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Abstract

A revised Yau’s Curvature Difference Flow is considered to deform one convex curve X0 to another 
one X̃. It is proved that this flow exists globally on time interval [0, +∞) and the evolving curve, preserving 
its convexity and bounded area A, converges to a fixed limiting curve X∞ (congruent to 

√
A/Ã X̃) as time 

tends to infinity, where Ã is the area bounded by the target curve X̃.
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1. Introduction

In 2007, S.T. Yau proposed an interesting problem that whether one can use a parabolic 
curvature flow method to evolve one curve X0 to another X̃ either in finite time or in infinite 
time. In the same year, Y.-C. Lin and D.-H. Tsai constructed a linear parabolic model [21] to 
evolve a convex curve to another one, where a curve is called convex if it is closed, embedded 
and has positive curvature everywhere. They showed that if the two curves have same length and 
the curvature is bounded above during the evolution, then X0 can be deformed into X̃.
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To settle Yau’s problem, Tsai suggested an evolution model, which is called as “Yau’s Curva-
ture Difference Flow (YCDF)”:⎧⎨⎩

∂X
∂t

(ϕ, t) = [κ(ϕ, t) − κ̃(ϕ)]N(ϕ, t) in S1 × (0,ω),

X(ϕ,0) = X0(ϕ) on S1,

(1.1)

where κ and ̃κ are the curvature of the evolving curve X and the target curve X̃ separately and 
N is the unit inner normal of X.

The significance of YCDF is that it stops if X0 converges to X̃. But in general, this flow may 
not deform X0 into X̃. For example, let X0 and X̃ be two convex curves with curvature denoted 
by κ0 and ̃κ , respectively. If κ0 > κ̃ everywhere then the results in Chapter 3 of the book by Chou 
and Zhu [9] or their paper [8] tell us that the evolving curve will shrink to a self-similar solution 
of the famous curve shortening flow. In the embedded case, the limiting curve is a circle after a 
proper rescaling [1,3].

Early in the year 1993, Gage and Li [13,15] studied a flow for convex curves⎧⎨⎩
∂X
∂t

= (p̃/̃κ)κN in S1 × (0,ω),

X(ϕ,0) = X0(ϕ) on S1,

(1.2)

where p̃ := −〈X̃, Ñ〉 is the support function of the target curve X̃. They showed that the evolving 
curve converges to the shape of the target curve as X(·, t) shrinks to a point, provided that the 
convex body bounded by X̃ is symmetric. Their result implies that Yau’s problem is solved 
for convex initial X0 and convex, symmetric target X̃. Motivated by the work of Gage and 
Li and the models for phase transitions [4,5,17], Chou–Zhu in 1999 considered an anisotropic
flow [7] ⎧⎨⎩

∂X
∂t

= (g(θ)κ + F)N in S1 × (0,ω),

X(θ,0) = X0(θ) on S1,

(1.3)

where θ denotes the tangent angle, g is of the form g = d2f/dθ2 + f and F is a constant. They 
showed that the evolving curve X is uniformly convex on the maximal time interval [0, tmax) and 
the behavior depends on the value of F when t → tmax. This result was generalized to a more 
widely used model by Chou–Zhu [8]. As a spacial case, they proved that there exists a constant 
F ∗ such that the flow ⎧⎨⎩

∂X
∂t

= (κ − F ∗κ̃)N in S1 × (0,ω),

X(ϕ,0) = X0(ϕ) on S1,

(1.4)

exists globally and X converges to a stationary solution, where ̃κ is a positive, periodic function. 
This flow (1.4) is an alternative model to evolve X0 to X̃ if one chooses ̃κ as the curvature of the 
target curve. Because the critical number F ∗ is obtained via a contradiction argument, one may 
not easily find its value for a concrete X0. Lin–Tsai [22] did some work to estimate F ∗ in the 
case that the target curve X̃ is a unit circle.
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Inspired by Yau’s problem and the work by Chou–Zhu [7], Chou–Zhu [8] and Lin–Tsai [21], 
we studied a revised YCDF of the form:

⎧⎨⎩
∂X
∂t

(ϕ, t) = [κ(ϕ, t) − λ(t )̃κ(ϕ)]N(ϕ, t) in S1 × (0,ω),

X(ϕ,0) = X0(ϕ) on S1,

(1.5)

where λ(t) = 2π/ 
∫
S1 κ̃gdϕ and g is the metric of X. The nonlocal term λ(t) is used to keep the 

bounded area A of X(·, t) a constant. Comparing to F ∗ in Equation (1.4), the coefficient λ(t) is 
dependent on time and explicitly expressed.

If the target curve X̃ is a circle (̃κ is a positive constant) then this flow is Gage’s area-
preserving flow [11]. If the initial curve is homothetic to X̃ then the evolving curve is stationary 
under the flow. The main result of this paper is as follows.

Main Theorem. Let X0 and X̃ be two smooth, closed and embedded curves with positive curva-
ture everywhere. The flow (1.5) with initial X0 and referential X̃ exists globally on time interval 
[0, +∞), preserves the bounded area A and the convexity of every evolving curve X(·, t) and 
deforms X0 into a fixed curve X∞ (congruent to 

√
A/Ã X̃) as time tends to infinity, where Ã is 

the area bounded by the curve X̃.

The proof of Main Theorem is composed of the following three aspects:
First of all, one needs to bound the curvature κ of the evolving curve X to obtain the global 

existence of the flow (1.5). The positivity of κ is a direct application of maximum principle of 
parabolic equations. The uniform upper bound of κ can be obtained via a careful analysis of an 
auxiliary function Q which introduced firstly by Chou [6].

Then, since whether the evolution equation of κ is degenerate or not is unknown, it’s quite 
hard to estimate the gradient of κ directly. The L2-norm of κθ can be bounded by the uniform 
upper bound of κ and the evolution of entropy 

∫ 2π

0 lnκdθ . Then the convergence of the curvature 
follows from Ascoli–Arzela Theorem and the monotony of the Minkowski length L. By the 
convergence of κ and its positivity, it has a positive and lower bound. So the evolution equation 
of κ is not degenerate.

Finally, one has to prove that the evolving curve X converges as t → ∞. In the previous study 
of non-local flows for convex curves, the speed of the flow can be proved exponentially decaying. 
However, due to the complexity of the evolution equation of κ , the exponential decay of |κ − λ̃κ|
seems quite difficult to be obtained. One can follow the method in [7] or Chapter 3 of [9] to prove 
the convergence of the Steiner point and the support function, leading to the convergence of the 
evolving curve to a fixed limit.

