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Abstract

We consider the interior Hölder regularity of spatial gradient of viscosity solution to the parabolic nor-
malized p(x, t)-Laplace equation

ut =
(

δij + (p(x, t) − 2)
uiuj

|Du|2
)

uij

with some suitable assumptions on p(x, t), which arises naturally from a two-player zero-sum stochastic 
differential game with probabilities depending on space and time.
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1. Introduction

Let p(x, t) ∈ C1
loc(R

n+1) and 1 < p− := infp(x, t) ≤ supp(x, t) =: p+ < ∞. In this work, 
we investigate the higher regularity properties of viscosity solutions to the following parabolic 
normalized p(x, t)-Laplacian

ut (x, t) = �N
p(x,t)u(x, t), (1.1)

where �N
p(x,t) is the normalized p(x, t)-Laplace operator defined as

�N
p(x,t)u := �u + (p(x, t) − 2)

〈
D2u

Du

|Du| ,
Du

|Du|
〉
=

(
δij + (p(x, t) − 2)

uiuj

|Du|2
)

uij .

Here the summation convention is utilized and the vector Du is the gradient with respect to the 
spatial variable x. In the rest of this paper, Dx,tu = (∂tu, ∂x1u, · · · , ∂xnu)T .

Over the last decade, equation (1.1) and related normalized equations in non-divergence form 
have received considerable attention, partly due to the stochastic zero-sum tug-of-war games de-
fined by Peres-Schramm-Sheffield-Wilson [31], Peres-Sheffield [32] and Manfredi-Parviainen-
Rossi [28]. When p(x) is constant, Luiro-Parviainen-Saksman [27] proved the Harnack’s in-
equality for the homogeneous normalized p-Laplace equation −�N

p u = 0. Ruosteenoja [35]
studied the local Lipschitz continuity and Harnack’s inequality for the inhomogeneous version 
−�N

p u = f . The first contribution on the C1,α estimates for such equations is due to Jin-Silvestre 
[20], in which they established the local Hölder gradient estimates for the parabolic normalized 
p-Laplacian

∂tu = �N
p u. (1.2)

This result was generalized to the inhomogeneous case by Attouchi-Parviainen in [2]. Addition-
ally for the inhomogeneous elliptic analogue, Attouchi-Parviainen-Ruosteenoja in [3] verified 
that the solutions are locally of class C1,α , see also [9]. Later, Imbert-Jin-Silvestre [18] proved 
the interior C1,α regularity for a more general equation

∂tu = |Du|γ
(

δij + (p − 2)
uiuj

|Du|2
)

uij , (1.3)

where p ∈ (1, +∞) and γ > −1. When γ = 0, it is nothing but (1.2); when γ = p − 2, it is the 
usual parabolic p-Laplace equation

ut = div(|Du|p−2Du). (1.4)

It was well-known that viscosity solutions and weak solutions to (1.4) coincide (see [22]). Based 
on this equivalence and the C1,α regularity of weak solutions to (1.4) in [13,39], we know that 
the viscosity solutions are of class C1,α . For the inhomogeneous counterpart of (1.3)

∂tu − |Du|γ
(

δij + (p − 2)
uiuj

2

)
uij = f (1.5)
|Du|
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with −1 < γ < ∞ and 1 < p < ∞, the local higher regularity properties of solutions to (1.5)
have been investigated in [1,5], provided that f is bounded and continuous. One can find more 
related results in [6–8,14,16,21,24,26,29,33,34].

On the other hand, when it comes to the nonstandard growth case, Siltakoski [36] considered 
the normalized p(x)-Laplacian

�N
p(x)u :=

(
δij + (p(x) − 2)

uiuj

|Du|2
)

uij = 0 (1.6)

and showed that the viscosity solution is locally C1,α regular by means of the equivalence be-
tween viscosity solutions to (1.6) and weak solutions to strong p(x)-Laplace equation

�S
p(x)u = |Du|p(x)−2�N

p(x)u.

And the local C1,α regularity of weak solutions of strong p(x)-Laplace equation has been 
obtained by Zhang-Zhou [40]. For more results in the elliptic situation, see for instance 
[4,10,11,19,37] and references therein.

As interpreted in [15,30], parabolic equations of the type considered in (1.1) arise naturally 
from a two-player zero-sum stochastic differential game (SDG) with probabilities depending 
on space and time. It is defined in terms of an n-dimensional state process, and is driven by a 
2n-dimensional Brownian motion for n ≥ 2. It is worth remarking that around “2n-dimensional 
Brownian motion” that the simplest versions use (n + 1)-dimensional Brownian motion or even 
random walk. As far as we know, the present setting is less studied and it exhibits interesting 
features both from the tug-of-war games and from the mathematical viewpoint. In particular, 
Parviainen-Ruosteenoja [30] proved the Hölder and Harnack estimates for a more general game 
that was called p(x, t)-game without using the PDE techniques and showed that the value func-
tions of the game converge to the unique viscosity solution of the Dirichlet problem to the 
normalized p(x, t)-parabolic equation

(n + p(x, t))ut (x, t) = �N
p(x,t)u(x, t).

In addition, Heino [15] formulated a stochastic differential game in continuous time and ob-
tained that the viscosity solution to a terminal value problem involving the parabolic normalized 
p(x, t)-Laplace operator is unique under suitable assumptions. However, whether or not the spa-
tial gradient Du of (1.1) is Hölder continuous was still unknown. In this paper we answer this 
question and prove the interior Hölder continuity for the spatial gradient of viscosity solutions to 
(1.1).

Let Qr := Br × (−r2, 0] ⊂ Rn+1 be a parabolic cylinder, where Br is a ball in Rn centered at 
the origin with the radius r > 0. Our main result is stated as follows.

