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Abstract

We study whether the solutions of a fully nonlinear, uniformly parabolic equation with superquadratic 
growth in the gradient satisfy initial and homogeneous boundary conditions in the classical sense, a prob-
lem we refer to as the classical Dirichlet problem. Our main results are: the nonexistence of global-in-time 
solutions of this problem, depending on a specific largeness condition on the initial data, and the existence 
of local-in-time solutions for initial data C1 up to the boundary. Global existence is know when bound-
ary conditions are understood in the viscosity sense, what is known as the generalized Dirichlet problem. 
Therefore, our result implies loss of boundary conditions in finite time. Specifically, a solution satisfying 
homogeneous boundary conditions in the viscosity sense eventually becomes strictly positive at some point 
of the boundary.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction and main results

The present article is a contribution to the study of qualitative properties of viscosity solutions 
of the so-called Cauchy–Dirichlet problem for the following fully nonlinear parabolic equation 
with superquadratic growth in the term with gradient dependence:

ut −M−(D2u) = |Du|p in � × (0, T ), (1.1)

u = 0 on ∂� × (0, T ), (1.2)

u(x,0) = u0(x) in �, (1.3)

where � ⊂ R
n is a bounded domain satisfying both uniform interior and exterior sphere condi-

tions. While this is not strictly necessary for all our results, it does establish a better connection 
between our main theorems. See Remarks 3.2 and 6.4. We also assume p > 2 throughout, except 
for certain remarks regarding the case p ≤ 2 made in this introduction. See also Remark 3.1. Here 
M− denotes one of Pucci’s extremal operators, which are defined as follows: let A, X ∈ S(n), 
the symmetric n ×n matrices equipped with the usual ordering, I denote the identity matrix, and 
0 < λ < �. Then

M−(X) =M−(X,λ,�) = inf{tr(AX)|λI ≤ A ≤ �I },
M+(X) =M+(X,λ,�) = sup{tr(AX)|λI ≤ A ≤ �I }.

Alternatively, if we denote by λi = λi(X) the eigenvalues of X, then

M−(X) = λ
∑
λi>0

λi + �
∑
λi<0

λi,

M+(X) = �
∑
λi>0

λi + λ
∑
λi<0

λi.

Pucci’s operators are fundamental to the study of fully nonlinear equations, at once acting as 
barriers to all equations sharing the same ellipticity constants (owing to the first definition) and 
allowing fairly explicit computations to be carried out (owing to the second). The Dirichlet con-
dition (1.2) will be considered both in the classical sense and in the generalized sense of viscosity 
solutions. We will stress the distinction when necessary. Precise definitions and more on this later 
in this introduction. On the other hand, condition (1.3) is always meant in the classical (point-
wise) sense. See Remark 2.5.
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We assume the compatibility condition

u0(x) = 0 for all x ∈ ∂�

is also satisfied in the pointwise sense and that u0 ∈ C1(�). As with the assumptions on �, it is 
not strictly necessary to assume this regularity for u0 throughout, but helps establish a connection 
between our main theorems. Also, we assume u0 ≥ 0 without loss of generality, since (1.1) is 
invariant with respect to additive constants.

Equation (1.1) can be seen as a generalization of the so-called viscous Hamilton–Jacobi equa-
tion,

ut − �u = |Du|p in � × (0, T ). (1.4)

For p = 2, this corresponds to the deterministic Kardar–Parisi–Zhang equation, proposed by 
these authors in [22] as a model for the profile of a growing interface. Mathematically, it is of 
interest because it is the simplest model of a parabolic equation with nonlinear dependence on 
the gradient, as well as a viscosity approximation of a first-order Hamilton–Jacobi equation (see 
[18], Ch. 10).

For equation (1.4), including all values p > 0, it is well-know that there exists a unique, 
maximal-in-time classical solution u ∈ C1,α(� × [0, T ∗]) for some α > 0 and 0 < T ∗ ≤ ∞, 
assuming sufficient regularity for � and for the initial and boundary data ([20], Ch. 7).

In [32] the nonexistence of global, classical solutions of problem (1.4)–(1.2)–(1.3) is proved 
when p > 2 and u0 ∈ C1(�) and is suitably large. It is also shown here that this implies the 
occurrence of gradient blow-up (GBU, for short). GBU is said to occur in finite time 0 < T < ∞
if a solution u satisfies

sup
[0,T ]×�

u < ∞, lim
t→T

sup
x∈�

|Du(x, t)| = ∞.

A version of equation (1.4) containing a more general gradient term with superquadratic 
growth is studied in [1] in the context of weak solutions, for irregular initial data. The notable re-
sult is the nonexistence of global-in-time weak solutions with initial data u0 a positive, bounded 
measure and suitably large.

In both [1] and [32], the largeness condition on u0 is (roughly speaking) given in terms of an 
L2-product of u0 with the principal eigenfunction of the Laplacian. The condition that appears 
in our Theorem 1.2 is essentially the same as the one in [32]. An alternative proof of global 
nonexistence for (1.4) given in [30], Theorem 40.2, uses a weaker condition on u0. In this proof 
it is enough to consider the Lq -norm for any q ≥ 1, but the argument does not adapt to more 
general nonlinearities.

There are different extensions of the results of [32]. Still in the context of classical solutions, 
the existence of global solutions and their large-time (or asymptotic) behavior for equation (1.4)
with nontrivial right-hand side is studied in [33]. For equation

ut − �u = |Du|p + λh(x) in � × (0, T ), (1.5)

where λ ≥ 0, h ∈ C1(�), h ≥ 0, a complete description of the asymptotic behavior is given when 
u0, h are radially symmetric and � = BR(0), for some R > 0: in this case, for h 	≡ 0, there exists 
a λ∗ > 0 such that
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• If 0 ≤ λ < λ∗, then (1.5) has a global solution which converges to the solution of the steady-
state equation

−�v = |Dv|p + λh(x) in �, (1.6)

which additionally satisfies v ∈ C1(�).
• If λ = λ∗, then u converges to a solution v /∈ C1(�) for any u0 ∈ C1(�) with u0 ≤ v. This 

implies GBU in infinite time, i.e.,

lim sup
t→∞

‖Du(·, t)‖∞ = ∞.

• If λ > λ∗, then (1.6) has no solution and GBU in finite time occurs for any u0 ∈ C1(�).

In the case of a general, bounded domain � ⊂R
n only a partial description is available.

Some of these results have been extended to equations with degenerate diffusion (i.e., with 
�p in place of �) in [4] in the context of weak solutions. Other questions, such as determining 
precise blow-up rates, profiles and sets are addressed in [36], [4], [26]. See also [30], Ch. IV, and 
the references therein.

Equation (1.4) has also been studied from the viewpoint of viscosity solutions, in which a 
generalized notion of boundary conditions exists. The relevant phenomenon in this context is 
known as loss of boundary conditions (LOBC, for short). More precisely, (1.2) is said to hold in 
the viscosity sense for (1.1) if

min
(
ut −M−(D2u) − |Du|p,u

)
≤ 0, and (1.7)

max
(
ut −M−(D2u) − |Du|p,u

)
≥ 0, (1.8)

while loss of boundary conditions are said to occur whenever (1.2) is not satisfied in the classical 
sense. A standard reference for the concept of viscosity solutions is [13]; in particular see [13], 
Sec. 7, which covers generalized boundary conditions. Another helpful reference for this last 
topic can be found in [6], Chap. 4., where its relation to the underlying optimal control problem 
is covered.

In [8] it is proved that the Cauchy–Dirichlet problem for a class of fully-nonlinear equations 
which includes (1.1) admits a unique, globally defined, continuous viscosity solution, assuming 
boundary conditions are understood in the viscosity sense. The result follows from a strong 
comparison principle proved by these authors and a subsequent application of Perron’s method. 
This result is relevant in the case p > 2, since it is shown in this same work that for p ≤ 2
there is no LOBC for either sub- or supersolutions, hence the classical comparison result of [13]
applies, and global existence of solutions satisfying Dirichlet boundary conditions in the classical 
sense follows. A one dimensional example of LOBC is also provided which, in contrast to those 
furnished by our result, satisfies time-dependent boundary data. As these results apply directly 
to the problem under our consideration, we review some of them in Section 2 for convenience.

Building on the existence of global solutions of the generalized Dirichlet problem, a natural 
question is to determine their large-time behavior. In this direction again there is an important 
distinction between the sub- and superquadratic cases, which are studied rather thoroughly in [9]
and [35], respectively. Consider equation
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ut − �u + |Du|p = f (x) in � × (0, T ), (1.9)

where

u(x, t) = ϕ(x) on ∂� × (0, T ),

is satisfied in the viscosity sense, f ∈ C(�), ϕ ∈ C(∂�), and ϕ(x) = u0(x) for all x ∈ ∂�. In the 
superquadratic case, p > 2, there are two possibilities: if the corresponding steady-state equation

−�v + |Dv|p = f (x) in � (1.10)

has a bounded subsolution, then there exists a solution u∞ of (1.10) and u(x, t) → u∞ on �. If 
(1.10) fails to have bounded subsolutions, one must introduce the so-called ergodic problem with 
state-constraint boundary conditions:

− �v + |Dv|p = f (x) + c in �, (1.11)

− �v + |Dv|p ≥ f (x) + c in ∂�. (1.12)

Here c ∈ R is the so-called ergodic constant, and is an unknown in problem (1.11) together 
with v. Existence and uniqueness of solutions (c, v) of (1.11) are studied in [23]: c is unique 
while v is unique up to an additive constant. Convergence of u(x, t) + ct to v where (c, v) is a 
solution of (1.11), as well as LOBC is then analyzed.

The behavior in the subquadratic case is more complicated. It depends also on whether 1 <
p ≤ 3/2 or 3/2 < p ≤ 2 and becomes necessary to introduce the following problem, also studied 
in [23], as an analogue of (1.10) and (1.11):

−�v + |Dv|p = f (x) + c in �, (1.13)

v(x) → ∞ as x → ∂�. (1.14)

We refer the reader to [9].
A different type of result concerning large-time behavior is given in [28]. It is shown that there 

exist constants K, λ and C such that the solution of the generalized Dirichlet problem for (1.9)
with homogeneous boundary data and any compatible initial data u0 ∈ C(�) satisfies, for every 
t ≥ K‖u0‖∞,

u(·, t) ∈ W 1,∞(�), and ‖u(·, t)‖∞ + ‖Du(·, t)‖∞ ≤ Ce−λt .

In particular, after some finite time, the solution u satisfies the boundary data in the classical 
sense. This property is then applied to the interesting problem of the null controllability of (1.9).

Regarding regularity of solutions, it is proved in [11] that if u is a bounded, upper-
semicontinuous viscosity subsolution of the (possibly degenerate) elliptic equation

−tr(A(x)D2u) + λu + |Du|p = f (x) for all x ∈ �, (1.15)

where p > 2, � ⊂ R
n is a regular domain, λ > 0, and A : � → S(n) and f satisfy fairly 

standard assumptions, then u is globally Hölder continuous with exponent α = p−2/p−1 (i.e., 
u ∈ C0,p−2/p−1(�)). As noted in [7], the result above is surprising, since most regularity results 
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apply to actual solutions of uniformly elliptic equations that satisfy subquadratic growth condi-
tions, none of which points are met in the assumed hypotheses. The authors of [11] go on to prove 
interior Lipschitz bounds for solutions of (1.15) by the so-called weak-Bernstein method intro-
duced in [5]. These results are valid for fully-nonlinear equations satisfying hypotheses which 
are discussed in detail in [7].

