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1. Introduction

Recently, there exist numerous contributions to non-linear damped wave equations with lo-
cal or nonlocal nonlinearity as well. One of these models is the following semi-linear Cauchy 
problem for the classical damped wave equation:

{
utt − �u + ut = |u|p, x ∈ Rn, t ≥ 0,

u(0, x) = u0(x), ut (0, x) = u1(x), x ∈ Rn,
(1)

with p > 1. The authors in [9] proved the global (in time) existence of small data energy solutions 
for

p > pFuj(n) = 1 + 2

n
,

the so-called Fujita exponent, and for p ≤ n/(n − 2) if n ≥ 3. Besides, they also indicated a 
blow-up result in the inverse case 1 < p < pFuj(n) which was improved to 1 < p ≤ pFuj(n) in 
the paper [10] by using the well-known test function method so far. For this reason, we can 
say that the Fujita exponent distinguishes the admissible range of powers p in (1) into those 
possessing global (in time) existence of small data solutions (stability of the zero solution) and 
those producing a blow-up behavior (even for small data). However, to determine the critical 
nonlinearity, it seems too rough to restrict (1) to the scale of power nonlinearities {|u|p}p>1. 
Quite recently, the second author and collaborators have discussed this issue for the following 
Cauchy problem in the paper [1]:

{
utt − �u + ut = |u|pFuj(n)μ(|u|), x ∈ Rn, t ≥ 0,

u(0, x) = u0(x), ut (0, x) = u1(x), x ∈ Rn,
(2)

where μ = μ(|u|) stands for a modulus of continuity, a well-known notation to describe the reg-
ularity of a function with respect to desired variables, here with respect to u. This means that it 
provides an additional regularity of the non-linear term in comparison with the power nonlinear-
ity |u|pFuj(n). More precisely, the authors in the cited paper have found out sharp conditions for 
the critical regularity of the non-linear term of (2), namely,

c∫
0

μ(s)

s
ds < ∞ and

c∫
0

μ(s)

s
ds = ∞,

where c is a sufficiently small positive constant. Both conditions separate the global (in time) 
existence of small data Sobolev solutions and the blow-up behavior of Sobolev solutions, respec-
tively.

During the last decades, the study of Cauchy problems for weakly coupled systems of equa-
tions in place of exploiting single equations only has been achieving a great attention from many 
mathematicians because of their wide applications in various disciplines. One of the most typical 
problems is the following weakly coupled system of semi-linear classical damped wave equa-
tions (see, for example, [5–8] and references therein):
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

utt − �u + ut = |v|p, x ∈ Rn, t ≥ 0,

vtt − �v + vt = |u|q, x ∈ Rn, t ≥ 0,

u(0, x) = u0(x), ut (0, x) = u1(x), x ∈ Rn,

v(0, x) = v0(x), vt (0, x) = v1(x), x ∈ Rn,

(3)

with p, q > 1. Particularly, the authors in the papers [5,7] investigated the global (in time) ex-
istence of small data Sobolev solutions to (3) in low space dimensions n = 1, 2, 3, which was 
extended for any space dimensions n ≥ 1 in the paper [6] afterwards by using weighted energy 
estimates. Here the following condition for a pair of exponents (p, q) comes into play:

1 + max{p,q}
pq − 1

<
n

2
.

When this condition is no longer true, non-existence results of global (in time) Sobolev solutions 
to (3) were proved in [5–7]. For this reason, one may claim that the critical curve of the exponents 
(p, q) in (3) in the p − q plane is described by the condition

1 + max{p,q}
pq − 1

= n

2
. (4)

The main interest of this paper is strongly inspired by the recent paper of the second author [1]
for a possible connection between (2) and (3). A natural question arises that whether it is sharp or 
not to obtain the critical curve (4) in the scale of pairs of power nonlinearities {|v|p, |u|q}p,q>1. 
Hence, the key motivation for this article is to give an answer to this question. Namely, let us 
consider the Cauchy problem for the following weakly coupled system of semi-linear classical 
damped wave equations with moduli of continuity terms in power nonlinearities:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

utt − �u + ut = |v|p∗
μ1(|v|), x ∈ Rn, t ≥ 0,

vtt − �v + vt = |u|q∗
μ2(|u|), x ∈ Rn, t ≥ 0,

u(0, x) = u0(x), ut (0, x) = u1(x), x ∈ Rn,

v(0, x) = v0(x), vt (0, x) = v1(x), x ∈ Rn,

(5)

where the functions μ1 = μ1(|v|) and μ2 = μ2(|u|) are some suitable moduli of continuity. We 
assume that the pair of exponents (p∗, q∗) with p∗ > 1 and q∗ > 1 belongs to the critical curve 
described by (4) in the p − q plane. Our main purpose of this paper is that we would like to 
understand the effect of interaction of additional regularities in power nonlinearities |v|p∗

and 
|u|q∗

, which are given by these moduli of continuity, not only on the global (in time) existence 
of small data Sobolev solutions but also on finite time blow-up of Sobolev solutions. Especially, 
we are interested in looking for a threshold by exploring the following optimal conditions for μ1
and μ2:

c∫
0

1

s

(
μ1(s)

) q∗
q∗+1

(
μ2(s)

) 1
q∗+1 ds < ∞ or

c∫
0

1

s

(
μ1(s)

) q∗
q∗+1

(
μ2(s)