Theorem 1.1. Assume that u is a viscosity solution to (1.1) in Q1. If 1 < p− ≤ p+ < ∞ and 
p(x, t) ∈ C1(Q1), then there exist two constants α ∈ (0, 1) and C, both depending on n, p−, p+
and ‖Dx,tp‖L∞(Q1), such that

‖Du‖Cα(Q1/2) ≤ C‖u‖L∞(Q1)

and
213
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sup
Q1/2

|u(x, t) − u(x, s)|
|t − s| 1+α

2

≤ C‖u‖L∞(Q1).

We would like to mention that our proof is much influenced by the ideas developed in [20]. To 
avoid the problem of vanishing gradient, we first approximate (1.1) with a regularized problem 
(3.1) below. Then we try to derive uniform a priori estimates regarding (3.1), so that we could 
pass to the limit through compactness argument eventually. Specifically, we verify that the os-
cillation of the spatial gradient decreases in a sequence of the shrinking parabolic cylinders. The 
iteration process is divided into two scenarios: either the gradient Du is close to a fixed vector e
in a large portion of Qτk , or it does not. We then have to combine these two alternatives to get 
the final result. In fact, by virtue of the similar structure between (1.1) and (1.2), we focus mainly 
on showing the improvement of oscillation for |Du| (Lemmas 3.1 and 3.3 below) and demon-
strate the higher Hölder regularity of solutions to the original equation (1.1) via approximation. 
It is worth pointing out that the comparison principle and stability of viscosity solutions play an 
important role in the proof of Theorem 3.12 (the approximation step). Although we basically fol-
low the ideas in [20], there exist several noticeable differences and difficulties. First, to derive the 
improvement of oscillation of |Du|, there will be an additional term involving Dp(x, t) when we 
differentiate the regularized equation (3.1) below with respect to the spatial variables x. Conse-
quently, in comparison to the proof of [20, Lemma 4.1], we require more elaborate analysis and 
construct different auxiliary functions. Second, the comparison principle (Theorem 4.1) cannot 
directly follow from the well-known results owing to the variable coefficient p(x, t). We have to 
make use of the information from the maximum principle of semicontinuous functions carefully, 
as well as the features such as the local Lipschitz continuity regarding the matrix square root. To 
the best of our knowledge, the comparison principle of (1.1) is new, which is also of independent 
interest.

This paper is organized as follows. In Section 2, we give the definition of viscosity solutions to 
(1.1) and state some known results that will be used later. Section 3 is devoted to showing firstly 
the Hölder gradient regularity of (1.1) under the assumption that ‖Dx,tp‖L∞(Q1) is small, then 
consummating the conclusion for all p(x, t) ∈ C1(Q1). In Section 4, we prove the comparison 
principle and stability of viscosity solutions to (1.1), which are the indispensable ingredients for 
the proof of Theorem 3.12.

2. Preliminaries

Because equation (1.1) is not in divergence form, the concept of weak solutions with test 
functions under the integral sign is problematic. Thus, in this section we first recall the definition 
of viscosity solution to (1.1).

Definition 2.1 (Viscosity solution). A lower (upper, resp.) semicontinuous function u in Q1 is a 
viscosity supersolution (subsolution, resp.) to (1.1), if for any ϕ ∈ C2(Q1), u − ϕ reaches a local 
minimum (maximum, resp.) at (x0, t0) ∈ Q1, then when Dϕ(x0, t0) 	= 0, it holds that

ϕt ≥ (≤, resp.)�ϕ + (p(x, t) − 2)

〈
D2ϕ

Dϕ

|Dϕ| ,
Dϕ

|Dϕ|
〉

at (x0, t0); when Dϕ(x0, t0) = 0, it holds that
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ϕt ≥ (≤, resp.)�ϕ + (p(x, t) − 2)〈D2ϕq,q〉

at (x0, t0) for some q ∈ B1(0) ⊂ Rn. A function u is a viscosity solution to (1.1) if and only if it 
is both viscosity super- and subsolution.

Next, we state some known results about solutions of linear uniformly parabolic equations, 
which will be used later. Consider the equation

ut − aij (x, t)uij = 0 in Q1, (2.1)

where the coefficient aij is uniformly parabolic, i.e., there exist two constants 0 < λ ≤ 
 < ∞
such that

λI ≤ aij (x, t) ≤ 
I for all (x, t) ∈ Q1. (2.2)

We begin with the following two lemmas (see [20]).

Lemma 2.2. Let u ∈ C(Q1) be a solution to (2.1) satisfying (2.2) and A be a positive constant. 
If

oscB1u(·, t) ≤ A

for any t ∈ [−1, 0], then we have

oscQ1u(x, t) ≤ CA,

where C > 0 depends only on n, 
.

Lemma 2.3. Let η, u be a positive constant and a smooth solution to (2.1) satisfying (2.2) re-
spectively. Suppose |Du| ≤ 1 in Q1 and

|{(x, t) ∈ Q1 : |Du − e| > ε0}| ≤ ε1

for some e ∈ Sn−1 (i.e., |e| = 1) and two positive constants ε0, ε1. Then there is a constant a ∈ R
such that

|u(x, t) − a − e · x| ≤ η

for any (x, t) ∈ Q1/2, provided that ε0, ε1 are small enough. Here ε0, ε1 depend on n, λ, 
 and 
η.

Subsequently, we present an important conclusion about improvement of oscillation for solu-
tion to (2.1).
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Lemma 2.4 ([20]). Assume u ∈ C(Q1) is a nonnegative supersolution to (2.1) satisfying (2.2). 
For any 0 < μ < 1, there is τ ∈ (0, 1) depending only on n, μ and γ > 0 depending on n, μ, λ, 

such that if

|{(x, t) ∈ Q1 : u ≥ 1}| > μ|Q1|,

then it holds that

u ≥ γ in Qτ .

We end this section by the following boundary estimates of solutions to (2.1) utilized in the 
proof of Theorem 3.12.