In [7] a slight simplification of the proof of Hölder regularity is provided, and the relation to 
the solvability of Dirichlet problem is analyzed. In short, if a general boundary condition u = ϕ

with ϕ ∈ C(∂�) is assumed in the viscosity sense, an additional reason for the occurrence of 
LOBC is that ϕ might not have the same regularity as u. This is, of course, irrelevant to the case 
of homogeneous boundary data.

Time-dependent versions of these regularity results are proven in [3], though they require the 
additional assumption that

ut ≥ −C for all (x, t) ∈ � × (0, T )

for some C ≥ 0 be satisfied in the viscosity sense. This means that: for all (x, t) ∈ � × (0, T ), if 
(a, ξ, X) ∈ P2,+u(x, t), the parabolic superjet of a subsolution u (see, e.g., [13] for definitions), 
then a ≥ −C. To the best of our knowledge, there is no readily available result in the context of 
viscosity solutions that would allow us to do away with this assumption, which is why we have 
followed the strategy of regularizing the solution (see Sec. 4.2).

Main results

Our main results are the following. We begin by proving the existence of solutions of 
(1.1)–(1.2)–(1.3) that for a small time satisfy the boundary data in the classical sense. The exis-
tence time depends only on a gradient bound for the initial data, the remaining constants usually 
considered universal.

Theorem 1.1. Let u0 ∈ C1(�). There exists a T ∗ > 0, depending only on �, λ, n, � and 
‖u0‖C1(�), such that the viscosity solution of (1.1) in � × (0, T ∗) satisfies (1.2) and (1.3) in 
the classical sense.

Since we already have the existence result of [8], we need only show that (1.2) is satisfied is 
the classical sense. For this we use a barrier argument, following the construction of comparison 
functions used in [4] to show local existence under a slightly different strategy.

Next we prove the nonexistence of global solutions to the classical Dirichlet problem when 
� = B1(0) and the initial data is radially symmetric, and suitably large. Again, thanks to the 
global existence result of [8], this implies the occurrence of LOBC.

Theorem 1.2. Let u0 ∈ C1(B1(0)) be a radial function. Then, there exist positive constants δ =
δ(λ, �, n) and M = M(λ, �, n, p) such that, if

1−δ∫
δ

u0(r) dr > M (1.16)

then the solution u of (1.1)–(1.2)–(1.3) with � = B1(0) and initial data u0 has LOBC at some 
finite time T = T (u0).
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The proof of Theorem 1.2 uses key ideas from that of Theorem 2.1 in [32]. The main dif-
ficulty in adapting this proof is its crucial use of the divergence structure of the Laplacian by 
repeatedly using integration by parts. We remedy this problem by using the divergence form 
of the Pucci operator, available for radial solutions (see, e.g., [19]), and the regularization by 
inf-sup-convolution introduced in [24]. Combining these techniques we obtain an equation in 
divergence form which is satisfied point-wise and all of whose terms are integrable. Afterwards, 
the main complications are keeping track of the terms which depend on the regularization pa-
rameters and providing estimates which are independent of these. We also adapt a weighted, 
one-dimensional version of Poincaré’s inequality, and make use of different results from [10]
and [16] regarding the principal eigenvalue problem for the Pucci operator.

This result is extended to show LOBC occurs for solutions of (1.1) in a sufficiently regular 
bounded domain in Corollary 5.2, and then to equations with more general nonlinearities, first in 
the radially symmetric case, then also for a bounded domain as above. The most general result is 
the following. Consider

ut − F(D2u) = f (Du) in � × (0, T ), (1.17)

where F : S(n) → R is uniformly elliptic, i.e.,

M−(X − Y) ≤ F(X) − F(Y ) ≤M+(X − Y) for all X,Y ∈ S(n), (1.18)

and vanishes at zero, i.e., F(0) = 0, and f : Rn → R satisfies f (ξ) ≥ |ξ |2h(|ξ |) for all ξ ∈ R
n, 

where h : R → R is positive, nondecreasing, grows more slowly than any positive power, and is 
such that ξ �→ |ξ |2h(|ξ |) is convex. Precise hypotheses on h are given in Section 6.

Theorem 1.3. Assume that F , f , and h are as described above. If additionally h satisfies

∞∫
1

1

sh(s)
ds < ∞, (1.19)

then there exists u0 ∈ C1(�), with u0 ≥ 0 and u0|∂� = 0, such that LOBC occurs for solutions 
of (1.17)–(1.2)–(1.3) in some finite time T = T (u0).

This result follows more or less easily from Theorem 1.2 and the main ideas used in its proof, 
as do the other extensions given in the final section.

The organization of the article is as follows. In Section 2 we briefly review the results of 
[8] which are directly used in our work. Section 3 is devoted to the proof of Theorem 1.1. In 
Section 4 we gather the technical results which lead us to the approximate equation we use to 
prove the nonexistence result, as well as some fundamental facts and estimates related to the 
eigenvalue problem for the Pucci extremal operator in a radial case. The statements and remarks 
of this section contain key concepts and notation used in the proof of the Theorem 1.2 and 
its subsequent generalizations. Section 5 contains the proof of our main result in the radially 
symmetric case, Theorem 1.2, and its extension to a bounded domain. This is the core of our 
work. Finally, in Section 6 we provide extensions to more general equations, including the proof 
of Theorem 1.3.
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After completing a first version of this work, we learned that the occurrence of LOBC, 
together with other closely related results, had been obtained for the equation involving the 
Laplacian (i.e., for (1.4)) in [27].

2. Comparison, existence and uniqueness

Existence and uniqueness for the so-called generalized Dirichlet problem for

ut + G(x, t,Du,D2u) = 0 in � × (0, T ), (2.1)

where the boundary condition

u = g on ∂� × (0, T ), (2.2)

g ∈ C(∂� × (0, T )), is understood in the viscosity sense, is proven in Theorem 5.1 in [8]. For 
convenience, in this section we quote the main results of this work, as well as a couple of remarks 
relevant to our purposes. Here G is a continuous function that satisfies the degenerate ellipticity 
condition,

G(x, t, ξ,X) ≤ G(x, t, ξ, Y ) if X ≥ Y, (2.3)

for all x ∈ �, t ∈ [0, T ], ξ ∈ R
n and X, Y ∈ S(n), together with two key hypothesis, for which we 

must introduce additional notation. Note that condition (2.3) uses the opposite sign convention 
than the one used in (1.18). See also the discussion at the beginning of Subsection 6.1.

Let h1 : [0, ∞) → [0, ∞) be a continuous function. We say h1 satisfies property (P) if the 
following hold:

(i)
∫ ∞

1
s

h1(s)
ds < ∞,

(ii) for any C > 0, s large enough and L ≥ 1, the map L �→ h1(Ls) − CL2h1(s) is increasing,
(iii) for any C, C̃ > 0, there exists s̄ > 0, L̄ ≥ 1 such that

h1(Ls) − CL2h1(s) ≥ C̃Ls for s ≥ s̄,L ≥ L̄. (2.4)

The key assumptions on G as the following:

(H1) There exists constants C1, C2 > 0 and a continuous function h1 satisfying property (P) 
such that, for all x ∈ �, t ∈ [0, T ], ξ ∈R

n and X ∈ S(n), we have

G(x, t, ξ,X) ≥ −C1 − C2‖X‖ + h1(|ξ |). (2.5)

(H2) For any ε > 0, there exists 0 < με < 1 converging to 1 as ε → 0 such that

G(y, s, ξ2, Y ) − G(x, t,μ−1
ε ξ1,μ

−1
ε X) ≤ o(1)

for all x, y ∈ �, t, s, ∈ [0, T ], ξ1, ξ2 ∈ R
n and for all X, Y ∈ S(n) satisfying the following 

properties for some K > 0 and a sufficiently small η > 0:
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− Kη

ε2 I2n ≤
(

X 0
0 −Y

)
≤ o(1)

ε2

(
In −In

−In In

)
+ o(1)I2n,

|ξ1 − ξ2| ≤ Kε min{|ξ1|, |ξ2|},
|x − y| + |t − s| < ε.

The main result is the following:

Theorem 2.1 (Strong comparison result). Assume u0 ∈ C(�), and let u and v be respec-
tively a bounded upper-semicontinuous (USC, for short) supersolution and a bounded lower-
semicontinuous (LSC) supersolution of (2.1)–(2.2)–(1.3), where G satisfies hypotheses (H1) and
(H2). Then u ≤ v in � × [0, T ]. Moreover, if we define ũ on � × [0, T ] by setting

ũ(x, t) =

⎧⎪⎨
⎪⎩

lim sup
(y,s)→(x,t)

(y,s)∈�×(0,T )

u(y, s) on ∂� × (0, T ],

u(x, t) otherwise,

(2.6)

and similarly define ṽ, then ũ and ṽ are still respectively a bounded USC subsolution and a 
bounded LSC supersolution of (2.1)–(2.2)–(1.3) and ũ ≤ ṽ in � × [0, T ].

As is standard, existence is proven by combining this result with Perron’s method of sub- and 
supersolutions.

Remark 2.2. When Theorem 2.1 is used to compare continuous sub- and supersolutions, com-
parison holds up to the boundary without having to redefine the functions as in (2.6).

Remark 2.3. The lower bound of (1) implies that the gradient nonlinearity has the opposite sign 
to that of (1.1). However, the results proved for

ut −M+(D2u) + |Du|p = 0 in ∂� × (0, T )

are valid for (1.1) provided we exchange the role of sub- and supersolutions. Indeed, u is a 
subsolution of the above equation if and only if −u is a supersolution of (1.1). This is already 
noted in Remark 3.2 of [8]. We note also that in [8] there is no requirement that the solution be 
nonnegative, as there is in the proofs of gradient blow-up given in [32].

We will verify that hypotheses (H1) and (H2) apply to the equations considered in this work 
(after the appropriate sign change) in Section 6.

Remark 2.4. Following the exchange of sub- and supersolutions mentioned in the previous re-
mark, it follows from Proposition 3.1 in [8] that any supersolution v of (1.1) satisfies v ≥ 0 on 
∂� × (0, T ) in the classical sense for any given T > 0. Hence, if LOBC occurs, as we prove 
later, then the solution satisfying (1.2) in the generalized sense must become strictly positive at 
some point of the boundary.

Remark 2.5. As mentioned in the introduction, the initial condition (1.3) is always meant in the 
classical sense. There is no loss of generality in this assumption. It is a consequence of Lemma 
4.1 in [25] that there is no LOBC on the bottom of the parabolic domain, � × {t = 0}.
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Remark 2.6. An easy but important consequence of the comparison result is that solutions u of 
(1.1)–(1.3) are uniformly bounded and nonnegative. Indeed, for u0 ≥ 0, v ≡ 0 and v̄ ≡ sup� u0
are respectively sub- and supersolutions, so by comparison we have

0 ≤ u(x, t) ≤ sup
�

u0 for all x ∈ �,0 ≤ t ≤ T . (2.7)

In particular, ‖u‖∞ ≤ ‖u0‖∞.

3. Existence of local solutions

We follow the construction of the comparison functions used to prove local existence of so-
lutions for a related problem in [4], accounting for the presence of the extremal operators and 
providing additional detail regarding the choice of constants.

Proof of Theorem 1.1. Step 1: A time-independent barrier. We define a time-independent com-
parison function in a neighborhood of a fixed x0 ∈ ∂�, using the exterior sphere condition, and 
prove that it is a supersolution of (1.1). We will address the initial and boundary conditions in a 
later step.

From the exterior sphere condition there exists a ball of radius ρ > 0 centered at x1 /∈ �, 
tangent to ∂� at x0. We will employ the radial variables r = |x − x1|, where ρ < r < ρ + η for 
some η > 0, and s = |x − x1| − ρ. In this and the following steps we will compare the solution 
u to different functions in the set

� = {x ∈ � | 0 < s = |x − x1| − ρ < η}.