In Section 2, it is proved that the flow (1.5) exists in time interval [0, +∞) and preserves 
convexity and the bounded area of the evolving curve. In Section 3, it is shown that the curvature 
of the evolving curve converges to a limit 

√
Ã/Aκ̃ in C∞ sense, where ̃κ is the curvature of the 

target curve. In Section 4, Main Theorem is proved via showing that the evolving curve X(·, t)
converges to a fixed curve X∞ as time goes to infinity.
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2. Existence

In this section, some basic properties of the flow (1.5) will be explored, such as the short time 
existence, the convexity of every curve X(·, t). To extend the flow on time interval [0, +∞), it is 
proved that the curvature κ of the evolving curve is bounded for all t ≥ 0.

The estimate of the curvature is a key step towards to the global existence of the flow. A very 
useful method constructed by Kai-Seng Chou [6] can give an upper bound of κ independent 
of time. The idea is first to define some an auxiliary function, denoted by Q. Then applying the 
comparison principle of parabolic equations can give us an upper bound of Q, yielding a uniform 
bound of the curvature.

One can also follow Gage–Hamilton’s method [14] to show that the flow (2.1) exists globally 
via proving the similar geometric estimate, integral estimate and pointwise estimate of κ . The 
advantage of the method in this paper is that it provides an uniformly upper bound of the curva-
ture. The uniform bound of the curvature is very helpful to the study of the convergence of the 
flow.

2.1. Short time existence

Let θ = θ(ϕ, t) be the tangent angle of X(·, t). This parameter plays an important role in the 
study of curvature flows for convex curves, because it can simplify some important quantities, 
such as the Frenet frame T = (cos θ, sin θ), N = (− sin θ, cos θ). In order to make θ independent 
of time, one can add a proper tangent component to Equation (1.5) to obtain⎧⎨⎩

∂X
∂t

= (κ − λ̃κ)N + αT in S1 × (0,ω),

X(ϕ,0) = X0(ϕ) on S1.

(2.1)

As is well known that the flow (2.1) differs from that of (1.5) by a reparametrization. From 
now on, let s be the arc length parameter and set β := κ − λ̃κ . Under the flow (2.1) the metric g
and the Frenet frame evolve according to

∂g

∂t
=
(

∂α

∂s
− βκ

)
g,

∂T

∂t
=
(

ακ + ∂β

∂s

)
N,

∂N

∂t
= −

(
ακ + ∂β

∂s

)
T

and the relation for the operators ∂/∂s and ∂/∂t is

∂

∂t

∂

∂s
= −

(
∂α

∂s
− βκ

)
∂

∂s
+ ∂

∂s

∂

∂t
.

Noticing that

∂T

∂t
= (− sin θ, cos θ)

∂θ

∂t
= ∂θ

∂t
N,

one obtains the evolution of the tangent angle
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∂θ

∂t
= ακ + ∂β

∂s
.

If X(·, t) is a family of convex curves then κ(·, t) > 0 and one can use θ to parametrize every 
curve. Now one can choose

α = − 1

κ

∂β

∂s
(2.2)

to make sure ∂θ
∂t

≡ 0. Because ∂θ
∂s

= κ (by the definition of the curvature), the metric of the 
evolving curve is g = 1

κ
. The evolution equation of κ is as follows

∂κ

∂t
= ∂2θ

∂t∂s
= −

(
∂α

∂s
− βκ

)
κ + ∂

∂s

∂θ

∂t

= ∂

∂s

∂θ

∂t
− ∂α

∂s
κ + βκ2.

Thus under the flow (2.1), the curvature κ satisfies a Cauchy problem⎧⎪⎨⎪⎩
∂κ
∂t

= κ2
(

∂2κ
∂θ2 − λ∂2κ̃

∂θ2 + κ − λ̃κ
)

in [0,2π ] × (0,ω),

κ(θ,0) = κ0(θ) on [0,2π ],
(2.3)

where κ0 is the curvature of the initial curve X0. (2.3) is a quasilinear parabolic equation with a 
nonlocal term

λ = 2π∫ 2π

0 κ̃/κdθ

and a positive initial value which satisfies the closing condition

2π∫
0

eiθ

κ0
dθ = 0.

Once this Cauchy problem has a positive smooth solution, the above closing condition holds for 
κ and there exists a family of convex curves drawn by κ , satisfying Equation (2.1). So one can 
pay attention to Equation (2.3).

The linearization of the evolution equation of the curvature κ at κ0 is

∂κ

∂t
= κ2

0
∂2κ

∂θ2 +
(

2κ0
∂2κ0

∂θ2 − 2λ(0)κ0
∂2κ̃

∂θ2 + 3κ2
0 − 2λ(0)̃κκ0

)
κ

−
(

κ2
0
∂2κ̃

∂θ2 + κ̃κ2
0

)
λ(0)2

2π

2π∫
κ̃

κ2
0

κdθ.
0
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It is a uniformly parabolic equation with smooth coefficients. So Equation (2.3) has a unique 
smooth solution on [0, 2π ] × [0, t0), where t0 is small (see Fact 3 in Chapter 1 of the book [9]). 
One can also follow [14] or [19] using Leray–Schauder fixed point theorem to show the short 
time existence of the Cauchy problem (2.3).

Theorem 2.1. The flow (2.1) has a unique smooth solution on S1 × [0, t0) for some t0 > 0.

2.2. Convexity of the evolving curve

The continuity of κ implies that there exists t1 ∈ (0, t0) such that the evolving curve X(·, t)
is convex for all t ∈ [0, t1). So one can use θ to parametrize the curve in a short time interval. 
In fact, the evolving curve is convex whenever the flow exists. It is an application of maximum 
principle for parabolic equations. In order to use maximum principle, one first needs to show that 
the nonlocal term λ in the evolution equation of κ is bounded.

Lemma 2.2. If the flow (2.1) exists in time interval [0, ω) and the evolving curve is convex for 
t ∈ [0, t0)(t0 ≤ ω), then the area bounded by X(·, t) is fixed and the length of the evolving curve 
and the nonlocal term λ(t) can be bounded by

√
4πA ≤ L(t) ≤

√√√√√L2(0) + 2A

m̃

2π∫
0

κ̃dθ := C, (2.4)

2π

M̃C
≤ λ(t) ≤ 2π

m̃
√

4πA
:= �, (2.5)

where M̃ := max{̃κ(θ)|θ ∈ [0, 2π ]}, m̃ := min{̃κ(θ)|θ ∈ [0, 2π ]}.

