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Abstract

Let M(X) be the space of all Borel probability measures on a compact metric space X endowed with the 
weak∗-topology. In this paper, we prove that if the topological entropy of a nonautonomous dynamical sys-
tem (X, {fn}+∞

n=1) vanishes, then so does that of its induced system (M(X), {fn}+∞
n=1); moreover, once the 

topological entropy of (X, {fn}+∞
n=1) is positive, that of its induced system (M(X), {fn}+∞

n=1) jumps to infin-
ity. In contrast to Bowen’s inequality, we construct a nonautonomous dynamical system whose topological 
entropy is not preserved under a finite-to-one extension.
© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

As an important invariant of topological conjugacy, the notion of topological entropy was 
introduced by Adler, Konheim and McAndrew [1] in 1965. Topological entropy is a key tool to 
measure the complexity of a classical dynamical system, i.e. the exponential growth rate of the 
number of distinguishable orbits of the iterates of an endomorphism of a compact metric space. 
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In order to have a good understanding of the topological entropy of a skew product of dynamical 
systems (as we know that the calculation of its topological entropy can be transformed into that 
of its fibers), Kolyada and Snoha [11] proposed the concept of topological entropy in 1966 for a 
nonautonomous dynamical system determined by a sequence of maps.

By a nonautonomous dynamical system (NADS for short) we understand a pair (X, {fn}+∞
n=1),

where X is a compact metric space endowed with a metric ρ and {fn}+∞
n=1 is a sequence 

of continuous maps from X to X. In 2013, Kawan [8] generalized the classical notion of 
measure-theoretical entropy established by Kolmogorov and Sinai to NADSs, and proved that 
the measure-theoretical entropy can be estimated from above by its topological entropy. Follow-
ing the idea of Brin and Katok [3], Xu and Zhou [14] introduced the measure-theoretical entropy 
in nonautonomous case and established a variational principle for the first time. More results 
related to entropy for NADSs were developed in [2,5,7,8,10,15,16].

In contrast to the classical dynamical systems whose dynamics have been fully studied, 
properties of entropy for NADSs are still fairly poor-developed. One of such respects that we 
considered naturally is the relation between a NADS and its induced system (whose phase space 
consists of all Borel probability measures on the original space, for details see Section 2). A well-
known result due to Glasner and Weiss [6] in 1995 reveals that if a system has zero topological 
entropy, then so does its induced system. This theorem is amazing. Generally speaking, a system 
is rather “tiny” (in the sense of a subsystem) compared with its induced system. However, the 
vanishment of its entropy surprisingly results in the same phenomenon for its induced system. 
Later, this connection was further developed by Kerr and Li in [9]. They obtained that a system 
is null if and only if its induced system is null (recall that a classical dynamical system is null 
if its topological sequence entropy along any increasing positive sequence is zero). In [12], the 
second named author and Zhou generalized the result of Glasner and Weiss to any increasing 
positive sequence for classical dynamical systems. This generalization strengthens Kerr and Li’s 
result as well.

The present paper aims to investigate the entropy relation between a system and its induced 
system in the context of NADSs. We denote by M(X) the space of all Borel probability mea-
sures on a compact metric space X equipped with the weak∗-topology. Our main result is as 
follows.

Theorem 1.1. Let (X, {fn}+∞
n=1) be a NADS. Then the following statements hold:

1. htop(X, {fn}+∞
n=1) = 0 if and only if htop(M(X), {fn}+∞

n=1) = 0.
2. htop(X, {fn}+∞

n=1) > 0 if and only if htop(M(X), {fn}+∞
n=1) = +∞.

Note that Theorem 1.1 includes the results mentioned previously in [6,12].
Now let us turn to considering the entropy relation between a system and its extensions. In 

classical dynamical systems, topology entropy, as we know, is preserved under finite-to-one ex-
tensions [4]. A natural question is if we may further expect such an assertion to be true for 
NADSs. Unfortunately, this property fails in nonautonomous case.

Theorem 1.2. There exist two NADSs (X, {fn}+∞
n=1) and (Y, {gn}+∞

n=1) such that (X, {fn}+∞
n=1) is a 

finite-to-one extension of (Y, {gn}+∞
n=1) and

htop(X, {fn}+∞
n=1) > htop(Y, {gn}+∞

n=1).
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Theorem 1.2 reflects that entropy properties of NADSs may differ from that of classical dy-
namical systems. In particular, it indicates that the Bowen-type entropy inequality (stated in 
Theorem 2.1) does not hold for NADSs in general.