Let ϕ(s) = s(s + μ)−β with μ, β > 0 to be chosen later, and define

v̄(x) = ϕ(|x − x1| − ρ) = ϕ(s). (3.1)

For any C2 radial function, say φ(x) = φ(|x|), a standard computation of the eigenvalues of 
D2φ at any point gives them explicitly as φ′′ and φ′/|x| with multiplicities 1 and n − 1, respec-
tively, where ′ denotes the derivative in the radial direction. By the definition of the extremal 
operator, this gives

M−(D2φ) = min
a,b∈{λ,�}(aφ′′ + b

n − 1

r
φ′). (3.2)

Setting β < 1, we compute

ϕ′(s) = [(1 − β)s + μ](s + μ)−β−1 > 0,

ϕ′′(s) = −β[(1 − β)s + 2μ](s + μ)−β−2 < 0.

Hence, the extremal operator takes the form

M−(D2v̄)(s) = �ϕ′′(s) + λ

(
n − 1

)
ϕ′(s)
s + ρ
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= − �β[(1 − β)s + 2μ](s + μ)−β−2

+ λ

(
n − 1

s + ρ

)
[(1 − β)s + μ](s + μ)−β−1.

The function v̄ is a supersolution if

−M−(D2v̄) ≥ |∇v̄|p = |ϕ′|p.

That is, from the previous computations, if(
�β[(1 − β)s + 2μ] − λ

(
n − 1

s + ρ

)
[(1 − β)s + μ](s + μ)

)
(s + μ)−β−2

≥ [(1 − β)s + μ]p(s + μ)−p(β+1).

Here we have factored the leading term (s + μ)−β−2 in the left-hand side. We proceed to show 
that its coefficient K is positive for the right choices of μ and β .

Setting η = μ and using only that 0 < β < 1 and 0 < s < η = μ, we have

K > 2�βμ − λ

(
n − 1

s + ρ

)
((1 − β)μ + μ)2μ.

Hence, to have K > 0 it is sufficient that

μ <
β

2 − β

(
2�ρ

λ(n − 1)

)
. (3.3)

Next, we verify that

K(s + μ)−β−2 ≥ [(1 − β)s + μ]p(s + μ)−p(β+1). (3.4)

Again 0 < β < 1 implies

[(1 − β)s + μ]p ≤ (s + μ)p,

then

[(1 − β)s + μ]p(s + μ)−p(β+1) ≤ (s + μ)p(s + μ)−p−pβ

= (s + μ)−pβ.

Hence (3.4) holds if (s + μ)−pβ ≤ K(s + μ)−β−2, that is, if

K−1 ≤ (s + μ)β(p−1)−2. (3.5)

Setting β < 1
2(p−1)

gives β(p − 1) − 2 < − 3
2 , so that the term on the right is singular. This 

precise value of β will be useful in a moment. Using once more that 0 < s < μ, it is sufficient to 
have
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K−1 ≤ (2μ)β(p−1)−2. (3.6)

We recall that K , the coefficient defined above, also depends on μ. However, from the above 
computations we have that for small μ,

K ≥ 2�βμ − λ

(
n − 1

s + ρ

)
((1 − β)μ + μ)2μ ≥ C1μ − C2μ

2,

hence K−1 = O(μ−1) as μ → 0, whereas the previous choice for β gives that the right-hand 
side of (3.6) is O(μ− 3

2 ). Therefore, choosing μ small enough gives all the desired inequalities.
Step 2: Time-dependent control. We introduce a second comparison function which will help 

us relate the solution u of (1.1)–(1.2)–(1.3) to the supersolution v̄ constructed in the previous 
step.

Let

ū(x, t) = At + C(1 − e−γ s),

and write ψ(s) = 1 − e−γ s . We will prove that for appropriate choices of the positive constants 
A, C and γ , ū satisfies

ūt −M−(D2ū) ≥ |Dū|p in � × (0,∞), (3.7)

ū ≥ u on (∂� ∩ �) × (0,∞), (3.8)

ū ≥ u0 on � × {t = 0}, (3.9)

where (3.8) and (3.9) are meant in the classical sense.
Denote by ν the exterior unit normal at x0 ∈ ∂�. For x = x0 − sν, t = 0, this is

ū(x,0) = C(1 − e−γ s) ≥ u0(x).

We use that

0 <

∣∣∣∣∂ū

∂ν
(x0)

∣∣∣∣ = Cψ ′(0) = Cγ < ∞, (3.10)

‖Du0‖∞ < ∞, u0(x0) = ψ(0) = 0, and that both u0 and ū are non-negative to choose C > 0
large enough, so that for small s, say 0 < s < δ, we have

u0(x) = u0(x0 − sν) ≤ Cψ(s).

In other words, we are comparing the first-order expansions in the direction −ν. Then, for δ ≤
s ≤ η, we may also take

C min{1, min
δ≤s≤η

ū(x0 − sν,0)} > max¯�×[0,T ]
u0, (3.11)

since the minimum above is strictly positive. We may repeat this reasoning in the other directions 
which sweep �, by considering an extension by zero of u0 to the corresponding section of the 
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annular domain where ψ is defined. The choice of C remains bounded since � is compact. 
Furthermore, it can be chosen uniformly with respect to x0 since � is compact. Observe that this 
also ensures that ū ≥ u on the rest of ∂p(� × (0, ∞)).

To check (3.7), we compute

−M−(D2ū) =
(

�γ − λ
n − 1

s + ρ

)
Cγ e−γ s, (3.12)

and observe that choosing γ large enough gives −M−(D2ū) ≥ 0. Then, ū is a supersolution if 
we can get

ūt ≥ |Dū|p.

This amounts to taking

A ≥ max
0≤s≤η

(Cγ e−γ s)p.

We have therefore proved that ū satisfies (3.7)–(3.8)–(3.9). Also, by definition ū ≥ 0 on {x0} =
∂� ∩ ∂�. Hence, by comparison, it follows that ū ≥ u in all of � × [0, ∞).

Step 3. Relating the comparison functions for small time. We claim that for some T ∗ > 0,

ū(x, t) ≤ v̄(x) for all x ∈ � and 0 ≤ t ≤ T ∗.

The proof is similar to that of the previous step. We establish first the comparison for t = 0, 
the bottom of the domain. Again we consider x = x0 − sν. Recalling (3.10), we now seek

∣∣∣∣∂v̄

∂ν
(x0)

∣∣∣∣ = ϕ′(0) ≥ Cγ =
∣∣∣∣∂ū

∂ν
(x0,0)

∣∣∣∣ . (3.13)

From previous computations,

ϕ′(0) = μ−β → +∞ as μ → 0.

On the other hand, C depends on μ through (3.11). Since ψ = ψ(s) is increasing inward, 
the minimum in (3.11) is achieved at s = δ. Clearly we can take δ < μ = η, and so a simple 
computation shows

C = o(μ−β) as μ → 0.

Therefore, taking μ = η small enough eventually yields (3.13). We remark that this choice, 
which amounts to shrinking the domain �, does not affect the choices made for other constants.

As before, looking at the first order expansion gives ū(x, 0) ≤ v̄(x) for all x as above, near x0, 
say with s < δ′. Moreover, in this case it is easier to extend the inequality to the directions which 
sweep � × {t = 0}, since both functions are radial and defined on the same annular domain.

To obtain

ū(x,0) ≤ v̄(x) on ∂�, (3.14)
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there is no choice like (3.11) available. However, we may restrict the comparison to �δ′ ×{t = 0}, 
where �δ′ := � ∩ {0 < s = |x − x1| −ρ < δ′}, δ′ > 0 as above, so that (3.14) holds by comparing 
the first-order expansions, and more importantly, holds strictly. That is, ū(x, 0) < v̄(x). We may 
now take T ∗ small enough so that, for all 0 ≤ t ≤ T ∗ and all x ∈ � such that s = |x − x1| − ρ =
δ′,

u(x, t) ≤ ū(x, t) = At + ū(x,0) ≤ v̄(x).

Thus we have proven that v̄ solves

⎧⎪⎪⎨
⎪⎪⎩

v̄t −M−(D2v̄) ≥ |Dv̄|p in �δ′ × (0, T ∗),
v̄ ≥ u on (∂�δ′ ∩ �) × [0, T ∗],
v̄ ≥ 0 on (∂�δ′ ∩ ∂�) × [0, T ∗],
v̄ ≥ u0 in �δ′ ,

where the boundary conditions (inequalities) are satisfied pointwise. Hence, by the compar-
ison principle of [8] (see also Remark 2.2), u(x, t) ≤ v̄(x) in all of �δ′ × [0, T ∗]. In particular, 
this implies u(x0, t) ≤ v̄(x0) = 0, hence u(x0, t) = 0 for all 0 ≤ t ≤ T ∗. As x0 ∈ ∂� was arbi-
trary, this implies that the solution u satisfies the boundary conditions in the classical sense on 
∂� × [0, T ∗]. �
Remark 3.1. The preceding computations do not require that p > 2; only p > 1 is explicitly 
used in (3.4). We remark, however, that only the superquadratic case is of interest, since by the 
results of [8], in the subquadratic case the globally defined solution of (1.1)–(1.2)–(1.3) satisfies 
the boundary data in the classical sense.

Remark 3.2. The proof of Theorem 1.1 uses only the uniform exterior sphere condition. Both in-
terior and exterior sphere conditions are assumed to establish a connection between Theorems 1.1
and 1.3. See also Remark 6.4.

4. Technical results for the proof of nonexistence

In this section we gather a series of technical results and fundamental facts related, on one 
hand, to the process by which we arrive at an approximate equation (actually, an inequality) 
with the required properties, and on the other, to the eigenvalue problem for the Pucci operator. 
Furthermore, we introduce key concepts and notation that will be used in Sec. 5.

4.1. Radial form

Lemma 4.1. Let u ∈ C(B1(0)) be the viscosity solution of

⎧⎨
⎩

ut −M−(D2u) − |Du|p = 0 in B1(0) × (0, T ),

u = 0 on ∂B1(0) × [0, T ],
u(·,0) = u0 in B1(0),

(4.1)

where u0 is a radial function. Then u is radial as well, that is, u(x, t) = U(|x|, t) for some 
U : [0, 1] × [0, T ] → R, and U solves
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⎧⎪⎨
⎪⎩

Ut − θ(U ′′)U ′′ − n−1
r

θ(U ′)U ′ − |U ′|p = 0 in (0,1) × (0, T ),

U = 0 on {r = 1} × [0, T ],
U(·,0) = u0 in B1(0),

(4.2)

in the viscosity sense, where ′ denotes the radial derivative and

θ(s) =
{

λ, if s > 0,

�, if s ≤ 0.

Remark 4.2. We note that, although the function θ above is discontinuous at 0, equation (4.2)
depends continuously on the derivatives of u, since the function s �→ θ(s)s is continuous for all 
s ∈R.

Proof. The solution u of (4.1) is radial due to the uniqueness of solutions of the Cauchy–
Dirichlet problem, the rotation-invariance of the equation and the fact that the initial data is 
radial. Hence, there exists a function U : R → R such that u(x) = U(|x|) for all x ∈ B1(0). We 
will show that this function is a subsolution of (4.2) by definition.

Consider �((0, 1) × (0, T )) ∈ C2 that touches U from above at (r̂, ̂t), and define φ(x, t) =
�(|x|, t). Then φ is C2, radial and a valid test function for u at any (x̂, ̂t) such that |x̂| = r̂ , hence 
we can compute M−(D2φ) as in (3.2). Observing also that |Dφ| = |�′|, we obtain exactly the 
equation in (4.2). The proof that U is also a supersolution is analogous. �
Remark 4.3. In what follows we will at times write simply u(x) = u(r) for radial functions, as 
is standard. We avoided this notation in the last lemma for clarity.

