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Abstract

In this paper, we consider the weak solution of the simplified Ericksen—Leslie system modeling com-
pressible nematic liquid crystal flows in R3. When the initial data are of small energy and initial density is
positive and essentially bounded, we prove the existence of a global weak solution in R3. The large-time
behavior of a global weak solution is also established.
© 2018 Elsevier Inc. All rights reserved.
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1. Introduction

We consider the following hydrodynamic system modeling the flow of nematic liquid crystal
materials [2,6,22]:

pr+ V- (pou)=0,
puy+ pu-Vu—+ VP(p) =uAu+ AVdivu — VdAd, (1.1)
8d+u-Vd=Ad+|Vd|*d,
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for (¢, x) € [0, +00) x R3. Here o, U= (ul, u?, u3)’ and P denote the density, the velocity, and
the pressure respectively. d = (d!, d?, d®) is the unit-vector (|d| = 1) on the sphere S? c R3
representing the macroscopic molecular orientation of the liquid crystal materials. ©« and A are
positive viscosity constants, and div and A are the usual spatial divergence and Laplace operators.

The above system (1.1) is a simplified version of the Ericksen—Leslie model for the hydro-
dynamics of nematic liquid crystals. Roughly speaking, the system (1.1) is a coupling between
the non-homogeneous Navier—Stokes equations and the transported flow harmonic maps. Due to
the physical importance and mathematical challenges, the study on nematic liquid crystals has
attracted many physicists and mathematicians. The mathematical analysis of the incompressible
liquid crystal flows was initiated by Lin and Liu in [23,24]. For any bounded smooth domain
in R?, Lin, Lin and Wang [25] have proved the global existence of Leray—Hopf type weak solu-
tions to system (1.1) which are smooth everywhere except on finitely many time slices (see [9]
for the whole space). The uniqueness of weak solutions in two dimension was studied by [26,35].
Hong and Xin [10] studied the global existence for general Ericksen—Leslie system in dimension
two. In [34], Wang proved the global existence of strong solutions in whole space under some
small conditions. Recently, Lin et al. [14,27] obtained the global existence of weak solutions the
nematic liquid crystal flow in dimension three under geometric angle condition and constructed
the examples of finite time singularity for any generic initial data.

When the fluid is allowed to be compressible, the Ericksen—Leslie system becomes more com-
plicate. To our knowledge, there seems very few analytic works available yet. The local-in-time
strong solutions to the initial value or initial boundary value problem of system (1.1) with non-
negative initial density were studied in [3,12]. Based on [16,17], the blow up criterion of strong
solutions were obtained in [ 12,13]. The global existence and uniqueness of strong solution in crit-
ical space were studied in [11]. Motivated by [15], when the initial data was sufficiently smooth
and suitably small in some energy-norm, the global well-posedness of classical solutions were
proved in [21]. Especially global weak solutions were established in [18,19,28] under some small
condition or geometric angle condition (see [20]).

Our aim in this paper is to establish the global existence of low-energy weak solutions of
system (1.1), if the following initial value:

(p(-,O),u(-,O),d(-,O))=(,0(),u0,d0), (12)

satisfies that pg is bounded above and below away from zero, |dy| = 1, ug, Vdy € L? (R3) for
some p > 6 satisfying (1.10) and (pg, ug, Vdp) is small in L2(RR3). Thus the total initial energy
is small, but no other smallness or regularity conditions are imposed.

When the direction field d does not appear, (1.1) reduces to the compressible Navier—Stokes
equations. The global classical solutions were first obtained by Matsumura—Nishida [30,31] for
initial data close to a non-vacuum equilibrium in H3(R?). In particular, the theory requires that
the solution has small oscillations from a uniform non-vacuum state so that the density is strictly
away from the vacuum and the gradient of the density remains bounded uniformly in time. Later,
Hoff [7,8] studied the problem for discontinuous initial data. For the existence of solutions for
arbitrary data, the major breakthrough is due to Lions [29] (see also Feireisl et al. [4]), where he
obtains global existence of weak solutions-defined as solutions with finite energy. Suen and Hoff
[33] adopted Hoff’s techniques to obtain global existence of low-energy weak solutions for the
magnetohydrodynamics. In this paper, we shall study the Cauchy problem (1.1)—(1.2) for liquid
crystals and establish the global existence and large time behavior of low-energy weak solutions.
However, compared with the compressible Navier—Stokes equations, some new difficulties arise
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due to the additional presence of the liquid crystal directional field. Especially, the super critical
nonlinearity |Vd|?d in the transported heat flow of harmonic map equation (1.1)3 and the strong
coupling nonlinearity Vd Ad in the momentum equations (1.1), will cause serious difficulties in
the proofs of the time-independent global energy estimates.

To state the main results in a precise way, we first introduce some notations and conventions
which will be used throughout the paper. For a given unit vector n € S* and a positive integer m,
we denote

H"R* Y :={d:d —neH"R>,|d|=1ae. in R}
We use the usual notation for Holder seminorms: for v : R — R™ and « € (0, 1],

lv(x2) —v(x1)|
[x2 — xp[*

(v)* =
xl,x2€R3
X1#£X2

and for v: Q CR3 x [0, 00) —> R3 and o, 2 € (0, 1],

()@@ = sup lv(x2, 2) — v(x1, 11)]

1), (,m)eQ X2 — x1|% + 1 — 11]*2
(x1,11)#(x2,12)

If X is a Banach space we will abbreviate X3 by X for convenience. Finally if I C [0, c0)
is an interval, C'(Z; X) will be the elements v € C(I; X) such that the distribution derivative
v, € D'(int I; R3) is realized as an element of C (I; X).

As it was pointed out in [7], the effective viscous flux plays an important role in the mathe-
matical theory of compressible fluid dynamics. More precisely, let F and w be the effective flux
and vorticity defined by

F 2 (u+Mdivu — (P(p) — P(B)) and 0 £V x u, (1.3)
where p is a positive reference density. It is not hard to check that

. |vd|?
VdAd =div(Vd © Vd) — V R (1.4)

where Vd © Vd denotes the symmetric 3 x 3 matrix: (Vd © Vd);; =V;d -V;d, 1 <i, j <3.
Throughout this paper, we denote v - w as the inner product in R? for v, w € R3. So, it follows
from (1.1); that

|vd|?

AF =div(pu +div(Vd © Vd) — V ), MAw=V x (pu—+div(Vd ©® Vd)), (1.5)

where “ " denotes the material derivative, i.e.,
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Now we give a precise formulation of our results. First concerning the pressure P, we focus
our interest on the case of isentropic flows and assume that

P(p) =ap” with a >0,y > 1. (1.6)

Next we fix a positive reference density  and then choose positive bounding densities p and p
satisfying

pP<p<p, (1.7)
and finally we define a positive number § by
N _o 1
5=mm{p—g,p—p,§(p—g)}- (1.8)

Notice that § need not be “small” in the usual sense. Concerning the viscosity coefficients u
and A we assume that

34+4/21
0<i< +T“' (1.9)
It follows that
1 =27
Su(p—2)— [41(’77)] =0 (1.10)
4 §M+A

for p = 6 and consequently for some p > 6, which we now fix.
Concerning the initial data (pq, uo, dp), we assume there is a positive number N, which may
be arbitrary large, and a positive number b < § such that

luollLr + IVdollLr <N (L.11)
and
p+b <essinfpy <esssuppp < p —b. (1.12)
‘We assume also that
do € H!(R?; S?) (1.13)
and write
A 1 2 1 2
Co= (E,Ooluol + G(po) + EIVdoI )dx, (1.14)

R3

where G (p) is the potential energy density defined by
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[ P(s)— P(p)
5) — P(p
G(p):pfs—2ds. (1.15)
b

It is clear that there exist two positive constant ¢y, ¢z only depending on p, p, and p such that

ci(p. . ) (p — $)> < G(p) < calp. . )(p — ). (1.16)
The weak solutions of (1.1)—(1.2) are defined in a usual way.

