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Abstract

We show that the Moore—Gibson-Thomson equation

TOty + a0y — CZA)’ —DbAdy= katt(yz) + Xo @)U

is controlled by a force that is supported on an moving subset w(¢) of the domain, satisfying a geometrical
condition. Using the concept of approximately outer invertible map, a generalized implicit function theorem

and assuming that y := o — % > 0, the local null controllability in the nonlinear case is established.
Moreover, the analysis of the critical value y = 0 for the linear equation is included.
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1. Introduction

Our concern in this paper is the study of controllability for the following equation of third
order in time

Ayt —Csz"‘Tyttt —bAy =F(,y, Y, Y11)s (1.1

where t is a positive constant accounting for relaxation (the relaxation time), c is the speed of
sound, b = § + tc? > 0, where § is the diffusivity of sound. The case b =0 and F (¢, y, y;, y1r) =
B(¥?); is known as the Westervelt equation. This equation is employed for modeling the finite-
amplitude nonlinear wave propagation in a soft tissue. In such case y represents the pressure of
the acoustic field generated by a high-intensity focused ultrasound (HIFU). HIFU is a therapeu-
tic method for a non-invasive ablation of benign and malignant tumors [45]. In such case, the
first two terms in equation (1.1) describe the linear lossless wave propagating at a small-signal
sound speed. The third term represents the loss due to thermal conduction and fluid viscosity.
The nonlinear term F accounts for acoustic nonlinearity which may considerably affect thermal
and mechanical changes within the tissue [22].

One of the main issues concerning this equation is the study of how a memory term creates
damping mechanism and whether it causes energy decay. This issue is an ongoing research of
I. Lasiecka, B. Kaltenbacher and co-workers [16,23-25,29]. Observe that thorough study of the
linearized models is a good starting point for better understanding the nonlinear models. Actually,
the work [36] has shown that, even in the linear case, rich dynamics appear. This model is known
as the Moore—Gibson-Thomson equation [24].

However the study of controllability properties of the Moore—Gibson—Thomson equation
(MGT equation) appears as an untreated topic in the literature that deserves to be investigated.
The development of new knowledge on this area of research is an interesting and challenging
open problem in all of its variants.

The first goal of this paper is to study the interior controllability of the linear MGT equation,
which is obtained from equation (1.1) with F =0, as follows

TYrer + XY — CZA)’ —bAy, = xou ,inQ,
y = 0 ,onl, (1.2)
yO0) =yo, y(O0)=y1, y«(0) = y ,inQ.

Here, 2 C R”, n > 1 is a bounded domain with smooth boundary 2. We denote by Q = Q x
0, T)and I' =02 x (0, T), T > 0. Without loss of generality we assume that t = 1.

The control u is applied on an open subset w of the domain €2. This fact is modeled by the
multiplicative factor x, which stands for the characteristic function of the set w that constitutes
the support of the control.

Specifically, we consider the problem of null controllability of equation (1.2). In other words,
given a final time 7 > 0 and initial data for the system (o, y1, ¥2) in a suitable functional set-
ting (see Section 2), we analyze the existence of a control u € L2((0, T) x w) such that the
corresponding solution of equation (1.2) satisfies the resting condition at the final time t = T':

yx, T)=yx,T)=y4(x,T)=0 in Q. (1.3)
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Since the equation (1.2) has internal damping —b Ay, (also called structural damping), which
produces a strong smoothing effect, resulting in the well posedness of equation (1.1) (see [25]),
thus, it is expected to find poor control properties for equation (1.1). This is because the damping
generates accumulation points in the spectrum. We refer to [36] for an extensive analysis and
numerical validation of the spectrum of the MGT equation. Such a phenomenon was first noticed
in [44] for the beam equation with internal damping, in [31] for the plate equation with internal
damping, in [38] for the linearized Benjamin—-Bona—Mahony equation, and in [37,40] for the
structurally damped wave equation.

These poor control properties can also be seen if we rewrite the equation (1.1) with F =0 as
follows

2
c
e + oy —bA(zy‘f‘yt) =0. (1.4)
The above expression motivates the introduction of the following change of variable
)
Zzz)’-f—}’t» (1.5)

which implies that the equation (1.2) can be rewritten as a coupled system

{ 2 —bAZ+ vz — yBz+ vy 0, (1.6)

y+By = z

where y (=« — %2 > 0 denotes the critical coefficient and g := %. The critical coefficient y is
taken positive because in [12] the authors proved that the equation (1.2) exhibits chaotic behavior
when y is negative.

Then, the system under consideration can be seen as a wave equation with viscous damping
(yz:) coupled with a ODE, which implies that there exist vertical rays in the space—time vari-
able (x, ) which do not propagate at all in the space variable x, thus also making the study of
controllability—observability impossible in a cylindrical subset w x (0,7) C Q2 x (0,T) = Q.
Regarding that, we note that the wave equation needs a geometric control condition (GCC) for
the control of waves [3] and, because of the existence of vertical rays, we need to control the
system with w = Q. However, from an applied point of view, one is interested in employing
localized control w C 2. Hence, we cannot use controls supported in a cylindrical subset of Q.
Such kind of phenomenon was observed in the study of the null controllability of viscoelastic
equations with viscous Kelvin—Voigt and frictional dampings in [10], in which the system is not
null controllable due to the existence of time-like characteristic hyperplanes, when the control
domain is a nontrivial space—time cylinder.

A solution to this problem is to consider a moving distributed control with a long control time,
such that the support of the control, which is moving, can visit all the domain. This technique
was used to study the controllability properties by Castro and Zuazua in [8] and by Khapalov
in [27] for parabolic equations, by Rosier and Zhang in [42] for the Benjamin—-Bona—Mahony
equation, by Martin, Rosier and Rouchon in [37] for the wave equation in the one-dimensional
setting, by Chaves, Rosier and Zuazua in [10] for a system of viscoelasticity, by Lu, Zhang and
Zuazua in [34] for the wave equation with memory, and by Chaves, Zhang and Zuazua in [11] for
evolution equations with memory. In the one-dimensional case, the idea of considering a moving
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control domain, also called moving point control, was introduced by J.L. Lions in [33] for the
wave equation.

For that reason, in this work we consider that the control is supported on an subset w(#) of the
domain. The support of the control « at time ¢ may move in time and (1) = Xw(:)(*) stands for
the characteristic function of the set w(¢). The control u € L?(w) is an applied force localized in
w(t), where w :={(x,1): x ew(t), t € (0, T)}.

Obviously, it is necessary to impose a certain geometric condition on w so that the control
domain can visit all the domain 2. Inspired by [10,34,43] and by the coupled system (1.6) of
a wave equation with a ODE, we consider the following geometrical condition on the moving
control domain.

Definition 1.1. We say that an open set U C Q x (0, T) satisfies the Moving Geometric Control
Condition IMGCC for short), if

a) all rays of geometric optics of the wave equation enter into U before the time 7'.
b) for all xg € Q, the vertical line {(xo, s) : s € R} enters into U before the time T and

inf sup (thr — 1)) > 0. (1.7)
XYeQ (41 ) x{x}cU

A few remarks concerning the MGCC:

Remark 1.2.

(1) The condition a) is the basic assumption to be able to obtain the controllability of the wave
equation, which follows the classical laws of Geometric Optics, see [3,47]. This result was
proved by means of microlocal analysis techniques.

(2) If we denote by Ty the infimum of 7 > 0 such that U satisfies the MGCC, we obtain that the
set O = U;c0,1U (¢) is a control domain that satisfies the usual GCC for a time T > T.

(3) The condition b) needs that vertical rays, which do not propagate in space, also reach the
control set and stay in it for some time. In practice this means that the cross section U (¢) of
U has to move as time ¢ evolves covering the whole domain. See [10,34,43] for more details
concerning this condition.