Lemma 2.5 ([20]). Suppose that u ∈ C(Q1) is a solution to (2.1) satisfying (2.2) and that ρ
is a modulus of continuity of boundary value ϕ := u |∂pQ1 . Then there is another modulus of 
continuity ρ∗ that depends on n, λ, 
, ρ, ‖ϕ‖L∞(∂pQ1) such that

|u(x, t) − u(y, s)| ≤ ρ∗(|x − y| ∨ √|t − s|)

for any (x, t), (y, s) ∈ Q1. Here a ∨ b denotes max{a, b}.

3. Hölder regularity of spatial gradients

To avoid the lack of smoothness of viscosity solutions to (1.1), we first consider the following 
regularized equation

ut =
(

δij + (p(x, t) − 2)
uiuj

|Du|2 + ε2

)
uij (3.1)

with ε > 0 in Q1. We will focus on deriving the uniform estimates with respect to ε so that we 
can pass to the limit by letting ε → 0 in the end. For later convenience, we denote

aε
ij := aε

ij (x, t,Du) = δij + (p(x, t) − 2)
uiuj

|Du|2 + ε2

with ui being the i-th component of Du.
Now we present the interior Lipschitz estimates independent of ε on the viscosity solutions of 

(3.1). This result is stated as follows.

Lemma 3.1. Let u be a viscosity solution to (3.1) in Q4 with ε ∈ (0, 1). Let p(x, t) be uniformly 
Lipschitz continuous in the spatial variables, that is, there is a number Clip > 0, independent of 
time variable, such that |p(x, t) − p(y, t)| ≤ Clip|x − y|. Then there is a constant C > 0, which 
depends on n, p−, p+, Clip and ‖u‖L∞(Q4), such that

|u(x, t) − u(y, t)| ≤ C|x − y|

for each (x, t), (y, t) ∈ Q3 and |x − y| < 1.
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Proof. As the proof of Lipschitz estimates in Section 2 in [18], this conclusion holds as well. It 
is enough to notice that the matrix

I + (p(x, t) − 2)
q ⊗ q

|q|2 + ε2 (q ∈ Rn)

is uniformly elliptic. �
Remark 3.2. If p(x, t) is assumed to be of class C1(Q4) in the above lemma, then the constant 
Clip > 0 could be substituted with ‖Dx,tp(x, t)‖L∞(Q4).

It follows from Lemma 3.1 that the spatial gradient Du is bounded (which is independent 
of ε). By normalization we may assume that |Du| ≤ 1 below. In the sequel, we are ready to 
prove the Hölder continuity of Du at the origin (0, 0), and conclude directly the local Hölder 
regularity for Du via standard translation arguments. To this end, we first verify that the solutions 
of equation (1.1) are locally of class C1,α under the condition that ‖Dx,tp‖L∞(Q1) is small. Next, 
through doing a scaling work, we finally infer that the solutions are locally C1,α-regular under 
the assumption that ‖Dx,tp‖L∞(Q1) is finite, i.e., |Dx,tp(x, t)| ≤ M in Q1 (M is a large number).

3.1. Hölder regularity of gradient for the case that ‖Dx,tp‖L∞(Q1) is small enough

We shall prove that if the projection of Du onto the unit vector e ∈ Sn−1 is away from 1 in a 
large part of Q1, then the inner product Du · e has improved oscillation in a smaller cylinder.

Lemma 3.3. Suppose that u is a smooth solution to (3.1) in Q1. For every 0 < l < 1, μ > 0, 
if p(x, t) ∈ C1(Q1) and ‖Dp‖L∞(Q1) ≤ β , where β is a small enough constant depending on 
n, p−, p+, μ and l, then we can conclude that there are two positive constants τ and δ, the 
former depending only on n, μ and the latter depending on n, p−, p+, μ and l, such that for 
arbitrary e ∈ Sn−1, if

|{(x, t) ∈ Q1 : Du · e ≤ l}| > μ|Q1|,

we have

Du · e < 1 − δ in Qτ .

Proof. Let

aε
ij,m := ∂aε

ij (x, t,Du)

∂um

= (p(x, t) − 2)

(
δimuj + δjmui

|Du|2 + ε2 − 2uiujum

(|Du|2 + ε2)2

)
.

Differentiating equation (3.1) in xk derives

(uk)t = aε
ij (uk)ij + aε

ij,muij (uk)m + pk

uiuj

|Du|2 + ε2 uij ,

where pk := ∂p(x,t) . Define

∂xk
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w = (Du · e − l + ρ|Du|2)+

with ρ = l
4 . Here (f )+ := max{f, 0}. Then for the function Du · e − l we have

(Du · e − l)t = aε
ij (Du · e − l)ij + aε

ij,muij (Du · e − l)m + Dp · e uiujuij

|Du|2 + ε2 ,

and for |Du|2 derive

(|Du|2)t = aε
ij (|Du|2)ij + aε

ij,muij (|Du|2)m + 2Dp · Du
uiujuij

|Du|2 + ε2 − 2aε
ij ukiukj ,

where Dp denotes the spatial gradient of p(x, t).
Merging the previous two identities arrives at in the region �+ := {(x, t) ∈ Q1 : w > 0}

wt = aε
ijwij + aε

ij,muijwm + Dp · (e + 2ρDu)
uiujuij

|Du|2 + ε2 − 2ρaε
ijukiukj .

Noting that |Du| > l
2 in �+, we have

|aε
ij,m| ≤ 4|p(x, t) − 2|

l
≤ 4

l
max{|p+ − 2|, |p− − 2|} =: 4

l
b. (3.2)

By Cauchy-Schwarz inequality and (3.2), we obtain

wt ≤ aε
ijwij + 4

l
b|Dw|

n∑
i,j

|uij | + (1 + 2ρ)|Dp| |〈D
2u · Du,Du〉|
|Du|2 + ε2 − 2ρaε

ijukiukj

≤ aε
ijwij + ε|D2u|2 + 4n2b2

εl2 |Dw|2 + (1 + 2ρ)|Dp||D2u|

− 2ρ

(
|D2u|2 + (p(x, t) − 2)

|D2u · Du|2
|Du|2 + ε2

)
≤ aε

ijwij + 2ε|D2u|2 + 4n2b2

εl2 |Dw|2 + (1 + 2ρ)2

4ε
|Dp|2

− 2ρ

(
|D2u|2 + (p(x, t) − 2)

|D2u · Du|2
|Du|2 + ε2

)
.

