), we have

∥∥u′
n

∥∥p
p −

b∫
0

pF (t, un)dt � pM2 for all n � 1. (20)

Adding (19) and (20), we obtain

b∫
0

[
f (t, un)un − pF (t, un)

]
,dt � M3 for some M3 > 0, all n � 1. (21)
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Claim. {un}n�1 ⊆ W 1,p
per (0,b) is bounded.

We argue indirectly. So, suppose that ‖un‖ → ∞ and set yn = un‖un‖ , n � 1. Then ‖yn‖ = 1 for all
n � 1 and so we may assume that

yn
w→ y in W 1,p

per (0,b) and yn → y in C(T ) as n → ∞. (22)

From (18) we have

∣∣∣∣∣〈A(yn),h
〉 − b∫

0

f (t, un)

‖un‖p−1
h dt

∣∣∣∣∣ � εn‖h‖
(1 + ‖un‖)‖un‖p−1

for all n � 1. (23)

It is clear from hypothesis H(i) that { f (·,un(·))
‖un‖p−1 }n�1 ⊆ L1(T ) is uniformly integrable. Hence, if we set

h = yn − y and pass to the limit as n → ∞, then

lim
n→∞〈A(yn), yn − y〉 = 0,

⇒ yn → y in W 1,p
per (0,b), hence ‖y‖ = 1 (see Proposition 2.2). (24)

Since { f (·,un(·))
‖un‖p−1 }n�1 ⊆ L1(T ) is uniformly integrable, by the Dunford–Pettis theorem, we may as-

sume that

f (·, un(·))
‖un‖p−1

w→ θ̂ in L1(T ) (25)

with θ̂ = ξ |y|p−2 y, λ̂m � ξ(t) � λ̂m+1 a.e. on T (see the proof of Proposition 3.1). Passing to the limit
as n → ∞ in (23) and using (24) and (25), we obtain

〈
A(y),h

〉 = b∫
0

ξ |y|p−2 yh dt for all h ∈ W 1,p
per (0,b),

⇒ A(y) = ξ |y|p−2 y,

⇒ −(∣∣y′(t)
∣∣p−2

y′(t)
)′ = ξ(t)

∣∣y(t)
∣∣p−2

y(t) a.e. on T ,

y(0) = y(b), y′(0) = y′(b). (26)

We know that λ̂m � ξ(t) � λ̂m+1 a.e. on T . First suppose that ξ �= λ̂m and ξ �= λ̂m+1. Then from
(26) and Proposition 2.3 it follows that y = 0, which contradicts (24). So, we assume that ξ(t) = λ̂m

a.e. on T or ξ(t) = λ̂m+1 a.e. on T . Then being an eigenfunction for (4), we have y(t) �= 0 for a.a. t ∈ T
(see Binding and Rynne [6]). Therefore |un(t)| → ∞ for a.a. t ∈ T and this by virtue of hypothesis H(ii)
implies

f
(
t, un(t)

)
un(t) − pF

(
t, un(t)

) → +∞ for a.a. t ∈ T ,

⇒
b∫ [

f
(
t, un(t)

)
un(t) − pF

(
t, un(t)

)]
dt → +∞ (

by Fatou’s lemma
)
. (27)
0
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Comparing (21) and (27), we reach a contradiction. This proves the Claim.

By virtue of the Claim, we may assume that un
w→ u in W 1,p

per (0,b) and un → u in C(T ). Using
h = un − u in (18) and passing to the limit as n → ∞, we obtain

lim
n→∞〈A(un), un − u〉 = 0,

⇒ un → u in W 1,p
per (0,b) (see Proposition 2.2).

This proves the proposition. �
Proposition 3.3. If hypotheses H hold, then u = 0 is a local minimizer of ψ± and of ϕ .

Proof. We do the proof for ψ+ , the proofs for ψ− and ϕ being similar. By virtue of hypothesis H(iii),
given ε̂ > 0, we can find δ̂ = δ̂(̂ε) > 0 s.t.

F (x, t) � 1

p

(
θ(t) + ε̂

)|x|p for a.a. t ∈ T , all |x| � δ̂. (28)

Let u ∈ Ĉ1(T ) with ‖u‖C1(T ) � δ̂. Then

ψ+(u) = 1

p

∥∥u′∥∥p
p + ε

p
‖u‖p

p −
b∫

0

G+(t, u)dt

� 1

p

∥∥u′∥∥p
p −

b∫
0

F
(
t, u+)

dt
(
see (5)

)

� 1

p

∥∥u′∥∥p
p − 1

p

b∫
0

θ |u|p dt − ε̂

p
‖u‖p (

see (28)
)

� ξ0 − ε̂

p
‖u‖p (see Lemma 2.5). (29)

Choosing ε̂ ∈ (0, ξ0) from (29) we infer that

ψ+(u) � 0 for all u ∈ Ĉ1(T ) with ‖u‖C1(T ) � δ̂,

⇒ u = 0 is a local Ĉ1(T )-minimizer of ψ+,

⇒ u = 0 is a local W 1,p
per (0,b)-minimizer of ψ+(

see Proposition 3.3 of Kyritsi and Papageorgiou [19]
)
.