Under the previous condition on the control domain, we obtain the first main result of this
paper. For sake of simplicity we denote by X the Hilbert space H>(£2) N H(} (2).

Theorem 1.3. Let T > 0 be such that w satisfy the MGCC and y > 0. Then for all (yo, y1, y2) €
X x X x HO1 (), there exists a function u € L*(w) such that the solution of

Tyt + XY — CZA)’ —bAy, = XYonu ,inQ,
y =0 ,onT, (1.8)
yO0) =yo, y:(0)=y1, y«(0) = , in <2,
fulfills
yT) =y (T)=y,(T)=0, inQ. (1.9)
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The second goal of this paper is the analysis of the interior controllability for the nonlinear
MGT equation which is obtained from (1.1) with F (¢, y, y;, 1) = k(y®)i1, k > 0, as follows

k()i + Xw@u  in Q,
= 0 ,onT, (1.10)

y
y(0)=yo, y(0)=y1, y#(0) = »» , in Q.

Tyt + Y — CZA}’ —bAy;

We refer to [26,28,30] for the development of well posedness and exponential decay of energy
to this nonlinear equation using tools of semigroup theory, and to the references [1,7,17,18,35]
for studies on regularity, extensions, methods and qualitative properties of the linear equation.

As in the linear case, we consider the null controllability for (1.10) using again a moving
control domain. Since (1.10) is a nonlinear type equation, we study a local controllability result.
Namely, we say that equation (1.10) is locally null controlable at time 7 > O if there exists a
neighborhood of the origin such that for any initial data (yo, y1, y2) belonging to this neighbor-
hood, there exists a control u € L?(w) such that the solution y of (1.10) satisfies

y(T) = Yt(T) = yn(T) = O, in Q.

The usual way to establish controllability of a nonlinear equation is to linearize the nonlinear
problem into some coupled linear systems. Then, for the controllability result established for
the linearized system, some fixed-point or implicit function results can be applied to establish
controllability for the nonlinear system. The technique of fixed-point arguments (e.g. Kukatani’s
Theorem [19]) was used to study the null controllability in [4,5] for a fluid—structure problem
and in [21] for a chemotaxis system, and the implicit function Theorem was used, among others,
in [13,14] for two and three dimensional Navier—Stokes system, respectively. In all these arti-
cles, the main point of the proof was to establish a Carleman estimates of the linearized adjoint
equation. This inequality together with appropriate regularity results provides the suitable spaces
of functions for the definition of an operator where the implicit function Theorem, or fixed-point
Theorem, can be applied.

Since in this article we prove the Theorem 1.3 without Carleman estimates, we cannot use
the classic result of the implicit function Theorem as in [13,14], where the operator has to be of
class C! with surjective derivative. With the notion of outer invertible operator and Hadamard
derivative, a generalized implicit function Theorem is employed in our case [15]. Thus, we only
need to prove that the derivative of a suitable operator is compact.

Then, from the null controllability in the linear case Theorem 1.3 and a Generalized Implicit
Function Theorem (see Section 4) we get the second main result of the paper, that is the local
null controllability of the nonlinear MGT equation on a bounded domain.

Theorem 1.4. Let T > 0 be such that w fulfills the MGCC and y > 0. Then there exists p > 0
such that if

||(y0sy1’y2)||X><XXy01(Q)5,07 (1.11)

then there are y € C([0, T]; X x X x Hd (R)) and u € L*(w) such that the solution y of (1.10)
Sfulfills

y(T) =y (T)=yu(T)=0, inS. (1.12)
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Theorems 1.3 and 1.4 are, as far as we know, the first results concerning the control property
of the linear and nonlinear MGT equation. In this sense, the main contribution of this work is not
only the null controllability of the equation, but also to give new insights showing that, in order
to obtain the controllability, it is necessary that the control moves in such a way that it can cross
the whole domain. Concerning methods, we remark that to our knowledge, this is the first time
that the results in [15] are used in control theory. This way, we propose a novel way to deal with
controllability for nonlinear equations.

The remaining of this paper is organized as follows. In section 2 we present some basic results
about the well posedness of the MGT equation which are needed for the controllability property.
In section 3 we prove the first result of our work, namely Theorem 1.3, separating the cases
y > 0 and y = 0, where y denotes the critical coefficient. In section 4 we treat the nonlinear
MGT equation and we prove Theorem 1.4. Finally, in section 5 we provide additional comments
concerning the main conclusions of this paper and directions of future work.

2. Preliminaries

For the sake of completeness, we state the main results regarding the well posedness and
regularity of solutions for the linear and nonlinear MGT equation.

2.1. Well posedness of the linear MGT equation
In this section we present the well posedness result needed for studying the control system

(1.8). We first review some results given by Marchand, McDevitt and Triggiani in [36] (also
in [25]). Let us consider the equation

Virt + Oy — Csz —bAy, = f ,inQ,
y = 0 ,onT, 2.1)
yO)=yo, »O0)=y1, y40) = y» ,inQ,

where (yo, y1, y2) belongs to some function spaces to be specified below.
Using the change of variable (1.5), the problem (2.1) can be written as a coupled system

i —bAZ+yz —yBz+yBy = f ,inQ,
yt + ,3)’ = Z ) in Q’

y=z = 0 ,onTl, 22)
z2(0)=z0, z:(0)=2z1, y(0) = yo ,inQ.

We know that the energy associated to the MGT equation decay exponentially when the criti-
cal coefficient y is strictly positive and is conserved when y is zero (see [25]). This can be seen
from the coupled system (2.2). Indeed, if y > 0O the first equation in (2.2) is a wave equation
with viscous damping and it is well known that this equation has a exponential decay of the en-
ergy [46]. On the other hand, when y = 0, the first equation is a pure wave equation which is
conservative [47].

In the vector variable Z = (z, z;, y)T, the system (2.2) can be formally written as

Z,=AZ+F, (2.3)
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where
0 I 0 f
A=|bA+yBl —yI —yp*I |, F=|0 |, (2.4)
I 0 —BI 0

where [ is the identity operator and A the Laplace operator.

However, the writing (2.3)—(2.4) is purely formal. As it is well known, within the framework
of Hilbert (or Banach) spaces of infinite dimension, a rigorous definition of the operator requires
knowledge of not only the way in which the operator acts, but also his domain.

An adequate phase space, among others (see [36]), to solve the equation (2.3) is

H=X x Hj(Q) x X. (2.5)
Remember that X denotes the Hilbert space H 2(Q) N H& (2). It is well known that if we consider
the space L?(2) and Au = —Au, then the operator A has domain D(A) = X when we consider

homogeneous Dirichlet boundary conditions.
Then, the operator A defined by (2.4) has domain D(A) given by (see [36])

D(A) = D(AY?) x D(A) x D(A) C H. (2.6)

With all these ingredients and assuming that y > 0, we obtain that the operator A is the
generator of a strongly continuous group e’ on H. Moreover, the operator

0 0 1
M=I|1 0 -8 (2.7)
-8 1 p?

is a homeomorphism between the spaces H and X x X x H(}(Q).
Finally, if the initial data (yg, y1, y2) of (2.1) belongs to X x X x HOI(Q) and f e
L%(0, T; L*(S2)), then under the operator M we have that (zo, z1, yo) € H and

(z,z:, ) €C(0,T]; H). (2.8)

For a complete and extensive analysis, using methods of semigroup theory, of the well posed-
ness of MGT equation, we refer to [36].