Proof. Under the flow (2.1), we have set β = κ − λ̃κ . Compute that

dA

dt
= −

2π∫
0

β/κdθ = −
2π∫

0

(
1 − λ

κ̃

κ

)
dθ = 0.

So this flow preserves the bounded area of the evolving curve. The length of X satisfies that

dL

dt
= −

2π∫
0

(κ − λ̃κ)dθ = −
2π∫

0

κdθ + λ

2π∫
0

κ̃dθ.

Noticing that Gage Inequality [10] says

2π∫
0

κdθ ≥ πL

A

and λ has upper bound
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λ = 2π∫ 2π

0 κ̃/κdθ
≤ 2π

m̃L
,

one obtains

dL

dt
≤ −πL

A
+ 2π

m̃L

2π∫
0

κ̃dθ.

So L2(t) ≤ L2(0) exp(−π
A

t) + 2A
m̃

∫ 2π

0 κ̃dθ(1 − exp(−π
A

t)), which implies the right hand side 
of Inequality (2.4). The left hand side is a corollary of the classical isoperimetric inequality. 
Inequality (2.5) is a direct corollary of (2.4). �

Since λ(t) is bounded by constants independent of time, one can use maximum principle to 
show that the flow preserves the convexity of the evolving curve.

Lemma 2.3. The evolving curve under the flow (2.1) is convex.

Proof. Suppose the flow exists in time interval [0, ω) and there is a smallest t1 ∈ (0, ω) such 
that the minimum of κ(·, t1) with respect to θ is 0. Let θ∗ be the point such that κ(·, t) attains its 
minimum value

κ(θ∗, t) = min{κ(θ, t)|θ ∈ [0,2π ]} := κmin(t),

for t ∈ (0, t1]. Set the constants M̃i := max
{∣∣ di κ̃

dθi

∣∣∣∣θ ∈ [0,2π ]
}

, i = 1, 2, 3, · · · . At the point 
(θ∗, t), one has

∂κ

∂t
≥ κ2

(
κ − λ

∂2κ̃

∂θ2 − λ̃κ

)
≥ −κ2(�M̃2 + �M̃).

Using Hamilton’s technique of maximum principle [18], the differential inequality

dκmin

dt
≥ −κ2

min(�M̃2 + �M̃)

holds in Lipschitz sense and implies that

κmin(t) ≥
(

1

κmin(0)
+ (�M̃2 + �M̃)t

)−1

> 0, (2.6)

for all t ∈ [0, t1]. It contradicts the hypothesis of t1. �
Once the flow (2.1) exists in time interval [0, ω), the evolving curve is always convex. The 

parameter θ can be used to formulate evolution equations from now on.
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2.3. Bound of the curvature and global existence

In order to extend the flow, one needs to bound the curvature. Bonnesen Inequality [23] for 
convex curves in the plane says that

−πr2 + rL − A ≥ 0, rin ≤ r ≤ rout ,

where rin and rout are the inradius and outradius of the domain bounded by X, respectively. So

1 ≤ rout

rin
≤ L + √

L2 − 4πA

L − √
L2 − 4πA

= (
√

Ir +√Ir − 1)2,

where Ir(t) = L2/(4πA) is the isoperimetric ratio of X.
Let us turn to the flow (2.1). By the bound of L(t), the isoperimetric ratio satisfies that

1 ≤ Ir(t) ≤ C2

4πA
,

for all t ∈ [0, ω). Under the flow, the ratio of outradius and inradius is bounded by

rout (t)

rin(t)
≤ (

√
C2

4πA
+
√

C2

4πA
− 1)2 := σ, t ∈ [0,ω).

Hence rout (t) ≤ σrin(t). Because πrout (t)
2 ≥ A, one obtains that

rin(t) ≥ σ−1
√

A/π, (2.7)

for all t ∈ [0, ω). The inradius has a time-independent positive lower bound. Now one can show 
that the curvature of the evolving curve has an upper bound independent of time.

Lemma 2.4. There exists a positive constant M independent of time such that

κ(θ, t) ≤ M, (θ, t) ∈ [0,2π ] × [0,+∞). (2.8)

Proof. Let E(0) be a circle enclosed by X0 with radius r(0) = rin(0). Let us shrink E(0) and 
X0 by the famous curve shortening flow to obtain two family of curves, denoted by E(t) and 
Y(t) respectively. By the maximum principle, E(t) is bounded by Y(t) for every t . Because the 
velocity of the evolving curve X(·, t) differs from that of Y(t) by −λ(t )̃κN , X(·, t) contains 
Y(t) as time goes. So E(t) is enclosed by X(·, t) for all t ∈ [0, ω). The radius of E(t) is given 
by r(t) =√r2(0) − 2t , t ∈ [0, r2(0)/2].

Define p := −〈X, N〉 the support function of the evolving curve with respect to the center of 
E(0) as the origin O . The support function p(θ, t) satisfies that

p(θ, t) ≥
√

r2(0) − 2t, (θ, t) ∈ [0,2π ] × [0,min{r2(0)/2,ω}).
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Let us choose t1 = 3r2(0)/8 so that p(θ, t) ≥ r(0)/2. Since p(θ, t) is the distance from the 
point O to the tangent line of X,

p(θ, t) ≤ |X(θ, t)| < L(t)

2
≤ C.

Define an auxiliary function

Q = κ

p − δ
> 0, δ = r(0)

4
,

for all t ∈ [0, t1]. One has 0 < 2δ ≤ p ≤ C, where both δ and C are constants independent of 
time. Noticing that

∂p

∂t
= λ̃κ − κ,

∂Q

∂θ
= 1

p − δ

∂κ

∂θ
− κ

(p − δ)2

∂p

∂θ
,

∂2Q

∂θ2 = 1

p − δ

∂2κ

∂θ2 − 2

(p − δ)2

∂p

∂θ

∂κ

∂θ
− κ

(p − δ)2

∂2p

∂θ2 + 2κ

(p − δ)3

(
∂p

∂θ

)2

,

one has the evolution equation of Q:

∂Q

∂t
= κ2 ∂2Q

∂θ2 + 2κ2

p − δ

∂p

∂θ

∂Q

∂θ
− δ(p − δ)Q3 − λ(p − δ)

∂2κ̃

∂θ2 Q2 − λ(p − δ)̃κQ2

+2Q2 − λ̃κ

p − δ
Q.