Similarly for the functionals ψ− and ϕ . �
We may assume that u = 0 is an isolated critical point of ψ− . Indeed, otherwise we can find

{un}n�1 ⊆ W 1,p
per (0,b) \ {0} such that un → 0 in W 1,p

per (0,b) and
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ψ ′+(un) = 0 for all n � 1,

⇒ A(un) + ε|un|p−2un = Ng+(un) for all n � 1,

where Ng+(u)(·) = g+
(·, u(·)) for all u ∈ W 1,p

per (0,b). (30)

Acting on (30) with −u−
n ∈ W 1,p

per (0,b), we obtain un � 0 for all n � 1 and so (30) becomes

A(un) = N f (un) for all n � 1,

where N f (u)(·) = f
(·, u(·)) for all u ∈ W 1,p

per (0,b),

⇒ un ∈ C1(T ) is a solution of (1) for all n � 1.

Hence we have produced a whole sequence of distinct nontrivial (and in fact positive) solutions of
(1) and so we are done.

Reasoning as in Aizicovici, Papageorgiou and Staicu [2] (see the proof of Proposition 29), we can
find ρ+ ∈ (0,1) small s.t.

ψ+(0) = 0 < inf
[
ψ+(u): ‖u‖ = ρ+

] = η̂+. (31)

In a similar way, we show that we can find ρ− ∈ (0,1) small s.t.

ψ−(0) = 0 < inf
[
ψ−(u): ‖u‖ = ρ−

] = η̂−. (32)

Now we are ready to produce two constant sign solutions for problem (1).

Proposition 3.4. If hypotheses H hold, then problem (1) has at least two constant sign solutions

u0 ∈ int Ĉ+ and v0 ∈ − int Ĉ+.

Proof. Let ξ ∈ R, ξ > 0. Then

ψ+(ξ) = −
b∫

0

F (t, ξ)dt
(
see (5)

)
.

From hypothesis H(ii) it follows that

λ̂m � lim inf|ξ |→∞
pF (t, ξ)

|ξ |p
� lim sup

|ξ |→∞
pF (t, ξ)

|ξ |p
� λ̂m+1 uniformly for a.a. t ∈ T

(see, for example, Aizicovici, Papageorgiou and Staicu [2, Remark 26]). Therefore

ψ+(ξ) → −∞ as ξ → +∞. (33)

From (31), (33) and Proposition 3.1, it follows that we can apply Theorem 2.1 (the mountain pass
theorem), and obtain u0 ∈ W 1,p

per (0,b) s.t.
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ψ+(0) = 0 < η̂+ � ψ+(u0), (34)

ψ ′+(u0) = 0. (35)

From (34) we have u0 �= 0. From (35) we have

A(u0) + ε|u0|p−2u0 = Ng+(u0). (36)

Acting on (36) with −u−
0 ∈ W 1,p

per (0,b) and using (5), we show that u0 � 0. So (36) becomes

A(u0) = N f (u0),

⇒ −(∣∣u′
0(t)

∣∣p−2
u′

0(t)
)′ = f

(
t, u0(t)

)
a.e. on T ,

u0(0) = u0(b), u′
0(0) = u′

0(b),

⇒ u0 ∈ Ĉ+ \ {0} solves problem (1). (37)

Let r = ‖u0‖∞ . Then by virtue of hypothesis H(iv), we can find ξr > 0 s.t.

f
(
t, u0(t)

) + ξru0(t)
p−1 � 0 a.e. on T

⇒ (∣∣u′
0(t)

∣∣p−2
u′

0(t)
)′ � ξru0(t)

p−1 a.e. on T
(
see (37)

)
,

⇒ u0 ∈ int Ĉ+
(
see Vazquez [27]

)
.

Similarly, working this time with ψ− and using (32), we obtain a second constant sign solution
v0 ∈ − int Ĉ+ . �

Next using Morse theory, we will produce a third nontrivial solution for problem (1).
We start by calculating the critical groups at infinity of ϕ .

Proposition 3.5. If hypotheses H hold, then Cm+1(ϕ,∞) �= 0 (m � 1 as in hypothesis H(ii)).

Proof. Let μ ∈ (̂λm, λ̂m+1) and consider the C1-functional χ : W 1,p
per (0,b) →R defined by

χ(u) = 1

p

∥∥u′∥∥p
p − μ

p
‖u‖p

p for all u ∈ W 1,p
per (0,b).

We consider the homotopy

h(τ , u) = (1 − τ )ϕ(u) + τχ(u) for all (τ , u) ∈ [0,1] × W 1,p
per (0,b).

Clearly we may assume that Kϕ is finite (otherwise we already have infinitely many distinct
nontrivial solutions of (1) and so we are done). Note that h(0, ·) = ϕ satisfies the C-condition (see
Proposition 3.2) and h(1, ·) = χ also satisfies the C-condition since μ ∈ (̂λm, λ̂m+1).

Claim. There exist β ∈ R and δ > 0 s.t.

h(τ , u) � β ⇒ (
1 + ‖u‖)∥∥h′

u(τ , u)
∥∥∗ � δ for all τ ∈ [0,1].
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We argue by contradiction. So, suppose that the Claim is not true. Since h is bounded, we can find
{τn}n�1 ⊆ [0,1] and {un}n�1 ⊆ W 1,p

per (0,b) s.t.