Definition 1.1. A pair of functions (p,u,d) is said to be a weak solution of (1.1)—(1.2)
provided that (p — p, pu) € C([0,00); H-'(R?), d — n € C([0,00); L2 (R?)), u,Vd €
L°([0, 00); L2(R3)), Vu € L%((0, 00); L2(R3)), and |d(-,1)] = 1 a.e. in R? for + > 0. More-
over, the following identities hold for 75 > 7; > 0 and C! test functions ¥ having uniformly
bounded support in x for ¢ € [#1, £2]:

5]
f p(x,z)wx,z)dx): = / f (0¥ + pu - Vr)dxdt,

R3 1 R3
j dx| 4 [2 (il - V4 A dxd
Jr3 PG, Dl (x, )Y (x, 1)dx . + [} Jrs (V- Vi + a(divu) gy dxdt
= [ Jas (o Y+ pulu - VY + P(p) Wy, — 5IVdPx; +d; Vd - Vip)dudt,
and
. . n .
fR3(d/ —nf)()c,t)lp()c,t)a’)c’tI +ftj2 fR3 Vd/Viydxdt
= [12 Je3 (@ —n)y —u - VI + |Vd|>dIy)dxdt,
with#p ># >0and j =1,2,3.
Our main results are formulated as the following theorem.

Theorem 1.1. Assume that the system parameters in (1.1) satisfy the conditions (1.6)—(1.10)
and let positive numbers N and b < § be given. Then there are positive constants ¢, C, and 6

depending on the parameters and assumptions in (1.6)—(1.10), on N, and on a positive lower
bound for b, such that, if initial data (pg, ug, do) are given satisfying (1.11)—(1.13) with

Co<e, (1.17)

then there is a weak solution (p,u,d) to (1.1)—(1.2) in the sense of the Definition 1.1. Moreover,
the solution satisfies the following:

p — p, pu € C([0,00); H'(R?)), (1.18)
d —n e C([0, 00); L*(RY)), (1.19)
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Vu € L*([0, 00); R?), (1.20)
u(-,1),vd(-,t)ye H'([R?), t >0, (1.21)
F(.0),w(,t)e H' (R, >0, (1.22)
11 1 1

where C(t) may depend additionally on a positive lower bound for T,

p=<p(x.1)<pae onR? x[0,00), (1.24)
and
funggnp — AP+ ul? + 31Vd)> + o (|Vul* + |V2d|?) + 0> (F2 + |Vo|*)]dx
+ Jo° JralIVul> + |Ad + |Vd[2d)? + o (Jil? + |Vd; > + |Vol?) (125)
+03(|Vit|? 4 |V2d,|*)dxds
< Ccy,
where o (t) = min{l, t}. Moreover we also have the following large-time behavior:
tl_i)lgo(”P = Pllipiws) + lullwir sy + IVdllyirgs) =0, (1.26)

holds forl € (2,00),r € (2, 6).

The rest of this paper is devoted to prove Theorem 1.1. In Section 2, we collect some useful
inequalities and basic results. In Section 3, we derive the time-independent energy estimates of
the solution. The key pointwise upper and lower bound of the density are established in Section 4.
Section 5 is devoted to prove the global existence of strong solutions with initial data satisfying
the low-energy condition (1.17). Finally, a global weak solution are established through weak
convergence of the smooth solutions in Section 5.

2. Preliminaries

In this section, we state some auxiliary lemmas, which will be frequently used in the sequel.
We start with the well-known Gagliardo—Nirenberg inequality (see [1,36]).

Lemma 2.1. First, given r € [2, 6] there is a constant C(r) such that for f € H'(R?),

6 2 3r—6)/2
1l sy < CONFIG R IV g™ @1

Next, for any r € (3,00) and q > 1, there is a constant C(r,q) such that for f € L7(R3) N
Wl’r(R3),

3)/Br+ 3 3r/(Br4+q(r—3
| Fllpeesy < CO I F Ny g T g on =, 2.2)
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and

(MR SCONV Fllr @3y, (2.3)
where o =1 — %

The next lemma is due to Hoff [7], which will be used to prove the uniform (in time) bound
of density.

Lemma 2.2. If T is the fundamental solution for the Laplace operator in R>, then given py €
[1,3) and p; € (3, o0], there is a constant C = C (n, p1, p2) such that

ITx; * fllpoowsy = Cn, pr, p)ULf Il Lo w3y + 11 r2 3y - (2.4)
Finally, we need the local existence and a blowup criterion of strong solution for system
(1.1)=(1.2). In particular, the following results can be proved rigorously by the standard method
of Huang—Wang—Wen [12].

Proposition 2.1. For some £ € (3, 6], assume that the initial data (po, uo, dy) satisfies

oo —peWH@®RYNH' (R, and inf (po(x)) >0, (2.5)
xelR’

up € H*(R?), dy € H? (R*; §?). (2.6)

Then there exists a positive time Ty, such that the Cauchy problem (1.1)—(1.2) has a unique

smooth solution (p,u,d) on R? x [0, To] with inf (po(x)) > 0 and satisfying
(x,1)eR3x[0,Tp]

p—peC(0, Tol; W-nHYNCL(0, Tol; L> N LY, 2.7)
ueC(0, Tol; H) N CY(0, Tol; L?), (2.8)
d € C([0, Tol; H (R} S?) N C([0, Tol; H,) (R S?). (2.9)

Moreover, if i, A satisfy (1.9) and 0 < Ty < +00 is the maximum time of existence, then
im ([[pll oo, 7; Lo w3y) + VAl L3 0,7 20 (R3))) = 00 (2.10)
T—Ty

In view of Lemma 2.1 and the classical estimates of elliptic system, we have

Lemma 2.3. Let (p, u, d) be as in Proposition 2.1, then there exists a generic positive constant C,
depending only on p and A and p, such that for p € (1, 00)

IVFllp@s) + VOl @3y < Clpitll Lo sy + IVAA L 3): 2.11)
”Vu”LI’(R3) = C(”F”LI’(R3) + ”w”LI’(R3) +1P(p) - P(ﬁ)llLP(R3))a (2.12)

where F and w are defined in (1.3).
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Proof. An application of the L”-estimate of elliptic system to (1.5) gives (2.11). On the other
hand, since —Au = —Vdivu + V X w, it holds that

Vu=-V(—A)"'"Vdivu + V(=A) "V x w,

which, combined with the Marcinkiewicz multiplier theorem (see [32] p. 96), we arrive at

||Vu||L,,(R3) = C(||diVM||L17(R3)) + ”w”LP(R3)

<CUFlprws + lollr@sy + 1P(0) = POl Lr®3))-
Thus the proof the lemma is completed. 0O
3. A priori estimates

This section is devoted to establish a number of a priori bounds for local-in-time strong so-
lution, corresponding roughly to (1.25). Those are rather long and technical. We have therefore
omitted those which are identical to or nearly identical to arguments given elsewhere in [7] of
whose details we regard as routine. On the other hand, we have endeavored to describe the flow
of the arguments in such a way that the diligent reader can reconstruct the details without undue
difficulty.