) 1
q∗+1 ds = ∞,

which leads either to global (in time) existence results or to non-existence results of global (in 
time) solutions individually (see later, Theorems 1.1 and 1.2). In the proofs we develop some 
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ideas coming from the paper [1] to the weakly coupled system of type (5). Through this work, 
one should recognize that our results are not a simple generalization of those in [1]. Concretely, 
there are two points worthy to be mentioned. The first point as we can see is that allowing loss 
of decay appropriately, which has never appeared in [1], comes into play to find out these condi-
tions for μ1 and μ2 in guaranteeing the existence of global (in time) Sobolev solutions. In other 
words, we can feel more explicitly how the required assumptions of additional regularities of 
nonlinearities follow essentially from using some suitable loss of decay. This gives a new inter-
play in comparison with the previous research papers in terms of the study of weakly coupled 
systems (see, for instance, [5–7]). Moreover, the other point worth to be noticed is that the tech-
nical choice of a test function with a parameter depending on p∗, q∗ brings some remarkable 
benefits in the proof of the blow-up result.

Notations

• We denote [s] := max
{
k ∈Z : k ≤ s

}
as the integer part of s ∈ R.

• For later convenience, hereafter C denotes a suitable positive constant and may have different 
value from line to line.

• For two given nonnegative functions f and g, we write f � g when f ≤ Cg. We write 
f ≈ g when g � f � g.

• As usual, Hm and Ḣm, with m ∈N , denote Sobolev spaces based on the L2 space.

Main results

Without loss of generality, if we assume p∗ ≤ q∗, then the critical curve in the p − q plane 
for (5) becomes

1 + q∗

p∗q∗ − 1
= n

2
. (6)

Our main results concerned with the case p∗ ≤ q∗ read as follows.

Theorem 1.1 (Global existence). Let n = 1, 2. Assume that the following assumptions of moduli 
of continuity hold:

sμ′
j (s) = O

(
μj (s)

)
as s → +0 with j = 1,2. (7)

Moreover, we suppose that one of the following conditions is satisfied:

i)

c∫
0

μ1(s)

s
ds < ∞ and

c∫
0

μ2(s)

s
ds < ∞. (8)

ii) If

c∫
0

μ1(s)

s
ds = ∞ or

c∫
0

μ2(s)

s
ds = ∞, then

c∫
0

1

s

(
μ1(s)

) q∗
q∗+1

(
μ2(s)

) 1
q∗+1 ds < ∞.

(9)
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Especially, when q∗ = p∗, a further assumption required is that s ∈ (0, c] → μ1(s)

μ2(s)
is a decreas-

ing function. Here c > 0 is a suitable small constant. Then, there exists a constant ε > 0 such 
that for any small data

(
(u0, u1), (v0, v1)

) ∈A :=
((

L1 ∩ H 1+[n/2]) × (
L1 ∩ H [n/2]))2

satisfying the assumption

‖(u0, u1), (v0, v1)‖A := ‖u0‖H 1+[n/2] + ‖u0‖L1 + ‖u1‖H [n/2] + ‖u1‖L1 ≤ ε,

we have a uniquely determined global (in time) small data Sobolev solution

(u, v) ∈
(
C
([0,∞),H 1 ∩ L∞))2

to (5). The following estimates hold for k = 0, 1:∥∥∇ku(t, ·)∥∥
L2 � (1 + t)−

n
4 − k

2 +σ(p∗,q∗)�(t)‖(u0, u1), (v0, v1)‖A,

‖u(t, ·)‖L∞ � (1 + t)−
n
2 +σ(p∗,q∗)�(t)‖(u0, u1), (v0, v1)‖A,∥∥∇kv(t, ·)∥∥

L2 � (1 + t)−
n
4 − k

2 ‖(u0, u1), (v0, v1)‖A,

‖v(t, ·)‖L∞ � (1 + t)−
n
2 ‖(u0, u1), (v0, v1)‖A,

where

σ(p∗, q∗) := q∗ − p∗

p∗q∗ − 1
(10)

and the weight function � = �(t) is defined by

�(t) :=

⎧⎪⎪⎨
⎪⎪⎩

1 if (8) holds,(
μ1

(
c(1 + t)−ε

)
μ2

(
c(1 + t)−ε

)
) 1

q∗+1

if (9) holds,
(11)

with a sufficiently small constant ε > 0.

Remark 1.1. We want to point out that the constant σ(p∗, q∗) and the weight function � =
�(t) appearing in the estimates for solutions in Theorem 1.1 represent some loss of decay in 
comparison with the corresponding estimates of Sobolev solutions to the corresponding linear 
Cauchy problem with vanishing right-hand side.

Example 1.1. We give some examples of moduli of continuity μ1 and μ2 satisfying the assump-
tions (8) and (9) in Theorem 1.1.

• The assumption (8) is fulfilled if we choose μ1 and μ2 by one of the following moduli of 
continuity:
5
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1. μ(s) = sα with α ∈ (0, 1];
2. μ(s) = (

log(1 + s)
)α

with α ∈ (0, 1];
3. μ(0) = 0 and μ(s) =

(
log 1

s

)−α

with α > 1;

4. μ(0) = 0 and μ(s) =
(

log 1
s

)−1(
log log 1

s

)−1 · · ·
(

log · · · log︸ ︷︷ ︸
m times log

1
s

)−α

with m ∈N, α > 1.