τn → τ , ‖un‖ → ∞, h(τn, un) → −∞ and
(
1 + ‖un‖

)
h′

u(τn, un) → 0. (38)

By virtue of the last convergence in (38), we have

∣∣∣∣∣〈A(un),h
〉 − (1 − τn)

b∫
0

f (t, un)h dt − τnμ

b∫
0

|un|p−2unh dt

∣∣∣∣∣ � εn‖h‖
1 + ‖un‖ (39)

for all h ∈ W 1,p
per (0,b) with εn → 0+ .

Let yn = un‖un‖ , n � 1. Then ‖yn‖ = 1 for all n � 1 and so we may assume that

yn
w→ y in W 1,p

per (0,b) and yn → y in C(T ). (40)

From (39) we have

∣∣∣∣∣〈A(yn),h
〉 − (1 − τn)

b∫
0

f (t, un)

‖un‖p−1
h dt − τnμ

b∫
0

|yn|p−2 ynh dt

∣∣∣∣∣
� εn‖h‖

(1 + ‖un‖)‖un‖p−1
for all n � 1. (41)

Recall (see (25)) that

f (·, un(·))
‖un‖p−1

w→ θ̂ = ξ |y|p−2 y in L1(T ) with λ̂m � ξ(t) � λ̂m+1 a.e. on T . (42)

In (41), we choose h = yn − y and pass to the limit as n → ∞. Using (40), we obtain

lim
n→∞

〈
A(yn), yn − y

〉 = 0,

⇒ yn → y in W 1,p
per (0,b) and so ‖y‖ = 1. (43)

Hence, if in (41) we pass to the limit as n → ∞ and use (42) and (43), then

〈
A(y),h

〉 = (1 − τ )

b∫
0

ξ |y|p−2 yh dt + τμ

b∫
0

|y|p−2 yh dt for all h ∈ W 1,p
per (0,b),

⇒ A(y) = ξτ |y|p−2 y with ξτ = (1 − τ )ξ + τμ,

⇒ −(∣∣y′(t)
∣∣p−2

y′(t)
)′ = ξτ (t)

∣∣y(t)
∣∣p−2

y(t) a.e. on T ,

y(0) = y(b), y′(0) = y′(b). (44)
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Note that λ̂m � ξτ (t) � λ̂m+1 a.e. on T .
If τ ∈ (0,1], then

ξτ �= λ̂m and ξτ �= λ̂m+1,

⇒ y = 0
(
see (44) and Proposition 2.3

)
, which contradicts (43).

So, suppose τ = 0. Then ξ0 = ξ and we proceed as in the proof of Proposition 3.2 to reach a
contradiction, using hypothesis H(ii) and the third convergence in (38). This proves the Claim.

Then from Lemma 8 of O’Regan, Papageorgiou and Smyrlis [22] (see also Chang [8, p. 334] and
Perera and Schechter [25]) we have

Ck(ϕ,∞) = Ck(χ,∞) for all k � 0. (45)

Since μ ∈ (̂λm, λ̂m+1), u = 0 is the only critical point of χ . Hence

Ck(χ,∞) = Ck(χ,0) for all k � 0. (46)

Let r > 0 and set E0 ={u ∈ W 1,p
per (0,b): ‖u′‖p

p < μ‖u‖p
p, ‖u‖ = r} and D ={u ∈ W 1,p

per (0,b): ‖u′‖p
p �

μ‖u‖p
p}. Evidently E0 ∩ D = ∅. Also ∂ Br = {u ∈ W 1,p

per (0,b): ‖u‖ = r} is a Banach C1-manifold, hence

locally contractible. Since E0 is an open subset of ∂ Br , E0 is locally contractible. Similarly W 1,p
per (0,b)\

D is locally contractible. Note that since μ ∈ (̂λm, λ̂m+1), we have i(E0) = m + 1, where i denotes
the index introduced by Fadell and Rabinowitz [13]. Similarly i(W 1,p

per (0,b) \ D) = m + 1. Invoking

Theorem 3.6 of Cingolani and Degiovanni [9], we know that there exists C ⊆ W 1,p
per (0,b) compact s.t.

the pair (E0 ∪ C, E0) and D homologically link in dimension m + 1 and so Cm+1(χ,0) �= 0 (see Chang
[7, p. 89]). From (45) and (46) we conclude that Cm+1(ϕ,∞) �= 0. �

Next we compute the critical groups at infinity of ψ± .

Proposition 3.6. If hypotheses H hold, then Ck(ψ+,∞) = Ck(ψ−,∞) = 0 for all k � 0.

Proof. We do the proof for ψ+ , the proof for ψ− being similar.
Let μ ∈ (̂λm, λ̂m+1) and consider the C1-functional σ+ : W 1,p

per (0,b) →R defined by

σ+(u) = 1

p

∥∥u′∥∥p
p + ε

p
‖u‖p

p − μ + ε

p

∥∥u+∥∥p
p

for all u ∈ W 1,p
per (0,b), with ε ∈ (0, λ̂2).

We consider the homotopy h+ : [0,1] × W 1,p
per (0,b) →R defined by

h+(τ , u) = (1 − τ )ψ+(u) + τσ+(u) for all (τ , u) ∈ [0,1] × W 1,p
per (0,b).

As before, without any loss of generality, we assume that Kψ+ is finite.