Let T > 0 be fixed and assume that (p, u, d) is a strong solution of (1.1)—(1.2). We define a
functional A(¢) for a given such solution that

A@)= sup [pslo(IVul* +|V2d?) + o>(lil? + |Vol* + |Vd, [*)]dx
0<s<t 3.1
+ fo Jralo (il? +|Vd > + |Vo|?) + o3 (Vi + |V2d,|?)ldxds,

where o (t) = min{l, ¢}, and we obtain the following a priori bound for A(#) under the assump-
tions that the initial energy Co in (1.14) is small enough and that the density remains bounded
above and below away from zero.

Proposition 3.1. Assume that the system parameters in (1.1) satisfy the conditions in (1.6)—(1.9)
and let positive numbers N and b < & be given. Assume (p,u,d) is a solution of (1.1) on
R3 x [0, T] in the sense of Proposition 2.1 with initial data (po — p,uo) € H>(R>) and
do € H,f (R3; S?) satisfying (1.11)—(1.14), then there are positive constants €, M, and 0 depend-
ing on the parameters and assumptions in (1.6)—(1.9), N, and a positive lower bound for b, such
that if Co < € and

p<p,n<ponR x[0,T],

then

A(T) < MC§.
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The proof will be given in a sequence of lemmas in which we estimate a number of auxiliary
functionals. To describe these we first recall the definition of p in (1.10), which is an open con-

dition, and which therefore allows us to choose g € [6, min{p, 12}) which also satisfies (1.10).
Then for given (p, u, d) we define

A= sup [ps(\Vul? +|V2d|* + [i]* + |Vo|* + |Vd|*)dx
1<s<t
+ [] Jes (i +1Vd, > + |Vol? + Vil + |V2d,[})dxds,
By(t)= sup [ps(lul? +|Vd|Ddx + [y [ps(ul92|Vul> + |Vd|1-2|V2d})dxds
0<s<t

+ Jo Jea (T4 V (u )2 + Va4V (Vd*) P)dxds,

D(t) = sup /05(|Vd|2|V2d|2+|u|2|V2d|2+|Vu|2|Vd|2)dx,

O<s<t

D(1)= sup /(|Vd|2|v2d|2+|u|2|v2d|2+ \Vul?|Vd|*)dx,
R3

1<s<t

E@)= [} [eslo2(IVul® + V2dP?) + 6> (|Vul* + [V2d|*)ldxds

. o
X fowe au)](}q uﬁz uﬁ? dxds|,
I=<ki,jm=3 ’

and

t
E(1) ://(|W|3+ IVd?|V2d|* + |Vul* +|V2d|[*)dxds.

1 R3

It will be seen that the assumed regularity (2.6)—(2.9) suffices to justify the estimates that
follow. We begin with the following L? energy estimate.

Lemma 3.1. Assume that the hypotheses and notations of Proposition 3.1 are in force. Then
sup fpa(lp = A7 + |uf? + | Vd[*)dx
0<t<T 3.2)
+Jo Jas(IVul? +1Ad +|Vd%d)dxdt < MCy.
Proof. Multiplying (1.1), by u and integrating over R3, we have

d (1
E/§p|u2|dx+/VP(,o)udx+/(/L|Vu|2+k|divu|2)dx:—fu~(VdAd)dx. (3.3)
R3 R3 R3 ]R3

By the mass equation (1.1); and the definition of G(p) in (1.15), we have

G(p); + div(G(p)u) + (P(p) — P)divu = 0.
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Integrating and adding the result to (3.3) we obtain

d (1
E/Ep|uz|+G(,o)dxJr/(mvmz+)\|divu|2)arx=—fu-(VdAar)dx. (3.4)
R3 R3 R3

Multiplying (1.1)3 by Ad + |Vd|?d and integrating over R3, using integration by parts and the
fact that |d| = 1 we obtain

d (1
Z/§|Vd|2dx+/|Ad+|Var|2d|2dx=/u-(VdAar)dx. (3.5)

R3 R3 R3

Adding (3.4) to (3.5) and integrating over [0, 7], yields (3.2) by (1.16). Thus the proof of lemma
is completed. O

Lemma 3.2. Assume that the hypotheses and notations of Proposition 3.1 are in force. Then for
0<t=<1AT

sup o [pa(IVul? +|V2dP)dx + [ [gs 0 (lil? + |Vd,|*)dxds
O<s<t 3.6)

— 2 q—6 4

< M[Co+C{ 7 B{” +C{ B +El

‘Q
IS

[
[

andif T > land 1 <t <T, then

sup [pa(IVul? + |V2dP)dx + [{ [ (it? +|Vd,|*)dxds
L<s<t , (3.7
< M[Co+ CZA?)+ E1+ A(D),

where 1 AT =min{l, T}.

Proof. For 0 <7 <1AT,multiplying the equation (1.1); by i and integrating over R x [0, 7],
we have

sup o fps |Vul?dx + [y [ps olit*dxds
0<s<t (3.8)
< M{Co+| [y Jgs olit(div(Vd © Vd) — $V|Vd|?)dxds| + E}.
Differentiating (1.1)3 with respect to x, we have
Vd; — VAd =V(|Vd|*d — u - Vd). (3.9
Multiplying the above equation by o Vd, and integrating over R3 x [0, ¢], we have
1o [as |Ad2dx + [y [ps 0|Vd|*dxds

= 3 o Jes o' 1AdPdxds + [y [o3 0V V(Vd|*d — u - Vd)dxds.
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Adding this to (3.8) and combining with Cauchy’s inequality we then get

OsuEthR3(|Vu|2 +|AdP)dx + [y [ps o (i) + |Vdi|*)dxds
<s=
< M{Co+E + [y [p30'|Ad|*dxds (3.10)
+ fo Jaslo (IV2dPIVd P + |VuP VA + [V2d P [u)?)]dxds).
The right terms can be estimated as follows:

fo [ea o' |1Ad2dxds < M [y [o3 |Ad +|Vd|?d|> + |Vd|*dxds

—4
< MICo+ ([} fs IVdPdxds) 2 ([} [ |Vd|9dxds)T 7]

q—4 2

<M(Co+Cg "Bi ),
where we used the fact |d| = 1. By Young’s inequality, we have

fo Jgs 0| Vul?|Vd|*dxds < M([, fR3a%|Vu|3dxds+f(§ fg3 1Vd|%dxds)