Denote

�1 := {p(x, t) ≥ 2} ∩ �+ and �2 := {p(x, t) < 2} ∩ �+.

In �1, we get

wt ≤ aε
ijwij + 2ε|D2u|2 + 4n2b2

|Dw|2 + (1 + 2ρ)2

|Dp|2 − 2ρ|D2u|2.

εl2 4ε
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In �2, we have

wt ≤ aε
ijwij + 2ε|D2u|2 + 4n2b2

εl2 |Dw|2 + (1 + 2ρ)2

4ε
|Dp|2 + 2ρ(1 − p(x, t))|D2u|2

≤ aε
ijwij + 2ε|D2u|2 + 4n2b2

εl2 |Dw|2 + (1 + 2ρ)2

4ε
|Dp|2 + 2ρ(1 − p−)|D2u|2.

Case 1. If p− ≥ 2, then we obtain by choosing ε = ρ

wt ≤ aε
ijwij + 4n2b2

ρl2 |Dw|2 + (1 + 2ρ)2

4ρ
|Dp|2

≤ aε
ijwij + 4n2b2

ρl2 |Dw|2 + (1 + 2ρ)2

4ρ
M2

in �+, where b = p+ − 2 and M = ‖Dp‖L∞(Q1). Let

c = (1 + 2ρ)2

4ρ
M2.

Thereby it satisfies in the viscosity sense that

wt ≤ aε
ijwij + 4n2b2

ρl2 |Dw|2 + c in Q1.

Set w = 1 − l + ρ + c and ν = c1
ρl2

, where c1 will be chosen later. Define

U = 1

ν
(1 − eν(w−ct−w)).

Observe that

aε
ijwij + νaε

ijwiwj ≥ aε
ijwij + ν|Dw|2.

Hence we can take c1 = 4n2(p+ − 2)2 such that

Ut ≥ aε
ijUij in Q1

in the viscosity sense. Obviously, U ≥ 0 in Q1.
If Du · e ≤ l, then it follows that

|{(x, t) ∈ Q1 : U ≥ ν−1(1 − eν(l−1))}| > μ|Q1|.

Thus we can conclude from Lemma 2.4 that there exist two constants τ, γ0 > 0 such that

U ≥ ν−1(1 − eν(l−1))γ0 in Qτ ,
219
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where τ and γ0 depend on μ, n and n, p−, p+, μ separately. Since w ≤ w + ct , we derive

U ≤ w − w + ct.

Therefore in Qτ we get

Du · e + ρ|Du|2 ≤ 1 + ρ − ν−1(1 − eν(l−1))γ0 + c + ct.

By |Du · e| ≤ |Du|, the above inequality becomes

Du · e + ρ(Du · e)2 ≤ 1 + ρ − ν−1(1 − eν(l−1))γ0 + c in Qτ .

Furthermore,

Du · e ≤ −1 + √
1 + 4ρ(1 + ρ − ν−1(1 − eν(l−1))γ0 + c)

2ρ
in Qτ .

Here we need

−1 + √
1 + 4ρ(1 + ρ − ν−1(1 − eν(l−1))γ0 + c)

2ρ
< 1.

Namely,

c < ν−1(1 − eν(l−1))γ0

⇐⇒ (1 + 2ρ)2

4ρ
M2 < ν−1(1 − eν(l−1))γ0

⇐⇒ M2 <
4ργ0

ν(1 + 2ρ)2 (1 − eν(l−1)),

where ν = 4n2

ρl2
(p+ − 2)2. In other words, when M := ‖Dp‖L∞(Q1) is small enough depending 

on n, p−, p+, l and μ, we get

Du · e ≤ 1 − δ in Qτ ,

where δ > 0 depends on n, p−, p+, l and μ.
Case 2. If 1 < p− < 2, we obtain

wt ≤ aε
ijwij + 4n2b2

ρl2(p− − 1)
|Dw|2 + (1 + 2ρ)2

4ρ(p− − 1)
|Dp|2 in �+,

where b = max{|p+ − 2|, |p− − 2|}. Let

ĉ = (1 + 2ρ)2

M2.

4ρ(p− − 1)
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It follows that

wt ≤ aε
ijwij + 4b2

ρl2(p− − 1)
|Dw|2 + ĉ in Q1

in the viscosity sense.
Notice that

aε
ijwij + νaε

ijwiwj ≥ aε
ijwij + ν(p− − 1)|Dw|2

with ν = c2
ρl2(p−−1)

> 0, where c2 is a constant determined later. Denote ŵ = 1 − l + ρ + ĉ and 

V = 1
ν
(1 − eν(w−ĉt−ŵ)). We take c2 = 4n2b2

p−−1 such that

Vt ≥ aε
ijVij in Q1

in the viscosity sense. Apparently, V ≥ 0 in Q1.
For Du · e ≤ l, by the assumption we have

|{(x, t) ∈ Q1 : V ≥ ν−1(1 − eν(l−1))}| > μ|Q1|.
Using again Lemma 2.4 deduces that there are two positive constants τ and γ0, depending re-
spectively on μ, n and n, p−, p+, μ, such that

V ≥ ν−1(1 − eν(l−1))γ0 in Qτ .

We further obtain

Du · e + ρ(Du · e)2 ≤ 1 + ρ − ν−1(1 − eν(l−1))γ0 + ĉ in Qτ .

Thus

Du · e ≤ −1 + √
1 + 4ρ(1 + ρ − ν−1(1 − eν(l−1))γ0 + ĉ)

2ρ
in Qτ .