4.2. Regularization

In this section is we apply the regularization procedure introduced in [24] solution u of (1.1). 
In this way we obtain an equation satisfied in the pointwise a.e. sense, all of whose terms are 
integrable. Although the technique is applicable in greater generality, in practice we will only 
apply the regularization to solutions of (1.1) when � = B1(0) (see Remarks 4.9 and 4.10). For 
the sake of clarity, especially regarding notation, we recall some of the relevant definitions and 
properties, noting that we do not seek full generality in what follows.

Definition 4.4. For u ∈ C(� × [0, T ]) and ε, κ > 0, define

uε,κ (x, t) = inf
(y,s)∈�×(0,T )

(
u(y, s) + 1

2ε
|x − y|2 + 1

2κ
|t − s|2

)
, (4.3)

uε(x, t) = sup
y∈�

(
u(y, t) − 1

2ε
|x − y|2

)
. (4.4)

We may also define uε,κ and uε similarly. Note that we use just one index when the convo-
lution is performed in the space variable only. In the following statement we collect a series of 
well-known facts regarding these operations which will be used shortly hereafter.
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Proposition 4.5. Assume u ∈ C(� × [0, T ]), and let ε, κ, δ > 0.

(i) Both operations preserve both pointwise upper and lower bounds, i.e.,

infu ≤ uε,κ ≤ supu,

infu ≤ uε ≤ supu,

where inf and sup are taken over � × (0, T ).
(ii) Let ε∗ = 2

√
ε‖u‖∞, κ∗ = 2

√
κ‖u‖∞, �ε∗ = {x ∈ � | d(x, ∂�) > ε∗}. For all (x, t) ∈

�ε∗ × (κ∗, T − κ∗), there exist (y, s) ∈ � × (0, T ) such that

uε,κ (x, t) = u(y, s) + 1

2ε
|x − y|2 + 1

2κ
|t − s|2.

In other words, the sup and inf in the definition of the convolutions are achieved, provided 
we are at a sufficient distance from the boundary.

(iii) Both uε,κ and uε,κ are Lipschitz continuous in x with constant K√
ε

, where K = 2‖u‖∞. 
That is,

sup
x,y∈�
t∈[0,T ]

|u(x, t) − u(y, t)|
|x − y| ≤ K√

ε
.

Similarly, they are Lipschitz continuous in t with constant K√
κ

.

(iv) uε,κ , uε,κ → u uniformly as ε, κ → 0, and similarly for uε .
(v) uε,κ , uε,κ are respectively semiconvex and semiconcave. In particular, they are twice differ-

entiable a.e. That is, there are measurable functions a : � ×[0, T ] → R, q : � ×[0, T ] →
R

n, M : � × [0, T ] → S(n) such that

uε,κ (y, s) = uε,κ (x, t) + a(x, t)(s − t) + 〈q(x, t), y − x〉
+ 〈M(x, t)(y − x), y − x〉 + o(|y − x|2 + |s − t |).

We will denote a = (uε,κ )t , q = Duε,κ , M = D2uε,κ for simplicity. The same goes for 
uε,κ .

(vi) With the notation above,

D2uε,κ ≤ 1

ε
I and D2uε,κ ≥ −1

ε
I a.e. in � × [0, T ].

(vii) (uε,κ )δ = uε+δ,κ .
(viii) (uε+δ,κ )δ ≤ uε,κ .

Remark 4.6. The easier proofs follow more or less directly from the definitions (see e.g., [15]), 
while (vii) and (viii) may be found in [12]. Property (v) uses the well-known theorems of 
Rademacher and Alexandrov on the differentiability of Lipschitz and convex functions, respec-
tively; see [17] and the Appendix of [13].
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The time-independent version of the following result appears as Lemma 4.2 in [31]. We say 
that F is proper if for all (X, ξ) ∈ S(n) ×R

n, r, s ∈ R, if r ≤ s then F(X, ξ, r) ≤ F(X, ξ, s).

Lemma 4.7. Let u be a viscosity supersolution of ut + F(D2u, Du, u) = 0 in � × (0, T ), where 
F is proper. Then, using the notation of Proposition 4.5, uε,κ is a viscosity supersolution of 
ut + F(D2u, Du, u) = 0 in �ε∗ × (κ∗, T − κ∗).

Proof. Let ϕ = ϕ(x, t) be a C2 function that touches uε,κ from below at (x̂, ̂t) ∈ �ε∗ ×
(κ∗, T − κ∗), that is, ϕ(x̂, ̂t) = uε,κ (x̂, ̂t) and for |x − x̂| + |t − t̂ | < δ and sufficiently small 
δ > 0,

ϕ(x, t) ≤ uε,κ (x, t). (4.5)

By Proposition 4.5, (ii) there exist (ŷ, ̂s) ∈ � × (0, T ) such that

uε,κ (x̂, t̂) = u(ŷ, ŝ) + 1

2ε
|x̂ − ŷ|2 + 1

2κ
|t̂ − ŝ|2,

with (ŷ, ̂s) → (x̂, ̂t) as ε, κ → 0. Hence, for sufficiently small ε, κ , (ŷ, ̂s) remains close to (x, t)
as in (4.5). Therefore,

ϕ(x, t) ≤ uε,κ (x, t) ≤ u(x + (ŷ − x̂), t + (ŝ − t̂ )) + 1

2ε
|x̂ − ŷ|2 + 1

2κ
|t̂ − ŝ|2.

Evaluating this expression now at (x + (x̂ − ŷ), t + (t̂ − ŝ)), we have that

ϕ̃(x, t) := ϕ(x + (x̂ − ŷ), t + (t̂ − ŝ)) − 1

2ε
|x̂ − ŷ|2 − 1

2κ
|t̂ − ŝ|2 ≤ u(x, t).

We also have, from the choice of (ŷ, ̂s), that ϕ̃(ŷ, ̂s) = u(ŷ, ̂s). Hence ϕ̃ is a valid test function 
for u. Since

D2ϕ̃(ŷ, ŝ) = D2ϕ(x̂, t̂), Dϕ̃(ŷ, ŝ) = Dϕ(x̂, t̂),

ϕ̃t (ŷ, ŝ) = ϕt (x̂, t̂ ), ϕ̃(ŷ, ŝ) ≤ ϕ(x̂, t̂),

by the properness of F ,

ϕt (x̂, t̂ ) + F(D2ϕ(x̂, t̂),Dϕ(x̂, t̂), ϕ(x̂, t̂)) ≥
ϕ̃t (ŷ, ŝ) + F(D2ϕ̃(ŷ, ŝ),Dϕ̃(ŷ, ŝ), ϕ̃(ŷ, ŝ)) ≥ 0.

Hence, uε,κ is a supersolution. �
The following Proposition is an adaptation of Proposition 4.6 from [12], which is developed 

in a slightly different context.
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Proposition 4.8. Let �′ ⊂⊂ �, 0 < t0 < t1 < T and u be a bounded viscosity supersolution of 
(1.1) in � × (0, T ). Then, there exist constants ε, δ, κ > 0 such that the regularized function 
w = (uε+δ,κ )δ satisfies

wt −M−(D2w) ≥ |Dw|p a.e. in �′ × (t0, t1). (4.6)

In particular, w is a so-called L∞-strong supersolution of (4.6).

Proof. We apply Lemma 4.7 to (1.1) to find that, for sufficiently small ε and κ , uε,κ , depending 
on ‖u‖L∞(�×(0,T )) (see Proposition 4.5, (ii)) is a viscosity supersolution of (1.1) in �′ × (t0, t1). 
Observe that the Lemma applies since there is no “x-dependence”. The regularized function w
defined above is both semiconvex and semiconcave in x, as well as Lipschitz-continuous in t . 
Hence it is twice differentiable a.e. in �′ × (τ, T − τ), in the sense of having a second order 
“parabolic” Taylor expansion (as in Proposition 4.5, (v)).

Let (x̂, ̂t) be any such point of differentiability. As in Proposition 4.5, (viii), we have that 
w ≤ uε,κ . Suppose that w(x̂, ̂t) = uε,κ (x̂, ̂t). For (x, t) in a neighborhood of (x̂, ̂t), we then have

uε,κ (x, t) ≥ w(x, t) = w(x̂, t̂) + wt(x̂, t̂)(t − t̂ ) + 〈Dw(x̂, t̂), x − x̂〉
+ 〈D2w(x̂, t̂), x − x̂〉 + o(|x − x̂|2 + |t − t̂ |)

= uε,κ (x̂, t̂ ) + wt(x̂, t̂)(t − t̂ ) + 〈Dw(x̂, t̂), x − x̂〉
+ 〈D2w(x̂, t̂), x − x̂〉 + o(|x − x̂|2 + |t − t̂ |),

which implies that (wt (x̂, ̂t), Dw(x̂, ̂t), D2w(x̂, ̂t)) ∈ P2,−uε,κ (x̂, ̂t), the parabolic subjet at 
(x̂, ̂t) (see, e.g., [13]). Since uε,κ is a viscosity supersolution, this gives

wt(x̂, t̂) −M−(D2w(x̂, t̂)) − |Dw(x̂, t̂)|p ≥ 0.

Assume now that w(x̂, ̂t) < uε,κ (x̂, ̂t). In this case, by Proposition 4.4 in [12], D2w(x̂, ̂t) has 
an eigenvalue equal to − 1

δ
. On the other hand, by Proposition 4.5 in [12], w is 1

2ε
-semiconvex, so 

the remaining eigenvalues are bounded by above by 1
ε
. Recalling also the gradient bounds which 

come from the Lipschitz continuity of w with respect to both x and t , as in Proposition 4.5, (iii), 
we obtain

wt(x̂, t̂) −M−(D2w(x̂, t̂)) − |Dw(x̂, t̂)|p ≥ − K

κ
1
2

+ λ
1

δ
− (n − 1)�

1

ε
− Kp

ε
p
2

.

By taking δ = o(ε
p
2 ) and ε sufficiently small, the right-hand side of the above inequality becomes 

nonnegative. Hence, w is a supersolution. �
Remark 4.9. For the proof of Theorem 1.2 we apply Proposition 4.8 in the case where � =
(0, 1), and regularization is applied to U = U(r), the radial part of the solution u of (1.1) in 
B1(0) ×[0, T ]. The spatial regularization will be performed with respect to the radial variable. To 
alleviate the notation of Section 5, we briefly switch to using ε̃ and δ̃ for the spatial regularization 
parameters. Precisely, this gives
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w(r, t) = (Uε̃+δ̃,κ )δ̃(r, t)

= sup
r1∈(0,1)

inf
r2∈(0,1)
s∈(0,T )

(
U(r2, s) + 1

2(ε̃ + δ̃)
|r2 − r1|2 + 1

2κ
|t − s|2 − 1

2δ̃
|r − r1|2

)
.

Note also that from the proof of Proposition 4.8, we choose δ̃ = δ̃(ε̃), with δ̃ → 0 as ε̃ → 0, so 
we need only choose suitable ε̃ > 0 in the regularization.

Since the viscosity solution of (1.1) is uniformly bounded (see Remark 2.6), Proposition 4.8
provides a supersolution to (1.1) on a domain which arbitrarily approaches (0, 1) × (0, T ). That 
is, we can have w satisfy (4.6) in (ε, 1 − ε) × (t0, t1) for arbitrarily small ε and t0, and t1 close to 
T , provided we choose small enough regularization parameters, depending on ‖u0‖∞. For this 
reason, in the proof of Theorem 1.2 given in the following section, we require certain estimates 
as ε, t0 → 0. This use of ε is maintained from the following subsection onwards, throughout 
Section 5, where additionally δ is used as a different cut-off parameter.