This paper is organized as follows. In Section 2, we list basic notions and results needed in 
our argument. In Section 3, we prove Theorem 1.1(2). In Section 4, we prove Theorem 1.1(1). In 
Section 5, we provide a constructive proof of Theorem 1.2.

Acknowledgments. The authors would like to thank Prof. Wen Huang and Dr. Lei Jin for 
their useful comments and suggestions. Y. Qiao was partially supported by NNSF of China 
(11901206). L. Xu was partially supported by NNSF of China (11801538, 11871188) and the 
Fundamental Funds for the Central Research Universities.

2. Preliminaries

For clarification, throughout this paper by a topological dynamical system (TDS for short) 
we mean a pair (X, T ), where X is a compact metric space endowed with a metric ρ and T :
X → X is a homeomorphism. A nonautonomous dynamical system (NADS for short) is a pair 
(X, {fn}+∞

n=1), where X is a compact metric space endowed with a metric ρ and {fn : X → X}+∞
n=1

is a sequence of continuous maps. We denote by N and N+ the sets of nonnegative integers and 
positive integers, respectively.

2.1. Topological entropy

Let (X, {fn}+∞
n=1) be a NADS and ρ a metric on X. An open cover of X is a family of open 

subsets of X, whose union is X. For two covers U and V we say that U is a refinement of V if 
for each U ∈ U there is V ∈ V with U ⊂ V . For n ∈N+ and open covers U1, U2, . . . , Un of X we 
denote

n∨
i=1

Ui = {A1 ∩ A1 ∩ · · · ∩ An : A1 ∈ U1,A2 ∈ U2, . . . ,An ∈ Un} .

Note that 
∨n

i=1 Ui is also an open cover of X. We denote by N (U) the minimal cardinality of all 
subcovers chosen from U . Set

f 0
i = idX, f n

i = fi+(n−1) ◦ fi+(n−2) ◦ · · · ◦ fi+1 ◦ fi, f −n
i = (f n

i )−1

for all i, n ∈N+, where idX is the identity map on X. Let

htop({fn}+∞
n=1,U) = lim sup

n→+∞
logN (

∨n−1
j=0 f

−j
1 (U))

n
.

The topological entropy of (X, {fn}+∞
n=1) is defined by

htop(X, {fn}+∞
n=1) = sup

{
htop({fn}+∞

n=1,U) : U is an open cover of X
}
.

As we expected, there is a Bowen-like equivalent definition of topological entropy for NADSs. 
For each n ∈N+, a compatible metric ρn on X is defined by the formula
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ρn(x, y) = max
0≤j≤n−1

ρ(f
j

1 x,f
j

1 y).

For any n ∈N+ and ε > 0, a subset F of X is called an (n, ε)-spanning subset of (X, {fn}+∞
n=1) if 

for any x ∈ X there exists y ∈ F with ρn(x, y) < ε. A subset E of X is called an (n, ε)-separated
subset of (X, {fn}+∞

n=1) if for any distinct x, y ∈ E, ρn(x, y) > ε. We denote by rn(X, {fn}+∞
n=1, ε)

the smallest cardinality of all (n, ε)-spanning subsets of (X, {fn}+∞
n=1), and sn(X, {fn}+∞

n=1, ε) the 
largest cardinality of all (n, ε)-separated subsets of (X, {fn}+∞

n=1). It was proved in [11, Lemma 
3.1] that for every NADS (X, {fn}+∞

n=1), we have

htop(X, {fn}+∞
n=1) = lim

ε→0
lim sup
n→+∞

log sn(X, {fn}+∞
n=1, ε)

n

= lim
ε→0

lim sup
n→+∞

log rn(X, {fn}+∞
n=1, ε)

n
.

2.2. Extensions

Let (X, T ) and (Y, S) be two TDSs. We say that (X, T ) is an extension of (Y, S) if there is 
a continuous surjective map π : X → Y such that π ◦ T = S ◦ π . For two NADSs (X, {fn}+∞

n=1)

and (Y, {gn}+∞
n=1), (X, {fn}+∞

n=1) is said to be an extension of (Y, {gn}+∞
n=1) if there is a continuous 

surjective map π : X → Y such that π ◦ fn = gn ◦ π for every n ≥ 1. In both of the above 
definitions, π is called an extension (or a factor map), and if in addition, there exists c > 0 such 
that supy∈Y #π−1(y) ≤ c, then π is called finite-to-one.