Claim. There exist β ∈ R and δ > 0 s.t.

h+(τ , u) � β ⇒ (
1 + ‖u‖)∥∥(h+)′u(τ , u)

∥∥∗ � δ for all τ ∈ [0,1].



3692 E.H. Papageorgiou, N.S. Papageorgiou / J. Differential Equations 255 (2013) 3678–3702
As before, we argue by contradiction. So, suppose we can find {τn}n�1 ⊆ [0,1] and {un}n�1 ⊆
W 1,p

per (0,b) s.t.

τn → τ ∈ [0,1], ‖un‖ → ∞, h+(τn, un) → −∞ and
(
1 + ‖un‖

)
(h+)′u(τn, un) → 0.

(47)

From the last convergence in (47), we have

∣∣∣∣∣〈A(un),h
〉 + ε

b∫
0

|un|p−2unh dt − (1 − τn)

b∫
0

g+(t, un)h dt

− τn(μ + ε)

b∫
0

(
u+

n

)p
h dt

∣∣∣∣∣ � εn‖h‖
1 + ‖un‖ (48)

for all h ∈ W 1,p
per (0,b) with εn → 0+ .

In (48) we choose h = −u−
n ∈ W 1,p

per (0,b) and∥∥(
u−

n

)′∥∥p
p + ε

∥∥u−
n

∥∥p
p � εn for all n � 1,

⇒ u−
n → 0 in W 1,p

per (0,b) as n → ∞. (49)

From (47) (second convergence) and (49) it follows that ‖u+
n ‖ → ∞. We set yn = u+

n

‖u+
n ‖ , n � 1. Then

‖yn‖ = 1 for all n � 1 and so we may assume that

yn
w→ y in W 1,p

per (0,b) and yn → y in C(T ). (50)

From (48) and (49), we have

∣∣∣∣∣〈A(yn),h
〉 + ε

b∫
0

yp−1
n h dt − (1 − τn)

b∫
0

g+(t, u+
n )

‖u+
n ‖p−1

h dt

− τn(μ + ε)

b∫
0

yp−1
n h dt

∣∣∣∣∣ � ε′
n‖h‖ (51)

with ε′
n → 0.

In (51) we choose h = yn − y. Passing to the limit as n → ∞ and using (50) we obtain

lim
n→∞

〈
A(yn), yn − y

〉 = 0,

⇒ yn → y in W 1,p
per (0,b) and so ‖y‖ = 1, y � 0. (52)

Recall that

g+(·, u+
n (·))

+ p−1

w→ θ̂+ = (ξ + ε)yp−1 in L1(T ) and λ̂m � ξ(t) � λ̂m+1 for a.a. t ∈ T . (53)
‖un ‖
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Therefore, if in (51) we pass to the limit as n → ∞ and use (52) and (53), then

〈
A(y),h

〉 = b∫
0

ξτ yp−1h dt for all h ∈ W 1,p
per (0,b) with ξτ = (1 − τ )ξ + τμ,

⇒ A(y) = ξτ yp−1,

⇒ −(∣∣y′(t)
∣∣p−2

y′(t)
)′ = ξτ (t)y(t)p−1 a.e. on T ,

y(0) = y(b), y′(0) = y′(b). (54)

We know that λ̂m � ξτ (t) � λ̂m+1 a.e. on T . If τ ∈ (0,1], then ξτ �= λ̂m , ξτ �= λ̂m+1 and so by virtue
of (54) and Proposition 2.3, we have y = 0, which contradicts (52). The same is true if τ = 0 and
ξ0 �= λ̂m , ξ0 �= λ̂m+1. Finally, if τ = 0 and ξ0 = λ̂m , or ξ0 = λ̂m+1 a.e. on T , then from (54) and since
m � 1, y(·) must be nodal again a contradiction (see (52)). This proves the claim.

The claim permits the use of Lemma 8 of [22] and we have

Ck(ψ+,∞) = Ck(σ+,∞) for all k � 0. (55)

Since μ ∈ (̂λm, λ̂m+1), u = 0 is the only critical point of σ+ and so

Ck(σ+,∞) = Ck(σ+,0) for all k � 0. (56)

Let η ∈ L∞(0,b), η � 0, η �= 0 and consider the homotopy ĥ+ : [0,1] × W 1,p
per (0,b) → R defined by

ĥ+(τ , u) = σ+(u) − τηu for all (τ , u) ∈ [0,1] × W 1,p
per (0,b).

We claim that

(̂h+)′(τ , u) �= 0 for all τ ∈ [0,1], u �= 0. (57)

Suppose that (57) is not true. We can find τ ∈ [0,1] and u �= 0 s.t.