• The assumption (9) is fulfilled if we choose μ1 and μ2 by one of the following pairs of 
moduli of continuity:

1. μ1(0) = 0 and μ1(s) =
(

log 1
s

)−α1
with 0 < α1 ≤ 1,

μ2(0) = 0 and μ2(s) =
(

log 1
s

)−α2
with α2 > 1,

or μ1(0) = 0 and μ1(s) =
(

log 1
s

)−α1
with α1 > 1,

μ2(0) = 0 and μ2(s) =
(

log 1
s

)−α2
with 0 < α2 ≤ 1,

provided that

q∗

q∗ + 1
α1 + 1

q∗ + 1
α2 > 1;

2. μ1(0) = 0 and μ1(s) =
(

log 1
s

)−1(
log log 1

s

)−1 · · ·
(

log · · · log︸ ︷︷ ︸
m times log

1
s

)−α1
with m ∈ N, 0 <

α1 ≤ 1,

μ2(0) = 0 and μ2(s) =
(

log 1
s

)−1(
log log 1

s

)−1 · · ·
(

log · · · log︸ ︷︷ ︸
m times log

1
s

)−α2
with m ∈N, α2 >

1,

or μ1(0) = 0 and μ1(s) =
(

log 1
s

)−1(
log log 1

s

)−1 · · ·
(

log · · · log︸ ︷︷ ︸
m times log

1
s

)−α1
with m ∈

N, α1 > 1,

μ2(0) = 0 and μ2(s) =
(

log 1
s

)−1(
log log 1

s

)−1 · · ·
(

log · · · log︸ ︷︷ ︸
m times log

1
s

)−α2
with m ∈ N, 0 <

α2 ≤ 1,
provided that

q∗

q∗ + 1
α1 + 1

q∗ + 1
α2 > 1.

Intuitively, from the two latter examples one can think of the modulus of continuity

μ1,2 := μ1,2(s) = (
μ1(s)

) q∗
q∗+1

(
μ2(s)

) 1
q∗+1

as a “middle” modulus of continuity between μ1 and μ2 being subject to the following 
conditions:
6
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c∫
0

μ1(s)

s
ds = ∞ and

c∫
0

μ2(s)

s
ds < ∞

or

c∫
0

μ1(s)

s
ds < ∞ and

c∫
0

μ2(s)

s
ds = ∞.

Then, we may take, among other things, suitable choices of μ1 as well as μ2 to claim that 
μ1,2 satisfies

c∫
0

μ1,2(s)

s
ds < ∞.

Theorem 1.2 (Blow-up). Assume that the initial data u0 = v0 = 0 and u1, v1 ∈ L1 satisfy the 
following relations:

∫
Rn

u1(x) dx > 0 and
∫
Rn

v1(x) dx > 0. (12)

Moreover, we suppose the following assumptions of moduli of continuity:

skμ
(k)
j (s) = o

(
μj (s)

)
as s → +0 with j, k = 1,2, (13)

and

c∫
0

1

s

(
μ1(s)

) q∗
q∗+1

(
μ2(s)

) 1
q∗+1 ds = ∞, (14)

where c > 0 is a suitable small constant. Then, there is no global (in time) Sobolev solution to 
(5).

Example 1.2. We give some examples of moduli of continuity μ1 and μ2 fulfilling the assump-
tion (14) in Theorem 1.2. One may choose μ1 and μ2 as follows:

1. μ1(0) = 0 and μ1(s) =
(

log 1
s

)−α1
with α1 > 0,

μ2(0) = 0 and μ2(s) =
(

log 1
s

)−α2
with α2 > 0,

provided that

q∗
∗ α1 + 1

∗ α2 ≤ 1;

q + 1 q + 1

7
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2. μ1(0) = 0 and μ1(s) =
(

log 1
s

)−1(
log log 1

s

)−1 · · ·
(

log · · · log︸ ︷︷ ︸
m times log

1
s

)−α1
with m ∈N, α1 > 0,

μ2(0) = 0 and μ2(s) =
(

log 1
s

)−1(
log log 1

s

)−1 · · ·
(

log · · · log︸ ︷︷ ︸
m times log

1
s

)−α2
with m ∈N, α2 > 0,

provided that

q∗

q∗ + 1
α1 + 1

q∗ + 1
α2 ≤ 1.

2. Proofs of main results

2.1. Global (in time) existence of small data solutions

In order to prove the global (in time) existence of small data Sobolev solutions, the following 
preliminary lemmas come into play.

Lemma 2.1 (Lemma 1 in [4]). The Sobolev solutions to the corresponding linear Cauchy prob-
lem to (5) with vanishing right-hand side satisfy the following estimates:

∥∥∇kw(t, ·)∥∥
L2 � (1 + t)−

n
4 − k

2
(‖w0‖L1 + ‖w0‖Hk + ‖w1‖L1 + ‖w1‖Hk−1

)
,

with k = 0, 1, 1 + [n/2] and

‖w(t, ·)‖L∞ � (1 + t)−
n
2
(‖w0‖L1 + ‖w0‖H 1+[n/2] + ‖w1‖L1 + ‖w1‖H [n/2]

)
,

where w stands for u or v.

Lemma 2.2. Let μ1 = μ1(s) and μ2 = μ2(s) be moduli of continuity. Then, the following esti-
mates hold:

(a)

t∫
0

(1 + t − τ)−α(1 + τ)−1(μ1
(
C(1 + τ)−γ

))β1
(
μ2

(
C(1 + τ)−γ

))β2dτ

� (1 + t)−α

t∫
0

(1 + τ)−1(μ1
(
C(1 + τ)−γ

))β1
(
μ2

(
C(1 + τ)−γ

))β2dτ

for any α ≤ 1 and for all β1, β2, γ ≥ 0,

(b)

∞∫
0

(1 + τ)−1(μ1
(
C(1 + τ)−γ

))β1
(
μ2

(
C(1 + τ)−γ

))β2dτ = C0

C∫
0

1

s

(
μ1(s)

)β1
(
μ2(s)

)β2ds

for any β1, β2 ≥ 0 and for all γ > 0, where C0 = C0(C,γ ) is a suitable positive constant.