It is easy to see that if (X, T ) is an extension of (Y, S) then htop(X, T ) ≥ htop(Y, S). Bowen 
[4] gave an upper bound of extensions in his renowned work as follows.

Theorem 2.1 ([4, Theorem 17]). Let (X, T ) and (Y, S) be two TDSs, and π : (X, T ) → (Y, S)

an extension. Then

htop(X,T ) ≤ htop(Y,S) + sup
y∈Y

htop(T ,π−1(y)).

In particular, if π is finite-to-one, then htop(X, T ) = htop(Y, S).

Remark 2.2. In the case of NADSs, the assumption that for any n ∈ N+, fn is topologically 
conjugate to gn (via a homeomorphism πn : X → Y ) is not sufficient to guarantee the equality 
htop(X, {fn}+∞

n=1) = htop(Y, {gn}+∞
n=1). However, if all πn’s are the same, then htop(X, {fn}+∞

n=1) =
htop(Y, {gn}+∞

n=1) holds (see [11, Section 5.b]).

2.3. Induced systems

Let X be a compact metric space, B(X) the set of Borel subsets of X, C(X) the space of 
continuous maps from X to R endowed with the supremum norm (|| · ||∞), and M(X) the set of 
Borel probability measures on X. The weak∗-topology is the smallest topology making the map

Dg : M(X) → R, μ �→
∫

gdμ
X
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continuous for every g ∈ C(X). A basis is given by the collection of all sets of the form

Vμ(g1, g2, . . . , gk; ε) =
{
ν ∈ M(X) :

∣∣∣∣
∫

gidμ −
∫

gidν

∣∣∣∣< ε, 1 ≤ i ≤ k

}
,

where μ ∈ M(X), g1, g2, . . . , gk ∈ C(X), k ∈ N and ε > 0. It is well known that M(X) is 
compact in the weak∗-topology [13, Theorem 6.5].

Suppose that {gn}+∞
n=1 is a dense subset of C(X). By [13, Theorem 6.4], the metric

D(μ,ν) =
+∞∑
n=1

| ∫ gndμ − ∫ gndν|
2n(||gn||∞ + 1)

on M(X) is compatible with the weak∗-topology. So M(X) becomes a compact metric space 
as well.

A NADS (X, {fn}+∞
n=1) induces a new NADS (M(X), {f ∗

n }+∞
n=1), where f ∗

n :M(X) → M(X)

is given by f ∗
n (μ)(B) = μ(f −1

n B) for each n ∈ N , μ ∈ M(X) and B ∈ B(X). We call 
(M(X), {f ∗

n }+∞
n=1) the induced system of (X, {fn}+∞

n=1) and write (M(X), {fn}+∞
n=1) instead of 

(M(X), {f ∗
n }+∞

n=1) if there is no ambiguity.

3. Proof of Theorem 1.1(2)

Let X be a compact metric space with the metric ρ and n ∈N+. The metric

d((x1, x2 . . . , xn), (y1, y2, . . . , yn)) = max
1≤i≤n

ρ(xi, yi)

on Xn is compatible with the product topology. For a map f : X → X, set

f (n) = f × f × · · · × f︸ ︷︷ ︸
n times

: Xn → Xn, (x1, x2, . . . , xn) �→ (f x1, f x2, . . . , f xn).

Proposition 3.1. Let (X, {fn}+∞
n=1) be a NADS and k ∈N+. Then

htop(Xk, {f (k)
n }+∞

n=1) = k · htop(X, {fn}+∞
n=1).