Analogous to Case 1, for M = ‖Dp‖L∞(Q1) sufficiently small and depending on n, p−, p+, l and 
μ, we arrive at

Du · e ≤ 1 − δ in Qτ ,

where δ > 0 depends on n, p−, p+, l and μ. We now complete the proof. �
Remark 3.4. For the case that p− ≥ 2, we note that

I ≤ (p− − 1)I ≤ (aε
ij (x, t, q))n×n ≤ (p+ − 1)I

for all ε ∈ (0, 1), q ∈ Rn and (x, t) ∈ Q1, so the constant γ0 appearing in Case 1 may not depend 
on p−.
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If Lemma 3.3 holds in all directions e ∈ Sn−1, we then get the decay of oscillation of |Du| in 
a smaller cylinder. This content is formulated by the following lemma.

Lemma 3.5. Let u be a smooth solution of (3.1) in Q1. For any 0 < l < 1, μ > 0, when 
‖Dp‖L∞(Q1) ≤ β with β being a sufficiently small constant depending on n, p−, p+, l, μ, there 
is τ (small) depending on n, μ, and δ > 0 depending on n, p−, p+, l and μ, such that for any 
nonnegative integer k, if

|{(x, t) ∈ Qτi : Du · e ≤ l(1 − δ)i}| > μ|Qτi | for all e ∈ Sn−1, (3.3)

and i = 0, 1, · · · , k, then

|Du| < (1 − δ)i+1 in Qτi+1

for all i = 0, 1, · · · , k.

Proof. We prove this lemma by induction. For k = 0, the conclusion holds obviously by 
Lemma 3.3. Suppose the conclusion is true for i = 0, 1, · · · , k − 1. We are going to verify it 
for i = k. Set

v(x, t) := 1

τ k(1 − δ)k
u(τ kx, τ 2kt).

Then v satisfies

vt = �v + (hk(x, t) − 2)
vivj

|Dv|2 + ε2(1 − δ)−2k
vij in Q1,

where hk(x, t) = p(τkx, τ 2kt). We can see from the induction assumptions that |Dv| < 1 in Q1, 
and

|{(x, t) ∈ Q1 : Dv · e ≤ l}| > μ|Q1| for all e ∈ Sn−1.

Furthermore, we observe that

1 < p− ≤ hk(x, t) ≤ p+ < ∞
and

|Dhk(x, t)| = |τ kDp(y, s)| ≤ τ k‖Dp‖L∞(Q1),

where (y, s) = (τ kx, τ 2kt) and (x, t) ∈ Q1. Hence from Lemma 3.3 we get

Dv · e ≤ 1 − δ in Qτ

for all e ∈ Sn−1. Namely, |Dv| ≤ 1 − δ in Qτ . Rescaling back, we arrive at

|Du| < (1 − δ)k+1 in Qτk+1 .
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We finish the proof. �
Remark 3.6. Noting that 0 < τ < 1, when Dp(x, t) is bounded, we can see that

|Dhk(x, t)| → 0 uniformly in Q1,

by sending k → ∞. That is to say, for k large enough, we could remove the restriction that 
‖Dp‖L∞(Q1) is sufficiently small.

Remark 3.7. To obtain the reduction of oscillation of |Du|, ‖Dp‖L∞(Q1) ≤ β (small enough) 
is required from Lemmas 3.3 and 3.5 above. Hence we could assume initially that
sup(x,t)∈Q1

|Dx,tp| =: ‖Dx,tp‖L∞(Q1) ≤ β . Naturally, sup(x,t)∈Q1
|Dp| =: ‖Dp‖L∞(Q1) ≤

‖Dx,tp‖L∞(Q1) ≤ β . Consequently, these two lemmas still hold true, when we replace
‖Dp‖L∞(Q1) by ‖Dx,tp‖L∞(Q1) in Lemmas 3.3 and 3.5.

If the previous iteration process could be carried out infinitely, we then easily infer the Hölder 
regularity for Du at the origin (0, 0). Nonetheless, unless Du(0, 0) = 0, the iteration will termi-
nate at some step, that is, the condition (3.3) will fail to be fulfilled in some direction e ∈ Sn−1. 
In this scenario, it follows from Lemmas 2.2 and 2.3 that the solution, u, is close to some linear 
function. Then we could employ the conclusion on the regularity of small perturbation solution 
in [38] to verify the Hölder continuity of Du.

Lemma 3.8. Let u be a smooth solution to (3.1) in Q1. For γ = 1
2 , there are two positive con-

stants η (small) and C (large), both depending on n, p−, p+ and ‖Dx,tp‖L∞(Q1) such that if a 
linear function L(x) with 1

2 ≤ |DL| ≤ 2 satisfies

‖u(x, t) − L(x)‖L∞(Q1) ≤ η,

then

‖u(x, t) − L(x)‖C2,1/2(Q1/2)
≤ C.

Proof. We can reach this conclusion from Corollary 1.2 in [38], because L(x) is a solution to 
(3.1) as well. �
Remark 3.9. From Remark 3.7, we have known that ‖Dx,tp‖L∞(Q1) is small enough, so in 
Lemma 3.8 we may assume that ‖Dx,tp‖L∞(Q1) is smaller than some sufficiently large constant 
determined so that we can substitute ‖Dx,tp‖L∞(Q1) by that constant.

In the following, we will give a uniformly a priori estimate for the solution to (3.1).

Theorem 3.10. Let u be a smooth solution to (3.1) in Q1. Suppose that p(x, t) ∈ C1(Q1) and 
‖Dx,tp‖L∞(Q1) ≤ β , where β is a small constant depending only on n, p−, p+. Then there are 
two positive constants α and C, both of which depend on n, p−, p+, such that

‖Du‖Cα(Q ) ≤ C(‖u‖L∞(Q ) + ε)
1/2 1
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and

sup
Q1/2

|u(x, t) − u(x, s)|
|t − s| 1+α

2

≤ C(‖u‖L∞(Q1) + ε).