2.2. Well posedness of the nonlinear MGT equation

The nonlinear MGT equation read as follows

) d* (1 D1, ,
TVt +ayy — Ay —bAy, = -\ 1+—y , in Q,
dt> \ ¢ 2FE 2.9)
y = 0 ,onT, ’
y(O0) =yo, y:(0)=y1, yu(0) = , in Q.
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Here the positive parameters D, E represent the nonlinear interactions (see [39] for a physical
interpretation).
Let us denote by £ the following energy functional

EW =AYy + VY1 72gy + 1VirlI72 - (2.10)

For the nonlinear MGT equation (2.9) we have the following global results proved in [26], for
small initial data.

Theorem 2.1. [26, Theorem 1.4] Assume that the critical coefficient y is strictly positive. Then

for any C > 0 there exists pc = pc(y) > 0, such that solutions of (2.9) corresponding to initial
data (yo, y1, y2) € X x X x H} (Q) with

&) < pc (2.11)
exists for all t > 0 and satisfy
0, v ) €CHO, T); X x X x HH(R) N C(0,T]; X x Hi (Q) x L*(Q)), (2.12)
and
EM)<C V>0, (2.13)

and depends continuously, with respect to the topology generated by £, on the initial data.
Besides, there exist constants w = w(y) > 0, C > 0 such that solutions of (2.9) satisfy

E)<Ce™™ Vi>0. (2.14)
3. Controllability of the linear MGT equation
This section is devoted to prove Theorem 1.3. We separate the proof into two cases: y > 0
and y = 0. This is because the first one needs a much finer development, unlike the second that
proves to be a little easier since this condition simplifies the system to study.

3.1. Casey >0

In the present section, we reduce the null controllability problem of the equation (1.8) to the
null controllability of a coupled system.

Consider the coupled system (2.2) with f = x)u. We observe that if these coupled system
is null controllable then the equation (1.8) is null controllable. Indeed, if (2.2) is controllable
then we obtain that for any initial data (zg, z1, yo) there is a control u € L?(w) such that the pair
(z, ), solution of (2.2), satisfies

2x, T)=z(x,T)=y(x,T)=0 inQ.

This implies that
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2(T) =y(T) + By(T),
2t(T) = yu (T) + By (T),

and we immediately obtain that

yt(T) 201 y[[(T) =0.

Thus, we analyze the following controlled system

i —bAZ+yz —vBz+VYBY = Xewu . inQ,
Yt +:3y = Z ) iIl Q7

y=z = 0 ,onT, G.D
2(0)=2z0, z2(0)=z1, yO0) = , in Q.

Now, to study the controllability of the coupled system (3.1), we borrow some ideas from [34]
and introduce the following subset of . For any € > 0 and O C R!*", we denote by w,(0) :=
{x e RI*7: dist(x, O) < €}. Let w, be the following subset of w

we ' =0\ we(Qw \ T). (3.2)

As w satisfies the MGCC, there exists €9 > 0 such that w 3e and w, still fulfills the MGCC, see
[34]. Now, let £ € C*°(Q) be given and satisfying the following set of conditions

0<&=<1,

& =11inw,, (3.3)

$=Oina)\a)%.

We observe that supp(§) C @. With this notation, we consider the following controlled system

2 —bAZ+yz —yBz+yB?y = Eu ,inQ,
yt+:3y = < ) i[l Qv

y=z = 0 ,onT, 3.4
z(0)=z0, z(0)=2z1, yO0) = y ,inQ.

To study the null controllability of the coupled system (3.4), we introduce the adjoint system

pu—bAp—yp,—yBp+yp’q = 0 ,inQ,
—q+Bg = p ,inQ,

p=qg = 0 ,onl, 3-5)
p(T)=po, pi(T)=p1, q(T) = qo ,inQ,

where (po, p1. qo) € L*(R) x H™'(Q) x L*().
Let us first deduce a necessary and sufficient condition for the null controllability property of
(3.4) to hold. By (, )y’ we denote the duality product between U and its dual U’.
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Lemma 3.1. The control u € L*>(w) drives the initial data (zo,z1, y0) € X X HO1 Q) x X of
system (3.4) to zero in time T if and only if

/ gu(x, 0)p(x, Ndxdt = (20, pr(O)x,x + ¥ (50,4 O x,x' = (21, PO) i .11 (0

— 7{zo0, p(0)>H(]1(Q)’H—l(Q)a 3.6)

for all (po, p1,qo) € L2(Q) x HY(Q) x L3(Q), where (p,q) is the corresponding solution
of (3.5).

Proof. By multiplying the first equation of (3.4) by p and then integrating by parts, we obtain

/Eu(x, Dp(x, t)dxdt = /[z(pn —bAp —yp: — yBp) + yB*pyldxdt
® 0
+ {po, Zt(T)>L2(Q) —{z1, P(O)>HOI(Q)7H—1(Q) —{(z(T), PI)HOI(Q),H%(Q) + (20, p1(0)) x,x’

+y{z(T), PO)LZ(Q) — {20, P(O))Hol (Q),H-1(Q)" 3.7

Now, by multiplying the second equation of (3.4) by ¢ and then integrating by parts, we have

[ spaxi = [ zadxdr — t@o. 5010 + 0. aONxx (3.8)
0 0

Then, combining equations (3.7) and (3.8) and regarding the system (3.5), we deduce that
fé“(xv Hp(x, dxdt = (z:(T), PO)LZ(Q) —{z1, P(O»HS (Q),H-1(Q)

w

—(z(T), Pl)H(%(Q),H—I(Q) + (20, P: (0)) x, x* + v {z(T), PO)LZ(Q) —v{zo0, p(0)>H01(Q)’H—|(Q)
— yB*(T), 90) 12 + VB (30 4(0)) x x- 3.9)

Now, from (3.9) it follows immediately that (3.6) holds if and only if (zo, z1, yo) is control-
lable to zero and u is the corresponding control. O

Now, we introduce the classical concept of observability associated to the adjoint problem
(3.5) for the study of the controllability. Since the operator A, defined in Section 2, is the gener-
ator of a strongly continuous group on H, borrowing the ideas for the observability inequality of

the wave equation, we can define the following initial observability estimates.

Definition 3.2. The system (3.5) is said to be (initially) observable on w with weight & if the
following observability inequality holds

PO -1y + 1P OIF + g lIx < ClIEPIF2(,)- (3.10)

for any final data (po, p1,qo) € L*(2) x H™(Q) x L*(Q).
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By standard duality argument, we obtain the following result. See [19,32,47] and the refer-
ences therein for a complete revision of this duality.

Proposition 3.3. The system (3.4) is null controllable if and only if the system (3.5) is observable
on w with weight &.

Proof. We start proving that the observability estimates implies the null controllability. Consider
the functional £ : L?(Q) x H~'(Q) x L*(Q) — R, defined by

1
L(po, p1,90) = > f |&p|*dxdt + (z1, PO) i@, u-1@) T 720, PO g1 (o) 110
w

—(20, P+ (0)) x.x' — ¥B* (0, ¢ (0)) x x'.

It is easy to prove that £ is continuous, strictly convex and coercive. The coercivity of £ follows
from the observability estimate (3.10). Then, it is well known that £ attains its minimum in
(Po. P1,qo) € L*() x H™'(R2) x L*(R) (see [6]).

From the necessary condition of minimum of £, we obtain that

/Sﬁpdxdt — (20, pr(0)) x,x' — 7/1320’0, q))x,x + (z1, p(0)>H01(Q)’H—1(Q)
w

+¥(20. PO) 1 (). 111 () = O-

where the pair (p, ¢) is the solution of (3.5) with final data (pg, p1, o). From Lemma 3.1, we
deduce the null controllability of (3.4).