Proof. For fixed m ∈N and ε > 0, we let E be an (m, ε)-spanning set of (X, {fn}+∞
n=1) with #E =

rm(X, {fn}+∞
n=1, ε). Then for any x = (x1, x2, . . . , xk) ∈ Xk , there exists y = (y1, y2, . . . yk) ∈ Ek

such that ρm(xi, yi) < ε for i = 1, 2, . . . , k. Thus,

ρm(x, y) = max
0≤j≤m−1

d
(
(f

j

1 x1, . . . , f
j

1 xk), (f
j

1 y1, . . . , f
j

1 yk)
)

= max
0≤j≤m−1

max
1≤i≤k

ρ(f
j
1 xi, f

j
1 yi)

= max
1≤i≤k

ρm(xi, yi)

< ε.
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This implies that Ek is an (m, ε)-spanning set of Xk , and hence

rm(Xk, {f (k)
n }+∞

n=1, ε) ≤ #(Ek) = (rm(X, {fn}+∞
n=1, ε))

k

for any m ∈N and ε > 0. Therefore,

htop(Xk, {f (k)
n }+∞

n=1) = lim
ε→0

lim sup
m→+∞

1

m
log rm(Xk, {f (k)

n }+∞
n=1, ε)

≤ lim
ε→0

lim sup
m→+∞

k

m
log rm(X, {fn}+∞

n=1, ε)

= k · htop(X, {fn}+∞
n=1). (3.1)

For fixed n′ ∈ N and ε′ > 0, we assume that F is an (n′, ε′)-separated set of (X, {fn}+∞
n=1)

with #F = sn′(X, {fn}+∞
n=1, ε

′). For any two distinct points x = (x1, x2, . . . , xk) and y =
(y1, y2, . . . , yk) in Fk , we have

dn′(x, y) = max
0≤j≤n′−1

d
(
(f

j
1 x1, . . . , f

j
1 xk), (f

j
1 y1, . . . , f

j
1 yk)

)
= max

0≤j≤n′−1
max

1≤i≤k
ρ(f

j

1 xi, f
j

1 yi)

= max
1≤i≤k

ρn′(xi, yi)

> ε′.

So Fk is an (n′, ε′)-separated set of (Xk, {f (k)
n }+∞

n=1), which means that

sn′(Xk, {f (k)
n }+∞

n=1, ε
′) ≥ #(F k) = (sn′(X, {fn}+∞

n=1, ε
′))k

for any n′ ∈ N and ε′ > 0. Thus,

htop(Xk, {f (k)
n }+∞

n=1) = lim
ε′→0

lim sup
n′→+∞

1

n′ log sn′(Xk, {f (k)
n }+∞

n=1, ε
′)

≥ lim
ε′→0

lim sup
n′→+∞

k

n′ log sn′(X, {fn}+∞
n=1, ε

′)

= k · htop(X, {fn}+∞
n=1). (3.2)

By (3.1) and (3.2), we get htop(Xk, {f (k)
n }+∞

n=1) = k · htop(X, {fn}+∞
n=1). �

Proposition 3.2. Let X be a compact metric space and k ∈N+. Then the map

πk : Xk → M(X), (x1, x2, . . . , xk) �→ 1∑k
i=1 2i

k∑
i=1

2iδxi

is injective.
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Proof. Fix x = (x1, x2, . . . , xk) and y = (y1, y2, . . . , yk) in Xk . Set

t = min{i = 1,2, . . . , k : xi 
= yi}.

There exists a continuous function g ∈ C(X) satisfying that g(xt ) = 1 and that g(z) = 0 for all 
z ∈ {x1, x2, . . . , xk, y1, y2, . . . , yk} \ {xt }. Then we have

∫
gd

(
k∑

i=1

2iδxi

)
=
∫

gd

(
t−1∑
i=1

2iδxi

)
+
∫

gd

(
k∑

i=t

2iδxi

)

and

∫
gd

(
k∑

i=1

2iδyi

)
=
∫

gd

(
t−1∑
i=1

2iδyi

)
+
∫

gd

(
k∑

i=t

2iδyi

)
.

If t = k, then

∫
gd

(
k∑

i=t

2iδxi

)
= 2k 
= 0 =

∫
gd

(
k∑

i=t

2iδyi

)
.

Otherwise, we have

2t+1 �

∫
gd

(
k∑

i=t

2iδxi

)
, 2t+1 |

∫
gd

(
k∑

i=t

2iδyi

)
.

Summing up,

∫
gd(

k∑
i=1

2iδxi
) 
=
∫

gd(

k∑
i=1

2iδyi
).

This implies

k∑
i=1

2iδxi

=

k∑
i=1

2iδyi
.