Proof. As the proof of Theorem 4.5 in [20], we can first deduce Du ∈ Cα(Q1/2) by combining 
Lemma 3.5 and Lemmas 2.3, 3.8. To this end, we choose η as the one in Lemma 3.8 with 
‖Dx,tp‖L∞(Q1) replaced by some large constant fixed. And then we take ε0, ε1 > 0 such small 
constants that Lemma 2.3 holds. Next, we determine the constants l and μ to be 1 − ε2

0/2 and 
ε1/|Q1| respectively.

Terminally, by Du ∈ Cα(Q1/2) and using Lemma 2.2, we show that u is C
1+α

2 (Q1/2)-regular 
in the t-variable. �
Lemma 3.11. Let g ∈ C(∂pQ1). For ε > 0, there is a unique solution uε ∈ C(Q1) ∩ C∞(Q1) of 
equation (3.1) satisfying uε = g on ∂pQ1.

For this lemma, we observe that equation (3.1) is uniformly parabolic and the coefficients 
aε
ij (x, t, Du) are smooth with bounded derivatives for every ε > 0. So it can be concluded from 

the classical quasilinear equation theory (see Theorem 4.4 of [25], page 560) and the Schauder 
estimates.

Combining the previous conclusions, we now could establish an important intermediate result 
as follows.

Theorem 3.12. Let u be a viscosity solution of (1.1) in Q1. Assume that p(x, t) ∈ C1(Q1) and 
‖Dx,tp‖L∞(Q1) ≤ β with β being a small enough constant that depends on n, p−, p+. Then there 
are two positive constants α ∈ (0, 1) and C, both depending on n, p− and p+, such that

‖Du‖Cα(Q1/2) ≤ C‖u‖L∞(Q1)

and

sup
Q1/2

|u(x, t) − u(x, s)|
|t − s| 1+α

2

≤ C‖u‖L∞(Q1).

Proof. Without loss of generality, we can suppose u ∈ C(Q1). It follows from Lemma 3.11 that 
there is a unique viscosity solution uε ∈ C(Q1) ∩ C∞(Q1) to (3.1) such that uε = u on ∂pQ1. 
Based on the proof of Theorem 1.1 in [20], we note that it suffices to show that uε converges to u
uniformly in Q1 as ε → 0 (up to a subsequence). To this end, we shall make use of comparison 
principle and stability property for viscosity solution to (1.1), which are two counterparts to 
Theorems 2.9 and 2.10 in [20]. Fortunately, these two conclusions hold true, whose proof will be 
presented in Section 4. �
3.2. Hölder regularity of gradient for the case that ‖Dx,tp‖L∞(Q1) is finite

In this subsection, we shall establish the Hölder estimates for the gradients of solutions to 
(1.1), under the condition that |Dx,tp(x, t)| possesses a more general bound.
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Set

ũ(x, t) := u(εx, ε2t), p̃(x, t) := p(εx, ε2t)

with 0 < ε < 1. By a scaling argument for equation (1.1), it follows that ũ satisfies (in the vis-
cosity sense) that

ũt =
(

δij + (p̃(x, t) − 2)
ũi ũj

|Dũ|2
)

ũij in Qε−1 . (3.4)

When |Dx,tp| ≤ M in Q1 with M being a large quantity, by the following equalities

Dp̃(x, t) = εDp(y, s),

∂t p̃(x, t) = ε2∂sp(y, s),

where (y, s) := (εx, ε2t), then we have

‖Dx,t p̃‖L∞(Q
ε−1 ) ≤ ε‖Dx,tp‖L∞(Q1) ≤ εM < β

by choosing ε so small that

ε ≤ β

M + 1
.

According to Theorem 3.12, we know that ε will only depend on n, p−, p+ and ‖Dx,tp‖L∞(Q1). 
Observe that the structure of (3.4) is similar to that of (1.1). Therefore this permits us to employ 
the previous results in subsection 3.1 to show the local C1,α-regularity of the solution ̃u to (3.4). 
In turn, by rescaling back, we can deduce that the solution u to (1.1) is of class C1,α

loc provided 
that ‖Dx,tp‖L∞(Q1) is finite. As a consequence, we reach the conclusion that if function p(x, t) ∈
C1(Q1), then the viscosity solution to (1.1) is locally C1,α-regular.

As has been stated above, we now complete the proof of Theorem 1.1.

4. Comparison principle and stability for viscosity solution

In this section, we are going to prove the comparison principle and stability properties for 
viscosity solutions of (1.1). We shall make use of Ishii-Lions’ method to show the compari-
son principle and we remark that the comparison principle is new. Some ideas of the proof are 
inspired by that of comparison principle in [23], in which the p(x)-Laplace equation was con-
sidered. Here we investigate these two properties in a more general domain. Let � be a bounded 
domain of Rn. We denote a general parabolic cylinder by �T := � × [0, T ), and ∂p�T denotes 
its parabolic boundary.

Theorem 4.1 (Comparison principle). Suppose that the function p(x, t) in equation (1.1) is 
Lipschitz continuous in �T . Let u be a viscosity subsolution and v be a continuous viscosity 
supersolution to (1.1). If u ≤ v on ∂p�T , then we can conclude

u ≤ v in �T . (4.1)
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Proof. For convenience, we can assume v is a strict supersolution, i.e.,

vt −
(

�v + (p(x, t) − 2)

〈
D2v

Dv

|Dv| ,
Dv

|Dv|
〉)

> 0

in the viscosity sense by considering w := v + ε
T −t

instead, and w → ∞ as t → T . Indeed, we 
suppose ϕ ∈ C2(�T ) such that w − ϕ has a local minimum at (x0, t0) ∈ �T , then so does v − φ

by letting φ(x, t) := ϕ(x, t) − ε
T −t

. Notice that

Dφ(x0, t0) = Dϕ(x0, t0),

∂tφ(x0, t0) = ∂tϕ(x0, t0) − ε

(T − t0)2 ,

and

D2φ(x0, t0) = D2ϕ(x0, t0).