Next, we prove that the null controllability implies the observability inequality (3.10). In-
deed, if it was not true, then there exists a sequence {pg, p’l‘, q(’)‘}keN, (pg, p’l‘, q(l)‘) # (0,0, 0) for
all k e N, that belongs to L(Q2) x H~'(Q) x L?() such that the solution (p¥, g*) of (3.5)
corresponding to the final data ( pé, pll‘, qg ) satisfy

1
0< / &p* [Pdxdt < k—2(||pk(0>||§,_1(9)+||p§‘(0)||§(,+||qk(0>||xo (3.11)
w

1 k k k 2
= k_2||(p (0)3 )2 (O)»CI()(O))”H—I(Q)XX/XX/- (312)
Let us write

~ ~ ~ \/];
k ~k ~ky__
(pO’ pl’qo) ||(pk(0)7pf(0),qk(0))”

k k _k
(Poa P qO)H—l(Q)xX’xX“

We denote by (p¥, G*) the solution of (3.5) with final data ( ﬁ’g , ﬁ]f , tj(])‘ ). We define the bounded
linear operator G : L2(2) x H~ () x L*(Q) - H™ () x X’ x X’ as follows

G(po, p1.4q0) = (p(0), p:(0),q(0)), ¥(po, p1,q0) € L*(Q) x H™ () x L*(Q).
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Then, we obtain that

~k ~k ~ky2
”g(po’pl’qo)”H_l(Q)xX’xX/

B Vk
1(P*(0), pF(0), g O Il -1y x/x x*

=vk. (3.13)

Kok ok
1G(Pg> P1>90) | -1 (@)xx'x x’

Thus, we deduce
~k 2 1
|&p¥|“dxdt < © (3.14)
w

On the other hand, since the system (3.4) is null controllable, from Lemma 3.1 we obtain that
there is a control u € L?(w) such that for any (2o, 21, Y0) € X X H(} (2) x X we have

f Eu(x, 1) p*(x, t)dxdt = (zo, pF(0))x.x' + vB* (0, G (0)) x x

—{z1, ﬁk(0)>1-1(} (Q),H-1(Q) — ¥ {20, ﬁk(o))y(} (Q),H-1(Q)"

Now, let us define the duality product between X x Hj () x X and H~!(Q) x X'(Q) x X’ by

(0, D1, $2), (90, 91, 92)) = (D1, wo) x.x* + VB2 (b2, ¥2)x.x* — ($0, Y00 + <P1)H01(Q),H—|(Q)-

Therefore, we obtain

/éu(x,t)ﬁk(x,t)dxdt = ((z0, 21, Y0), L(PE, PK, G6)).

From the previous computation and (3.14), we deduce that £( p(’j , p’l‘ , q(lj ) tends to zero weakly
in X’ x H~'(©) x X’'. By the Uniform Boundedness Principle the sequence

{L(p§, PY, ) Jken

is uniformly bounded in X’ x H~!() x X’. This fact contradicts (3.13) and the proof is fin-
ished. O

Thus, our main result, namely Theorem 1.3, is equivalent to prove the observability estimates
(3.10). This can be seen in the following Theorem.

Theorem 3.4. Suppose that w fulfills the MGCC. Then the system (3.5) is observable on w with
weight &.
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The main idea for the proof of this Theorem is to introduce an alternative functional setting
for the controllability and observability problems (3.4) and (3.5), respectively. Then, in this new
setting we can use a finer observability inequality given by Lii, Zhang and Zuazua [34] and
conclude the assertion.

We observe that the inequality (3.10) contains terms involving norms in negative Sobolev
spaces, which makes the analysis even more difficult. For this reason, we will consider the
controllability and observability problems for (3.4) and (3.5), respectively, in the following func-
tional setting.

Definition 3.5. (i) We say that the system (3.4) is null controllable if for any initial data

(z0, 21, Yo) € L2(2) x H™1() x L*(S), there is a control function u € L2(0, T; X’) such that
the corresponding solution (z, y) of (3.4) satisfies

(M) =z(T)=y(T)=0 inQ. (3.15)

(i) The system (3.5) is said to be initially observable on @ with weight & if for any final data
(po, P1,90) € X X HO1 (R2) x X, there exists a constant C > 0 such that

1PO5 ) + 10O 720 + 19O 2) = CIEPIZ2 - (3.16)

In this new setting, let us start with a classical characterization of the null controllability for
the control system (3.4). The proof is identical to that given in Lemma 3.1, so we omit it.

Lemma 3.6. The control u € L*(0,T;X’) drives the initial data (z9,z1,y0) € L*() x
H~1() x L3() of system (3.4) to zero in time T if and only if
Ep,u)p20,7:%),220,1:x) = (Pr(0), 20) 122y + yB%(q(0), Yo)L2()
—(p(0), Zl)[—]ol(Q))[—]—l(Q) —y{p(0), ZO)LZ(Q)v (3.17)

forall (po, p1,q0) € X X HOl (R2) x X where (p, q) is the corresponding solution of (3.5).

As usual (see [47]), the relation (3.17) can be seen as an optimality condition for the critical
points for a certain functional.

Proposition 3.7. Assume that the coupled system (3.5) with final data (po, p1,q0) € X %
HO1 () x X is initially observable in w with weight &. Then, the problem (3.4) is null controllable
for any initial data (zo, 21, yo) € L>(R2) x H™1(Q) x L*(RQ).

Proof. Assume that (3.5) is initially observable with final data (pg, p1, qo) € X % HOl (Q) x X.
Since we have changed the functional setting of our controllability and observability problem,
and in order to define a certain functional (as the Proposition 3.3), we consider the Hilbert space
V which is the completion of

(Po. P1.40) € X x H}(Q) x X : / | @ + A)(Ep)Pdxdt <00 (3.18)
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with respect to the norm (from the observability hypothesis)

I(po, p1, qo) 13 == f |3 + A)(Ep)|Pdxdt, (3.19)

where (p, ¢g) is the solution of (3.5) with final data (pg, p1, q0)-
First, we observe that V C HO1 (R) x L2(2) x L%(2). Indeed, if (p, g) is a solution to (3.5),
then necessarily it is also solution of the following problem

G —bAG—yd —yBd+yBie = 0  ,inQ,
_(pl‘ + /3(/’ = ¢ ) il’l Q’

b=¢ = 0 onT, (3.20)
¢(0) = p(0), ¢,(0)=p,(0), 9(0) = ¢(0) , inQ.

From the observability inequality (3.16), we know that if (po, p1, qo) € V, then
(p(0). pi(0). q(0)) € Hy () x L*() x L*(Q). (3:21)

We deduce that (p(0), p;(0),q(0)) € Lz(Q) x H™! (R2) x L2(2). From the well-posedness of
(3.20) we obtain that

(¢, 9) €[C(0, T]; L2 ) N C ([0, T1; H Q)] x C1([0, T]; L2 (). (3.22)

Insomuch as (p(0), p;(0)) € Hé (R2) x LZ(Q) and ¢ € cl(o, 11; Lz(Q)), from the wave equa-
tion of (3.20) we have that

¢ € C([0, T1; H} (2)) N C([0, T1; L*()). (3.23)

Thus we obtain that (po, p1, o) = (¢(T), ¢(T), p(T)) € H} () x L*(Q) x L*(Q).