Thus, πk is injective. �
We are now ready to prove Theorem 1.1(2).
For any k ∈N+, let πk be the map defined in Proposition (3.2). It is clear that πk is continuous 

and equivariant, which, together with the injectivity of πk that we just proved in Proposition (3.2), 
allows us to regard (Xk, {f (k)

n }+∞
n=1) as a subsystem of (M(X), {fn}+∞

n=1). This implies that

htop(M(X), {fn}+∞) ≥ htop(Xk, {f (k)}+∞) = k · htop(X, {fn}+∞)
n=1 n n=1 n=1
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for all k ∈N+. Since htop(X, {fn}+∞
n=1) > 0, we conclude

htop(M(X), {fn}+∞
n=1) = +∞.

4. Proof of Theorem 1.1(1)

To begin with, we borrow a key lemma which has some combinatorial flavor.

Lemma 4.1 ([6, Proposition 2.1]). For given constants ε > 0 and b > 0, there exist n0 ∈ N and 
a constant c > 0 such that for all n > n0, if φ is a linear mapping from lm1 to ln∞ of norm

||φ|| = sup
{||φ(x)||∞ : x ∈ lm1 , ||x|| ≤ 1

}≤ 1,

and if φ(B1(l
m
1 )) contains more than 2bn points that are ε-separated, then m ≥ 2cn, where 

B1(l
m
1 ) := {y ∈ lm1 : ||y|| ≤ 1}.

Firstly, (X, {fn}+∞
n=1) may be regarded as a subsystem of (M(X), {fn}+∞

n=1) by mapping x ∈ X

to δx ∈ M(X), where

δx(A) =
{

1, if x ∈ A

0, if x /∈ A
.

So htop(M(X), {fn}+∞
n=1) = 0 implies htop(X, {fn}+∞

n=1) = 0.
Now we assume htop(M(X), {fn}+∞

n=1) > 0. We shall show htop(X, {fn}+∞
n=1) > 0. Let {gn}+∞

n=1
be a sequence in C(X) satisfying that ||gn|| ≤ 1 for any n ∈N+, and that

D(μ,ν) =
+∞∑
n=1

| ∫ gndμ − ∫ gndν|
2n

is a metric on M(X) giving the weak∗-topology.
Since htop(M(X), {fn}+∞

n=1) > 0, there exist a > 0 and ε0 > 0 such that for any 0 < ε < ε0

we can find an increasing sequence {Ni}+∞
i=1 ⊂N with

sNi
(M(X), {fn}+∞

n=1, ε) > eaNi .

For any fixed 0 < ε < ε0, there exists K0 ∈ N such that 
∑+∞

n=K0+1 1/2n < ε/2. Since gn is 
continuous for any n ∈ N+, there exists δ > 0 such that d(x, y) < δ implies d(gn(x), gn(y)) <
ε/9, for all x, y ∈ X and n = 1, 2, . . . , K0.

Let U = {U1, U2, . . . , Ud} be an open cover of X with diam(U) < δ and set LNi
=

N
(

Ni−1∨
j=0

f
−j
1 U

)
. By the definition, we can take a subcover V = {V1, V2, . . . , VLNi

} of 

Ni−1∨
f

−j
1 U of the minimal cardinality LNi

. Set

j=0
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A1 = V1, A2 = V2 \ V1, . . . , ALNi
= VLNi

\
LNi

−1⋃
j=1

Vj .

Then {A1, A2, . . . , ALNi
} is a partition of X and Ai 
= ∅ for every i = 1, 2, . . . , LNi

. For each 

i = 1, 2, . . . , LNi
we take zi ∈ Ai . Define φ : lLNi

1 → l
K0·Ni∞ by

φ({xk}LNi

k=1) =
⎧⎨
⎩ 1

2n

LNi∑
k=1

xkgn(f
j
1 zk)

⎫⎬
⎭

1≤n≤K0, 0≤j≤Ni−1

.

It is clear that φ is a linear mapping from l
LNi

1 to lK0·Ni∞ with ||φ|| ≤ 1.

Next we will show that φ(B1(l
LNi

1 )) contains more than eaNi points that are ε/(9 ·
2K0)-separated. Let Ei be an (Ni, ε)-separated subset of M(X) with

#Ei = sNi
(M(X), {fn}+∞

n=1, ε) > eaNi .