The use of ε and δ as regularization parameters is only briefly revisited in Subsection 6.2, 
where some comments are made regarding the adaptation of Proposition 4.8 to an equation with 
more general nonlinearities.

Remark 4.10. We obtain the inequality in divergence form as follows. By combining Proposi-
tion 4.8, Lemma 4.1, and the considerations of Remark 4.9, we have w satisfies

wt − θ(w′′)w′′ − n − 1

r
θ(w′)w′ − |w′|p ≥ 0 for a.e. r ∈ (ε,1 − ε), t ∈ (t0, t1), (4.7)

for arbitrarily small ε, t0 > 0 and t1 arbitrarily close to T . Define

n̂ = θ(w′)
θ(w′′)

(n − 1) + 1, ρ(r) = e
∫ r

1−ε
n̂−1

s
ds , and ρ̃(r) = ρ(r)

θ(w′′)
.

Note that ρ is the indefinite integral of a measurable function, and is therefore absolutely contin-
uous. In particular, this implies that it is differentiable a.e.

Multiplying (4.7) by ρ̃, we obtain, for the second-order terms,

ρ̃

(
θ(w′′)w′′ + n − 1

r
θ(w′)w′

)
= (ρw′)′.

Hence,

ρ̃wt ≥ (ρw′)′ + ρ̃|w′|p for a.e. r ∈ (ε,1 − ε), t ∈ (t0, t1). (4.8)

Remark 4.11. The functions ρ and ρ̃ depend on the regularization parameters both explicitly 
and through the solution of the approximate equation w, but we omit these dependencies for 
simplicity of notation.

We now provide a couple of bounds which will be useful later. As

n̂ − 1 = θ(w′)
′′ (n − 1) ≤ �

(n − 1),

θ(w ) λ
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we have for ε ∈ (0, 12 ) and all r ∈ (ε, 1 − ε), that

ρ̃(r) = 1

θ(w′′)
e
∫ r

1−ε
n̂−1

s
ds ≥ 1

�

(
r

1 − ε

)�
λ

(n−1)

≥ 1

�

( r

2

)�
λ

(n−1) := ρ̂(r). (4.9)

Note that ρ̂ no longer depends on the regularization parameters and is defined for all r ∈ (0,1). 
This is the function which appears in the statement of Theorem 1.2.

On the other hand, since r
1−ε

≤ 1 for all r ∈ (ε, 1 − ε), we similarly obtain

ρ̃(r) ≤ 1

λ
. (4.10)

We can also explicitly compute

ρ(1 − ε) = 1 and 0 ≤ ρ(ε) ≤
(

ε

1 − ε

) λ(n−1)
� → 0 as ε → 0. (4.11)

4.3. Eigenvalue problem for the Pucci extremal operator

The proof of Theorem 1.2 involves the solution to the Dirichlet eigenvalue problem for the 
extremal operator −M− in annular domains approximating the punctured ball B1(0)\{0}.

More precisely, let Aε = B1−ε(0)\Bε(0), and consider

{ −M−(D2ϕ) = λϕ in Aε,

ϕ = 0 on ∂Aε.
(4.12)

Here the boundary condition is satisfied in the classical sense. Note that Aε corresponds to the 
spatial domain where (4.8) is satisfied.

By Proposition 1.1 in [10], there exists a solution pair (λε
1, ϕ

ε
1) of (4.12) with λε

1 > 0, 
ϕε

1 ∈ C2(Aε) ∩ C(Aε) and ϕε
1 > 0 in Aε , where ϕε

1 is unique up to a positive constant. We nor-
malize this solution so that ϕε

1( 1
2 ) = 1, for reasons that will become apparent later. Our notation 

indicates that both λε
1 and ϕε

1 depend on the parameters of the spatial regularization through the 
domain Aε .

We employ the following lemma to state our main theorem without reference to these regu-
larization parameters.

Lemma 4.12. Let K ⊂ (0, 1) be a closed interval such that [1/4, 3/4] ⊂ K . There exists a function 
ϕ̂ ∈ C(K), such that ϕ̂(r) > 0 for all r ∈ K and ϕε

1 → ϕ̂ uniformly over K , up to a subsequence.

Proof. In general, if we denote by λ1(�) the corresponding principal half-eigenvalue (i.e., solu-
tion of (4.12)) in �, we have that λ1(�

′) ≤ λ1(�) if � ⊂ �′; see Proposition 1.1 (iii) in [10]. We 
therefore have the monotonicity λε′

1 ≤ λε
1 if ε′ ≤ ε. For the same reason, λ1(B1(0)) ≤ λε

1 for all 
ε > 0. Hence, λε → λ̂ as ε → 0, for some λ̂ > 0. Note also that λε ≤ λ((1/4, 3/4)) for all ε < 1/4.
1 1
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Consider now a closed interval K ′ ⊃ K . By Harnack’s inequality (see Theorem 3.6 in [29]), 
for all ε > 0 small enough such that K ′ ⊂ (ε, 1 − ε), we have

sup
K ′

ϕε
1 ≤ sup

(ε,1−ε)

ϕε
1 ≤ C inf

(ε,1−ε)
ϕε

1 ≤ C inf
K ′ ϕε

1 ≤ C, (4.13)

where we used ϕε
1( 1

2 ) = 1 and 1
2 ∈ K ′ for the last inequality. The Harnack constant C above 

depends only on n, λ, �, λε
1 and dist(K ′, ∂(0, 1)). Since λε

1 is uniformly bounded for ε < 1/4, C
is independent of ε as well.

It follows that the functions ϕε
1 are uniformly bounded, and therefore satisfy a family of ODEs 

with uniformly bounded right-hand sides. More precisely, using (3.2) once more, we have

M−(D2ϕε
1) = θ [(ϕε

1)′′](ϕε
1)′′ + θ [(ϕε

1)′](ϕε
1)′ n − 1

r
= −λε

1ϕ
ε
1 in int(K ′), (4.14)

with ‖λε
1ϕ

ε
1‖∞ ≤ C max{λ̂, λ((1/4, 1/4))} := C, where C is the Harnack constant above. We pro-

ceed with a compactness argument, following [16].
Let γε := ‖ϕε

1‖C1(K ′) and define ϕ̃ε = ϕε
1/γε . Using that M− is positive homogeneous, we 

have that ϕ̃ε is also a solution of (4.14), and since ‖ϕ̃ε‖C1(K ′) = 1 for all ε < 1/4, this implies 
(ϕ̃ε)′′ is uniformly bounded as well.

By compactness, this implies that, up to a subsequence, ϕ̃ε → ϕ̃ uniformly on K ′ for some 
ϕ̃ ∈ C2(int(K ′)) ∩ C1(K ′). Recalling that λε

1 → λ̂, we pass to the limit to find

M−(D2ϕ̃) = −λ̂ϕ̃ in int(K ′). (4.15)

Note ϕ̃ 	≡ 0 since it is the limit of ϕ̃ε and ‖ϕ̃ε‖C1(K ′) = 1 for all ε < 1/4.
Assume that γε becomes unbounded as ε → 0. As before, using the homogeneity of M−, we 

see that

M−(D2ϕ̃ε) = −λε
1ϕ

ε
1

γε

in int(K ′),

and ‖λε
1ϕ

ε
1

γε
‖∞ ≤ C/γε → 0 as ε → 0. Passing to the limit, this gives M−(D2ϕ̃) = 0, in contradic-

tion with (4.15). It follows that γε = ‖ϕε
1‖C1(K ′) is uniformly bounded in ε, hence we can pass to 

the limit as before (without the normalization ϕ̃ε), to find that ϕε
1 → ϕ̂ uniformly in K ′ for some 

ϕ̂ ∈ C(K ′) which is a solution of (4.15).
From the uniform convergence and ϕε

1 ≥ 0 for all ε > 0, we conclude ϕ̂ ≥ 0, hence the strong 
maximal principle applies (see Lemma 3.4 in [21]). Recalling also that ϕε

1( 1
2 ) = 1, we have 

ϕ̂ 	≡ 0. Combining these facts, we conclude that ϕ̂ > 0 in int(K ′) ⊃ K . �
Remark 4.13. Since K is a closed interval, ϕ̂ is bounded by below on K by a positive constant 
which does not depend on ε.

The proof of Theorem 1.2 requires two additional lemmas.

Lemma 4.14. Let ϕε
1 be the solution of (4.12), as defined above. Then, for any 0 < α < 1, there 

exists a positive constant C > 0 such that
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1−ε∫
ε

(ϕε
1)−αρ̃ dr < C. (4.16)

Furthermore, C may be taken uniformly for ε ∈ (0, 14 ).

Proof. By Remark 4.13, it is possible to bound ϕε
1 by below by a positive constant uniformly 

for small ε over a closed interval K ⊂ (0, 1), to be chosen later. Hence, to obtain (4.16) it is 
sufficient to bound the integral near the endpoints ε and 1 − ε.

We now proceed as in the proof of Hopf’s lemma to obtain a uniform lower bound for (ϕε
1)

′(ε). 
Let β > 0 and

v(r) = e−β( 1
2 −r)2 − e−β( 1

2 −ε)2

1 − e−β( 1
2 −ε)2

for ε < r <
1

2
.

We verify that v ≥ 0, v(ε) = 0, v( 1
2 ) = 1, and compute

v′(r) = 2β( 1
2 − r) e−β( 1

2 −r)2

1 − e−β( 1
2 −ε)2

≥ 0, (4.17)

v′′(r) =
(
4β2( 1

2 − r)2 − 2β
)
e−β( 1

2 −r)2

1 − e−β( 1
2 −ε)2

≥ 0, (4.18)

where the inequality in (4.18) follows from taking a sufficiently large β > 0.
We abuse notation slightly and define v(x) = v(|x|) in B 1

2
(0)\Bε(0). By the previous compu-

tation, using also that λε
1 > 0, v ≥ 0, we have

M−(D2v) = λv′′ + λ
n − 1

r
v′ ≥ 0 ≥ −λε

1v.

Hence v is a subsolution of (4.12). Since v(ε) = ϕε
1(ε), v( 1

2 ) = ϕε
1( 1

2 ), by comparison we have 
v(r) ≤ ϕε

1(r) for all ε < r < 1
2 (see, for example, Appendix A in [2]). Recalling (4.17), for all 

0 < ε < 1
4 this gives

(ϕε
1)′(ε) ≥ v′(ε) = 2β( 1

2 − ε) e−β( 1
2 −ε)2

1 − e−β( 1
2 −ε)2

≥ βe− β
4

1 − e− β
4

=: C. (4.19)

Note that the last constant does not depend on ε.
By looking at the first order expansion of ϕε

1 at ε,

ϕε
1(r) = (ϕε

1)′(ε)(r − ε) + o(|r − ε|),

we have that there exists a δ > 0 such that
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ϕε
1(r) >

(ϕε
1)′(ε)
2

(r − ε) for all ε < r < ε + δ. (4.20)

In the above series expansion, the constant δ > 0 depends only (ϕε
1)′(ε). In view of (4.19), we 

need only bound (ϕε
1)′(ε) by above, independently of ε. For this we use a barrier type argument, 

taking advantage of some of the computations from Sec. 3. Define

ψ(r) = A
(

1 − e−γ (r−ε)
)

,

where A, γ > 0 are to be chosen. We have ψ(ε) = 0, and for an appropriate choice of A,

ψ(1/2) = A
(

1 − e−γ (1/2−ε)
)

≥ A(1 − e−γ/4) > 1,

again using ε < 1/4. Computing as in (3.12), and using once more that λε
1 ≤ λ((1/4, 3/4)), we can 

choose γ large enough so that

−M−(D2ψ) − λε
1ψ ≥ −M−(D2ψ) − λ((1/4, 3/4))ψ

= A

(
�γ 2 − λγ

n − 1

r + ε
+ λ((1/4, 3/4))

)
e−γ (r−ε) − Aλ((1/4, 3/4))

≥ A

(
�γ 2 − λγ

n − 1

r

)
e−γ r − Aλ((1/4, 3/4)) ≥ 0.