Now, we are in position to prove that the functional J has a unique minimizer. From the Direct
Method of Calculus of Variations, we know that it is sufficient to prove that J is continuous,
strictly convex and coercive. The first two assertions are immediate. The coercivity of J follows
from the observability inequality (3.16) and from the positivity of all the constants involved.
Indeed,

1
J(po.p1og0) = 5 f @i + A)EP)Pdxdt — PO g1 o) 1211510y — ¥ PO allzol2
w

— PO 12llz0ll2 = yB* g () 121l yoll2

= C1llEp = PO g3 ) 1211 110 + 1P+ O)2l1z012
+7B2g O I12yoll2 + ¥ 1 PO lI211z0l12)

> C1lEpI 2y — C21EP 20y U121 1 -1 () + 120012 + 7B 11yl
+ 7 lz0ll2)-

Please cite this article in press as: C. Lizama, S. Zamorano, Controllability results for the Moore—Gibson—-Thompson
equation arising in nonlinear acoustics, J. Differential Equations (2018), https://doi.org/10.1016/j.jde.2018.12.017




YJDEQ:9675

C. Lizama, S. Zamorano / J. Differential Equations eee (eeee) see—eee 15

By the previous computation we obtain that J is coercive. This implies that J has a unique
minimizer (Pg, p1,qgo) € V.

Now, since J achieve its minimum at (pg, p1, o), then for any (po, p1, go) € X x H& () xX
and /2 € R we have necessarily that

lim J(po + hpo, p1 +hp1, 4o + hqo) — J (Po, P1,4o)
h—0 h N

0. (3.24)
Let us develop the numerator of the previous limit.
J(po+hpo, pr+ hpi. qo+ hqo) — J (Po. p1, o)

1
= E / [(0:: + A)E(Pp + hP))|ZdXdl +(p(0) + hp(0), Zl)]—]Ol(Q))H—l(Q)

+7(PO) + hp(0), 20 12(2) — (D1 (0) + hp (0), 20) 12(2) — ¥B(G(0) + hq(0), y0) 12
- % / |@ut + 8)E P)Pdxdt — (p(0), 21) i ). -1 — ¥ (P(0) 20) 12
+(51(0), 20) 122y + ¥B2(G(0), 30) 12
=h / (B + A)EP) (3 + A)(Ep)dxdt + h; / (3 + A)(Ep) Pdxdt
+1(p©0), 21) (). -1 (@) T 1Y (P(0), 20) 120

— h(p:(0), z0) 2(q) — hJ/,B2<‘](O)v Y0)12()-

Thus, replacing in (3.24) we obtain

0= /(att + A)(EP) (3 + A)(Ep)dxdt + (p(0), ZI)H(; (Q),H-1(Q)

+y(p(0), 20 12(2) — (Pr(0), 20) 12y — ¥B(q(0), Y0) 12 (- (3.25)

From (3.25) we can observe that if u = (3;, + A)2(€p) belongs to L?(0, T; X’), then nec-
essarily u is a control which leads the initial data (zo, z1, yo) to zero in time 7. Indeed, if
u= 0y + A)?*Ep) e L*(0,T; X'), then

Ep.u)p20,1:x),L20.T:x) = /(3n + A)(EP) (0 + A)(Ep)dxdt,

and from (3.25) we deduce that

ép, “)LZ(O,T;X),LZ(O,T;X/) =—(p(0), Zl)[{(} (Q),H-1(Q) — y(p(0), Z0>L2(Q)

+(p:(0), z0) 2() + ¥B%(q(0), Y0)12(Q)-
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Lemma 3.6 implies that u is a control of the system (3.4).
Therefore, to finish the proof, we need to prove that u = (d;; + A)2(EP) belongs to
L2(0, T: X’). Indeed, from the definition of }V we have

(3 + AV (EP) € L (w). (3.26)

Because (po, p1.Go) belongs to V C HJ () x L*(Q) x L?(2), we obtain that the solution
(P, q) of (3.5) corresponding to the final data (pg, p1, go) satisfies

peC(0,T]; Hy ()N C(0,T]; L*(R)), ¢ L0, T1; L*()). (3.27)

Now, we develop the term (3;; + A) (€ p):

8[1(‘5]3) = thﬁt + gttﬁ + Sﬁtt
A(Ep) = PAE +2VE -V +EAP.

From (3.27), we obtain that
26 pr +E:p e C(I0, TT; L2(R)), pAE+2VE-VpeC(0,T]; L3 ().  (3.28)

Since (p, q) is the solution of (3.5), we deduce the following

EP)i —bAED) — v (EP) — yBEDP) + VB2 (EG)
=2&p; +&Eup—bDPAE —2bVE -Vp—y§p

and
—(EG) + BAEGD =EP — &4,

From the definition of &, we obtain that the pair (£ p, £q) satisfies the following system

EP)ir —bAEP) —y(EP) —YBED) + VB (EG) = 26p +Eup —bPAE
—2bVE-Vp—y&p , inQ,
—EP+BED = EP)—&4 , in Q,
Ep=£&g = 0 ,onT,
EPT) =0, EP)(T)=0, EHT) = 0 , in Q.
(3.29)

For what comes next we need the following computations. Using the first equation of (3.5)
we obtain

(Bt + AYE Pr) = Eie pr + 26u[DAP +y P+ vBD — vB2G1 + EbAP + vBpr — B4
+EDADp+y P+ VBD — vB G+ pr A& +2VE -V, +EAp;. (3.30)

Then, we have that (8;; + A) (& p;) € C([0, T]: X’). Similarly, we deduce that
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(O + A) (& Py + & p — bPAE —2bVE -V — y& p) € C([0, T]; X'). (3.31)
Also, we obtain
O + AVEP — &§) =25 pr +Eup +EDAP+y P +vBP — vBG) + PAE

+2VE-Vp+EADP —Enuq — 261G — & (Pr — Bqr) — G A&
—2VE Vg —§AG€C(0,T]; X). (3.32)

Now, write ¥ = (8;; + A)(§ p) and n = (8;; + A)(£G). Then, using (3.29) and (3.31)—(3.32),
we obtain that (v, ) solves

Vi —bAY — y, — yBY +yBn (3 + A)QE Py + Eup — bPAE

—2bV& - Vp —y&p) . in Q,

= +Bn = O+ A)Y —E&9) , in Q,

v =n = 0 »onT,

v(T)=0, y»(T)=0, n(T) = 0 , in Q.
(3.33)

Then we conclude from (3.32) and the second equation of (3.33) that
neC'(0,T]; X). (3.34)
Besides, from (3.26) we obtain that A(d; + A)(EpP) € L*0,T: X)). Using that ¢ =

(0r + A)(E p), it follows from (3.30), (3.31), (3.32), (3.33) and (3.34) that 9;,(3;; + A)(Ep) €
L?(0, T: X'). Therefore, we can conclude that

u= (0 + A)*(EP) € LX(0, T; X).
This completes the proof. O
Now, from [34] we deduce the following finer observability estimate.

Proposition 3.8 (see [34]). If the system (3.4) with initial data (29, 21, yo) € L*(R2) x H™1(Q) x
L2(Q) is null controllable, then the solutions (p, q) of (3.5) satisfies

1PO 50 + 12672y + 19O 122 = CUAEP 72,y

for any (po, p1,qo) € X X HOI(SZ) x X.
Proof. The proof is similar to the one given in Proposition 3.3. O
The above improved observability inequality (3.35) implies, immediately, the observability

estimate (3.16). That is, putting together Proposition 3.7 and Proposition 3.8 we have proved the
following sequence of equivalences:
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Proposition 3.9. The following assertions are equivalent:
(1) The system (3.5) for any final data (po, p1,qo) € X X HO1 () x X is observable on w with
weight &.
(2) The system (3.4) is null controllable for any initial data (29, z1, yo) € L*(2) x H™1(Q) x

L3().
(3) The solution of (3.5) satisfy the following improved observability estimate

I p(0)||§,01 @ TP O]z + 190 2) < CIAGP)I > ) (3.35)

for any (po, p1.qo) € X x Hy(Q) x X.

Therefore, in order to obtain the null controllability in this new formulation, it is enough to
prove the following Theorem.