For any distinct μ, ν ∈ Ei , we have DNi
(μ, ν) > ε. Thus, there exists 0 ≤ j0 ≤ Ni − 1 such that

K0∑
n=1

∣∣∣∫ gn(f
j0
1 x)dμ(x) − ∫ gn(f

j0
1 x)dν(x)

∣∣∣
2n

>
ε

2
. (4.1)

We claim that for any distinct μ, ν ∈ Ei , the following vectors in φ(B1(l
LNi

1 )) are ε/(9 ·
2K0)-separated:

φ
(
μ(A1),μ(A2), . . . ,μ(ALNi

)
)

and φ
(
ν(A1), ν(A2), . . . , ν(ALNi

)
)

.

If the claim is not true, then for any 1 ≤ n ≤ K0 and 0 ≤ j ≤ Ni − 1 we have

∣∣∣∣∣
LNi∑
k=1

μ(Ak)gn(f
j

1 zk) −
LNi∑
k=1

ν(Ak)gn(f
j

1 zk)

∣∣∣∣∣
2n

≤ ε

9 · 2K0
. (4.2)

On the other hand,

∣∣∣∣
∫

gn(f
j
1 x)dμ(x) −

∫
gn(f

j
i x)dν(x)

∣∣∣∣≤ I1 + I2 + I3, (4.3)

where

I1 =
∣∣∣∣∣∣
∫

gn(f
j
1 x)dμ(x) −

LNi∑
μ(Ak)gn(f

j
1 zk)

∣∣∣∣∣∣ ,
k=1
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I2 =
∣∣∣∣∣∣
LNi∑
k=1

μ(Ak)gn(f
j

1 zk) −
LNi∑
k=1

ν(Ak)gn(f
j

1 zk)

∣∣∣∣∣∣
and

I3 =
∣∣∣∣∣∣
∫

gn(f
j
1 x)dν(x) −

LNi∑
k=1

ν(Ak)gn(f
j
1 zk)

∣∣∣∣∣∣ .
For k = 1, 2, . . . , LNi

, if x ∈ Ak then ρ(f
j
1 (x), f j

1 (zk)) < δ for all j = 0, 1, . . . , Ni − 1. Thus we 
have

I1 =

∣∣∣∣∣∣∣
LNi∑
k=1

∫
Ak

gn(f
j
1 x) − gn(f

j
1 zk)dμ(x)

∣∣∣∣∣∣∣
≤

LNi∑
k=1

∫
Ak

∣∣∣gn(f
j

1 x) − gn(f
j

1 zk)

∣∣∣dμ(x)

≤
LNi∑
k=1

μ(Ak) · ε

9

= ε

9
.

Similarly, I3 ≤ ε/9. By (4.2), we know I2 ≤ ε/9. So it follows from (4.3) that∣∣∣∣
∫

gn(f
j
1 x)dμ(x) −

∫
gn(f

j
i x)dν(x)

∣∣∣∣≤ ε/3

for all n = 1, 2, . . . , K0 and j = 0, 1, . . . , Ni − 1. This contradicts (4.1). Therefore φ(ψ(E)) ⊂
φ(B1(l

LNi

1 )) are ε/(9 · 2K0)-separated, where

ψ : E → l
LNi

1 , μ �→
(
μ(A1),μ(A2), . . . ,μ(ALNi

)
)

.

To end the proof, we employ Lemma 4.1. In the above discussion, we have shown that φ is a 

linear mapping from l
LNi

1 to lK0Ni∞ with ||φ|| ≤ 1 and that φ(B1(l
LNi

1 )) contains more than eaNi

points which are ε/(9 · 2K0)-separated. By Lemma 4.1, there exist n0 and a constant c > 0 such 
that for all sufficiently large i ∈N we have LNi

≥ 2cNi . Thus,

htop(X, {fn}+∞
n=1) ≥ lim

i→+∞
1

Ni

logN

⎛
⎝Ni−1∨

j=0

f
j
1 U

⎞
⎠

≥ lim
1

log 2cNi
i→+∞ Ni
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= c · log 2

> 0.

5. A constructive proof of Theorem 1.2

Let 	2 = {0, 1}N and σ : 	2 → 	2, (an)n∈N �→ (an+1)n∈N . For p ∈ N , q ∈ N+ and 
i1, . . . , iq ∈ {0, 1} we set

[i1, i2, . . . , iq ]qp = {(an)n∈N ∈ 	2 : ap+j = ij+1,∀j = 0,1, . . . , q − 1
}
.