Proof. To prove the first estimate, we divide the integral on the left-hand side into two parts as 
follows:
8
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t∫
0

(1 + t − τ)−α(1 + τ)−1(μ1
(
C(1 + τ)−γ

))β1
(
μ2

(
C(1 + τ)−γ

))β2dτ

=
t/2∫
0

(1 + t − τ)−α(1 + τ)−1(μ1
(
C(1 + τ)−γ

))β1
(
μ2

(
C(1 + τ)−γ

))β2dτ

+
t∫

t/2

(1 + t − τ)−α(1 + τ)−1(μ1
(
C(1 + τ)−γ

))β1
(
μ2

(
C(1 + τ)−γ

))β2dτ

=: I1(t) + I2(t).

Using the relation 1 + t − τ ≈ 1 + t for any τ ∈ [0, t/2] one derives

I1(t) � (1 + t)−α

t/2∫
0

(1 + τ)−1(μ1
(
C(1 + τ)−γ

))β1
(
μ2

(
C(1 + τ)−γ

))β2dτ

� (1 + t)−α

t∫
0

(1 + τ)−1(μ1
(
C(1 + τ)−γ

))β1
(
μ2

(
C(1 + τ)−γ

))β2dτ. (15)

In addition, we notice the relation 1 + τ ≈ 1 + t for any τ ∈ [t/2, t] to deal with I2 in the follow-
ing way:

I2(t) � (1 + t)−α

t∫
t/2

(1 + t − τ)−α(1 + τ)α−1(μ1
(
C(1 + τ)−γ

))β1
(
μ2

(
C(1 + τ)−γ

))β2dτ.

Due to the hypothesis α ≤ 1 and γ ≥ 0, it holds{
(1 + τ)α−1 ≤ (1 + t − τ)α−1

(1 + τ)−γ ≤ (1 + t − τ)−γ
for any τ ∈ [t/2, t].

As a result, this leads to

I2(t) � (1 + t)−α

t∫
t/2

(1 + t − τ)−1(μ1
(
C(1 + t − τ)−γ

))β1
(
μ2

(
C(1 + t − τ)−γ

))β2dτ

� (1 + t)−α

t/2∫
0

(1 + ρ)−1(μ1
(
C(1 + ρ)−γ

))β1
(
μ2

(
C(1 + ρ)−γ

))β2dρ

� (1 + t)−α

t∫
(1 + ρ)−1(μ1

(
C(1 + ρ)−γ

))β1
(
μ2

(
C(1 + ρ)−γ

))β2dρ, (16)
0

9
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where we have used the increasing property of the functions μ1, μ2 as well as the change of 
variables ρ = t − τ . Combining (15) and (16) we may conclude the estimate (a). Finally, a 
standard change of variables implies immediately the estimate (b). �
Lemma 2.3 (Gagliardo-Nirenberg inequality, see [2,3]). Let j, m ∈ N with j < m and w ∈
Hm(Rn). Let us assume j

m
≤ θ ≤ 1 and 1 ≤ r, r1, r2 ≤ ∞ such that

j − n

r
=

(
m − n

r1

)
θ − n

r2
(1 − θ).

Then, it holds

∥∥∇jw
∥∥

Lr �
∥∥∇mw

∥∥θ

Lr1 ‖w‖1−θ
Lr2 ,

provided that (m − n
r1

) − j /∈N , that is, n
r1

> m − j or n
r1

/∈ N .

If (m − n
r1

) − j ∈ N , then this inequality holds provided that j
m

≤ θ < 1.

Proof of Theorem 1.1. We introduce the solution space

X(t) := (
C
([0, t],H 1 ∩ L∞))2

with the norm

‖(u, v)‖X(t) := sup
0≤τ≤t

(
(1 + τ)

n
4 −σ(p∗,q∗)(�(τ)

)−1‖u(τ, ·)‖L2

+ (1 + τ)
n
4 + 1

2 −σ(p∗,q∗)(�(τ)
)−1∥∥∇u(τ, ·)∥∥

L2

+ (1 + τ)
n
2 −σ(p∗,q∗)(�(τ)

)−1‖u(τ, ·)‖L∞

+ (1 + τ)
n
4 ‖v(τ, ·)‖L2 +(1+τ)

n
4 + 1

2
∥∥∇v(τ, ·)∥∥

L2 +(1+τ)
n
2 ‖v(τ, ·)‖L∞

)
,

where the parameter σ(p∗, q∗) and the weight function � = �(τ) are determined as in (10) and 
(11), respectively. We denote by K0 = K0(t, x) and K1 = K1(t, x) the fundamental solutions to 
the corresponding linear Cauchy problems for (5). Then, Sobolev solutions to (5) with vanishing 
right-hand sides are defined by

{
uln(t, x) = K0(t, x) ∗x u0(x) +K1(t, x) ∗x u1(x),

vln(t, x) = K0(t, x) ∗x v0(x) +K1(t, x) ∗x v1(x).