Theorem 3.10. Suppose that w fulfills the MGCC and y > 0. Then the system (3.5) with final
data (po, p1,qo) in X X H(} (R2) x X is initially observable on w with weight &.

Proof. From (3.5) we have that ¢ satisfy
_qt + ﬂq =D,
this is

t
g(x, 1) =P Dgy — / e PO p(x, 5)ds.
T

Since g(x, 1) = e~ g (x) is the solution of
—q: + Bg =0,
and w, fulfills the MGCC, we obtain that there exists a constant C > 0 such that (see [10])
lgol72 gy < Cllallzaq,,)-
By standard energy estimates (see e.g. [9]) and the above observability inequality we obtain that
2 2 2

On the other hand, since w,, satisfies MGCC from [43] we obtain that

1Pl ) =€ / prdxdt +liq172, | - (3.37)

weo
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Combining (3.36) and (3.37) we find that
2 2 2 2 2

Using a compactness uniqueness argument, we claim that
2 2 2 2
”p”Hl(Q) + ||Q||L2(Q) = C(”Pt ||L2(w60) + ||C]||L2(w50))- (339)

Indeed, if it was not true, then there would exist a sequence {p, ¢'};en belongs to H'(Q) x
L2(Q) such that for all i € N

1P a1 @yxz2c0) = 1 (3.40)
. . 1
2 2
||P; ”Lz(weo) + ||‘Il ||L2(weo) S l_ (341)
Using (3.38), (3.40) and (3.41) we have that
T 2

in2 in2 in2 1 in2

On the other hand, from (3.40) we can extract a subsequence, denoted in the same way, of
{pi, qi}ieN such that (pi, qi) converges weakly to (p, ¢g) in Hl(Q) X Lz(Q). Thus, it is easy
to see that (p,g) is a weak solution of (3.5). Then, by the weak convergence in H'(Q) we
obtain that p’ converges strongly in L2(Q). Combining this with (3.36) and (3.41) we have ¢’
converges strongly in L2(Q). Also, from (3.42) we deduce that IPll2¢0) > 0.

Now, as (p', g') converges weakly in H!(Q) x L*(Q), by the definition of weak convergence
we obtain that

— 2 —2 S i 112 in2 _
||Pz||Lz(wEO) + ||q||L2(w€0) S lzglogf(”p;”Lz(wEo) + ||C] ”LZ(wEO)) _0 (343)
Namely, we have that p, =g =0 in w, and, by (3.38),

1131 ) + 11720 < CIBI20)- (3.44)

Since [|pll2(p) 1s strictly positive, by (3.44) we conclude that (p, g) is not zero.
Now, let V be a linear subspace of H'(Q) x L?(Q) defined as

Vi={({p,q) € Hl(Q) X LZ(Q) : (p, q) satisfies the two first equation in (3.5),
plr=0, pp=g=0inwe}.

It is easy to prove, following the ideas of [34], that V satisfies

vV c HY(Q) x H*(Q), (3.45)
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and

dim(V) < co. (3.46)

From the definition of V we have that ¢ = 0 in w¢,. Since w, fulfills the MGCC, we obtain
that ¢ = 0 on I'". Besides, from (3.45) the pair (A p, Ag) is also solution of (3.5), namely

(Ap)u —bA(Ap) —y(Ap) —yBAP+yB*Ag = 0 ,inQ,
—(Ag)+BAqg = Ap ,inQ, (3.47)
Ap=Aq = 0 ,onl.

Even more, since p; =g =0 in w¢,, we have that (Ap); = Ag =0 in w,. This implies that
(Ap,Ag)eV.

As Ap belongs to V and V is a finite dimensional space, there exists A € C and (p, q) €
V \ {0} such that for any ¢t € (0, T)

Ap(t)y = Ap() , ing,
{ pit)y = 0 , ondf. (3.48)
Now, as (p, ¢) solves (3.5) and from (3.48), we get that
Pu—=bip—ypi—yBp+yB§ = 0 ,inQ,
—-g¢+Bg = p ,inQ, (3.49)
p=p = 0 ,onTl.
Since p; = ¢ =0 in w,, from the first equation in (3.49) we obtain that
. yBr .
p= mq = O, m e, - (350)

Let 19 € (0, T) be fixed and X € we,. Then from (3.49) we obtain that (p(-, X), (-, X)) solves

Pu(t, ) — (bA+yB) p(t, %) — y pr(1,%) + yB24(t,X) = 0 , in (0, T),
—ét(f9f)+ﬁé(f»f) = ﬁ(tsf) ) in (Oa T),
1\5(1‘0,%)207 ﬁl(t()vf):ov é(t()vf) = 0
(3.51)

Thus, we have that p(t,x) = g(¢t,x) =0 for any ¢ € (0, T'). Since w, fulfills the MGCC, we
deduce that for any x € 2 and any ¢ € (0, T")

Namely, p = ¢ =0 in Q. This implies that V = {0} which is a contradiction with the fact that
(P, q) is not zero. Therefore, we obtain (3.39).
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We observe that from the first equation in (3.5) and as y, B > 0, g satisfies

1

q= 5 (P —bAp —ypr — YBP). (3.52)
vB

Replacing (3.52) in (3.39), it follows that

1P gy + 1all2¢0) < ClIPI 12wy - (3.53)

Finally, form the energy estimates for (3.5) and (3.53) we obtain

PO g+ 121 ON2g) + 19O z2@) = ClPlGg, ) < CIEPIG ) O
Finally, as we have already announced, we need to prove Theorem 3.4.

Proof of Theorem 3.4. For any (po, p1, qo) € L>(Q2) x H~(Q) x L*(R), we take

(Po, P1, Qo) = (A" po, A7 p1, A7 g0, (3.54)

where A is the Dirichlet Laplace operator defined in Section 2.
Then, we obtain that (Pgy, Py, Qg) € X X HOI(Q) x X. Since (p, q) is the solution of (3.5)
with final data (po, p1, qo), we obtain

(Bp)i —bABp) — y(Bp), — yBBp) +yB*(Bg) = 0 , in Q,
Bp=Bg = 0 ,onT, ’
(Bp)(T) =Bpo, (Bp):(T)=Bp1, Bg)(T) = Bgy ,in<Q,

where B = A~!. From (3.55), we have that (P, Q) = (A~ 'p, A~lg) isin Q.

Now, by Theorem 3.10 the system (3.55) is initially observable on w with weight & and final
data (Py, P1, Qo). From Proposition 3.7 we have that the system (3.4) is null controllable and,
by Proposition 3.8, we have that the solution (P, Q) satisfy the observability inequality (3.35),
namely

||A*‘p<0>||i,01(9) +IAT P07 + AT 4O 120 < CIAGAT P72, (3:56)

which implies that

1PO)17-1 ) + 12:OI% + g Ol xr < ClIEPIT2,)- O
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3.2. Casey =0
In this section we give a proof of Theorem 1.3 in the special situation when y = 0. The anal-

ysis is particularly simple in this case. Indeed, when y = 0 the system (3.4) takes the following
cascade form

i —bAz = xo@u ,inQ,
ytay = z , in Q,
v=z = 0 onT. (3.57)
2(0) =z0, z(0)=2z1, y(O) = , in €,

where the first equation of (3.57) is uncoupled.
Borrowing the ideas of [10], we investigate the null controllability of the following system

it —bAZ = Xemnl ,in Q,
yit+ay = XonV+z ,inQ,
y=z = 0 "onT. (3.58)
z2(0) =z0, z:(0)=z1, yO0) = yo , in €,

where (z0, 21, y0) € X x Hj (Q) x X.

Note that, roughly speaking, one can first control the wave equation by a suitable control u
and then, once this is done, and viewing z as a given source term, we can control the transport
equation by a convenient v.