Whenever Q > 1
δ2 (�M̃2(C − δ) + 2), one obtains that

−δ(p − δ)Q3 − λ(p − δ)
∂2κ̃

∂θ2 Q2 − λ(p − δ)̃κQ2 + 2Q2 − λ̃κ

p − δ
Q

≤ Q2[−δ2Q + �M̃2(C − δ) + 2)] < 0

and the function Qmax(t) = max{Q(θ, t)|θ ∈ [0, 2π ]} decreases. By the maximum principle of 
parabolic equations, Q has an upper bound

Q(θ, t) ≤ max

{
Qmax(0),

1

δ2 [�M̃2(C − δ) + 2]
}

, (2.9)

for all t ∈ [0, t1]. Repeating the same process as above, one can show that inequality (2.9) holds 
for t ∈ [nt1, (n + 1)t1], n = 1, 2, · · · . Thus there exists a positive constant M independent of time 
such that (2.8) holds. �

If the curvature κ is bounded by 0 < κ ≤ M for all time, all the derivatives ∂iκ
∂θi grow at most 

exponentially by the maximum principle. So the flow (2.1) exists globally.

Theorem 2.5. The flow (2.1) exists in time interval [0, +∞).
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The upper bound of κ in Lemma 2.4 is independent of time. An advantage of this fact is that 
one can use the uniform bound for κ to obtain its convergence.

3. Convergence of the curvature

In this section, we shall prove the C∞-convergence of the flow (1.5). The flow has 
C2-convergence if the curvature of the evolving curve possesses a limit as time tends to in-
finity. If all the derivatives of the curvature converges then we say the flow converges in the C∞
sense.

In order to prove the convergence of the curvature, some estimate of the derivative κθ is 
needed. Usually, the gradient estimate of parabolic equations can be obtained by applying maxi-
mum principle to some auxiliary functions. However, this strategy works only if the equation is 
uniformly parabolic, i.e., the curvature κ should have a positive lower bound for all t ≥ 0 in our 
case. Up to now, it is not known whether the equation of κ is uniformly parabolic for all time. 
The method in the classical theory of parabolic equations is not quite usable.

We shall use the entropy 
∫ 2π

0 lnκdθ and the uniform upper bound of κ to estimate L2-norm 
of κθ , yielding the convergence of the curvature. The C∞-convergence of the flow follows from 
a classical method of parabolic equations.

3.1. C2-convergence

In the previous study of non-local flows which deform convex curves into circles, the 
C2-convergence of the flow relies on the Hausdorff convergence of the evolving curve to a fi-
nite circle, i.e., the isoperimetric difference L(t)2 − 4πA(t) tends to 0 as time tends to infinity. 
For two given convex curves X and X̃ in the plane, one also has a similar inequality of Wulff 
isoperimetric difference (see [16])

L2 − 4AÃ ≥ 0,

where L := ∫ 2π

0 p̃/κdθ is called Minkowski length of X with respect to X̃ and the equality holds 
if and only if X is homothetic to X̃.

Under the flow (2.1), the Minkowski length L satisfies that

dL

dt
=

2π∫
0

− p̃

κ2 κ2
(

∂2κ

∂θ2 − λ
∂2κ̃

∂θ2 + κ − λ̃κ

)
dθ

= −
2π∫

0

(
∂2p̃

∂θ2 + p̃

)
(κ − λ̃κ)dθ

= −
2π∫

0

1

κ̃
(κ − λ̃κ)dθ

= −
2π∫

κ

κ̃
dθ + (2π)2∫ 2π

0
κ̃
κ
dθ

≤ 0,
0
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where Cauchy–Schwarz Inequality is used. So Wulff isoperimetric difference is decreasing with 
respect to time. In the case of κ̃ ≡ const., Gage [11] showed that the isoperimetric difference 
satisfies

d

dt
(L2 − 4πA) ≤ −2π

A
(L2 − 4πA),

by using his famous inequality (Gage Inequality, see [10]) for convex curves. So the isoperimetric 
difference converges to 0 under Gage’s area preserving flow. However, the so called Wulff–Gage 
Inequality (see [16])

2π∫
0

κ

κ̃2
p̃dθ ≥ ÃL

A

holds under a condition that the target X̃ is centrosymmetric. It seems not easy to prove 
limt→∞(L2 − 4AÃ) = 0 directly. So it is not appropriate to prove the C2-convergence of the 
flow via the method of using Hausdorff convergence.

To guarantee the existence of convergent subsequence of the curvature, we plan to bound an 
L2-estimate of κθ by using the entropy estimate.

Lemma 3.1. The quantity 
∫ 2π

0

(
∂κ
∂θ

)2
dθ is uniformly bounded under the flow (2.1).

Proof. Using the evolution equation of κ , one can compute

1

2

d

dt

2π∫
0

(
∂κ

∂θ

)2

dθ =
2π∫

0

∂κ

∂θ

∂

∂θ

[
κ2
(

∂2κ

∂θ2 − λ
∂2κ̃

∂θ2 + κ − λ̃κ

)]
dθ

= −
2π∫

0

∂2κ

∂θ2 κ2
(

∂2κ

∂θ2 − λ
∂2κ̃

∂θ2 + κ − λ̃κ

)
dθ

= −
2π∫

0

κ2
(

∂2κ

∂θ2

)2

dθ + λ

2π∫
0

κ2 ∂2κ̃

∂θ2

∂2κ

∂θ2 dθ −
2π∫

0

κ3 ∂2κ

∂θ2 dθ

+ λ

2π∫
0

κ̃κ2 ∂2κ

∂θ2 dθ.