Thanks to Duhamel’s principle, Sobolev solutions to (5) are interpreted as solutions to the fol-
lowing system of non-linear integral equations:
10
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u(t, x) = uln(t, x) +
t∫

0

K1(t − τ, x) ∗x

(|v(τ, x)|p∗
μ1(|v(τ, x)|))dτ =: uln(t, x) + unl(t, x),

v(t, x) = vln(t, x) +
t∫

0

K1(t − τ, x) ∗x

(|u(τ, x)|q∗
μ2(|u(τ, x)|))dτ =: vln(t, x) + vnl(t, x).

For all t > 0, we define the operator


 : (u, v) ∈ X(t) 
→ 
(u,v)(t, x) = (
uln(t, x) + unl(t, x), vln(t, x) + vnl(t, x)

)
.

Our aim is to apply Banach’s fixed point theorem to arrive at global (in time) existence of small 
data Sobolev solutions to (5). To establish this, we need to indicate that the operator 
 satisfies 
the following two inequalities:

‖
(u,v)‖X(t) � ‖(u0, u1), (v0, v1)‖A + ‖(u, v)‖p∗
X(t) + ‖(u, v)‖q∗

X(t), (17)

‖
(u,v) − 
(ū, v̄)‖X(t) � ‖(u, v) − (ū, v̄)‖X(t)

(
‖(u, v)‖p∗−1

X(t) + ‖(ū, v̄)‖p∗−1
X(t)

+ ‖(u, v)‖q∗−1
X(t) + ‖(ū, v̄)‖q∗−1

X(t)

)
.

(18)

At first, we conclude the estimate∥∥(uln, vln)
∥∥

X(t)
� ‖(u0, u1), (v0, v1)‖A

by Lemma 2.1. Hence, it suffices to prove the following inequality instead of (17):∥∥(unl, vnl)
∥∥

X(t)
� ‖(u, v)‖p∗

X(t) + ‖(u, v)‖q∗
X(t). (19)

Before verifying the inequality (19), we take account of the following auxiliary estimates for 
τ ∈ [0, t]: ∥∥|v(τ, ·)|p∗

μ1
(|v(τ, ·)|)∥∥

L1∩L2

� (1 + τ)
−1+ q∗−p∗

p∗q∗−1 μ1

(
c(1 + τ)

− 1+q∗
p∗q∗−1

)
‖(u, v)‖p∗

X(t)
, (20)∥∥|u(τ, ·)|q∗

μ2
(|u(τ, ·)|)∥∥

L1∩L2

� (1 + τ)−1(�(τ)
)q∗

μ2

(
c(1 + τ)

− 1+p∗
p∗q∗−1 �(τ)

)
‖(u, v)‖q∗

X(t), (21)∥∥|v(τ, ·)|p∗
μ1

(|v(τ, ·)|)∥∥
L1∩H 1

� (1 + τ)
−1+ q∗−p∗

p∗q∗−1 μ1

(
c(1 + τ)

− 1+q∗
p∗q∗−1

)
‖(u, v)‖p∗

X(t), (22)∥∥|u(τ, ·)|q∗
μ2

(|u(τ, ·)|)∥∥
L1∩H 1

� (1 + τ)−1(�(τ)
)q∗

μ2

(
c(1 + τ)

− 1+p∗
p∗q∗−1 �(τ)

)
‖(u, v)‖q∗

X(t), (23)
11
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where c > 0 is a suitable small constant. Indeed, we may re-write

∥∥|v(τ, ·)|p∗∥∥
L1∩L2 = ‖v(τ, ·)‖p∗

Lp∗ + ‖v(τ, ·)‖p∗
L2p∗ ,∥∥|u(τ, ·)|q∗∥∥

L1∩L2 = ‖u(τ, ·)‖q∗
Lq∗ + ‖u(τ, ·)‖q∗

L2q∗ .

The application of Gagliardo-Nirenberg inequality from Lemma 2.3 to control the norms

‖v(τ, ·)‖Lp∗ , ‖v(τ, ·)‖L2p∗ , ‖u(τ, ·)‖Lq∗ and ‖u(τ, ·)‖q∗
L2q∗

yields immediately

∥∥|v(τ, ·)|p∗∥∥
L1∩L2 � (1 + τ)−

n
2 (p∗−1)‖(u, v)‖p∗

X(t),∥∥|u(τ, ·)|q∗∥∥
L1∩L2 � (1 + τ)−

n
2 (q∗−1)+σ(p∗,q∗)q∗(

�(τ)
)q∗‖(u, v)‖q∗

X(t).

Since μ1, μ2 are increasing functions, from the definition of the norm in X(t) one obtains

∥∥μ1
(|v(τ, ·)|)∥∥

L∞ ≤ μ1
(‖v(τ, ·)‖L∞

) ≤ μ1

(
C(1 + τ)−

n
2 ‖(u, v)‖X(t)

)
≤ μ1

(
c(1 + τ)−

n
2

)
and

∥∥μ2
(|u(τ, ·)|)∥∥

L∞ ≤ μ2
(‖u(τ, ·)‖L∞

) ≤ μ2

(
C(1 + τ)−

n
2 +σ(p∗,q∗)�(τ )‖(u, v)‖X(t)

)
≤ μ2

(
c(1 + τ)−

n
2 +σ(p∗,q∗)�(τ )

)
with c := Cε0, where ε0 is a sufficiently small constant such that ‖(u, v)‖X(t) ≤ ε0. For this 
reason, we may arrive for τ ∈ [0, t] at