(̂h+)′(τ , u) = 0,

⇒ A(u) + ε|u|p−2u = (μ + ε)
(
u+)p−1 + τη. (58)

On (58) we act with −u− ∈ W 1,p
per (0,b) and obtain ‖(u−)′‖p

p + ε‖u−‖p
p = 0, i.e., u � 0. So, (58)

becomes

A(u) = μup−1 + τη, u � 0, u �= 0. (59)

First suppose that τ = 0. Then

A(u) = μup−1 (
see (59)

)
,

⇒ −(∣∣u′(t)
∣∣p−2

u′(t)
)′ = μu(t)p−1 a.e. on T ,

u(0) = u(b), u′(0) = u′(b),

⇒ u must be nodal (recall m � 1), which contradicts (59).
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So, we assume that τ ∈ (0,1]. Then

A(u) = μup−1 + τη,

⇒ −(∣∣u′(t)
∣∣p−2

u′(t)
)′ = μu(t)p−1 + τη(t) a.e. on T ,

u(0) = u(b), u′(0) = u′(b). (60)

We have u ∈ C+ \ {0} and (|u′(t)|p−2u′(t))′ � 0 a.e. on T . It follows that u ∈ int Ĉ+ (see
Vazquez [27]).

Let y ∈ Ĉ+ and consider

R(y, u)(t) = ∣∣y′(t)
∣∣p − ∣∣u′(t)

∣∣p−2
u′(t)

(
yp

up−1

)′
(t).

From the generalized Picone identity of Allegretto and Huang [3], we have

0 �
b∫

0

R(y, u)(t)dt

= ∥∥y′∥∥p
p −

b∫
0

−(∣∣u′∣∣p−2
u′)′ yp

up−1
dt (by integration by parts)

= ∥∥y′∥∥p
p −

b∫
0

(
μyp + τη

)
dt

(
see (60)

)
�

∥∥y′∥∥p
p − μ‖y‖p

p (recall η � 0).

We choose y = û0 ∈ int Ĉ+ . Then

0 � −μûp
0 b < 0, a contradiction.

This proves that (57) holds. Then the homotopy invariance property of critical groups (see Chang
[8, p. 334]) implies that

Ck(σ+,0) = Ck(σ̂+,0) for all k � 0, (61)

where σ̂+(u) = σ+(u) − ηu for all u ∈ W 1,p
per (0,b). From the previous argument, we know that σ̂+ has

no critical points. Then

Ck(σ̂+,0) = 0 for all k � 0,

⇒ Ck(ψ+,∞) for all k � 0
(
see (61), (56) and (55)

)
.

Similarly, we show that Ck(ψ−,∞) = 0 for all k � 0. �
Having this proposition, we can have a precise computation of the critical groups of ϕ at u0 ∈

int Ĉ+ and v0 ∈ − int Ĉ+ . Recall that u0, v0 are the two constant sign solutions of (1) obtained in
Proposition 3.4.
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Proposition 3.7. If hypotheses H hold and u0 ∈ int Ĉ+ and v0 ∈ − int Ĉ+ are the two constant sign solutions
of (1) obtained in Proposition 3.4, then Ck(ϕ, u0) = Ck(ϕ, v0) = δk,1Z for all k � 0.

Proof. We do the proof for u0, the proof for v0 being similar.
First note that we may assume that {0, u0} are the only critical points of ψ+ (otherwise, we already

have one more solution y0 ∈ int Ĉ+ of (1) distinct from {0, u0, v0}; note that Kψ+ ⊆ Ĉ+).
Let η < 0 < ξ < η̂+ (see (31)) and consider the following triple of sets

ψ
η
+ ⊆ ψ

ξ
+ ⊆ W 1,p

per (0,b).

For this triple, we consider the long exact sequence of homology groups

· · · → Hk
(
W 1,p

per (0,b),ψ
η
+
) i∗−→ Hk

(
W 1,p

per (0,b),ψ
ξ
+
) ∂∗−→ Hk−1

(
ψ

ξ
+,ψ

η
+
) → ·· · . (62)

By i∗ we denote the group homomorphism induced by the inclusion (W 1,p
per (0,b),ψ

η
+)

i→
(W 1,p

per (0,b),ψ
ξ
+) and ∂∗ is the boundary homomorphism. From the rank theorem, we have

rank Hk
(
W 1,p

per (0,b),ψ
ξ
+
) = rank(ker ∂∗) + rank(im∂∗)

(
see (62)

)
= rank(imi∗) + rank(im∂∗)

(
from the exactness of (62)

)
. (63)

Recalling that {0, u0} are the only critical points of ψ+ and since

η < 0 = ψ+(0) < η̂+ � ψ+(u0),

we have

Hk
(
W 1,p

per (0,b),ψ
η
+
) = Ck(ψ+,∞) = 0 for all k � 0 (see Proposition 3.6),

⇒ imi∗ = {0}. (64)

Also Hk−1(ψ
ξ
+,ψ

η
+) = Ck−1(ψ+,0) = δk−1,0Z = δk,1Z for all k � 0 (see Proposition 3.3). Therefore

rank(im∂∗) � 1. (65)

Finally since 0 < ξ < η̂+ � ψ+(u0), we have

Hk
(
W 1,p

per (0,b),ψ
ξ
+
) = Ck(ψ+, u0) for all k � 0. (66)

So, if in (63), we use (64), (65), (66), then

rank C1(ψ+, u0) � 1. (67)

From the proof of Proposition 3.4, we know that u0 is a critical point of ψ+ of mountain pass
type. Hence C1(ψ+, u0) �= 0 (see Chang [7, p. 89]). Combining this with (67) we infer that

Ck(ψ+, u0) = δk,1Z for all k � 0. (68)
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Consider the homotopy h+ : [0,1] × W 1,p
per (0,b) →R defined by

h+(τ , u) = (1 − τ )ϕ(u) + τψ+(u) for all (τ , u) ∈ [0,1] × W 1,p
per (0,b).