Using integration by parts, one obtains

λ

2π∫
κ2 ∂2κ̃

∂θ2

∂2κ

∂θ2 dθ = −λ

2π∫
∂κ

∂θ

(
2κ

∂κ

∂θ

∂2κ̃

∂θ2 + κ2 ∂3κ̃

∂θ3

)
dθ
0 0
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= −λ

2π∫
0

2κ

(
∂κ

∂θ

)2
∂2κ̃

∂θ2 dθ − λ

2π∫
0

κ2 ∂κ

∂θ

∂3κ̃

∂θ3 dθ

≤ 2�MM̃2

2π∫
0

(
∂κ

∂θ

)2

dθ + �

2

⎡⎣ 2π∫
0

(
∂κ

∂θ

)2

dθ + 2πM4(M̃3)
2

⎤⎦ ,

−
2π∫

0

κ3 ∂2κ

∂θ2 dθ = 3

2π∫
0

κ2
(

∂κ

∂θ

)2

dθ ≤ 3M2

2π∫
0

(
∂κ

∂θ

)2

dθ,

λ

2π∫
0

κ̃κ2 ∂2κ

∂θ2 dθ = −λ

2π∫
0

∂κ

∂θ

(
∂κ̃

∂θ
κ2 + 2κκ̃

∂κ

∂θ

)
dθ

= −2λ

2π∫
0

κκ̃

(
∂κ

∂θ

)2

dθ − λ

2π∫
0

κ2 ∂κ̃

∂θ

∂κ

∂θ
dθ

≤ 2�MM̃

2π∫
0

(
∂κ

∂θ

)2

dθ + �

2

⎡⎣ 2π∫
0

(
∂κ

∂θ

)2

dθ + 2πM4M̃2

⎤⎦ ,

where the constant M̃i is the bound of | ∂i κ̃
∂θ i | used in the proof of Lemma 2.3. There exist two 

constants C1 and C2 independent of time such that

1

2

d

dt

2π∫
0

(
∂κ

∂θ

)2

dθ ≤ C1

2π∫
0

(
∂κ

∂θ

)2

dθ + C2.

Noticing that

d

dt

2π∫
0

lnκdθ =
2π∫

0

κ

(
∂2κ

∂θ2 − λ
∂2κ̃

∂θ2 + κ − λ̃κ

)
dθ

≤ −
2π∫

0

(
∂κ

∂θ

)2

dθ + �MM̃2 · 2π + M2 · 2π,

one obtains

d

dt

⎡⎣ 2π∫ (
∂κ

∂θ

)2

dθ + (2C1 + 1)

2π∫
lnκdθ

⎤⎦

0 0
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≤ −
2π∫

0

(
∂κ

∂θ

)2

dθ + 2C2 + 2π(2C1 + 1)(�MM̃2 + M2)

≤ −
⎡⎣ 2π∫

0

(
∂κ

∂θ

)2

dθ + (2C1 + 1)

2π∫
0

lnκdθ

⎤⎦
+ (2C1 + 1) · 2π lnM + 2C2 + 2π(2C1 + 1)(�MM̃2 + M2).

Integrating the above inequality can give us that

2π∫
0

(
∂κ

∂θ

)2

dθ + (2C1 + 1)

2π∫
0

lnκdθ ≤ C3,

for some constant C3 independent of time. So

2π∫
0

(
∂κ

∂θ

)2

dθ ≤ C3 − (2C1 + 1)

2π∫
0

lnκdθ

= C3 + (2C1 + 1)

2π∫
0

lnρdθ

≤ C3 + (2C1 + 1)

2π∫
0

ρdθ

= C3 + (2C1 + 1)L(t)

≤ C3 + (2C1 + 1)C := C4,

where ρ is the radius of curvature and C, given by Inequality (2.4), is a constant dependent on 
the initial curve X0. �

The estimate of 
∫ 2π

0

(
∂κ
∂θ

)2
dθ is a key step to the proof of convergence for the flow (2.1). Let 

θ1, θ2 be two arbitrary points in [0, 2π ]. It follows from Lemma 3.1,

|κ(θ1, t) − κ(θ2, t)| =

∣∣∣∣∣∣∣
θ2∫

θ1

∂κ

∂θ
dθ

∣∣∣∣∣∣∣≤
√|θ1 − θ2|

√√√√√ 2π∫
0

(
∂κ

∂θ

)2

dθ ≤√C4|θ1 − θ2| 1
2 ,

where C4 = C3 + (2C1 + 1)C is a constant independent of time. So κ(·, t) is equicontinuous. 
Because the curvature is also uniformly bounded by Lemma 2.2 (κ > 0) and Lemma 2.4 (κ ≤ M). 
Ascoli–Arzelà Theorem tells us that there is a convergent subsequence of κ(·, t). Furthermore 
one has the following convergence.
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Theorem 3.2. Under the flow (2.1), the curvature of the evolving curve has a limit

lim
t→∞κ(θ, t) =

√
Ã

A
κ̃(θ). (3.1)

Proof. Let κ(θ, ti ) be a convergent subsequence of the curvature, where ti → ∞ as i → ∞. 
Denote by κ∞(θ) the limit of κ(θ, ti). Compute that

d2L

dt2 = d

dt

⎛⎝−
2π∫

0

κ

κ̃
dθ + 2π∫ 2π

0
κ̃
κ
dθ

⎞⎠

= −
2π∫

0

κ2

κ̃

(
∂2κ

∂θ2 − λ
∂2κ̃

∂θ2 + κ − λ̃κ

)
dθ − λ2

2π

2π∫
0

−κ̃

(
∂2κ

∂θ2 − λ
∂2κ̃

∂θ2 + κ − λ̃κ

)
dθ

= 2

2π∫
0

κ

κ̃

(
∂κ

∂θ

)2

dθ −
2π∫

0

κ2

κ̃2

∂κ

∂θ

∂κ̃

∂θ
dθ + λ

2π∫
0

κ2

κ̃

∂2κ̃

∂θ2 dθ −
2π∫

0

κ3

κ̃
dθ

+λ

2π∫
0

κ2dθ + λ2

2π

2π∫
0

∂2κ̃

∂θ2 κdθ − λ3

2π

2π∫
0

κ̃
∂2κ̃

∂θ2 dθ

+ λ2

2π

2π∫
0

κ̃κdθ − λ3

2π

2π∫
0

κ̃2dθ.

Since

2

2π∫
0

κ

κ̃

(
∂κ

∂θ

)2

dθ ≤ 2
M

m̃
C4,

−
2π∫

0

κ2

κ̃2

∂κ

∂θ

∂κ̃

∂θ
dθ ≤ M2M̃1

m̃2

√
2π
√

C4,

and all the other terms of d
2L

dt2 have bounds independent of time, there is a constant C5 depending 
on the initial curve such that ∣∣∣∣d2L

dt2

∣∣∣∣≤ C5.

Noticing that dL is nonpositive, one can integrate of it to obtain

dt
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∞∫
0

dL

dt
dt =

2π∫
0

p̃

κ∞
dθ −L(0) > −L(0).

It follows from (i) dL
dt

≤ 0, (ii) the boundedness of 
∣∣∣ d2L

dt2

∣∣∣ and (iii) the lower bound of 
∫∞

0
dL
dt

dt , 
there exists a limit immediately

lim
t→∞

dL

dt
= 0.