∥∥|v(τ, ·)|p∗
μ1

(|v(τ, ·)|)∥∥
L1∩L2 �

∥∥|v(τ, ·)|p∗∥∥
L1∩L2

∥∥μ1
(|v(τ, ·)|)∥∥

L∞

� (1 + τ)−
n
2 (p∗−1) μ1

(
c(1 + τ)−

n
2

)
‖(u, v)‖p∗

X(t)

� (1 + τ)
−1+ q∗−p∗

p∗q∗−1 μ1

(
c(1 + τ)

− 1+q∗
p∗q∗−1

)
‖(u, v)‖p∗

X(t)

and

∥∥|u(τ, ·)|q∗
μ2

(|u(τ, ·)|)∥∥
L1∩L2

�
∥∥|u(τ, ·)|q∗∥∥

L1∩L2

∥∥μ2
(|u(τ, ·)|)∥∥

L∞

� (1 + τ)−
n
2 (q∗−1)+σ(p∗,q∗)q∗(

�(τ)
)q∗

μ2

(
c(1 + τ)−

n
2 +σ(p∗,q∗)�(τ )

)
‖(u, v)‖q∗

X(t)

� (1 + τ)−1(�(τ)
)q∗

μ2

(
c(1 + τ)

− 1+p∗
p∗q∗−1 �(τ)

)
‖(u, v)‖q∗

X(t),
12
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where we notice that the relations

− n

2
(p∗ − 1) = −1 + q∗ − p∗

p∗q∗ − 1
, −n

2
(q∗ − 1) + σ(p∗, q∗)q∗ = −1,

− n

2
+ σ(p∗, q∗) = − 1 + p∗

p∗q∗ − 1

are valid due to (6) and (10). This completes the proof of (20) and (21). In order to show the two 
remaining estimates (22) and (23), we take into consideration

∥∥|v(τ, ·)|p∗
μ1

(|v(τ, ·)|)∥∥
L1∩H 1 = ∥∥|v(τ, ·)|p∗

μ1
(|v(τ, ·)|)∥∥

L1∩L2 + ∥∥|v(τ, ·)|p∗
μ1

(|v(τ, ·)|)∥∥
Ḣ 1,

(24)∥∥|u(τ, ·)|q∗
μ2

(|u(τ, ·)|)∥∥
L1∩H 1 = ∥∥|u(τ, ·)|q∗

μ2
(|u(τ, ·)|)∥∥

L1∩L2 + ∥∥|u(τ, ·)|q∗
μ2

(|u(τ, ·)|)∥∥
Ḣ 1 .

(25)

Therefore, it is reasonable to control the two additional norms only

∥∥|v(τ, ·)|p∗
μ1

(|v(τ, ·)|)∥∥
Ḣ 1 and

∥∥|u(τ, ·)|q∗
μ2

(|u(τ, ·)|)∥∥
Ḣ 1 .

Observing the assumption (7) one derives the relation

∣∣∇(|v(τ, x)|p∗
μ1(|v(τ, x)|))∣∣ � |v(τ, x)|p∗−1 μ1

(|v(τ, x)|) |∇v(τ, x)|.

Thus, it follows that

∥∥|v(τ, ·)|p∗
μ1

(|v(τ, ·)|)∥∥
Ḣ 1 � ‖v(τ, ·)‖p∗−1

L∞
∥∥μ1

(|v(τ, ·)|)∥∥
L∞‖∇v(τ, ·)‖L2

� (1 + τ)−
n
2 (p∗−1)− n

4 − 1
2 μ1

(
c(1 + τ)−

n
2

)
‖(u, v)‖p∗

X(t). (26)

In the same way we obtain

∥∥|u(τ, ·)|q∗
μ2

(|u(τ, ·)|)∥∥
Ḣ 1

� (1 + τ)−
n
2 (q∗−1)− n

4 − 1
2 +σ(p∗,q∗)q∗(

�(τ)
)q∗

μ2

(
c(1 + τ)−

n
2 +σ(p∗,q∗)�(τ )

)
‖(u, v)‖q∗

X(t).

(27)

Collecting (20), (24), (26) and (21), (25), (27) we may conclude (22) and (23), respectively.

Let us come back to show the inequality (19). Our strategy is to use the estimates from 
Lemma 2.1 and the derived estimates from (20) to (23) to achieve the following estimates for 
k = 0, 1:

∥∥∇kunl(t, ·)∥∥
L2 �

t∫
(1 + t − τ)−

n
4 − k

2
∥∥|v(τ, ·)|p∗

μ1
(|v(τ, ·)|)∥∥

L1∩L2dτ
0

13
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� ‖(u, v)‖p∗
X(t)

t∫
0

(1 + t − τ)−
n
4 − k

2 (1 + τ)
−1+ q∗−p∗

p∗q∗−1 μ1

(
c(1 + τ)

− 1+q∗
p∗q∗−1

)
dτ,

∥∥unl(t, ·)∥∥
L∞ �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t∫
0

(1 + t − τ)−
n
2
∥∥|v(τ, ·)|p∗

μ1
(|v(τ, ·)|)∥∥

L1∩L2dτ if n = 1

t∫
0

(1 + t − τ)−
n
2
∥∥|v(τ, ·)|p∗

μ1
(|v(τ, ·)|)∥∥

L1∩H 1dτ if n = 2

� ‖(u, v)‖p∗
X(t)

t∫
0

(1 + t − τ)−
n
2 (1 + τ)

−1+ q∗−p∗
p∗q∗−1 μ1

(
c(1 + τ)