Thus, by comparison, ψ ≥ ϕε
1 in [ε, 1 − ε], for all ε < 1/4. Hence,

(ϕε
1)′(ε) ≤ ψ ′(ε) = Aγ, (4.21)

and from this we conclude that δ in (4.20) does not depend on ε.
We then estimate, for ε < r < ε + δ,

(
ϕε

1(r)
)−α

<

(
(ϕε

1)′(ε)
2

)−α

(r − ε)−α

≤ (C/2)−α(r − ε)−α,

where we have used (4.19) for the second inequality. Recall the bound ρ̃(r) ≤ 1
λ

given by (4.10). 
Then,

ε+δ∫
ε

(ϕε
1(r))−αρ̃ dr ≤ (C/2)−α‖ρ̃‖∞

ε+δ∫
ε

(r − ε)−α dr

≤ (C/2)−α 1

λ

δ∫
0

r−α dr < C̃.
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A similar bound can be obtained over 1 − ε − δ < r < 1 − ε. We may then choose K = [δ, 1 − δ]
with δ as above and recall that ϕε

1 are uniformly bounded by below on K . Also note that for all 
ε > 0,

K = [δ,1 − δ] ⊃ (ε + δ,1 − ε − δ), (4.22)

hence, we may combine the bounds near the endpoints with the lower bound on K to obtain 
(4.16). �
Remark 4.15. The interval K = [δ, 1 −δ] is the one that appears in the statement of Theorem 1.2. 
As claimed, δ depends only on λ, �, n.

Lemma 4.16. Consider ρ : [ε, 1 − ε] → R as defined in Remark 4.10. Let v : [ε,1 − ε] → R be 
once differentiable such that v(1 − ε) = 0. Then,

1−ε∫
ε

|v|ρ dx ≤
1−ε∫
ε

|v′|ρ dx. (4.23)

In the proof of the above inequality we employ the following result from [34]:

Theorem 4.17. Let ν : [0, 1] → R be a non-negative, non-vanishing, continuous weight on the 
closed unit interval. Let f : [0, 1] → R be once differentiable and satisfy f (0) = 0. Then,

1∫
0

|f (x)|ν(x) dx ≤
⎛
⎝ max

0≤x≤1

1

ν(x)

1∫
x

ν(z) dz

⎞
⎠ 1∫

0

|f ′(x)|ν(x) dx, (4.24)

and the constant is sharp.

Proof of Lemma 4.16. Let v be as in the statement of the Lemma, and define g : [0, 1] →
R, g(r) = (1 − 2ε)r + ε. Note that g is an affine change of variables sending [0, 1] to [ε, 1 − ε]
and that g′(r) = 1 − 2ε. Define

f (r) = v(g(1 − r)), ν(r) = ρ(g(1 − r)).

We have that f (0) = v(g(1)) = v(1 − ε) = 0, hence f so defined satisfies the hypotheses of 
Theorem 4.17. The weight ρ is continuous and non-negative on [0, 1], and furthermore, from the 
computations in Remark 4.11, for all r ∈ [ε, 1 − ε]

ρ(r) ≥
( r

2

)�
λ

(n−1)

> 0,

i.e., ρ is also non-vanishing.
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By changing variables, we obtain

1∫
0

|f (r)|ν(r) dx =
1∫

0

|v(g(1 − r))|ρ(g(1 − r)) dr

= 1

1 − 2ε

1−ε∫
ε

|v(r)|ρ(r) dr,

and similarly,

1∫
0

|f ′(r)|ν(r) dr =
1∫

0

|v′(g(r))||g′(r)|ρ(g(1 − r)) dr

=
1−ε∫
ε

|v′(r)|ρ(r) dr.

Next, we estimate the constant in (4.24). It is easy to check that ρ is strictly increasing from 
the definition, as is g. Hence, for s ≥ r we have ρ(g(1 − s)) ≤ ρ(g(1 − r)). Therefore, for all 
0 ≤ r ≤ 1,

1

ν(r)

1∫
r

ν(s) ds = 1

ρ(g(1 − r))

1∫
r

ρ(g(1 − s)) ds

≤ 1

ρ(g(1 − r))
ρ(g(1 − r))(1 − r)

≤ 1 − r ≤ 1.

By the above computations, we can apply (4.24) to obtain

1−ε∫
ε

|v(r)|ρ(r) dx ≤
1−ε∫
ε

|v′(r)|ρ(r) dr. �

Remark 4.18. In the proof of Theorem 1.2 we will actually use Lemma 4.16 with the weight ρ̃
instead of ρ. This is possible since

1

�
ρ ≤ ρ̃ ≤ 1

λ
ρ.

The preceding argument, however, does not apply to ρ̃ directly since it is not continuous.
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5. Nonexistence of global solutions and LOBC

We now prove our main result in the radial case, i.e., when the spatial domain is a ball and 
the initial data is radially symmetric. The proof of the result in a general domain follows more or 
less easily from the radial case.

Proof of Theorem 1.2. Our proof uses key ideas from that of Theorem 2.1 in [32]. Some care 
is required in choosing the constants appearing in our argument in the correct order. Specifically, 
we first choose u0 large in an appropriate sense, then choose the regularization parameters suffi-
ciently small. This amounts to making ε and t0 approach 0, although the actual limit is not taken. 
This difficulty is not present in [32], since the solutions dealt with therein are classical and no 
regularization is needed.

Consider the differential inequality

ẏ(t) ≥ Cy(t)p, 0 < t0 < t < t1, (5.1)

y(t0) = M0, (5.2)

where C, M0 > 0. We can integrate (5.1) explicitly to obtain

0 ≤ y(t)1−p ≤ C(1 − p)(t − t0) + M
1−p
0 .

Hence, y(t)1−p → 0 as t → t0 + M
1−p
0

C(p−1)
. Since 1 − p < 0, this implies y(t) → +∞. Alterna-

tively, for a fixed t1 > t0, blow-up occurs for t < t1 provided we have

M0 > [C(p − 1)(t1 − t0)]
− 1

p−1 . (5.3)

So fix T > 0 and assume that the viscosity solution u of (1.1) in B1(0) × [0, T ] with radial 
initial data u0 ∈ C1(B1(0)) satisfies (1.2) in the classical sense. Writing u = u(r, t), with r ∈
[0, 1] and t ∈ [0, T ], this means u(1, t) = 0 for all t ∈ [0, T ]. We will specify the largeness 
condition on u0 in terms of M0 later, but may consider it set from now on, since it depends only 
on constants already available.

Recall now the regularized function w defined in Remark 4.9, which satisfies the inequality 
(4.8) in (ε, 1 − ε) × (t0, t1). We take ε so that 0 < ε < δ, where δ is the same constant given 
above. This is so that [δ, 1 − δ] ⊂ (ε, 1 − ε). Note also that the regularization in time may be 
performed so that t0 and t1 are arbitrarily close to 0 and T , respectively (see Remarks 4.9 and 
4.10). It follows that M0 depends only on p, T , and the coefficient C in (5.1).

Using the solution pair (λ1, ϕ1) to the eigenvalue problem (4.12), we define

z(t) =
1−ε∫
ε

w(r, t)ϕ1(r)ρ̃(r) dr, t ∈ (t0, t1).

We will to show that z = z(t) satisfies (5.1) with z(t0) ≥ M0, and consequently blows up for 
some t < t1. This is a contradiction, since z is uniformly bounded for all t ≥ t0 by the uniform 
convergence of w → u and the fact that u , ϕ1, and ρ̃ are all uniformly bounded (see Remark 2.6, 
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(4.13) and (4.10), respectively). Therefore, the solution u cannot satisfy the boundary data in the 
classical sense for all time. In other words, LOBC occurs.

Using (4.8), we compute

ż(t) =
1−ε∫
ε

wt (r, t)ϕ1(r)ρ̃ dr ≥
1−ε∫
ε

(
(ρw′)′ + ρ̃|w′|p)

ϕ1(r) dr

=
1−ε∫
ε

(ρw′)′ϕ1(r) dr +
1−ε∫
ε

|w′|pϕ1(r)ρ̃ dr

=: I1 + I2. (5.4)

(We omit some of the functions’ arguments for simplicity.) Integrating by parts twice in I1, 
we obtain

I1 =
1−ε∫
ε

w(r, t) (ρϕ′
1)

′ dr + ρw′ϕ1|1−ε
ε − ρwϕ′

1|1−ε
ε .

Since ϕ1(ε) = ϕ1(1 − ε) = 0, we have that ρw′ϕ1|1−ε
ε = 0. On the other hand, ϕ′

1(ε) > 0, 
ϕ′

1(1 − ε) < 0 and ρ, w ≥ 0 imply that −ρwϕ′
1|1−ε

ε ≥ 0. Hence, we continue estimating

I1 ≥
1−ε∫
ε

w(r, t) (ρϕ′
1)

′ dr ≥
1−ε∫
ε

w(r, t) (ρ̃M−(D2ϕ1)) dr

=
1−ε∫
ε

w(r, t) (−λ1ϕ1)ρ̃ dr = −λ1z(t). (5.5)

The second inequality above comes from the minimality of the Pucci operator. Indeed, for all 
radial ϕ ∈ C2, by the definition of the weights ρ and ρ̃, we have

1

ρ̃
(ρ ϕ′)′ = θ(w′′)ϕ′′ + θ(w′)ϕ′ n − 1

r

wherever w′′ is defined. This defines an elliptic operator with ellipticity constants λ, �. There-
fore, M−(D2ϕ) ≤ 1/ρ̃(ρ ϕ′)′ a.e. in (ε, 1 − ε).

We turn to estimating I2. From Hölder’s inequality for the measure ρ̃(r) dr ,

1−ε∫
ε

|w′| ρ̃ dr =
1−ε∫
ε

|w′|(ϕ1)
1
p (ϕ1)

− 1
p ρ̃ dr

≤
⎛
⎝ 1−ε∫

ε

(ϕ1)
− 1

p−1 ρ̃ dr

⎞
⎠

p−1
p

⎛
⎝ 1−ε∫

ε

|w′|pϕ1ρ̃ dr

⎞
⎠

1
p

. (5.6)
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The assumption p > 2 implies 1/p−1 ∈ (0, 1), so we can apply Lemma 4.14 to bound the first 
integral in the right-hand side of (5.6) by a constant C that does not depend on ε. We then have

1−ε∫
ε

|w′|ρ̃ dr ≤ C

⎛
⎝ 1−ε∫

ε

|w′|pϕ1ρ̃ dr

⎞
⎠

1
p

= CI
1
p

2 . (5.7)

Define w̃(r, t) := w(r, t) − w(1 − ε) for all r ∈ [ε, 1 − ε], t ∈ (t0, t1). Note that w̃′ = w′, 
and w̃(1 − ε, t) = 0, hence Poincaré’s inequality (Lemma 4.16) applies. Moreover, since we are 
taking u0 ≥ 0, u0 	≡ 0, the strong minimum principle for u the viscosity solution of (1.1) in 
B1(0) × [0, T ] implies that u(0, t) > 0 for all t > 0 (see e.g., [14]). Therefore, by the uniform 
convergence of w → u, we have that

w(ε, t) → u(0, t) > 0, for all t > t0, as ε → 0.