So the limit of the subsequence κ(θ, ti) satisfies that

−
2π∫

0

κ∞
κ̃

dθ + 2π∫ 2π

0
κ̃

κ∞ dθ
= 0.

The equality of Cauchy–Schwarz Inequality tells us that κ∞/̃κ is a constant. Because the ratio 
of the area bounded by the limiting curve and that by the target curve is A/Ã, one has the limit 
(3.1) for subsequence {κ(θ, ti)}.

It is proved that every convergent subsequence of κ(·, t) tends to the same limit. So the cur-
vature itself converges and Equation (3.1) holds. �
3.2. C∞-convergence

In the following, we shall show that all the derivatives of the curvature are uniformly bounded. 
Combining the convergence of κ (3.1), one obtains that the curvature converges in the C∞ sense.

Because κ(θ, t) converges as t → ∞, there exists a positive constant m independent of time 
such that

κ(θ, t) ≥ m > 0 (3.2)

for all θ ∈ [0, 2π ] and t ∈ [0, ∞). So the evolution equation of the curvature (2.4) is always 
uniformly parabolic. This is an important condition to show the C∞-convergence of κ . The 
method in Lin–Tsai’s paper [20] can be applied here. From now on, subindex stands for partial 

derivatives, such as ft = ∂f
∂t

, fθ = ∂f
∂θ

, fθθ = ∂2f

∂θ2 , · · · .

Lemma 3.3. There is a positive constant M1 dependent on X0 and X̃ such that

|κθ | ≤ M1. (3.3)

Proof. Define ϕ = κθ + μ
2 κ2. Then ϕθ = κθθ + μκκθ and ϕθθ = κθθθ + μ(κθ )

2 + μκκθθ . Using 
the evolution equation of κ , one can compute that

ϕt = κ2ϕθθ + 2κκθϕθ − 3μκ2ϕ2 + 3μ2κ4ϕ + 3κ2ϕ − 2λ̃κθθ κϕ − 2λ̃κκϕ

− 3
μ3κ6 − 1

μκ4 − λ̃κθθθ κ
2 − λ̃κθκ

2.

4 2
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Set μ = 1. Since ϕ(θ∗, t) > 0 at the point θ∗ where ϕ(·, t) attains its maximum value with 
respect to θ , one has estimate at this point (θ∗, t)

ϕt ≤ κ2ϕθθ + 2κκθϕθ − 3m2ϕ2 + (3M4 + M2 + 2M̃2�M + 2�M̃M)ϕ

+ 3

2
M4 + �M̃3M

2 + �M̃1M
2.

Once ϕ ≥ −C1+
√

C2
1+12m2C2

−6m2 , ϕmax(t) := max{ϕ(θ, t)|θ ∈ [0, 2π ]} is decreasing as time goes, 

where C1 = 3M4 +M2 + 2�M̃2M + 2�M̃M and C2 = 3
2M4 +�M̃3M

2 +�M̃1M
2. The max-

imum principle tells us that there exists a constant

�1 = max

⎧⎪⎨⎪⎩ϕmax(0),
−C1 +

√
C2

1 + 12m2C2

−6m2

⎫⎪⎬⎪⎭
such that ϕ ≤ �1 for all (θ, t) ∈ [0, 2π ] × [0, +∞).

Set μ = −1. If ϕ(θ∗, t) ≤ 0 at the point θ∗ where ϕ(·, t) attains its minimum value with respect 
to θ , then

ϕt ≥ κ2ϕθθ + 2κκθϕθ + 3m2ϕ2 − (3M4 + M2 + 2�MM̃2 + 2�M̃M)ϕ

−3

2
M4 − �M2M̃3 − �M2M̃1.

A similar argument implies that there exists a constant

�2 = min

⎧⎪⎨⎪⎩0, ϕmin(0),
−C1 −

√
C2

1 + 12m2C2

6m2

⎫⎪⎬⎪⎭
such that ϕ ≥ �2 for all (θ, t) ∈ [0, 2π ] × [0, +∞).

Combining the above two cases, one obtains a uniform bound of κθ in (3.3). �
Lemma 3.4. There is a positive constant M2 dependent on X0 and X̃ such that

|κθθ | ≤ M2. (3.4)

Proof. The proof of this lemma is similar to that of Lemma 3.3. Considering the function ϕ =
κθθ + μ

2 (κθ )
2, one has the evolution equation

ϕt = κ2ϕθθ + 4κκθϕθ − (μκ − 2)κϕ2 + lower order terms of ϕ.

Choosing μ = 2M+1
m2 , one has −(μκ − 2)κ ≤ −1. So the above equation implies that

ϕt ≤ κ2ϕθθ + 4κκθϕθ − ϕ2 + f1(λ, κ, κθ )ϕ + f2(λ, κ, κθ ),
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where f1 and f2 are polynomials with bounded and smooth coefficients. Once ϕ is large enough, 
ϕmax(t) is decreasing as time goes. So κθθ must stay bounded above on [0, 2π ] × [0, ∞). The 
proof of the lower bound is similar. �

Since |κθ | and |κθθ | are uniformly bounded, there is a convergent subsequence κθ(θ, ti ) as 
ti tends to infinity. Theorem 3.2 tells us that κ(θ, t) converges to 

√
Ã/Aκ̃(θ) when t → ∞. So 

every convergent subsequence of κθ tends to 
√

Ã/Aκ̃θ . One obtains that:

Corollary 3.5. The derivative κθ converges to 
√

Ã/Aκ̃θ as time tends to infinity.

Lemma 3.6. There is a positive constant Mi dependent on X0 and X̃ such that the ith derivative 
of κ with respect to θ satisfies ∣∣∣κ(i)

∣∣∣≤ Mi, i = 3,4, · · · . (3.5)

Proof. The induction method will be used. Suppose κθ , κθθ , · · · , κ(n−1) are all bounded on 
[0, 2π ] × [0, ∞) for n ≥ 3. Choosing a similar function ϕ = κ(n) + μ

2 (κ(n−1))2, one has its 
evolution equation

ϕt = κ2ϕθθ + (2nκκθ − μκ2κ(n−1))ϕθ − μκ2ϕ2

+ P1(μ, κ, κθ , κθθ , · · · , κ(n−1))ϕ + P2(μ, κ, κθ , κθθ , · · · , κ(n−1)),

where P1 and P2 are polynomials with of κ , κ̃ and their derivatives. Noticing that 0 < m ≤
κ ≤ M , one can choose proper μ and follow the same argument in the proof of Lemma 3.3 or 
Lemma 3.4 to show that ϕ and κ(n) are also uniformly bounded on [0, 2π ] × [0, ∞). �

Using the evolution equation of the curvature, one obtains that all the derivatives of the κ are 
uniformly bounded. Since κ converges as t → ∞, one has the C∞ convergence of κ :

Corollary 3.7. Under the flow (2.1), one has the convergence of the derivatives

lim
t→∞

∂nκ

∂θn
=
√

Ã

A

∂nκ̃

∂θn
, n = 2,3,4, · · · .