Claim. We may assume that we can find ρ ∈ (0,1) small s.t. u0 is the only critical point for all τ ∈ [0,1] of
h+(τ , ·) in Bρ(u0) = {u ∈ W 1,p

per (0,b): ‖u − u0‖ = ρ}.

Suppose we can find {τn}n�1 ⊆ [0,1] and {un}n�1 ⊆ W 1,p
per (0,b) s.t.

τn → τ ∈ [0,1], un → u0 in W 1,p
per (0,b) and (h+)′(τn, un) = 0 for all n � 1. (69)

We have

A(un) + τn|un|p−2un = (1 − τn)Ng+(un) + τn N f (un) for all n � 1,

⇒ −(∣∣u′
n(t)

∣∣p−2
u′

n(t)
)′ = f

(
t, u+

n (t)
) + (1 − τn) f

(
t,−u−

n (t)
) + τn

(
u−

n

)p−1
a.e. on T ,

un(0) = un(b), u′
n(0) = u′

n(b). (70)

From (70), arguing as in the proof of Proposition 3.3 of Kyritsi and Papageorgiou [19], we establish
that {un}n�1 ⊆ C1(T ) is relatively compact. Therefore we have

un → u0 in C1(T )
(
see (69)

)
. (71)

Recall that u0 ∈ int Ĉ+ . So, we can find n0 � 1 s.t.

un ∈ int Ĉ+ for all n � n0
(
see (71)

)
,

⇒ −(∣∣u′
n(t)

∣∣p−2
u′

n(t)
)′ = f

(
t, un(t)

)
a.e. on T ,

un(0) = un(b), u′
n(0) = u′

n(b),

⇒ {un}n�1 ⊆ int Ĉ+ are nontrivial solutions of (1) and so we are done.

This proves the Claim.
Then the Claim and the homotopy invariance property of the critical groups (see Chang [8, p. 334]),

we have

Ck(ϕ, u0) = Ck(ψ+, u0) for all k � 0,

⇒ Ck(ϕ, u0) = δk,1Z for all k � 0
(
see (68)

)
.

In the similar fashion, using this time ψ− , we show that Ck(ϕ, v0) = δk,1Z for all k � 0. �
Now we can state the multiplicity theorem for problem (1) under double resonance conditions.

Theorem 3.8. If hypotheses H hold, then problem (1) has at least three nontrivial solutions

u0 ∈ int Ĉ+, v0 ∈ − int Ĉ+ and y0 ∈ C1(T ).
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Proof. From Proposition 3.4, we already have two nontrivial constant sing solutions of (1)

u0 ∈ int Ĉ+ and v0 ∈ − int Ĉ+.

From Proposition 3.7, we have

Ck(ϕ, u0) = Ck(ϕ, v0) = δk,1Z for all k � 0. (72)

Also, by virtue of Proposition 3.3, we have

Ck(ϕ,0) = δk,0Z for all k � 0. (73)

Recall that Cm+1(ϕ,∞) �= 0 (see Proposition 3.5). This implies that there exists y0 ∈ Kϕ s.t.

Cm+1(ϕ, y0) �= 0, m � 2. (74)

Comparing (74) with (72) and (73), we infer that y0 /∈ {0, u0, v0}. Also y0 ∈ C1(T ) and solves
problem (1). �
4. Existence theorem

In the previous section we proved a multiplicity theorem (three nontrivial solutions) for problem
(1), by avoiding double resonance in the first spectral interval [̂λ0 = 0, λ̂1]. It is natural to ask what
can be said if double resonance occurs in the first spectral interval [0, λ̂1]. In this case, we show that
we can still have an existence theorem.

The new hypotheses on the reaction f (t, x) are:

H′ f : T ×R→ R is a Caratheodory function s.t. for a.a. t ∈ T , f (t,0) = 0 and
(i) | f (t, x)| � a(t)(1 + |x|p−1) for a.a. t ∈ T , all x ∈ R, with a ∈ L1(T )+;

(ii) 0 � lim inf|x|→∞ f (t,x)
|x|p−2x

� lim sup|x|→∞ f (t,x)
|x|p−2x

� λ̂1 uniformly for a.a. t ∈ T and

lim|x|→∞[ f (t, x)x − pF (t, x)] = +∞ uniformly for a.a. t ∈ T ;
(iii) there exist an integer l � 1 and functions ξ, ξ̂ ∈ L∞(T )+ s.t.

λ̂l � ξ(t) � ξ̂ (t) � λ̂l+1 for a.a. t ∈ T , λ̂l �= ξ, λ̂l+1 �= ξ̂

and ξ(t) � lim inf
x→0

f (t, x)

|x|p−2x
� lim sup

x→0

f (t, x)

|x|p−2x
� ξ̂ (t)

uniformly for a.a. t ∈ T .

Remark. Hypothesis H′(ii) implies that we have double resonance in the spectral interval [0, λ̂1].
Hypothesis H′(iii) implies that at zero we have nonuniform nonresonance with respect to the first two
eigenvalues λ̂0 = 0 and λ̂1 > 0. Again we emphasize that no differentiability hypothesis is assumed
on f (t, ·).