− 1+q∗
p∗q∗−1

)
dτ,

and

∥∥∇kvnl(t, ·)∥∥
L2 �

t∫
0

(1 + t − τ)−
n
4 − k

2
∥∥|u(τ, ·)|q∗

μ2
(|u(τ, ·)|)∥∥

L1∩L2dτ

� ‖(u, v)‖q∗
X(t)

t∫
0

(1+t−τ)−
n
4 − k

2 (1+τ)−1(�(τ)
)q∗

μ2

(
c(1+τ)

− 1+p∗
p∗q∗−1 �(τ)

)
dτ,

∥∥vnl(t, ·)∥∥
L∞ �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t∫
0

(1 + t − τ)−
n
2
∥∥|u(τ, ·)|q∗

μ2
(|u(τ, ·)|)∥∥

L1∩L2dτ if n = 1

t∫
0

(1 + t − τ)−
n
2
∥∥|u(τ, ·)|q∗

μ2
(|u(τ, ·)|)∥∥

L1∩H 1dτ if n = 2

� ‖(u, v)‖q∗
X(t)

t∫
0

(1 + t − τ)−
n
2 (1 + τ)−1(�(τ)

)q∗
μ2

(
c(1 + τ)

− 1+p∗
p∗q∗−1 �(τ)

)
dτ.

According to (11) let us divide our considerations into the following two cases:

• Case 1: Let us assume (8). So, we take �(τ) ≡ 1. For this reason, we can proceed as follows:

∥∥∇kunl(t, ·)∥∥
L2 � (1 + t)

q∗−p∗
p∗q∗−1 ‖(u, v)‖p∗

X(t)

×
t∫

0

(1 + t − τ)−
n
4 − k

2 (1 + τ)−1 μ1

(
c(1 + τ)

− 1+q∗
p∗q∗−1

)
dτ

� (1 + t)
− n

4 − k
2 + q∗−p∗

p∗q∗−1 ‖(u, v)‖p∗
X(t)

t∫
(1 + τ)−1 μ1

(
c(1 + τ)

− 1+q∗
p∗q∗−1

)
dτ
0

14
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≤ C(1 + t)
− n

4 − k
2 + q∗−p∗

p∗q∗−1 ‖(u, v)‖p∗
X(t)

∞∫
0

(1 + τ)−1 μ1

(
c(1 + τ)

− 1+q∗
p∗q∗−1

)
dτ

= C(1 + t)
− n

4 − k
2 + q∗−p∗

p∗q∗−1 ‖(u, v)‖p∗
X(t)

c∫
0

μ1(s)

s
ds

� (1 + t)
− n

4 − k
2 + q∗−p∗

p∗q∗−1 ‖(u, v)‖p∗
X(t),

where we applied Lemma 2.2 after choosing

α = n

4
+ k

2
, β1 = 1, β2 = 0, γ = 1 + q∗

p∗q∗ − 1

and used the assumption (8) as well. Moreover, one may estimate

∥∥∇kvnl(t, ·)∥∥
L2 � ‖(u, v)‖q∗

X(t)

t∫
0

(1 + t − τ)−
n
4 − k

2 (1 + τ)−1 μ2

(
c(1 + τ)

− 1+p∗
p∗q∗−1

)
dτ

� (1 + t)−
n
4 − k

2 ‖(u, v)‖q∗
X(t)

t∫
0

(1 + τ)−1 μ2

(
c(1 + τ)

− 1+p∗
p∗q∗−1

)
dτ

≤ C(1 + t)−
n
4 − k

2 ‖(u, v)‖q∗
X(t)

∞∫
0

(1 + τ)−1 μ2

(
c(1 + τ)

− 1+p∗
p∗q∗−1

)
dτ

= C(1 + t)−
n
4 − k

2 ‖(u, v)‖q∗
X(t)

c∫
0

μ2(s)

s
ds

� (1 + t)−
n
4 − k

2 ‖(u, v)‖q∗
X(t)

,

where we have applied Lemma 2.2 by choosing

α = n

4
+ k

2
, β1 = 0, β2 = 1, γ = 1 + p∗

p∗q∗ − 1

and used the assumption (8) as well. Analogously, we also obtain the following estimates:

∥∥unl(t, ·)∥∥
L∞ � (1 + t)

− n
2 + q∗−p∗

p∗q∗−1 ‖(u, v)‖p∗
X(t),∥∥vnl(t, ·)∥∥

L∞ � (1 + t)−
n
2 ‖(u, v)‖q∗

X(t),

by the choice of

α = n
, β1 = 1, β2 = 0, γ = 1 + q∗

∗ ∗
2 p q − 1

15
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or

α = n

2
, β1 = 0, β2 = 1, γ = 1 + p∗

p∗q∗ − 1
.

From the definition of the norm in X(t), collecting all the above derived estimates completes 
the proof of inequality (19).

• Case 2: Let us assume (9). So, we take

�(τ) =
(

μ1
(
c(1 + τ)−ε

)
μ2

(
c(1 + τ)−ε

)
) 1

q∗+1

.