Proof of Theorem 1.3 when y = 0. Denote by 7y the infimum of 7 > O such that w satisfies
Definition 1.1. Let wg be an open set such that

w= ] oo,

1e(0,T")

for atime 7’ > Ty.

Then, it is well known that the wave equation with this geometrical condition is null con-
trollable (see [43]). Namely there exists u € L2(0, T’: L*(R2)) such that the solution z = z(x, 1)
of

2 —bAZ = Yeou ,inQx (0,7,
z = 0 ,ond x (0,7, (3.59)
z2(0) =zo, z:(0) 71 , in Q,

satisfies
2(x, ThY=zxT)=0, xeQ.
Now, let 7 > T’ and consider

U= Xpotts, nQx(0,7T)
i=0, inQx((T,T)
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1=0, inQx(,T).

‘We conclude that the solution of

Tt — bAZ = Xw(t)ﬂ s in Q x (O, T),
z = 0 ,ondQ x (0,7), (3.60)
Z(O) =20, ZZ(O) = 21 bl in Q’
satisfies
2x.0)=0, Vre[T.T]. 3.61)

Next, we have to prove the exactly controllability of the following problem

Yt +ay = X(l)(t)v ) in Q X (T/7 T)v
y = 0 ondQ x (T'.T). (3.62)
T = yo , In Q.

Again, by a duality argument, this is equivalent to prove that the solution ¢ = g (x, t) of

—dqr +aq = 0 ) in Q2 x (T/’ T)’
g = 0 ,ondQx(T',T), (3.63)
q(T) = gqo ,in%,

satisfies the following observability estimate

T
/ g0 () 2dx < C / / Yo (1) g (e 1) Pdxd. (3.64)
Q T Q

The solution of (3.63) is given by

) = =T

q(x,t qo(x),

which implies that

T T
/ / Yo (g (.0 2dxdt = 2T~ / 0P (/ ow @t | dx. 365
T Q Q 4

From Definition 1.1, we can see that for every x € Q, there is 1y € (T', T) and some ny > 0
such that for any s € B(x, no) and any ¢t € (T, T) N (tp — no, fo + no) we have s € w(r). This
means that there exists some 7 > 0 such that

T

/Xw(l)(x)dt >n>0,Vx eQ. (3.66)
T/
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Then, we obtain the desired inequality (3.64). Therefore, the equation (3.62) is exactly con-
trollable on (T”, T) with some controls v € C([T’, T1; L2(R2)). Now, let y;(x) = e~ T yo(x) +

fOT/eS’T/z(x,s)ds. Since v =0 in Q x (0,T'), we extend ¢ to (0,7) such that
7€ L*(0, T; L*(2)) and the corresponding solution of

vitay = Xend ,inQx(T,T),
y = 0 ,ondQ2 x (T',T), (3.67)
yT') = y , in €2,
satisfies
y(T)=0. (3.68)

Namely, from (3.61) and (3.68) we obtain that the pair (&, v) is a control function such that the
solution of system (3.58) satisfy (z(T'), z,(T), y(T)) = (0, 0, 0). However, if we want to return
to the original problem (3.57), we need to apply the operator d;;, — bA in each side of the second
equation of (3.58), which implies that

Vit + ayie — bAy — Ay = Xonyii + O — bA) (X D)- (3.69)

So, the control function does not belong to L?(w). Under the MGCC condition, specifically from
the definition of &, from [10,41] we have that

T
llgollx < C/ I = T"Eq(, D)%t (3.70)
T/

Then, using the HUM operator [32] we obtain that the system (3.62) is exactly controllable on
(T’', T) with some controls £v € C'([T’, T]; X) (since g € C'([T’, T1; X’) for any go € X').
Moreover, differentiating the first equation in (3.63) with respect to time, we obtain that

d 2 1 /
5= geC ([T, TI; X).

Then, in particular, we deduce that v € Cz([T’, Tl X).
Finally, since £ € C2([0, T']; X), we have that (3;, — bA)(£0) € L*(w). Therefore, the right
hand side of (3.69) belongs to L?(w) and this completes the proof. [

4. Controllability of the nonlinear MGT equation

The classical argument to prove local null controllability results is the combination of the
Implicit Function Theorem with an appropriate result of controllability in the linear case. In order
to prove Theorem 1.4, we need the following definitions and technical Lemmas given in [15].

We denote by L£(X, Y) the space of continuous linear mappings from X to Y, where X and Y
are Banach spaces.
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Definition 4.1.

(1) An operator G : X — Y is said to be Hadamard differentiable at a € X if there exists M €
L(X,Y) such that, for any continuous function r : [0, 1] — X for which r’ (0%) exists and
r(0) = a, the operator F = G o r is differentiable at 0%, with F/(07) = Mr'(0"), thus

G@r(t) —Gr(0) —Mr' 0Tt =o0(t) ast]O0,

where M is the Hadamard derivative.
(2) An operator G : X — Y is called strongly Hadamard differentiable ata € X if F =G or is
strongly differentiable at 0.

Lemma 4.2. Let G : X — Y be an operator such that has a Gdteaux variation G (x; h) at all
points in a convex neighborhood 2 of xo € X and all h € X. If §G (- ; ) is continuous at (xo, 0),
then G is strongly Hadamard differentiable at x.

Definition 4.3. The linear mapping M : D — Y, where D is a dense subset of X, is called
approximately outer invertible if, for each u € (0, 1), there exists a bounded linear mapping
B, :Y — X and a bound o (1) such that

I(BuMB, — Byl < pllBuyll and ||Buyll <o(uw)lyll, VyeY.
Then each B, is called an approximately outer inverse of M, with bound function o ().

Lemma 4.4. Let H| and H> be two real Hilbert spaces and M : Hy — Hj be a compact linear
operator. Then M is approximately outer invertible.

Lemma 4.5 (Implicit Function Theorem). Let X and Y be real Banach spaces, with a € X. Let S
be a closed convex cone in Y. Let G : X — Y be an operator strongly Hadamard differentiable
at a. Let b = G(a) and assume b € S. Let the Hadamard derivative M = G'(a) : X — Y be a
bounded linear operator with approximate outer inverse B, and bound function o (1) = ko=,
with k < 1. Then for a sufficiently small 1, whenever c satisfies —(G(a) + G'(a)c) € S, and
llcll = 1, there exists a solution x =a + yc + n(t) € X to —G(x) € S, valid for all t < O suffi-
ciently small, with x # a, with an appropriate choice of = u(t) { Oast 0, [n(®) |l x)=o(r) a$
tl0.

Proof of Theorem 1.4. We denote by Hy = X x X x H} () and by D = X x H]} () x L*().
Define the mapping G : Hy x L*(w) — Hi, G(°,u) = (y(T), yi(T), yu(T)), where y° =
(y0, y1, ¥2) and y is the solution of the nonlinear MGT equation

TV + @y — CAy — bAy, fO)+ xomu ,in Q,
0 ,onl, 4.1)

y
yO0)=yo, y(0)=y1, y«(0) = , in Q,

where f(v) = k().
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We claim that G has a Gateaux derivative 8G((y0, u); (h°, v)) at all points
(y°,u) € Hy x L*(w) and all (h°, v) € D x L*(w), where h° = (ho, h1, h2). Indeed, for any
(O, u) € Hy x L*(w), (h°,v) € D x L*(w) and ¢ > 0, we have that