We define

X = {0} ∪ {1} ∪
{
a × 1

n
: a ∈ 	2, n ∈N+

}
,

where a × (1/n) converges to 0 as n → ∞ for a ∈ [0]1
0, and a × (1/n) converges to 1 as n → ∞

for a ∈ [1]1
0. We define

Y = {0} ∪
{
a × 1

n
: a ∈ 	2, n ∈N+

}
,

where a × (1/n) converges to 0 as n → ∞ for any a ∈ 	2.
For n ∈N+ we take

fn(x) =
{

σ(a) × 1
i+1 , if x = a × 1

i
and i < n,

x, otherwise

and let gn be the restriction of fn to Y . Clearly, {fn}+∞
n=1 and {gn}+∞

n=1 are sequences of continuous 
maps on X and Y , respectively.

We define a map π : X → Y by

π(x) =
{

0, if x = 1,

x, otherwise.

We may directly check that π : X → Y is a finite-to-one extension. Now Theorem 1.2 follows 
from Proposition 5.1.

Proposition 5.1. Under the above settings,

htop(Y, {gn}+∞
n=1) + sup

y∈Y

htop(π−1(y), {fn}+∞
n=1) < htop(X, {fn}+∞

n=1).

Proof. We first notice that for every y ∈ Y , htop(π−1(y), {fn}+∞
n=1) = 0, which means that the 

second term in the above inequality vanishes. So it remains to deal with the first and third terms. 
We will show htop(X, {fn}+∞) > 0 and htop(Y, {gn}+∞) = 0.
n=1 n=1
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To show htop(X, {fn}+∞
n=1) > 0, we take a finite open cover U = {U1, U2} of X, where

U1 = {0} ∪
{
a × 1

n
: a ∈ [0]1

0, n ∈ N+
}

and

U2 = {1} ∪
{
a × 1

n
: a ∈ [1]1

0, n ∈N+
}

.

By the construction of {fn}+∞
n=1, it is not hard to check that for every m ∈N+ we have

f −m
1 (U) = {Um

1 ,Um
2 },

where

Um
1 = {0} ∪

{
b × 1

i
: bm−i = 0, i = 1,2, . . . ,m

}
∪
{
b × 1

i
: b1 = 0, i ≥ m + 1

}

and

Um
2 = {1} ∪

{
b × 1

i
: bm−i = 1, i = 1,2, . . . ,m

}
∪
{
b × 1

i
: b1 = 1, i ≥ m + 1

}
.

Therefore

N

⎛
⎝m−1∨

j=0

f
−j

1 (U)

⎞
⎠= 2m,

and thus

htop(X, {fn}+∞
n=1) ≥ htop({fn}+∞

n=1,U)

= lim
N→+∞

log

(
N
(∨m−1

j=0 f
−j
1 (U)

))
m

≥ lim
N→+∞

log 2m

m

= log 2.

Next we show htop(Y, {gn}+∞
n=1) = 0. Let V be a finite open cover of Y . We choose sufficiently 

large N1, N2 ∈ N+ such that

V∗ =
{
V1,V

n
i1,i2,...,iN2

: i1, i2, . . . , iN2 ∈ {0,1},1 ≤ n ≤ N1

}
is a refinement of V , where
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V1 = {0} ∪
{
a × 1

n
: a ∈ 	2, n > N1

}

and

V n
i1,i2,...,iN2

=
{
a × 1

n
: a ∈ [i1, i2, . . . , iN2 ]N2

1

}

for all i1, i2, . . . , iN2 ∈ {0, 1} and 1 ≤ n ≤ N1. By the definition of gn, for every x ∈ Y and every 
integer n > N1 we have gn

1x ∈ V1, that is, g−n
1 (V∗) = {Y, ∅}. Thus,

N
(

n−1∨
i=0

g−i
1 (V∗)

)
=N

(
N1∨
i=0

g−i
1 (V∗)

)

for all n > N1. Therefore,

htop(V, {gn}+∞
n=1) ≤ htop(V∗, {gn}+∞

n=1) = lim
n→+∞

logN
(∨N1

i=0 g−i
1 (V∗)

)
n

= 0.

Since V is arbitrary, we see that htop(Y, {gn}+∞
n=1) = 0. �
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