4

-6
< MIE + (f} [ |Vd2dxds) 2 ([} fos IVd|7dxds)T7]

q—6 4

<M(E+CJ’ B 7).
The other two terms in the integral on the right side of (3.10) are bounded in a similar way, and

(3.6) follows.
For1 <t <T,asin(3.10), we have

sup [ (IVul? + |Ad|P)dx + [] [ps(li]* +Vd,[>)dxds
l<s<t 3.11)
< M{Co+ E + [] [sl(IV?d*|Vd)* + |Vul*|Vd|* + |V2d[*|u|*)ldxds} + A(1).
Using the fact that
|Vd|?> = —dAd (since |d| = 1), (3.12)
the right terms can be bounded as follows:
[{ Jg3 IVul2|Vd|2dxds <M [ [gs |Vul® +|Vd|°dxds
<M [{ fpa IVul® +|Vd[*|V?d?dxds
<ME,
[! [ IV2d P |ulPdxds < [| [ga IV2d|* + Jul*dxds
< B+ [{ (fas [uPdx)? ([ [VuPdx) 3 ds

_ 3 _
< M(E + CZ A2).
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Taking the above results into (3.11), then (3.7) follows. Thus the proof of lemma is com-
pleted. O

Next we derive preliminary bounds for # and Vd; in L*°([0, T]; L2(R%)).

Lemma 3.3. Assume that the hypotheses and notations of Proposition 3.1 are in force. Then for
O0<t<I1AT,

sup o [pa (i + |V 2)dx + [y [o3 07 (\Vii|* + |V2d,[>)dxds
O<s<
== g=4 2 q—6 6 4 g4 2 4 2

< M[Co+E+C{ B} +C{ B> +Cf ZB"Z(E—i—C B{7) (3.13)

—6

+(c‘f 23‘1 )3 A],

andif T > land 1 <t <T, then

sup Jes (6?4 |V, 2)dx + | [ (1Vi|> + |V2d,|*)dxds
tsst (3.14)

2(q—3) 2

< M{Co+ CoAE + Cy ? B P A+ E} + A(1).

Proof. By the definition of material derivative, we can rewrite (1.2) as follows,

o+ V(P(p)) = uAu + AVdivu — VdAd. (3.15)
Differentiation (3.15) with respect to ¢ and using (1.1), we have

piy + pu - Vi +V(P(p)r) + (VdAd),
= puAu+ AVdivit — [uA( - Vu) + AVdiv(u - Vur)] (3.16)
+div[(nAu + AVdivu) @ u — VP(p) @ u — (VdAd) ® ul.

Multiplying (3.16) by o2, and integrating over R3 x [0, 7], we obtain that for 0 <t <1 AT,

sup o [ li?dx + [y [g3 07| Vii*dxds
O<s<t
2 4

< M[C0+E+C(;’ 23‘1 +c(;1 23‘1 G.17)

+ fo Jos 2 IVAP(V? + [ul?|V2d|*)dxds].

Next we differentiate (3.9) with respect to £, multiply by 0> Vd; and integrate over R? x [0, 1] to
obtain

10 [o3 IV, Pdx + [ [rs 0°1V2d,[2dxds

= 3 [y Jgs0*0' IV, Pdxds + [y [p3 07V (IVd|*d — u - Vd),Vd,dxds.
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Adding this to (3.17), integrating by parts, using Cauchy’s inequality and Lemma 3.2, we then
have

sup 0 [ li? + |Vd, [2dx + [y [ps 03 (1Vil|? + |V2d,|*)dxds
O<s<t
g=4 2 ¢=6 _4

< M[Co+E+CI B2 +Ci 2B
= MG+ E4Co "By = +Co By (3.18)
+ fo Jor @2 IVAPuP(1Vul? + |V2d|?) + 0 |Vd[*|d; |*dxds

+ fo Jor 02UV Pi? + VA2 Vd, % + |Vd, ul?)dxds].

By (2.2), the terms on right side can be bounded by

Jo Jrs @3 1Vd1*u?|Vul?dxds

IA

I8 Jrs 3V + [ul® + | Vul*)dxds

IA

E+ sup 1, Va)IEy ) fi 010, VA . g ds
0<A<l
q—4 2

E+M[C" qu NE+CI B,

IA

where || (f, g)|lx denotes || f|lx + llgllx- By (1.1)3 and (3.12), we have

& fos 05|Vd|*d; 2dxds

IA

M [y [p3 >(IVdI*|V2d? + |Vd[*|u|?|Vd|* + |Vd|®)dxds

IA

M [y [3 > (IVAI*IV2d? + |V2d |2 ul?|Vd })dxds

2 4 2

ME—i—M[C" ZBq 2][E+C" Bl

IA

The last term on the right side in (3.18) can be bounded by

Jo Jgs o°1Vd|? it 2dxds

1 15, 2
< (Jo Jro IVd[%dxds)3 (fy [ps 0 7 li]dxds)3

=

4

1 2
B,; Di(fyo ||u||L2(]Rz ||Vu||L2(R3 ds)3

|Q

A

i~

Oa
o

I

[

IA

1
(47 By o NillS g dxds)s (f o3 IVil2, s dxds)?

Ox

[=

q=6 4

< (7B 2)3A.

I

The other integrals on the right side of (3.18) are bounded in a similar way, and (3.13) fol-
lows.
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For1 <t <T,asin(3.18), we have

sup s |01 + |Vd, Pdx + [} [ps (Vi +1V2d;[>)dxds

1<s<t

< ML} [gs VAP uP(\Vul? + |V2d|*) + |Vd|*|d;|*dxds G.19)
+ [} Je3(IVAP1ial? + VA2 |Vd, > + |Vd, | |ul*)dxds
+Co+ ET+ A(D).

The terms on the right can be bounded by

f1t Jga IVA 2 ul?|Vul*dxds

= f1t Jpa(Vd® + ul® + |Vu|Y)dxds

10
< E+ sup . VD) y [l Vd)||LOO(R3
1<s<t L3 R3)
- 4
= E+ sup [”(u’Vd)”zZ(R3 ”v(u Vd)“LZ(R%

1<s<t

X [0 V) ) IV 0 VD 5,
< E + MCyAE.

By (1.1)3 and (3.12), we have

I [gs |Vd|*|d; |2 dxds

IA

M [} [ps (VA IV2d P + V| u PV + [Vd[*)dxds

IA

M [} [os(IVdI*V2d)? + |V2d 2 |ul*|Vd|*)dxds

ME + MCyAE.

IA

The last term on the right side in (3.19) can be bounded by
Ji Jis |V Plafdxds
Ji U V[ dz)3 (fes lit|Sdx) 3 ds

sup fR3 |Vd|3dx)% flt fR3 |Vu|2dxds
1<s<t

ey 2
Cy" 7B "7 A

A

IA

IA

The other integrals on the right side of (3.19) are bounded in a similar way, and (3.14) follows.
Thus the proof of lemma is completed. O

Next we derive a number of auxiliary estimates needed to close the bounds in the previous
two lemmas. We begin with a bound for the vorticity w.
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Lemma 3.4. Assume that the hypotheses and notations of Proposition 3.1 are in force. Then for
O0<t<I1AT,

sup [p3s 0 (IVF 2 + |VolP)dx + [§ [ps 0 (IVF? + |Vol})dxds

O<s<t

6 4 (3.20)
< M(D+E3C}" - 3" * + sup fR305|u|2dx+f0 Jgs o lit*dxds),
O<s<t
andif T > land 1 <t <T, then
sup o3 (IVF> + |VolYdx + [{ [pa((VF? + |Vol?)dxds
t=v= (3.21)

< M(D+E+ sup [glulPdx + [{ [ li|>dxds).