4. Convergence of the evolving curve

As is well known, the curvature uniquely determines a curve up to transformations using the 
Euclidean group. Although the curvature of the evolving curve under the flow (2.1) is proved 
to converge a limit (Equation (3.1)) as time goes to infinity, the study of this flow is not quite 
complete. To show that the flow effectively deforms X0 into the target curve, one needs to prove 
that the evolving curve X(·, t) can not escape to infinity or oscillate indefinitely. To fulfill the 
proof of Main Theorem, we shall show that the evolving curve converges to a fixed limiting curve 
X∞ (congruent to 

√
A/Ã X̃) as time tends to infinity. The ingredient is to prove the convergence 

of the support function by considering the movement of the Steiner point (see Definition 4.1).
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In order to better understand the convergence of the flow (2.1), we first review a special case, 
i.e. Gage’s area-preserving flow. Under his flow, one has the evolution equation of the curvature

κt = κ2(κθθ + κ − 2π

L
).

Furthermore, one obtains that

1

2

d

dt

2π∫
0

(κθ )
2dθ = −

2π∫
0

κ2(κθθ )
2dθ + 2

2π∫
0

κ(κθ )
2(κ − 2π

L
)dθ +

2π∫
0

κ2(κθ )
2dθ.

Since lim
t→∞κ =

√
π
A

(a constant), one has an inequality 
∫ 2π

0 (κθθ )
2dθ ≥ (4 − ε) 

∫ 2π

0 (κθ )
2dθ

(Lemma 5.7.9 in [14]) for ε > 0 is small and t is large enough. Thus there exists T0 such that

1

2

d

dt

2π∫
0

(κθ )
2dθ ≤

[
−(

π

A
− ε)(4 − ε) + 3

(π

A
+ ε
)] 2π∫

0

(κθ )
2dθ,

when t > T0. Choosing ε small enough, one has the exponential decay of 
∫ 2π

0 (κθ )
2dθ . Because

2π∫
0

(κ − 2π

L
)2dθ

=
L∫

0

(κ − 2π

L
)2κds ≤ M

L∫
0

(κ − 2π

L
)2ds

ξ=(2πs)/L========= M

2π∫
0

(κ − 2π

L
)2 L

2π
dξ ≤ L

2π
M

2π∫
0

(κξ )
2dξ

= L

2π
M

L∫
0

(κs)
2 L2

4π2

2π

L
ds ≤ L2

4π2 M2

2π∫
0

(κθ )
2dθ

≤ L2
0

4π2 M2

2π∫
0

(κθ )
2dθ,

Sobolev Inequality tells us that the speed of the flow |κ − 2π
L

| also exponentially decays. So the 
evolving curve converges to a fixed limiting curve.

Because the curvature under the flow (2.1) does not always converge to a constant, the above 
technique is not applicable to show that the speed of the flow |κ − λ̃κ| exponentially decays. 
Thanks to the work by Chou–Zhu [7] (or see Chapter 3 of [9]), one can solve this problem by 
considering the evolution of Steiner point and the support function for X(·, t).
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Definition 4.1 (see [12]). Let X(θ) be a convex curve in the plane parameterized by its tangent 
angle θ . The Steiner point of this curve is defined by

S = 1

2π

2π∫
0

X(θ)dθ.

Denote by p := −〈X, N〉 the support function with respect to the origin. The Steiner point 
can be expressed as

S = 1

2π

2π∫
0

(pθT − pN)dθ = − 1

π

2π∫
0

pNdθ

= 1

π

⎛⎝ 2π∫
0

p sin θdθ, −
2π∫

0

p cos θdθ

⎞⎠ .

Remark 4.2. Since the Steiner point is mean value of X, it lies in the domain bounded by this 
convex curve. One can choose another base point to define a new support function of X, but the 
Steiner point is irrelevant to the choice of base point. Inequality 2.4 tells us that the length of the 
evolving curve is bounded by a constant independent of time. The width (< L(t)

2 ) of the region 
bounded by X(·, t) also has an upper bound independent of time. So the evolving curve under 
the flow (2.1) can not escape to infinity if the Steiner point S(t) converges to a fixed point.

Now we shift the support function to p̂ = p + 〈S(t), N〉 and consider a function I (t) of p̂:

I (t) =
2π∫

0

p̂

κ̃
dθ.

I (t) has a lower bound since I (t) ≥ 1
M̃

∫ 2π

0 p̂dθ = L(t)

M̃
≥

√
4πA

M̃
. One can compute the evolution 

of I (t) to obtain

dI

dt
=

2π∫
0

pt

κ̃
dθ +

2π∫
0

1

κ̃

〈
dS

dt
,N

〉
dθ

=
2π∫

0

λ̃κ − κ

κ̃
dθ +

〈
dS

dt
,

2π∫
0

1

κ̃
Ndθ

〉

=
L∫

(λ̃κ − κ)κ

κ̃
ds +

〈
dS

dt
,0

〉

0
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= −
L∫

0

(λ̃κ − κ)2

κ̃
ds + λ

L∫
0

(λ̃κ − κ)ds

= −
2π∫

0

(λ̃κ − κ)2

κ̃κ
dθ + 0 = −

2π∫
0

(pt )
2

κ̃κ
dθ,

where we have used the closing condition of convex curves 
∫ 2π

0
1
κ̃
Ndθ = 0 and the area-

preserving property of the flow. I (t) is decreasing and has a lower bound, so it converges as 
time tends to infinity. From the evolution of I , one obtains

2π∫
0

(pt )
2dθ ≤ −M̃M

dI

dt
. (4.1)

Lemma 4.3. Define S̃ = ∫ 2π

0
p

κ̃2 Ndθ . S̃(t) converges to a fixed point under the flow (2.1).