Because v is a viscosity supersolution, we obtain

0 ≤ ∂tφ(x0, t0) −
(

trD2φ(x0, t0) + (p(x0, t0) − 2)

〈
D2φ(x0, t0)

φ(x0, t0)

|φ(x0, t0)| ,
φ(x0, t0)

|φ(x0, t0)|
〉)

= ∂tϕ(x0, t0) − ε

(T − t0)2

−
(

trD2ϕ(x0, t0) + (p(x0, t0) − 2)

〈
D2ϕ(x0, t0)

ϕ(x0, t0)

|ϕ(x0, t0)| ,
ϕ(x0, t0)

|ϕ(x0, t0)|
〉)

,

when Dϕ(x0, t0) 	= 0. Here we denote by trM the trace of matrix M . Furthermore,

0 <
ε

(T − t0)2

≤ ∂tϕ(x0, t0) −
(

trD2ϕ(x0, t0) + (p(x0, t0) − 2)

〈
D2ϕ(x0, t0)

ϕ(x0, t0)

|ϕ(x0, t0)| ,
ϕ(x0, t0)

|ϕ(x0, t0)|
〉)

.

When Dϕ(x0, t0) = 0, for some |η| ≤ 1 (i.e., η ∈ B1(0)) we get

0 ≤ ∂tφ(x0, t0) − (trD2φ(x0, t0) + (p(x0, t0) − 2)〈D2φ(x0, t0) · η,η〉).

Namely,

0 <
ε

(T − t0)2 ≤ ∂tϕ(x0, t0) − (trD2ϕ(x0, t0) + (p(x0, t0) − 2)〈D2ϕ(x0, t0) · η,η〉).

In conclusion, we have verified that w := v + ε
T −t

is a strict supersolution.
To demonstrate this conclusion, we argue by contradiction. Suppose (4.1) is not valid. Then it 

holds that for some (̂x, ̂t) ∈ � × (0, T ), we have
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θ := u(̂x, t̂) − v(̂x, t̂) = sup
�T

(u − v) > 0.

Set

�j(x, y, t, s) = u(x, t) − v(y, s) − �j(x, y, t, s),

where �j(x, y, t, s) = j
q
|x − y|q + j

2 (t − s)2 with q > 2.
Without loss of generality, in what follows, we take a special value of q , i.e., q = 4. Let 

(xj , yj , tj , sj ) be the maximum point of �j in � × � × [0, T ) × [0, T ). We can prove that 
(xj , yj , tj , sj ) ∈ � × � × (0, T ) × (0, T ) and (xj , yj , tj , sj ) → (̂x, ̂x, ̂t, ̂t) as j → ∞ by the 
Lemma 7.2 in [12].

Case 1. If xj = yj , then

0 = Dx�j (xj , yj , tj , sj ) = Dy�j (xj , yj , tj , sj ),

0 = D2
x�j (xj , yj , tj , sj ) = D2

y�j (xj , yj , tj , sj ).

Observe that

u(xj , tj ) − v(yj , sj ) − �j(xj , yj , tj , sj ) ≥ u(xj , tj ) − v(y, s) − �j(xj , y, tj , s).

Denote

�(y, s) := −�j(xj , y, tj , s) + �j(xj , yj , tj , sj ) + v(yj , sj ).

Obviously, v(y, s) − �(y, s) reaches the local minimum at (yj , sj ). Due to v a strict supersolu-
tion, we arrive at

0 < ∂s�(yj , sj ) − (trD2�(yj , sj ) + (p(yj , sj ) − 2)〈D2�(yj , sj ) · η,η〉)
= j (tj − sj )

for some |η| ≤ 1. Analogously, letting

β(x, t) := �j(x, yj , t, sj ) − �j(xj , yj , tj , sj ) + u(xj , tj ),

we can obtain

0 ≥ ∂tβ(xj , tj ) = j (tj − sj ).

From the previous two inequalities, we get

0 < j(tj − sj ) − j (tj − sj ) = 0.

This is a contradiction.
Case 2. If xj 	= yj , we have the following results.
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By theorem of sums (see [12]), for every μ > 0, there are Xj, Yj ∈ Sn (Sn denotes the set of 
all symmetric n × n matrices) such that

(∂t�j ,Dx�j ,Xj ) ∈ P2,+
u(xj , tj ), (−∂s�j ,−Dy�j ,Yj ) ∈ P2,−

v(yj , sj )

and (
Xj

−Yj

)
≤ D2�j + 1

μ
(D2�j)

2,

where all the derivatives are computed at (xj , yj , tj , sj ) and

D2�j =
(

B −B

−B B

)
with B := j |xj − yj |2I + 2j (xj − yj ) ⊗ (xj − yj ). Furthermore, taking μ = j gets(

Xj

−Yj

)
≤ j (|xj − yj |2 + 2|xj − yj |4)

(
I −I

−I I

)
+ 2j (1 + 8|xj − yj |2)

(
G −G

−G G

)
,

(4.2)

where G := (xj − yj ) ⊗ (xj − yj ). Note that (4.2) implies for any ξ, ζ ∈ Rn

〈Xjξ, ξ 〉 − 〈Yj ζ, ζ 〉 ≤ (3j |xj − yj |2 + 18j |xj − yj |4)|ξ − ζ |2. (4.3)

By virtue of the equivalent definition of viscosity solution emphasized by terminology of semi 
jets, we obtain

−∂s�j −
(

trYj + (p(yj , sj ) − 2)

〈
Yj

−Dy�j

|Dy�j | ,
−Dy�j

|Dy�j |
〉)

> 0 (4.4)

and

∂t�j −
(

trXj + (p(xj , tj ) − 2)

〈
Xj

Dx�j

|Dx�j | ,
Dx�j

|Dx�j |
〉)

≤ 0. (4.5)

Here we observe that

∂t�j = j (tj − sj ) = −∂s�j

and

ηj := Dx�j = −Dy�j = j |xj − yj |2(xj − yj ).