1<s<t

Proof. By (2.11) and the definition of D, E, we can easily get (3.20) and (3.21). The proof of
lemma is completed. O

Next we derive an estimate for the functional By,.

Lemma 3.5. Assume that the hypotheses and notations of Proposition 3.1 are in force. Then for
any0 <t <T,

q+3 3g—11 q-3 3g-5

B, <M(C 25 +Cy BT +C, Y B, (3.22)

Proof. We multiply (1.1); by |u|9~%u and integrate over R? x (0, 7) to obtain that

g™ Js plultdx ]l + [ fos 1eluld=2|Vul*dxds
F I faslh (g — D ult= 4V ()2 + Alul4=2 (divie)?1dxds .
= Jy Jesl(P(p) = P(p)div(|ue|9=2u) — |u|9=%u - (Vd Ad)dxds '
— Ji Jas 30q = DNul?* (divayu - V(ul?)dxds.
For any n > 0,

| = o Jrs 32(q = 2)lul9*(divu)u - V(ju|*)dxds|

I A

L@ =2) [ fus 11T |(divi)|[e] T |V (Jul?)|dxds]
Mg =DM [y Joo w1772 (diva) Pdxds + 07" [y for w974V (ul?)Pdxds],

IA

so if we choose
1
Z)»(CI =2 =Bu+xr

for a positive S to be determined, then the term in question will be bounded by
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381 [y frs [l Vul2dxds + A [y [ps |ul?=2|divu|*dxds

[1rg—DP _
+ S o Jes ll =419 () Pdxds,

Substituting this into (3.23), we then get
g s plulddx]l + (1 = 3B) [y [s |92 Vu|>dxds
l)\ -1 2 B
Hhinlg = 2) + SRy fes 1l =4V (up) Pdxds
< 1 fy fps(P(p) = P(p))div(lul¢~2u)dxds|
H S s )9 2u(Vd Ad)dxds).

Recall that g € [6, p), thus (1.10) holds with p replaced by ¢, and this is the condition that
brackets on the left here is positive when g = % It follows this term is positive for some g €

O, %), which we now fix. It then follows that

q—ljR3p|u|qu|;+jg Joa |92 VuPdxds + [y fos |4V (ul?)>dxds

. (3.24)
< Ml fy Jas (P(p) = P(p)div(lul™2u)dxds| + | [y [ lul4™?u(Vd Ad)dxds]].
We multiply (3.9) by |Vd|?~%Vd and integrate over R? x (0, f) to obtain that
a7 [ps IVdI9dx |y + [y [ IVdI1972|V2d|2dxds
+ o Jws 1@ = DIVAIT=HV(|Vd|?)*dxds (3.25)

= [I [es IVAIT2VAV(Vd|2d — u - Vd)dxds.

Adding (3.25) to (3.24) and applying the Cauchy’s inequality in an elementary way we then
obtain

Joo w19+ |Vd|9dx + 3 [rs lul? 72 VuPdxds + [ [gs ]9V (|u|?)|*dxds
+ fo Jra IVA972|V2d Pdxds + [y [ps IVA9~4IV(IVd|?)[2dxds
< M[ [gs luol? + |Vdol?dx + | [y [r3(P(p) — P(p))div(ju|?~2u)dxds| (3.26)
+ fo Jos 1 2u(Vd Ad)dxds| + | [y g3 IVd|9~2VdAV(IVd|®d —u - Vd)dxds|]
=Y ki
Since g € [6, min{p, 12}), then by Holder’s inequality and Sobolev’s inequality, we have

P=q )

2 2 2= 9=2 p—2 —
I < (| luol” + Vdol=dx) 7=2 (| |uol” + [Vdo|Pdx)»=2 < MCy " N72,

R3 R3

and
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1 1
b < [y Jps 4 *dxds 12 fg [gs IVul*dxds]?
1 1 3 2 1
< C3Lfy s ul¥dx)3 (fgs [u| 29 dx)3ds]2

1 3 2 1
< Co Lfo Ugs lul? =2 VulPdx)(fgs u| 2“4~V dx)5 ds)2

A

IA

1 2 12—g 3g—16
Cg By sup [fgs lu(s)|*dx]1%a=D [ps u(s)|9dx]5@D
O<s<t
q+3 3g—11

3(q-2) p3(g-2)
MC; P B,

IA

Using (1.4) and integrating by parts, we obtain

I < U3 fas (l221Vul? + 4=V (u|?) P dxds12 [fi frs IVd|*ul92dxds)?

IA

1
MBZI(fi fro IVAI92dxds)s + (f [ lul9+2dxds)?]

IA

1 2
MBG [(fy(fys IVAPdx) 5 ([ IVdPdx)ds)?

S 11P39dx)3 (fs lulPdx) 3ds)?]

q-3 3g—=5

3(g-2) p3(g-2)
MC 7 B

IA

Similarly, we have

It < MLy [a |V2d||VA|772(IVd? + [u]|Vd|*)dxds]

IA

ML o (IVd|72|V2d Pdxds 121 [} [ IVA1942 + V|7 ulPdxds]?

q-=3 3¢—5
3q-D p3G=2
MC; 7 B

IA

Substituting these results into (3.26) gives (3.22). Thus the proof of lemma is completed. O
Next we derive a bound for the functional D and D.

Lemma 3.6. Assume that the hypotheses and notations of Proposition 3.1 are in force. Then for
0<t=<1AT,

a4 1
D<MI[Cy" ' Bj A+ A*+ A7), (3.27)
andif T > land 1 <t <T, then
_ L _4 _ —
D < M[Cj A% + A* + A°]. (3.28)

Please cite this article in press as: G. Wu, Z. Tan, Global low-energy weak solution and large-time behavior for the
compressible flow of liquid crystals, J. Differential Equations (2018), https://doi.org/10.1016/j.jde.2018.01.045




YJDEQ:9198

18 G. Wu, Z. Tan / J. Differential Equations eee (eeee) eee—eee

Proof. We give the proof of (3.27), that of (3.28) being similar. By Lemma 2.1, we have

Jgs0°IV2d|?|Vd|*dx

< OV o g [0 1V 175 5]
< MA[G*|VA|}4 g5, + 0 IV 4 3]
q—4 1
< MAICy " B~ +mnvwmﬂwnaﬂﬂwm®A
—4 1
< MA[Czq ‘B +A4||ozv3d||

LZ(R3
From (3.9) and (3.12), we have

103 V312 sy =M fis 03 (Vs + V2 + Va2V + | V2P|V ) dx
<M(A+D),
so that
/o |V2d|?|Vd|*dx <MA[C2q 4Bq 2L AT(A+ D).
R3

The other terms included in D are estimated in exactly the same way, and (3.27) follows. The
proof of lemma is completed. O

The following lemma contains the required bound for the pressure term in (2.11), which has
been proved in Hoff [7] (Lemma 3.3).