Example. The following function f (x) satisfies hypotheses H′ (for the sake of simplicity we drop the
t-dependence):

f (x) =
{

ξ |x|p−2x if |x| � 1,

λ̂1|x|p−2x + (ξ − λ̂1)|x|q−2x if |x| > 1,

with ξ ∈ (̂λl, λ̂l+1), l � 1 and 1 < q < p < ∞.
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Let μ ∈ (̂λl, λ̂l+1) and as before we consider the C1-functional χ : W 1,p
per (0,b) → R defined by

χ(u) = 1

p

∥∥u′∥∥p
p − μ

p
‖u‖p

p for all u ∈ W 1,p
per (0,b).

We will show that the first two critical groups of χ at the origin are trivial (i.e., C0(χ,0) =
C1(χ,0) = 0). To this end, we will need the following lemma.

Lemma 4.1. If μ ∈ (̂λl, λ̂l+1) with l � 1 and Vμ = {u ∈ W 1,p
per (0,b): ‖u′‖p

p < μ‖u‖p
p}, then Vμ is path-

connected.

Proof. Note that ±û0 ∈ Vμ . To prove the lemma it suffices to connect an arbitrary ũ ∈ Vμ with
û0 by a continuous path which stays in the open set Vμ . So, let Ṽ be the path component of Vμ

containing ũ. We define

m̃ = inf

[‖u′‖p
p

‖u‖p
p

: u ∈ Ṽ , u �= 0

]
= inf

[‖u‖p
p: u ∈ M ∩ Ṽ

]
,

where M = W 1,p
per (0,b) ∩ ∂B Lp

1 . By virtue of the Ekeland variational principle and Lemma 3.5(iii) of
Cuesta, de Figueiredo and Gossez [10], we can find {un}n�1 ⊆ M ∩ Ṽ s.t.

∥∥u′
n

∥∥p
p → m̃ (75)

and

∣∣〈A(un),h
〉∣∣ � εn‖h‖ for all h ∈ Tun M with εn → 0+. (76)

Here by Tun M we denote the tangent space at un of the Banach C1-manifold M . We know that

Tun M = {h ∈ W 1,p
per (0,b):

∫ b
0 |un|p−2unh dt = 0}. For y ∈ W 1,p

per (0,b) we set

h = y −
( b∫

0

|un|p−2un y dt

)
un ∈ Tun M for all n � 1.

In (76) we use this h and obtain

∣∣∣∣∣〈A(un), y
〉 − b∫

0

|un|p−2un y dt
∥∥u′

n

∥∥p
p

∣∣∣∣∣ � εnc‖y‖ for some c > 0, all n � 1. (77)

From (75) and since ‖un‖p = 1 for all n � 1, we see that {un}n�1 ⊆ W 1,p
per (0,b) is bounded. So, we

may assume that un
w→ ũ in W 1,p

per (0,b). In (77) we choose y = un − ũ. Then

lim
n→∞〈A(un), un − ũ〉 = 0,

⇒ un → ũ in W 1,p
per (0,b) (see Proposition 2.2).
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Hence ũ ∈ M ∩ Ṽ and m̃ = ‖̃u′‖p
p . If ũ is boundary point of M ∩ Ṽ , since M ∩ Ṽ is a path component

of M ∩ Vμ which is open in M , then by virtue of Lemma 3.5(iii) of Cuesta, de Figueiredo and Gossez
[10], we have ũ /∈ M ∩ Vμ . But ‖̃u′‖p

p = m̃ < μ and so ũ ∈ M ∩ Vμ , a contradiction. This proves that ũ

cannot be a boundary point of M ∩ Ṽ and so ũ ∈ M ∩ Ṽ , which means that ũ is a critical point of the
functional σ(u) = ‖u′‖p

p on the Banach C1-manifold M . Therefore, to prove the lemma, it suffices to
connect û0 and this particular ũ with a continuous path staying in Vμ .

First we assume that ũ � 0. We know that the only Lp-normalized constant sign eigenfunctions of
the negative periodic scalar p-Laplacian are ±û0. Since ‖̃u′‖p

p = m̃, by the Lagrange multiplier rule ũ
is an eigenfunction in M and so ũ = −û0. Then Proposition 2.4 guarantees that there is a continuous
curve in Vμ connecting û0 and −û0 = ũ.

Therefore, we way assume that ũ+ �= 0. We set

ũτ = ũ+ − (1 − τ )̃u−

‖̃u+ − (1 − τ )̃u−‖p
∈ M for all τ ∈ [0,1].

As we said, since ‖̃u′‖p
p = m̃, by virtue of the Lagrange multiplier rule, we have

〈
A( ũ ),h

〉 = m̃

b∫
0

|̃u|p−2ũh dt for all h ∈ W 1,p
per (0,b). (78)

In (78) we choose h = ũ+ ∈ W 1,p
per (0,b) and obtain∥∥(̃

u+)′∥∥p
p = m̃

∥∥̃u+∥∥p
p . (79)

Next in (78) we choose h = −ũ− ∈ W 1,p
per (0,b) and have∥∥(̃
u−)′∥∥p

p = m̃
∥∥̃u−∥∥p

p . (80)

Note that ũ+ and ũ− have disjoint supports. So, (79) and (80) imply∥∥̃u′
τ

∥∥p
p = m̃ for all τ ∈ [0,1],

⇒ ũ1 = ũ+

‖̃u+‖p
is a minimizer of u → σ(u) = ∥∥u′∥∥p

p on M,

⇒ ũ1 = û0 (since ũ1 � 0).