On the other hand, the uniform convergence w → u and the uniform continuity of u in B1(0) ×
[0, T ] imply that w(1 − ε) → 0 as ε → 0. Indeed, let ν > 0. By assumption u(1, t) = 0 for all 
t ≥ t0. Hence, for small ε > 0,

w(1 − ε, t) = w(1 − ε, t) − u(1, t) ≤ |w(1 − ε, t) − u(1 − ε, t)|
+ |u(1 − ε, t) − u(1, t)| < 2ν. (5.8)

(We will later simply write w(1 − ε) = o(1).) Again by the minimum principle (w is an 
L∞-strong solution, as shown in Proposition 4.8, hence also a viscosity solution; see e.g., [12]),

min[ε,1−ε]w(·, t) = min{w(ε, t),w(1 − ε, t)}.

Together with the considerations above, this implies that min[ε,1−ε] w(·, t) = w(1 − ε, t). There-
fore, w̃ ≥ 0.

Thus, applying Lemma 4.16,

1−ε∫
ε

(w(r, t) − w(1 − ε, t))ρ̃ dr =
1−ε∫
ε

w̃(r, t) ρ̃ dr ≤
1−ε∫
ε

|w̃′| ρ̃ dr =
1−ε∫
ε

|w′| ρ̃ dr.

Since ρ̃ is uniformly bounded (see (4.10)), this gives

1−ε∫
ε

w(r, t) ρ̃ dr ≤ Cw(1 − ε, t) +
1−ε∫
ε

|w′| ρ̃ dr.

Recalling (4.13) and using the elementary inequality (a + b)p ≤ 2p−1(ap + bp), we have

z(t)p =
⎛
⎝ 1−ε∫

w(r, t) ϕ1(r) ρ̃ dr

⎞
⎠

p

≤ C

⎛
⎝ 1−ε∫

w(r, t) ρ̃ dr

⎞
⎠

p

ε ε
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≤ C

⎛
⎝Cw(1 − ε, t) +

1−ε∫
ε

|w′| ρ̃ dr

⎞
⎠

p

≤ C

⎡
⎣w(1 − ε, t)p +

⎛
⎝ 1−ε∫

ε

|w′| ρ̃ dr

⎞
⎠

p⎤
⎦ .

Together with (5.7), this implies

I2 ≥ C

⎛
⎝ 1−ε∫

ε

|w′|pϕ1ρ̃ dr

⎞
⎠

p

≥ Cz(t)p − w(1 − ε, t)p. (5.9)

Thus, combining (5.4), (5.5), (5.8) and (5.9), we have obtained

ż(t) ≥ −λ1z(t) + Cz(t)p + o(1), t ∈ (t0, t1), (5.10)

where, crucially, the coefficient C does not depend on either ε or u0.
We can reduce (5.10) to (5.1) as follows. Using that ϕ1 = ϕε

1 → ϕ̂ in [δ, 1 − δ] uniformly as 
ε → 0 (see Lemma 4.12), w → u in [0, 1] × [0, T ] uniformly as ε, t0 → 0, and the uniform 
continuity of u (more precisely that u(·, t0) → u0 as t0 → 0), the bound ρ̃ ≥ ρ̂ given in (4.9), and 
the fact that all these functions are nonnegative, we have

z(t0) =
1−ε∫
ε

w(r, t0)ϕ1(r) ρ̃(r) dr ≥
1−δ∫
δ

w(r, t0)ϕ1(r)ρ̂(r) dr

≥
1−δ∫
δ

w(r, t0) ϕ̂(r)ρ̂(r) dr + o(1)

≥
1−δ∫
δ

u0(r)ϕ̂(r)ρ̂(r) dr + o(1), (5.11)

where we have also used that ϕ̂ and ρ̂ are uniformly bounded. Since these functions are also 
bounded by below in [δ, 1 − δ] by a positive constant, choosing the value of the last integral in 
(5.11) is equivalent to the condition (1.16) from the statement of the Theorem.

We recall from the proof of Lemma 4.12 that λ1 = λε
1 is also uniformly bounded. Since p > 2, 

this implies that the term Cz(t)p dominates the linear term in (5.10). More precisely, if, say 
λε

1 ≤ C′, setting

1−δ∫
u0(r)ϕ̂(r)ρ̂(r) dr ≥ max

{
M0,

(
2C′

C

) 1
p−1

}
+ 1,
δ
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gives both ż ≥ (C/2)z(t)p and z(t0) ≥ M0, which is equivalent to (5.1). This gives the desired 
contradiction. �
Remark 5.1. The hypothesis which leads to contradiction, i.e., that the solution u satisfies the 
boundary data in the classical sense, is used only to determine w(1 − ε, t) = o(1) in (5.8), and 
in the subsequent application of Lemma 4.16. This is essential, however, to show that z satisfies 
(5.1).

Note also that, although (5.1) blows-up for p > 1, the use of p > 2 is crucial in the application 
of Lemma 4.14 in the estimate (5.6).

We now use Theorem 1.2 to provide an example of LOBC for solutions of (1.1)–(1.3) in a 
more general bounded domain. The computations closely follow [36].

Corollary 5.2. Let � be a bounded domain satisfying a uniform interior sphere condition. Then, 
there exist u0 ∈ C1(�), with u0 ≥ 0 and u0|∂� = 0, such that LOBC occurs for solutions of 
(1.1)–(1.3) in a finite time T = T (u0, �).

Proof. From the interior sphere condition, there exists an η > 0 such that for all x0 ∈ ∂�, there 
exists a ball of radius η tangent to ∂� at x0, say Bη(x1). Consider ϕ ∈ C∞

0 (B1(0)) a radial cut-off 
function such that

ϕ(r) =
{

1, r ≤ 2
3

0, r ≥ 3
4

and consider the solution v of⎧⎪⎨
⎪⎩

vt −M−(D2v) − |Dv|p = 0 in B1(0) × (0,∞),

v = 0 on ∂B1(0) × [0,∞),

v(x,0) = Cϕ(|x|) in B1(0),

where the boundary condition is understood in the viscosity sense. It is easy to check that, for 
large enough C > 0, Cϕ satisfies (1.16). Hence, by Theorem 1.2, LOBC occurs for v at some 
time T = T (Cϕ) > 0. As before, v is radial, thus v(x, T (Cϕ)) > 0 for all x ∈ ∂B1(0).

We now rescale and translate v to obtain a solution in Bη(x1): define

ṽ(x, t) = ηkv(η−1|x − x1|, η−2t), (5.12)

where k = p−2
p−1 . Then ṽ is a solution of (1.1) in Bη(x1) × (0, ∞) satisfying homogeneous bound-

ary data (again in the viscosity sense) and initial condition

ṽ(x,0) = Cηkϕ(η−1|x − x1|).

We note that, since the rescaling (5.12) produces a solution of (1.1) on the corresponding rescaled 
domain, the boundary condition in the viscosity sense is preserved: if the equation holds “up to a 
boundary point” (x, t) ∈ ∂B1(0) × (0, ∞), it will hold up to the point of ∂Bη(x1) × (0, ∞) where 
it is mapped.
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The solution ṽ is radially symmetric with respect to x1. Thus we have ṽ(x0, T ) > 0, where 
T = η2T (Cϕ).

Define now

u0(x) =
{

ṽ(x,0) if x ∈ Bη(x1),

0 if x ∈ �\Bη(x1),

and consider the solution u of⎧⎪⎨
⎪⎩

ut −M−(D2u) = |Du|p in � × (0,∞),

u = 0 on ∂� × [0,∞),

u(x,0) = u0(x) in �,

with u0 as previously defined. Of course, u is also a solution of (1.1) in Bη(x1) × (0, ∞), and 
satisfies u ≥ 0 on ∂Bη(x1) × (0, ∞) in the viscosity sense. Thus, by comparison we have

u ≥ ṽ in Bη(x1) × [0,∞).

Hence,

u(x0, T ) ≥ ṽ(x0, T ) > 0,

i.e., LOBC occurs for u. �
The previous result might be rephrased to include a condition applicable to more general u0

than the example provided. We avoided this for simplicity, since the condition is rather convo-
luted, but do so now for completeness.

For any ball Bη(x1) ⊂ �, where x1 ∈ �, η > 0 and ∂Bη(x1) is tangent to ∂� at x0, denote the 
radial variable by r = |x − x1|. Note 0 < r < η. For any v defined in Bη(x1), we may define the 
radial symmetrization

s(v)(r) = inf
∂Br (x1)

v.

Note that, for any u0 ∈ C(�) such that u0|∂� = 0, we have s(u0) ≤ u0 in Bη(x1) and s(u0)(η) =
s(u0)(x0) = 0. Note also that ‖s(u0)‖∞ = ‖u0‖∞.

Corollary 5.3. Using the notation above, as well as that of Theorem 1.2 and Corollary 5.2, there 
exists positive constants δ = δ(λ, �, n) and M = M(λ, �, n, p) such that LOBC occurs for all 
solutions of (1.1)–(1.3) with initial data u0 such that

sup

⎧⎨
⎩η−k

1−δ∫
δ

s(u0)(ηr) dr

⎫⎬
⎭ > M. (5.13)

Here, the supremum runs over all Bη(x1) ⊂ � tangent to ∂� for fixed η > 0.
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Proof. The corresponding proof is analogous to that of Corollary 5.2, in that it follows by a 
comparison argument and scaling between Bη(x1) and B1(0). Hence, it will be omitted. �
Remark 5.4. After a change of variable, condition (5.13) can be written as

sup

⎧⎪⎨
⎪⎩

η(1−δ)∫
ηδ

s(u0)(r) dr

⎫⎪⎬
⎪⎭ > ηk+1M,

which more closely resembles the condition given for Theorem 1.2, in that the limits of integra-
tion and the constant on the right-hand side reflect the dependence on � (through η), in addition 
to λ, �, n and p. Note that the supremum still runs over all interior tangent spheres Bη(x1) for 
fixed η > 0.

6. Extensions

To extend the results regarding LOBC to more general equations, we must first guarantee 
that the global existence result of [8] applies to the equations considered. In fact, that the result 
applies to our model equation, (1.1), will follow as a particular case. For convenience, we restate 
part of what was mentioned in the introduction. Namely, consider

ut − F(D2u) = f (Du) in � × (0, T ),

where the nonlinearities are as follows: F : S(n) → R is uniformly elliptic, i.e.,

M−(X − Y) ≤ F(X) − F(Y ) ≤ M+(X − Y) for all X,Y ∈ S(n),

and vanishes at zero. In particular, this implies that

M−(X) ≤ F(X) ≤ M+(X) for all X ∈ S(n). (6.1)

The gradient nonlinearity f : Rn → R satisfies f (ξ) ≥ |ξ |2h(|ξ |) for all ξ ∈ R
n, where h : R →

R satisfies the growth condition (1.19) and

h = h(s) is positive nondecreasing for s > 0, (6.2)

s �→ s2h(s) is convex, (6.3)

h(yz) ≤ C(h(y) + h(z)) for large y, z > 0 and some C > 0. (6.4)

The last condition implies that h grows more slowly than any positive power. Examples which 
satisfy the conditions above are h(s) = (log s)p and h(s) = (log s)p(log log s)q , for large s and 
p, q > 0.
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6.1. Comparison, existence and uniqueness

We look to verify hypotheses (H1) and (H2) needed for the Strong Comparison Principle, 
Theorem 2.1. We begin by setting

G(x, r, ξ,X) = G(ξ,X) = −F(X) + f (ξ), (6.5)

where ξ ∈ R
n, X ∈ S(n), and the nonlinearities F, f (and consequently, h) are as above. Note 

that this is compatible with the exchange of sub- and supersolutions mentioned in Remark 2.3, 
since F̃ : S(n) → R given by

F̃ (X) = −F(−X), for all X ∈ S(n)

is uniformly elliptic and vanishes at zero if F does.
We proceed to check (i) through (iii) of property (P) for h1(s) = s2h(s), with h as above:

(i) By the growth condition (1.19), we have

∞∫
1

s

h1(s)
ds =

∞∫
1

s

s2h(s)
=

∞∫
1

1

sh(s)
ds < ∞.