Lemma 3.7. Assume that the hypotheses and notations of Proposition 3.1 are in force. Then it
holds

t 1
//Uslp—ﬁ|4dxds §M[Co+//05|F|4dxds]. (3.29)
0 R3 0 R3
We can now obtain the required estimates for the functional E and E.

Lemma 3.8. Assume that the hypotheses and notations of Proposition 3.1 are in force. Then there
are polynomials @1 and @3 whose degrees and coefficients depend on the same M quantities as
M in the statement of Proposition 3.1 such that: for 0 <t <1 AT, we have

E = M[1(Co) +¢2(A + By)], (3.30)
and if T > 1and 1 <t <T, then
E < Mlg1(Co+ A1) + B4 (1)) + ¢2(A + By)]. (3.31)

The polynomial @1 contains no constant term and the monomials in ¢, all have degrees strictly
greater than 1.
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Proof. Since the term | ) fo Jgs ou xkl ul xkz ul xk3 3 dxds| has been bounded exactly in Hoff
1<ki,jm=3
[7]. So here we just bound the other terms for simplicity.
FirstforO <t <1 AT, from (2.1), (3.9) and (3.12) we have

fé Jrs o3 |V2d|Pdxds

M(f} fps 0|V2d|dxds)i (f} frs 0|V3d2dxds)?

IA

MAS(f! o3 0 (IVd, 1> + VAP |V2d? + |uPV2d ] + |Vd 2 VulP)dxds)

IA

IA

MAT(A+ [§ (s IV + |ul® + 03 (1V2d] + | Vu)dxds)
-6

MAA+CJ™ 23" +E)i,

IA

and

fot Jgs 0°1V2d*dxds

Mo o U V2d|dx)? (Jes \V3d|dx)ids

IA

Mf3 (@ fos IV?dId) (0 fo [V3dPdx)E (03 fo [V3dPdx) s

IA

4

q=6
MAA+CI BI” + E)i(A+ D)i.

IA

From Lemma 2.3, Lemma 3.1, Lemma 3.4 and the definition of F, w, we have

fot Jgs 03| Vul*dxds
< M[fy Jg30>(p = pI* + |FI* + lw*)dxds]
< M[Co+ (sup [ 0 (IFP + |0|P)dx [3 05 (IVF]? + [Vo|?)dx)?
05_&‘51
x(fo Jgs o (IVF> + Vo ?)dx]
1 1 2 A% o
< M[Co+ (Co+A)Z(A+ D)2 (A+ E3CJ "B )],

fé Jrs o3 |Vul3dxds

IA

3 ~
M[fot Jr3o2(p— A1 +1FPP + |w?)dxds]

MICo+ [L02(fus (IFI? + [02)dx)3 (fps (VF P + |Vol?)dx)3ds

IA

4=6 4
M[Co+ (Co+ A)i(A+ EICT BJ )i,

IA

Thus combining the above results and Lemma 3.6, we yield (3.30).
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Now for 1 <t < T, if we take ¢ =4 in (3.25) and integrate by parts to obtain that

Je3 IVd*dx + [] [o3 IVAP|V2dPdxds + [] g2 IV(IVd|?)2dxds

IA

M [ IVA (-, D*dx + | [ [gs AdIVA|*ddxds| + [] [p3 IVAP|V2d||uldxds]

q—4 2

MIC{~ E BIP () + [] [g3|Ad + |Vd|*d|*|Vd|*dxds

IA
»Q

+(fy Jeo V1 ¥ IV2d|3dxds)a (g fys lulSdxds)

)
i

2
“BITP(1) + sup ||Vd||Loo(R3)f{fR3|Ad+|Vd|2d|2dxds

1<s<t

+(fy Jrs 1Vl |V2d|2dxds)6(fo Jrs |Vu2dxds)?

IA

M[C

O»Q

-4 2

1 - - - L _
< MICT BT () 4+ CoCE BT + AR+ Dyhy + CLE

Q
=%

1.
Multiplying (3.9) by V Ad and integrating over R3, we have

Jps IV3dPdx < [o3 IV ||V3d|dx + 2 [ps |Vd||V2d||V3d|dx
+ Jg3 Vi - VAVAd +u - VVAV Addx
= g3 IV ||V3d|dx +2 [53 IVd||V?d||V3d|dx
+ fgs Vu - VAVAd — Vu - VVdAd + % (divu)|Ad ?dx.

By Cauchy’s inequality, we have
Jg3 IV3d2dx < [s IVdi? + VAP |V2d|? + |V *|Vul? + [Vul|V2d|?dx.
Thus we have

i Jgs IV2d|*dxds

M([! (fs IV2d1dx)2 ([ |V3d Pdx) 2 ds

IA

IA

MA [{(fgs |Vdi|> + VA V2| + |Vd|*|Vul? + |Vu||V2d |*dx)
X (Jg3 IVdi|? + |VA|?|V2d|? + |Vd*|Vul? + |u|2|V2d|2dx)? ds

MAA + D)2(f! (fs IV ? + |Vd2|V2d|Pdxds

IA

+ [ (s IV Vu)? + |Vu||v2d|2dxds)

IA

MA(A+D)2(A+C B (1)q -

+C0(C2q BJ 2+A4(A+D)4)+C Bt —|—C E?).
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Bounds for the term flt fR3 (|Vul® + |Vu|*)dxds are obtained in a similar way, which in fact is
much more simple. Then applying Lemma 3.6, we can bound E which gives (3.31). The proof
of lemma is completed. O

Combining the results of Lemmas 3.1-3.8, we have the following bound for A + B,,.

Lemma 3.9. Assume that the hypotheses and notations of Proposition 3.1 are in force. Then there
are polynomials @1 and ¢; as described in Lemma 3.8 such that for 0 <t <1 AT,

A+ By < M[p1(Co) + ¢2(A + By)l, (3.32)

andif T > land 1 <t <T, then

A+ B, < M[p1(Co+ A1) + By(1) + ¢2(A + By)]. (3.33)

Proof of Proposition 3.1. Proposition now follows immediately from the bounds (3.32) and
(3.33) and the fact that the functions A, A, B, are continuous in time. O

4. Pointwise bounds for the density

In this section we derive pointwise bounds for the density p, which are independent both of
time and of initial smoothness. This will then close the estimates of Proposition 2.1 to give an
uncontingent estimate for the functional A defined in (3.1).

We begin with two auxiliary lemmas. The first lemma is a maximum-principle arguments
applied to integral curves of the velocity field, which has been proved in Hoff [7].

Lemma 4.1. Let (p,u,d) be as in Proposition 3.1 and suppose that 0 < c; < p < ¢y on
R3 x [0, T]. Fix o > 0 and define the particle trajectories x : [0, 00) x R3 > R3 by

x(t,y)=u(x(t, y), 1),

x(to, y) =y
Then there is a constant C depending only on ¢i and ¢y such that if g € L'(R?) is nonnegative
andt € [0, T, then each of the integrals fR3 g(x(t, y))dy and ng g(x)dx is bounded by C times
the other.