Proof. Because the limit (3.1) implies that lim
t→∞pt = − lim

t→∞(κ − λ̃κ) = 0, there exists T0 > 0

such that |pt/λ̃κ| < 1 and 1 − pt/λ̃κ ≥ 1
2 if t > T0. It follows from the closing condition,

0 =
2π∫

0

eiθ

κ
dθ =

2π∫
0

eiθ

λ̃κ − pt

dθ

=
2π∫

0

eiθ

λ̃κ

[
1 + pt

λ̃κ
+
( pt

λ̃κ

)2 +
( pt

λ̃κ

)3 + · · ·
]

dθ

= 0 +
2π∫

0

pte
iθ

λ2κ̃2 dθ +
2π∫

0

(pt )
2eiθ

λ3κ̃3

(
1 + pt

λ̃κ
+ · · ·

)
dθ,

i.e.,

2π∫
0

pte
iθ

κ̃2 dθ = −1

λ

2π∫
0

(pt )
2eiθ

κ̃3

1

1 − pt/λ̃κ
dθ.

Computing the module of both sides can give us that

⎡⎢⎣
⎛⎝ 2π∫

pt cos θ

κ̃2 dθ

⎞⎠2

+
⎛⎝ 2π∫

pt sin θ

κ̃2 dθ

⎞⎠2⎤⎥⎦
1
2

0 0
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≤ 2

λ

⎡⎢⎣
⎛⎝ 2π∫

0

(pt )
2| cos θ |
κ̃3 dθ

⎞⎠2

+
⎛⎝ 2π∫

0

(pt )
2| sin θ |
κ̃3 dθ

⎞⎠2⎤⎥⎦
1
2

≤ 2
√

2

λm̃3

2π∫
0

(pt )
2dθ.

It follows from the above estimate and Inequality (4.1),

∣∣∣∣dS̃

dt

∣∣∣∣=
∣∣∣∣∣∣

2π∫
0

pt

κ̃2 Ndθ

∣∣∣∣∣∣
=
⎡⎢⎣
⎛⎝ 2π∫

0

pt

κ̃2 sin θdθ

⎞⎠2

+
⎛⎝ 2π∫

0

pt

κ̃2 cos θdθ

⎞⎠2⎤⎥⎦
1
2

≤ 2
√

2

λm̃3

2π∫
0

(pt )
2dθ ≤ −2

√
2M̃M

λm̃3

dI

dt
.

Let t ′ and t ′′ be large enough positive time. Since

|S̃(t ′) − S̃(t ′′)| =

∣∣∣∣∣∣∣
t ′′∫

t ′

dS̃

dt
dt

∣∣∣∣∣∣∣≤
2
√

2M̃M

λm̃3

∣∣∣∣∣∣∣
t ′′∫

t ′

dI

dt
dt

∣∣∣∣∣∣∣=
2
√

2M̃M

λm̃3 |I (t ′) − I (t ′′)|

and I (t) converges as t → ∞, S̃(t) converges as well. �
By its definition, p̂ = −〈X − S(t), N〉 means the distance from Steiner point to the tangent of 

X at θ . So

0 < p̂ <
L

2
≤ C

2
. (4.2)

Rotate the xy-coordinate system such that the Steiner point can be expressed as S(t) = (S1(t), 0), 
where S1(t) ≥ 0. Noticing that

S̃ =
2π∫

0

p̂

κ̃2 Ndθ −
2π∫

0

〈S,N〉
κ̃2 Ndθ

=
2π∫

p̂

κ̃2 Ndθ −
2π∫

(S1 sin2 θ,−S1 sin θ cos θ)

κ̃2 dθ,
0 0
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one obtains that S1 (i.e., |S|) has a bound independent of time. So |X| has a bound

|X(·, t)| ≤ |X(·, t) − S(t)| + |S(t)| < L(t)

2
+ |S(t)|.

Thus the evolving curve can not escape to infinity in the plane. To prevent the case of indefinite 
oscillation, one needs to show that the support function p of the evolving curve also converges.

Lemma 4.4. The support function of the evolving curve converges as time tends to infinity. So 
the evolving curve itself converges.

Proof. Because |p| ≤ |X| for all θ and all t , the support function is also bounded by a constant 
independent of time. Therefore, pθθ = 1/κ − p has a bound independent of time and so is pθ =∫ θ

0 pθθ (φ, t)dφ + pθθ (0, t). There is a convergent subsequence of p(·, t).
Every convergent subsequence of the support function determines a family of convergent 

evolving curve. Suppose X(θ, t ′) and X(θ, t ′′) converge to different X1(θ) and X2(θ) respec-
tively. Denote by pi the support function of Xi , i = 1, 2. Since (κi(θ, t) − λ(t )̃κ(θ)) → 0 as 
t → ∞ for every tangent angle θ , X1 and X2 differs by a translation. So

p1 − p2 = l1 cos θ + l2 sin θ

for some l1 and l2. Since sin θ
κ̃

and cos θ
κ̃

are linearly independent, the Cauchy–Schwarz inequality 
implies

⎡⎣ 2π∫
0

cos2 θ

κ̃2 dθ

2π∫
0

sin2 θ

κ̃2 dθ

⎤⎦1/2

>

2π∫
0

sin θ cos θ

κ̃2 dθ.

Thus, from the following identity

2π∫
0

(l1 cos θ + l2 sin θ)
N

κ̃2 dθ

=
2π∫

0

p1
N

κ̃2 dθ −
2π∫

0

p2
N

κ̃2 dθ = lim
t ′→∞

S̃(t ′) − lim
t ′′→∞

S̃(t ′′) = 0,

one can conclude l1 = l2 = 0, i.e. p1 ≡ p2. Since the support function uniquely determines the 
curve, it is shown that the evolving curve converges. �

The proof of the Main Theorem is a combination of Lemma 2.4, Theorem 2.5, Theorem 3.2, 
Corollary 3.7, Lemma 4.3 and Lemma 4.4.

In 2001, Andrews [2] introduced Minkowski differential geometry and considered a volume-
preserving anisotropic mean curvature flow for convex surfaces. Andrews’ model (1) can deform 
a convex surface into its Wulff shape. This work may be a good reference to construct a flow 
which deforms a convex surface to another one.
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It is similar to Gage’s area-preserving flow for convex curves [11], the flow (1.5) can not 
evolve generic embedded curves to convex curves. We end this paper by asking a general case 
of Yau’s problem: Whether one can define a parabolic curvature flow to evolve one closed and 
embedded curve X0 to another one?
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