ηj is nonzero, which is crucial. Denote
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A(x, t, η) := I + (p(x, t) − 2)
η

|η| ⊗ η

|η| ,

which is positive definite so that it possesses matrix square root denoted by A
1
2 (x, t, η). We 

denote the k-th column of A
1
2 (x, t, η) as A

1
2
k (x, t, η). Subtracting (4.5) from (4.4), we derive

0 < tr(A(xj , tj , ηj )Xj ) − tr(A(yj , sj , ηj )Yj )

=
n∑

k=1

XjA
1
2
k (xj , tj , ηj ) · A

1
2
k (xj , tj , ηj ) −

n∑
k=1

YjA
1
2
k (yj , sj , ηj ) · A

1
2
k (yj , sj , ηj )

≤ Cj |xj − yj |2‖A 1
2 (xj , tj , ηj ) − A

1
2 (yj , sj , ηj )‖2

2

≤ Cj |xj − yj |2
(λmin(A

1
2 (xj , tj , ηj )) + λmin(A

1
2 (yj , sj , ηj )))2

‖A(xj , tj , ηj ) − A(yj , sj , ηj )‖2
2, (4.6)

where the penultimate inequality is obtained by (4.3) and the last inequality is derived from the 
local Lipschitz continuity of A �→ A

1
2 (see [17], page 410). Here λmin(M) denotes the smallest 

eigenvalue of a symmetric n × n matrix M .
Now we estimate

‖A(xj , tj , ηj ) − A(yj , sj , ηj )‖2
2 =

∥∥∥∥(p(xj , tj ) − p(yj , sj ))
ηj

|ηj | ⊗ ηj

|ηj |
∥∥∥∥2

2

= |(p(xj , tj ) − p(yj , sj ))|2
≤ C(|xj − yj |2 + |tj − sj |2),

where in the last inequality we employ the condition that p(x, t) is Lipschitz continuous, i.e., 
|p(x, t) − p(y, s)| ≤ C|(x − y, t − s)|. Moreover,

λmin(A
1
2 (x, t, η)) = (λmin(A(x, t, η))

1
2 = min{1,

√
p− − 1}.

Hence (4.6) turns into

0 <
Cj |xj − yj |2

4 min{1,p− − 1} (|xj − yj |2 + |tj − sj |2)

= Cj |xj − yj |4 + Cj |tj − sj |2|xj − yj |2.

On the other hand, we note that

u(xj , tj ) − v(xj , tj ) ≤ max
�×[0,T )

{u(x, t) − v(x, t)}

≤ u(xj , tj ) − v(yj , sj ) − j

4
|xj − yj |4 − j

2
(tj − sj )

2.

So we further get
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j

4
|xj − yj |4 + j

2
(tj − sj )

2 ≤ v(xj , tj ) − v(yj , sj )

→ v(̂x, t̂) − v(̂x, t̂) = 0,

by sending j → ∞, where we have assumed v is continuous in �T .
Consequently, we reach a contradiction that

0 < Cj |xj − yj |4 + Cj |tj − sj |2|xj − yj |2 → 0

as j → ∞, observing that both xj and yj converge to the point ̂x. �
We now end this section by stability properties of viscosity solutions.

Theorem 4.2 (Stability). Let {ui} be a sequence of viscosity solutions to (3.1) in �T with εi ≥ 0
such that εi → 0, and ui → u locally uniformly in �T . Then u is a viscosity solution to (1.1) in 
�T .

Proof. We only show that u is a viscosity supersolution of (1.1). The proof of u being a sub-
solution is similar to that. Suppose ϕ ∈ C2(�T ) such that u − ϕ attains a local minimum at 
(x0, t0) ∈ �T . We know, from ui converging to u locally uniformly, that there is a sequence 
{(xi, ti )} ⊂ �T with (xi, ti ) → (x0, t0) as i → ∞, such that

ui − ϕ has a local minimum at (xi, ti).

If Dϕ(x0, t0) 	= 0, then by ui viscosity supersolution, we obtain

∂tϕ(xi, ti) ≥ trD2ϕ(xi, ti) + (p(xi, ti) − 2)

·
〈
D2ϕ(xi, ti)

Dϕ(xi, ti)

(|Dϕ(xi, ti)|2 + ε2
i )

1
2

,
Dϕ(xi, ti)

(|Dϕ(xi, ti)|2 + ε2
i )

1
2

〉
.

Letting i → ∞, the above inequality becomes

∂tϕ(x0, t0) ≥ F(x0, t0,Dϕ(x0, t0),D
2ϕ(x0, t0)),

where F(x, t, η, X) := trX + (p(x, t) − 2)〈X η
|η| , 

η
|η| 〉.

If Dϕ(x0, t0) = 0, we divide the proof into two cases. When Dϕ(xi, ti ) 	= 0 for i large enough, 
it follows that

∂tϕ(xi, ti) ≥ trD2ϕ(xi, ti) + (p(xi, ti) − 2)

·
〈
D2ϕ(xi, ti)

Dϕ(xi, ti)

(|Dϕ(xi, ti)|2 + ε2
i )

1
2

,
Dϕ(xi, ti)

(|Dϕ(xi, ti)|2 + ε2
i )

1
2

〉
.

For some vector ξ ∈ Rn with |ξ | ≤ 1, we deduce by sending i → ∞

∂tϕ(x0, t0) ≥ trD2ϕ(x0, t0) + (p(x0, t0) − 2)〈D2ϕ(x0, t0)ξ, ξ 〉.
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When Dϕ(xi, ti ) ≡ 0 for i sufficiently large, by the definition of supersolution, we have

∂tϕ(xi, ti) ≥ trD2ϕ(xi, ti) + (p(xi, ti) − 2)〈D2ϕ(xi, ti)ξi , ξi〉,

where ξi ∈ Rn satisfies |ξi | ≤ 1. Thus it follows that for some vector |ξ | ≤ 1

∂tϕ(x0, t0) ≥ trD2ϕ(x0, t0) + (p(x0, t0) − 2)〈D2ϕ(x0, t0)ξ, ξ 〉,

as i → ∞. Therefore, we prove that u is a viscosity supersolution. �
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