Next we derive a result relating the Holder-continuity of u(-, ¢) to various norms appearing in
the definition (2.1) of the functional A.

Lemma 4.2. Let (p, u, d) be as in Proposition 3.1. Then for « € (0, %] andt € (0, T], we have

1-2a
7

() = MOVUC Dy V0Dl Fs) + (Co+ 1V D2 )

_ 4.1)
X (i D12 g, + [(VAAD D)2 ) 4 €7 .
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Proof. Let o € (0, 5] and define r € (3,6] by r = ;2. Then by (2.3) and (2.12), we have

(U 0) < MUFC Dl @) + oGOl r@sy + 100 = B DI eyl 42)
By (2.1), we obtain

3r—6
||w('7t)“LV(R3 M”C()( l)||L2(R3)||VCU( t)||L2(R3)

<MWM¢N WMIN

L2(R3 | LZ(R’%)’
and

6—r 3r—6

IFC Dl gy < MIFC, t>le(Rs IVF Gl T,

X (it D12 5 g + IVAAD D2 2a) *'f‘”]
< M(ICo + IVuC, D12, )

1+2a

X, D123 g, + 1VAAD 2 50) F1.

Putting the above results into (4.2) yields (4.1). Thus the proof the lemmas is completed. O
Now we derive the upper and lower pointwise bounds for the density.

Proposition 4.1. Assume that the system parameters in (1.1) satisfy the conditions (1.6)—(1.9)
and let positive numbers N and b < § be given. Assume (p,u,d) is a solution of (1.1) on
R3 x [0, T'] in the sense of Proposition 2.1 with initial data (po, uo, do) satisfying (1.11)—(1.14),
(2.5) and (2.6). Then there are positive constants €, M, and 0 depending on the parameters
and assumptions in (1.6)—(1.9), N, and a positive lower bound for b, such that, if Cy < ¢ and
p(x,t)>0o0n R3 x [0, T, then in fact

p=p=pon R x[0,T], 43)
and

A(T) < MC§. (4.4)

Proof. First we choose positive numbers « and «’ satisfying

p<k<p+b<p—b<k' <p.

Recall that pg takes values in [p+ b, p — b], so that p € [p, p]lon R3 x [0, 7] for some positive

7 by the time regularity (2.7). It then follows from Proposition 3.1 that A(z) < MCE, where
M is now fixed. We shall that if Cy is further restricted, then in fact that x < p < «’ on all of
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R x [0, T1, and therefore that A(T) < M Cg as well. We shall prove the required upper bound,
the proof of the lower bound being similar.
For y € R? and define the corresponding particle path x(¢) by

x(t,y) =u(x(,y),1),
x(to, y) =y.
Suppose that there is a time #; < T such that p(x(#1), ;) = k’. We may take ¢; minimal and

then choose #y < #; maximal such that p(x(ty), 1) = p — b. Thus p(x(¢),t) € [p — b, k'] for
t € [19, t1]. We divide into two cases:

Casel: o<1 <T A1
We have from the definition (1.3) of F and the mass equation that

d
(m +A)E[logp(x(t), 1) —logpl+ P(p(x(1),1)) — P(p) = —F(x(1),1).

Integrating from #( to #; and abbreviating p(x(t), t) by p(¢), etc., we then obtain

1

1
1+ 1) log ()] + / [P(s) — P(P)lds = — / F(s)ds. (4.5)
to

fo

We shall show that
1
| / F(s)ds| < MC} (4.6)
0]

for a constant M which depends on the same quantities as the M from Proposition 3.1 (which
has been fixed). If so, then from (4.5), we have

3]
o+ Mllogs’ = log(5 = D) = = [[1PG) = P(DMs + FICT < MCF. (&)
0]

where the last inequality holds because p(z) takes values in [0 — b,«’] C [, o], and P is
increasing on [p, p]. But (4.7) cannot hold if Cy is small depending on M,K’, and p — b.
Stipulating the smallness condition, we therefore conclude that there is no time #; such that
p(t1) = p(x(t1), 1) = «'. Since y € R? was arbitrary, it follows that p < x’ on R3 x [0, 7], as
claimed. The proof that p > « is similar.

To prove (4.6) we let I be the fundamental solution of the Laplace operator in R and apply
(1.5) to rewrite

S F()ds = [i [ (VaT(x(s) — y))pii(y, s)dyds

0
+ [i! Jos (VT (x(5) = ) (VA Ad)(y, s)dyds.
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We note the first integral on the right side of (4.8) is bounded exactly as in Hoff [7] (Lemma 4.2)
| i Jas (VT (x(5) — y)) pii(y, )dyds]|

VI % (ou) (-, 1) | oo 3y + IVI % (o) (-, 22) [| oo m3)

+ fo Sz Ty (x(8) = Mk (x (), 8) — uk (v, )1(pu? ) (y, s)dyds

MC§ + MCY [ (u(-,5))*ds

IA

IA

IA

MCE + MCE [} (u(-, 5))*ds

IA

MCH+MCl(fy s

2 [y (Co+IVuC, D12, g,

X(fy 53U, D12 ) + 1VAAD D2, s )ds) 5

mcy,

IA

if a < ¢. Note that (3.22) holds for g = 6, thus if 2 < r <
the right side of (4.8) can be bounded in as

7 +3, by (2.4), the second integral on

| [ frs (VT (x(s) = »)(VAAd)(y, s)dyds]

M [3 1(VAAQ) ) 2y + | (VAAD) ()]l sy ds

IA

IA

M fy ||<|Vd|4|Ad|2)<s>||Lz(R3 l1Ad|? <s>||mRz

+/y ||(Ad)(S)||L3(R3)||(Vd)(s)||L33T,r( ds

R3)

< MCj.
Thus the proof of (4.6) is completed.

Case2: 1<ty <t
Again by the mass equation and the definition (1.3) of F,

d .
E(p(t) P+ +0"pOP @) = PY=(u+1 " p)F ).
Multiplying by (p(t) — p) we get

1
50 = P+ + O (o) — 5 = -+ o) (o) — HIF(),  (4.9)

where

ft)=(P(@)— P)p@t)—p) "

Since f(t) > 0 on [fy, #1], thus integrating (4.9) over [tg, t1], we arrive at
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K" =P —1p—b— p|2<Mf||F< 7 o (345 (4.10)

So that if we show that
/IIF(-,s)II%oodssMcg. 4.11)

Then as in Case 1, (4.10) cannot hold if Cy is sufficiently small. Since y € R3 was arbitrary, it
follows that p < «’ on R3 x [0, 7], as claimed.
To prove (4.11) we apply (1.5) and (2.4) to get

S NECos oy ds < fig 1G9 G250, ds + [ 1(VAAD) ()17, d5
+f" 1 G )17 4 gy @S + fig 1(VAAD) )[4 s

0+ S 1d G4z ds + [ 1(VAAD) )[4 s ds

The terms integral on the right side above can be bounded as

S NG s g ds < [y i, s>||L2(R; Vi, nnmg
3
< NG 2 0 A9 S IV )12, 0 ds)
< MC}§
and
141
”(VdAd)( S)HL“(Rz)

< fzf)l ||(VdAd)('vS)”zz(R})”V(VdAd)( s)”Lz(]RS

IA

S IVAAD) )12 50, d5) S IV (VAAD )2 0, d5)F

mcy,

A

where the last inequality follows from Proposition 3.1. Thus (4.11) is proved. The proof of propo-
sition is completed. O

5. Proof of Theorem 1.1

In this section, we prove Theorem 1.1 by constructing weak solutions as limits of smooth
solutions. So, we first prove the global-in-time existence of strong solutions with strong initial
data which is strictly away vacuum and is only of small energy.