(ii) Since h is nondecreasing,

L �→ L2s2h(Ls) − CL2s2h(s) = L2s2(h(Ls) − Ch(s))

is increasing for all s > 0 and L ≥ 1.
(iii) Since L, s > 0 will be taken large, it is equivalent to show that, for fixed C, C̃ > 0 and ε > 0,

h(Ls) − Ch(s) ≥ ε,

ε > C̃/Ls.

It follows from the growth condition (1.19) on h that h(s) → ∞ as s → ∞. Hence, fix-
ing s > 0 and taking large enough L = L(s) > 1, we get h(Ls) ≥ ε + Ch(s). The second 
inequality above comes from choosing L large as well.

This shows (1.17) satisfies (H1). Now on to (H2). The second matrix inequality in (H2) im-
plies X ≤ Y + o(1). Hence, μX ≤ Y + o(1) for any 0 < μ < 1, and from the uniform ellipticity 
and the definition of the Pucci operator, this gives

F(μX) − F(Y ) ≤M+(μX − Y) ≤ o(1).

For the contribution of the gradient term to the estimate of (H2), if suffices to have h1 above (i.e., 
s �→ s2h(s)) be locally Lipschitz and satisfy the following, as noted in Example 1 of [8]:
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(H3) For all C > 0, there exists a sequence 0 < με < 1 defined for 0 < ε ≤ 1 such that με → 1
as ε → 0 and such that for all large r > 0 large enough and 0 < ε small enough, we have:

Cεr sup
0≤τ≤r(1+Cε)

|h′
1(τ )| ≤ (1 − με) inf

τ≥r(1−C(1−με))
(h′

1(τ )τ − h1(τ )).

Given the properties of h above, a lengthy but straightforward computation shows that to 
verify (H3) it suffices to choose με such that ε−1(1 − με) → +∞ as ε → 0.

6.2. Loss of boundary conditions

What follows is an extension of Theorem 1.2 that includes a more general gradient term, with 
a suitable growth condition. Consider

ut −M−(D2u) = g(|Du|) in B1(0) × (0, T ), (6.6)

where g : R → R, g is convex increasing for s ≥ 0, and g(0) = 0. Note that (6.6) has no 
“(x, t)-dependence”, so that Lemma 4.7 applies directly. Lemma 4.1 applies as well if u0 is 
radially symmetric, given that g = g(|Du|).

On the other hand, Proposition 4.8 requires a slight adaptation. In the case that w(x̂, ̂t) <
uε,κ (x̂, ̂t), where (x̂, ̂t) is a point of second-order differentiability of the regularized function w, 
we must take the regularization parameter δ = δ(g) small enough so that

wt(x̂, t̂) −M−(D2w(x̂, t̂)) − g(|Dw(x̂, t̂)|) ≥ − K

κ
1
2

+ λ

δ
− �(n − 1)

ε
− g

(
K

ε
1
2

)

≥ 0

to get that w is a supersolution.
For the statement of the following Lemma, we define

a(s) = sup
y>0

g−1(ys)

g−1(y)
, s ≥ 0,

and recall the definition of the convex conjugate,

g∗(s) = sup {ys − g(y) |y ∈ R }.

Lemma 6.1. Let u0 ∈ C(B1(0)) be a radial function, and g as described above. Assume also that 
g is such that (6.6) satisfies (H1) and (H2) of Section 2. If

∞∫
1

g∗(La(s))

s2 ds < ∞ (6.7)

for all L > 0, then there exist positive constants δ and M , depending only on λ, �, n and g, such 
that, if
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1−δ∫
δ

u0(r) − 1

2
‖u0‖∞ dr > M, (6.8)

then the solution u of (6.6), (1.2), (1.3) with � = B1(0) and initial data u0 has LOBC at some 
finite time T = T (u0).

Proof. Aside from using all the auxiliary results leading to Theorem 1.2, the proof follows that 
of Theorem 5.2 in [32]. We repeat most of the argument for convenience. Once more, we proceed 
by contradiction, assuming u is a solution which satisfies (1.2) in the classical sense. We consider 
ϕ1 as previously defined, and again denote by w the function obtained by regularizing the radial 
part of the solution u of (6.6) for � = B1(0). This function now satisfies, for arbitrary ε > 0 and 
0 < t0 < t1 < T ,

ρ̃wt ≥ (ρw′)′ + ρ̃g(|w′|) for a.e. r ∈ (ε,1 − ε), t ∈ (t0, t1).

From the definition of a, setting y = g(|w′(r, t)|)ϕ1(r, t) for r ∈ (ε,1 − ε), t0 < t < t1, we 
have

a(1/ϕ1)g
−1(g(|w′|)ϕ1) ≥ g−1(y/ϕ1) = |w′|.

Hence,

g(|w′|)ϕ1 ≥ g

( |w′|
a(1/ϕ1)

)
. (6.9)

Let L > 0 to be chosen later. By the definition of the convex conjugate, we have

L|w′| = |w′|
a(1/ϕ1)

La(1/ϕ1) ≤ g

( |w′|
a(1/ϕ1)

)
+ g∗(La(1/ϕ1))

for a.e. r ∈ (ε, 1 − ε), t0 < t < t1 (we have omitted the arguments for simplicity). This is an 
instance of Fenchel’s inequality, analogous to that of Hölder’s inequality in the proof of Theo-
rem 1.2.

Using (6.9), we have

L

1−ε∫
ε

|w′|ρ̃ dr ≤
1−ε∫
ε

g(|w′|)ϕ1ρ̃ dr +
1−ε∫
ε

g∗(La(1/ϕ1))ρ̃ dr.

That the second integral is finite follows from (6.7). It can also be proven that it is bounded by a 
constant C that does not depend on ε, as in Lemma 4.14.

Arguing as in the beginning of the proof of Theorem 1.2, we obtain

ż(t) + λ1z(t) ≥ I

where z is defined exactly as before, but now
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I :=
1−ε∫
ε

g(|w′|)ϕ1ρ̃ dr

≥ L

1−ε∫
ε

|w′| ρ̃ dr −
1−ε∫
ε

g∗(La(1/ϕ1))ρ̃ dr

≥ L

1−ε∫
ε

|w′| ρ̃ dr − C

≥ L

⎛
⎝ 1−ε∫

ε

|w| ρ̃ dr − w(1 − ε, t)

⎞
⎠ − C,

where the last inequality is follows by applying Lemma 4.16. Setting L sufficiently large, in 
terms of ‖ϕ1‖∞ and λ1 (both of which are independent of ε), and noting that w(1 − ε, t) = o(1)

as ε → 0, as before, we obtain

ż(t) ≥ z(t) − C for a.e. t ∈ (t0, t1), (6.10)

which we can integrate to get

z(t) ≥ (z(t0) − C)et−t0 for all t ∈ (t0, t1). (6.11)

To conclude, note that (6.10) does not blowup in finite time, as does (5.1). We will find a con-
tradiction in the form of a bound, derived from (6.11), which we can easily violate by choosing 
the appropriate u0. Also, since our aim is to prove nonexistence beyond some finite time, we 
may assume T > 0 is large to achieve this contradiction. By choosing the time-regularization 
parameter small as well, the difference t1 − t0 can be made large as well, say t1 − t0 ≥ T/2.

As in (5.11), we have

z(t0) ≥
1−δ∫
δ

u0(r)ϕ̂(r)ρ̂(r) dr + o(1), as ε, t0 → 0. (6.12)

On the other hand, by evaluating (6.11) at t = t1,

z(t0) ≤ e−(t1−t0)z(t) + C

≤ e− T
2

1−ε∫
ε

w(r, t)ϕ1(r)ρ̃ dr + C.

Recalling the bounds for ϕ1, ρ̃, that ϕ̂, ρ̂ are bounded by below by a positive constant in [δ, 1 −
δ], and that ‖w‖∞ ≤ ‖u0‖∞, we take T sufficiently large so that
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z(t0) ≤ 1

2

1−δ∫
δ

‖u0‖∞ϕ̂ρ̂ dr + C.

Combining both estimates for z(t0), we have

1−δ∫
δ

(u0 − 1

2
‖u0‖∞)ϕ̂(r)ρ̂(r) dr < C,

where C = C(λ, �, n, g). This bound is readily violated by choosing a suitably large u0, and 
as before, it is equivalent to the one in the statement of the lemma since ϕ̂ and ρ̂ are uniformly 
bounded from below in [δ, 1 − δ]. �

Finally, we proceed with the proof of the extension mentioned in the introduction.

Proof of Theorem 1.3. First, define g(s) = s2h(s), where h satisfies (6.2)–(6.4) and the growth 
condition (1.19). It is proven in Lemma 5.3 and the Completion of Theorem 2.2 in [32] that g so 
defined satisfies the hypothesis of Lemma 6.1, including (6.7). Furthermore, using (6.1), if u is a 
solution of (1.17), formally we have that

ut −M−(D2u) ≥ ut − F(D2u) = f (Du) ≥ |Du|2h(|Du|) = g(|Du|)
in � × (0, T ),

and this is readily checked using test functions. Hence, u is a supersolution of (6.6) in � × (0, T ). 
Using the interior sphere condition, without loss of generality we may assume that B1(0) ⊂ �

with B1(0) tangent to ∂� at some point x0 ∈ ∂� ∩ ∂B1(0) (This is equivalent to repeating the 
constructions of Theorems 1.2 and 6.1 on a ball of arbitrary radius and performing translation.) 
Arguing as in the proof of Corollary 5.2, we conclude that u is a supersolution of (6.6) in B1(0) ×
(0, T ). Let ũ0 ∈ C(B1(0)) nonnegative, radially symmetric and satisfies (6.8), and consider the 
solution ũ of (6.6) with initial data ũ0 and homogeneous boundary data. By Lemma 6.1, ũ has 
LOBC in finite time T ′ > 0, and since it is radially symmetric we may conclude that LOBC 
occurs at x0 ∈ B1(0). Now define

u0(x) =
{

ũ0(x), x ∈ B1(0)

0, x ∈ �\B1(0).

By comparison, we have that the solution u of (1.17)–(1.2)–(1.3) with initial data u0 satisfies 
u(x0, T ′) ≥ ũ(x0, T ′) > 0, hence u has LOBC. �
Remark 6.2. The more general nonlinearities do not admit a rescaling argument like the one 
given in the proof of Corollary 5.2. Furthermore, (1.17) may no longer have radial symmetry. 
The preceding argument is in some sense simpler, but it does not provide a condition one can 
check for any given initial data like the one in Corollary 5.3.
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Remark 6.3. The typical example for the nonlinearity h in Theorem 1.3 is h(s) = (log s)q for 
q > 0 and large s. In this case, the growth condition (1.19) forces that q > 1. This is consistent 
with what is known to be a more precise condition for preventing GBU in the case of the viscous 
Hamilton–Jacobi equation: for

ut − �u = f (u,∇u) in � × (0, T ),

GBU does not occur if

|f (u,∇u)| ≤ C(u)(1 + |∇u|2)h(|∇u|)
where C(u) is locally bounded, and h is positive nondecreasing and satisfies

∞∫
1

1

sh(s)
= ∞.

See [30], Ch. IV, and the references therein.

Remark 6.4. The proof of Theorem 1.3 uses only the uniform interior sphere condition. Both in-
terior and exterior sphere conditions are assumed to establish a connection between Theorems 1.1
and 1.3. Specifically, to have both results applicable in the same situation. See also Remark 3.2.
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