GO +eh’ u+ev) =T, yi(T), ¥ (T)), (4.2)

where y® satisfy the following system

Y5, + oy — cszg —bAy;
&

FOH) + Xoy(M+ev) ,inQ,
y 0

,onT,

y°(0) =yo+¢eho, y;(0)=y1+¢ehi, y;0) = yr+ehs , in Q.
4.3)
& _
Let z% = y - be given. From (4.1) and (4.3) we deduce that
+ez%) — .
T2, oz, — Az — bAz; = AS, )~ 1) + Xo@v , inQ,
£ =0 ’ ,onT, “4)
22(0) =ho, z;(0)=hy, z;,(0) = hy , in Q.
Taking ¢ to zero, the solution z° of (4.4) converges to z, which solves the system
Ty + ez — Az —bAz = /()4 xomv . in 0,
z = 0 ,onl, 4.5)

2(0) =ho, z(0)=h1, z:(0) hy . inQ,

where y is the solution of (4.1) with control u and initial data y°.
Therefore, it is easy to see that the solution z of (4.5) satisfies

8G((y°,u); (h°, ) = &(T), 21(T), 20 (T)).
Next, we prove that G is of class C at ((0,0); (0, 0)). Indeed, to show that G is continuous
at ((0,0); (0,0)) is equivalent to proving that whenever (y?, uj) € Hy x Lz(a)) and (h(])., vj) €

D x L?*(w) satisfies

(9, uj) = (0,0), in H x L*(w), (4.6)
(h% vj) = (0,0), inD x L*(w), .7

we have that the solution z/ of

el tazl — AN —bAz] = f()F + xewmy; . in Q.
7 = 0 ,onT, 4.8)
O =h), z/ ) =h{, 2,00 = h} ,inQ,
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where y/ is the solution of

Ty oyl — Ay —bAY = D)+ xewuj . in Q,
_ _ y =0 ,onT, 4.9)
YOy =yi, ¥ (O =y, y,(0) = y; , in €,
satisfy
@ (T). 2/ (T). 2} (1)) =57 (0,0,0) = 6G((0,0); (0,0)) inD. (4.10)

For this purpose, we claim that when (y?, uj)— (y°, u) in H; x L?(w), then the solutions y’
of (4.9) are such that

O = (30 —0 inC(0,T]; L*()). (4.11)

From the well-posedness of the nonlinear equation, see Section 2, we deduce that 7/ = y/ —y
satisfies

167 @, @, rg )1 = CUYF = 3ID + luj =z, Ve €lOTL (412)
where C > 0 is independent of ¢. Then, in view of (4.12) we have that
07y i) = Ly v in €0, TT (LA(2)). (4.13)

Since the nonlinear term f(y) = 2k(y2) «t» we deduce that f” is a continuous function and
f'(y) € C([0, T1; L*(S2)). Then, from (4.13) we obtain

F'GI@0) = f/(y@) inL*(Q), Vi €[0,T]. (4.14)

In view of (4.14) and Arzela—Ascoli’s Theorem, (4.11) holds if we prove that
{f’(yj(t))}j is equicontinuous in C ([0, T']; L2(§2)). 4.15)
From (4.13) we have that the set U = {(y/ (1), y/ (1), /(1)) : j € N, t € [0,T]} is rel-
atively compact in (L%(2))3. On the other hand, since the mapping f': C([0,T]; X) —

C(0,T]; LZ(Q)) that associates f'(y) € C([0,T]; LZ(SZ)) to any y € C([0, T]; X) is contin-
uous, then is uniformly continuous in U. That is, given & > 0 there exists § > 0 such that

LF' G @) = f1 G )2y < e (4.16)
provided that
17 @), ¥ 0, ¥ ) = 37 (@), v @) ¥ (@)l 2y < 6- (4.17)

Since (y/, y,j, y,j,) — (v, v, yur) in C([0, T1; (L2(2))?) and y is uniformly continuous from
[0, T] to LZ(Q), we obtain that there exists ng € N and &g such that (4.17) holds for any n > ng
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and #, 7 € [0, T] such that |t — 7| < §p. From the uniformly continuity of y«/ from [0, T'] to
LZ(SZ) we deduce that f9r every k € {i, ..., no} there exists § such that (4.1_7) holds with j =k
if |t — 7| < §;. Taking 6 = min{do, 81, ..., 8,,} We obtain that if |[# — 7| < § then (4.17) holds.
Therefore, we have that (4.15) holds, and finally we obtain (4.11), proving the claim.

Now, if (y?, u ;) converges to (0, 0) in Hy x L?(w), from (4.11), (4.12) and (4.13) we deduce
that

||f/(yj)||L°0(o,T;L2(gz)) <C, (4.18)

where C > 0 is independent of j. Then, from the well posedness of the equation (4.8), we have
that

17,2/, e qoripy < CURSID + 101122,)- (4.19)
Then, by (4.6), (4.7), (4.18) and (4.19) we obtain that
(I (T), 2/ (T), 2] )(T) — (0,0,0) as j — oo, inD. (4.20)

Moreover, if (h?, v;) converges to (h°,v) € U, with U a bounded subset of D x L2(w),

then the convergence in (4.20) is uniform. That is, the operator G'(0,0) : H x L*(w) — Hj is
compact.

Finally, since G (0, 0) = (0, 0, 0), from the null controllability of the linear MGT equation (see
Theorem 1.3), for any h9 € D there exists a control v € L2(w) such that G'((0, 0); (h°, v)) =
(0,0,0). Let a = (0,0), ¢ = (h°, v) and S = {0} C L*(w). Assume that [|(h°, v) || 1, x 12() = I-
Then, we obtain that —(G(0, 0) + G'((0,0); ¢)) =0 € S. Thus, G satisfies all the conditions of
the Implicit Function Theorem (Lemma 4.5). That is, there exists p > 0 sufficiently small such
that for any y° € H; with ||y?|| H, < p, there exists a control u € L?(w) such that the correspond-
ing solution of (4.1) satisfies

(1), y:(T), y(T)) =(0,0,0). O
5. Conclusions and future work

The paper was devoted to the study of the null controllability property of the MGT equation. It
has been proved that the linear equation fulfills the rest condition at time 7 > 0 using a distributed
moving control domain. The reason why we use a domain that moves is due to the existence of
the damping term —bAy,, which implies that the spectrum has an accumulation point. Using a
generalized Implicit Function Theorem and the control property of the linear equation, we prove
local null controllability property for the nonlinear MGT equation.

As far as we know, this work is the first control study for the MGT equation and present a
novel way to deal with nonlinear control problem. There are still many questions to consider in
connection with the control properties considered in this paper. One of these is the proof of the
observability inequality (3.16). In our case this could be obtained from the regularity assumptions
on the initial conditions and the hypothesis on the control domain w. Another approach which
can be used is a suitable Carleman estimates for the coupled adjoint system (3.5). The key is to
use the same weight function both for the Carleman inequality of the wave equation with viscous
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damping and the ODE. In this context, we refer to [2] and [10] for Carleman estimates for a

coupled parabolic-hyperbolic system and for a heat equation coupled with an ODE, respectively.
An interesting work would be the study of controllability problems for the MGT equation with

memory terms. For example, the following MGT equation with a viscoelastic term (see [29])

t

Ty + oy — Ay —bAy, + / gt —s)Ay(s)ds =0. (5.1
0

In this case, the correct control property to study is the called memory-type null controllability,
see [34,11]. The reason is because, for example, it is well known that the heat equation without
memory is null controllable. However, if we add a memory term the null controllability does not
hold for all initial conditions [20].

As we mentioned in the introduction, when b =0 and F (¢, y, y;, 1) = v(yz), we obtain the
Westervelt equation. The analysis developed in this paper cannot be applied for this equation,

even if we consider the linear case (F = 0), because we have used the critical coefficient y =

o — % > 0 in all our proofs. An interesting problem would be the analysis of the controllability

of this equation. In the one-dimensional case, the controllability of the Westervelt equation is
part of our forthcoming work.
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