Please cite this article in press as: G. Wu, Z. Tan, Global low-energy weak solution and large-time behavior for the
compressible flow of liquid crystals, J. Differential Equations (2018), https://doi.org/10.1016/j.jde.2018.01.045




YJDEQ:9198

26 G. Wu, Z. Tan / J. Differential Equations eee (eeee) eee—eee

Proposition 5.1. Assume that (pg, uo, do) satisfy (2.5) and (2.6). Then for any 0 < T < oo, there
exists a unique strong solution (p,u,d) of (1.1)—(1.14) on R3 x [0, T] satisfying (2.7)—(2.9) with
To being replaced by T, provided the initial energy Cy satisfies the smallness condition (1.17)
with ¢ > 0 being the same one as in Proposition 3.1 and Proposition 4.3.

Proof. The standard local existence result (Proposition 2.1) shows that the Cauchy problem
(1.1)—(1.2) admits a unique local smooth solution (p, u, d) on R3 %[0, Tol. In view of Lemma 3.1
and Proposition 4.1, we have

A(Tp) + By (To) + E(To) + sup  [ps(Ip — pI> + [ul? + |Vd|?)dx

0<t<Ty

+ o frs(1Vul® +|Ad +|Vd2dP)dxdt < MCo,

and

p<p=<p onRx0,Tl (5.1

For any small enough positive T, we have

SE IV G DI o sy dxdt < C [0 IVA G, Dl o IV2d (D2 o dxdi 52

< C(T, To) B¢(To) E(Tp).

Then the standard arguments based on the local existence results together with the a priori bounds
(5.1)—(5.2), we deduce that (p, u,d) is in fact the unique smooth solution of (1.1)—(1.14) on
R3 x [0,T]forany0 < T <oo. O

With the help of Proposition 5.1, we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. For any map dy € Hn1 (R3; S?), there exists dy' € H,f' (R3; S?) such that
. m_ _
Let
P =J1 % po, uy =J1 *ug,
where J1 = Ji(x) is the standard mollifier. Then p' — 5 € WL4(R?) N H(R3), and
inf, s (o (x)) > 0, ull € H*(R?), d € H?(R*;S?), and the initial norm for (o', ujy, Vdj")
(i.e., the right side of (1.14) with (po, uo, Vdp) replaced by (o', ug', Vdy')) is bounded by Co.

The above proposition can be applied to obtain a global smooth solution (o™, u™,d™) of
(1.1)—(1.14) satisfying (3.2), (4.3) and (4.4) for all ¢ > O uniformly in m.
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In view of (2.3) and (2.11), we see from Sobolev embedding theorem that

1
W (D)2 < CIVU" (0l oas)

< CUIF™C. Ol ssy + 0™ GOl sy + 1P™ o 1) = Pllsgs)) (5.3)
= CEOA A+ a"C Dl p2@sy + 1IVA" (DA™ )| L2 w3))
< C(v),

for t > 7 > 0. Here F™, »™ and P™ are the functions F, w and P with (p, u, d) being replaced
by (o™, u™,d™).
In addition to (5.3), we also have

1

|um(-x» t) -
|BR(x)|

/ u™(y,t)dy| < C(T)R?,

Br(x)
and hence, for 0 < t <t <1, we have
[u™(x, 1) —u™ (x, 1)]

1
< e e, 0" 0o 12) =™ (v 1)y + C(D)R?

3 1 1 1

< CR7 3t =012 ([}? [g,, 14" (v, OPdydD)? + C()R? (5.4)
3 1 . 1 1

< CR™Z | =012 (f}? [g, (" (v P + ™ 2|V P)dydi)? + C(t)R?

< COOIR 3|t — 11]? + R2].

Taking R = |12 — 11]% in (5.4), we get
" (x, 1) — ™ (e )| < COl — 1[5, 0<7 < <1 <00, (5.5)
The same estimates in (5.3) and (5.5) also hold for d and Vd. Thus, we have proved that

{u™}, {d™} and {Vd™} are uniform Holder continuity away from r = 0. As a result, it follows
from Ascoli—Arzela theorem that

u”™ — u, d™ —> d uniformly on compact sets in R3 x (0, 00). (5.6)

Moreover, by argument in [29] (see also [4]), we know that
p™ —> p strongly in LP(R? x (0, 00)), Vp €[2,00). 5.7
Therefore, passing to the limit as m —> oo by (5.6) and (5.7) we obtain the limited (o, u, d)

which is indeed a weak solution of (1.1)—(1.14) in the sense of Definition 1.1 and satisfies
(1.18)—(1.25).
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Next we derive the large-time behavior of (p, u, d) in (1.26). This can be done as the ones
in [5], however, for completeness we sketch the proof here. We first deduce from the mass equa-
tion that

(P(p) — P); +u-V(P(p) — P)+y P(p)divu = 0.

Multiplying the above equation by 4(P(p) — P)? and integrating it over R3, we get that

1P(p) = Plljags, = / (1P (p) — PH)divu — 3y P(p)(P(p) — P)’divudx,
R3

dl
dt

which, together with (3.29) shows that

o d o o
/ | IP(P) = Plijagsldr = C(L+ f IF 14 g3, d) f IVul}2 s, ds < C.
1 1 1
As a result, we have
|P(p) — 13||L4(R3) —> 0 as r — oo.
This, together with (3.2) and the uniform lower and upper bound of density, shows that
tl—lfgo lo— ,0||1J(1R3) =0 (5.8)

holds for any / € (2, 00).
Following the same argument in [5], we take a sequence

u” (¢, x):=ult +m,x),

for all integer m, and (x,?) € R3 x [1,2]. Then from (1.25), we have

1
. m _
mILmOO/ ||Vll ||L2(R3) =0.
0

From (1.25) again, we have

o™ | 71 w3y < C uniformly for z, m.

Thus we arrive at
lim |u” = 0 uniformly for 7.
™l 22 w3 y

That means
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lim |lu(z 3y =0. 5.9
Tim (0] 2z, (5.9)

Fort > 1, from (2.11) and (2.12), we obtain that

IVu@)lls@sy < CUF Ol s@s) + lo®ll o) + 1(P(0) = PO 1ows)

= CAHNIVFOll2w3) + IVl L2r3)) 5.10)
= CA+Nu®l2ms) + IVAAD) (Dl 2 w3))
< C.
Combining (1.25), (5.9) and (5.10), we have
tl_l)né.lo ”u”Wl,r(]RS) ZO, (511)
holds for r € (2.6).
Similarly, we have
tl—l>rgo ||Vd||W1f(]R’) = 0, (512)

holds for r € (2, 6). Putting (5.8), (5.11) and (5.12) together gives (1.26). Thus the proof of
Theorem 1.1 is completed. O
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