On the other hand

ũ0 = ũ+ − ũ−

‖̃u+ − ũ−‖p
= ũ

‖̃u‖p
= ũ (since ũ ∈ M).

There τ → ũτ is a continuous curve connecting ũ and û0 which stays in Vμ since ‖̃u′
τ ‖ = m̃ < μ

for all τ ∈ [0,1]. �
This lemma leads to the following observation concerning the first two critical groups of χ(u) =

1
p ‖u′‖p

p − μ
p ‖u‖p

p for all u ∈ W 1,p
per (0,b) with μ ∈ (̂λl, λ̂l+1).

Proposition 4.2. If hypotheses H hold, then C0(χ,0) = C1(χ,0) = 0.
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Proof. Since μ ∈ (̂λl, λ̂l+1), u = 0 is the only critical point of χ . So, by definition

Ck(χ,0) = Hk
(
χ0,χ0 \ {0})

(we can take U = W 1,p
per (0,b) in the definition of the critical groups; see Section 2).

We have Vμ ⊆ χ0 \ {0}. Let ∗ ∈ Vμ . Then from the reduced exact homology sequence (see Granas
and Dugundji [17, p. 388]), we have

· · · → Hk
(
ψ0,∗) i∗−→ Hk

(
ψ0,ψ0 \ {0}) ∂∗−→ Hk−1

(
ψ0 \ {0},∗) → ·· · , (81)

where i∗ is the group homomorphism induced by the inclusion map (χ0,∗)
i→ (χ0,χ0 \ {0}) and ∂∗

is the boundary homomorphism. Since χ is p-homogeneous, χ0 is radially contractible and so

Ck
(
χ0,∗) = 0 for all k � 0

(
see Granas and Dugundji [17, p. 389]

)
. (82)

From the exactness of the long sequence (81) we have

0 = imi∗ = ker ∂∗
(
see (82)

)
.

This means that Hk(χ
0,χ0 \ {0}) = Ck(χ,0) is isomorphic to a subgroup of Hk−1(χ

0 \ {0},∗). We
have Vμ = χ̇0 = {u ∈ W 1,p

per (0,b): χ(u) < 0}. Then using the second deformation theorem (see, for
example, Papageorgiou and Kyritsi [23, p. 349] and the result of Granas and Dugundji [17, p. 407]),
we have

χ0 \ {0} is homotopy equivalent to χ−ε (ε > 0 small) (83)

and

χ̇0 = Vμ is homotopy equivalent to χ−ε (ε > 0 small). (84)

From (83) and (84) it follows that

χ0 \ {0} is homotopy equivalent to Vμ = χ̇0,

⇒ Hk
(
χ0 \ {0},∗) � Hk(Vμ,∗) for all k � 0. (85)

From Lemma 4.1 we know that Vμ is path connected. Hence

H0(Vμ,∗) = 0
(
see, for example, Maunder [20, p. 109]

)
,

⇒ H0
(
χ0 \ {0},∗) = 0

(
see (85)

)
. (86)

Recall that Ck(χ,0) is isomorphic to a subgroup of Hk−1(χ
0 \ {0},∗) for k � 0. Hence C0(χ,0) =

C1(χ,0) = 0 (recall that for k < 0, all singular homology groups are by definition trivial). �
Now we are ready for the existence theorem.

Theorem 4.3. If hypotheses H′ hold, then problem (1) has a nontrivial solution û ∈ C1(T ).
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Proof. Reasoning as in Perera [24] (see Lemma 4.1), we can find R > 0 and ϕ̂ ∈ C1(W 1,p
per (0,b)) s.t.

ϕ̂(u) =
{

χ(u) if ‖u‖ � R,

ϕ(u) if ‖u‖ � 2
1
p R

(87)

and Kϕ̂ ⊆ Kϕ . From (87) we see that

Ck(ϕ̂,0) = Ck(χ,0) for all k � 0. (88)

From Proposition 4.2, we know that

C0(χ,0) = C1(χ,0) = 0,

⇒ C0(ϕ̂,0) = C1(ϕ̂,0) = 0
(
see (88)

)
. (89)

On the other hand, again from (87) we see that

Ck(ϕ̂,∞) = Ck(ϕ,∞) for all k � 0. (90)

As in the proof of Proposition 3.5, we show that

C1(ϕ,∞) �= 0,

⇒ C1(ϕ̂,∞) �= 0
(
see (90)

)
.

This means that we can find û ∈ Kϕ̂ s.t.

C1(ϕ̂, û ) �= 0. (91)

Comparing (89) and (91) we infer that û �= 0. Moreover, û ∈ Kϕ̂ ⊆ Kϕ and so û ∈ C1(T ) solves
problem (1). �

So our work here shows that existence of nontrivial solutions is guaranteed if double resonance
occurs at any spectral interval and multiplicity (producing at least three nontrivial solutions) can hap-
pen when we have double resonance at any spectral interval beyond the “principal” one [̂λ0 = 0, λ̂1].
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