Following similar arguments as we did in the treatment of Case 1 we may estimate

∥∥∇kunl(t, ·)∥∥
L2

� ‖(u, v)‖p∗
X(t)

t∫
0

(1 + t − τ)−
n
4 − k

2 (1 + τ)
−1+ q∗−p∗

p∗q∗−1 �(τ)
(
�(τ)

)−1
μ1

(
c(1 + τ)−ε

)
dτ

(
since μ1 is an increasing function

)
� (1 + t)

q∗−p∗
p∗q∗−1 �(t)‖(u, v)‖p∗

X(t)

×
t∫

0

(1 + t − τ)−
n
4 − k

2 (1 + τ)−1
(
μ1

(
c(1 + τ)−ε

)) q∗
q∗+1

(
μ2

(
c(1 + τ)−ε

)) 1
q∗+1

dτ

(
by (28) in Remark 2.1

)
� (1 + t)

− n
4 − k

2 + q∗−p∗
p∗q∗−1 �(t)‖(u, v)‖p∗

X(t)

×
t∫

0

(1 + τ)−1
(
μ1

(
c(1 + τ)−ε

)) q∗
q∗+1

(
μ2

(
c(1 + τ)−ε

)) 1
q∗+1

dτ

≤ C(1 + t)
− n

4 − k
2 + q∗−p∗

p∗q∗−1 �(t)‖(u, v)‖p∗
X(t)

×
∞∫

0

(1 + τ)−1
(
μ1

(
c(1 + τ)−ε

)) q∗
q∗+1

(
μ2

(
c(1 + τ)−ε

)) 1
q∗+1

dτ

= C(1 + t)
− n

4 − k
2 + q∗−p∗

p∗q∗−1 �(t)‖(u, v)‖p∗
X(t)

c∫
0

1

s

(
μ1(s)

) q∗
q∗+1

(
μ2(s)

) 1
q∗+1 ds

� (1 + t)
− n

4 − k
2 + q∗−p∗

p∗q∗−1 �(t)‖(u, v)‖p∗
X(t),

where we have applied Lemma 2.2 after choosing
16
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α = n

4
+ k

2
, β1 = q∗

q∗ + 1
, β2 = 1

q∗ + 1
, γ = ε

as well as used the assumption (9). In such a way one also has

∥∥∇kvnl(t, ·)∥∥
L2 � ‖(u, v)‖q∗

X(t)

t∫
0

(1 + t − τ)−
n
4 − k

2 (1 + τ)−1(�(τ)
)q∗

μ2
(
c(1 + τ)−ε

)
dτ

(
by (29) in Remark 2.1

)
= ‖(u, v)‖q∗

X(t)

t∫
0

(1 + t − τ)−
n
4 − k

2 (1 + τ)−1

×
(
μ1

(
c(1 + τ)−ε

)) q∗
q∗+1

(
μ2

(
c(1 + τ)−ε

)) 1
q∗+1

dτ

� (1 + t)−
n
4 − k

2 ‖(u, v)‖q∗
X(t)

×
t∫

0

(1 + τ)−1
(
μ1

(
c(1 + τ)−ε

)) q∗
q∗+1

(
μ2

(
c(1 + τ)−ε

)) 1
q∗+1

dτ

≤ C(1 + t)−
n
4 − k

2 ‖(u, v)‖q∗
X(t)

×
∞∫

0

(1 + τ)−1
(
μ1

(
c(1 + τ)−ε

)) q∗
q∗+1

(
μ2

(
c(1 + τ)−ε

)) 1
q∗+1

dτ

= C(1 + t)−
n
4 − k

2 ‖(u, v)‖q∗
X(t)

c∫
0

1

s

(
μ1(s)

) q∗
q∗+1

(
μ2(s)

) 1
q∗+1 ds

� (1 + t)−
n
4 − k

2 ‖(u, v)‖q∗
X(t)

,

where we have employed Lemma 2.2 after choosing

α = n

4
+ k

2
, β1 = q∗

q∗ + 1
, β2 = 1

q∗ + 1
, γ = ε

and used the assumption (9) as well. Similarly, we may derive the following estimates:

∥∥unl(t, ·)∥∥
L∞ � (1 + t)

− n
2 + q∗−p∗

p∗q∗−1 �(t)‖(u, v)‖p∗
X(t),∥∥vnl(t, ·)∥∥

L∞ � (1 + t)−
n
2 ‖(u, v)‖q∗

X(t),

where we applied Lemma 2.2 after choosing

α = n
, β1 = q∗

∗ , β2 = 1
∗ , γ = ε.
2 q + 1 q + 1

17
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From the definition of the norm in X(t), we combine all the above derived estimates to 
complete the proof of inequality (19) in both cases.

Next, let us prove the inequality (18). For two elements (u, v) and (ū, v̄) from X(t), it is obvious 
that


(u,v)(t, x) − 
(ū, v̄)(t, x) = (
unl(t, x) − ūnl(t, x), vnl(t, x) − v̄nl(t, x)

)
.

Then, we use the same strategies as in the proof of the inequality (19) to gain the following 
estimates with k = 0, 1:

∥∥∇k
(
unl − ūnl)(t, ·)∥∥

L2

�
t∫

0

(1 + t − τ)−
n
4 − k

2
∥∥|v(τ, ·)|p∗

μ1
(|v(τ, ·)|) − |v̄(τ, ·)|p∗

μ1
(|v̄(τ, ·)|)∥∥

L1∩L2dτ,

∥∥(unl − ūnl)(t, ·)∥∥
L∞

�

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t∫
0

(1 + t − τ)−
n
2
∥∥|v(τ, ·)|p∗

μ1
(|v(τ, ·)|) − |v̄(τ, ·)|p∗

μ1
(|v̄(τ, ·)|)∥∥

L1∩L2dτ if n = 1,

t∫
0

(1 + t − τ)−
n
2
∥∥|v(τ, ·)|p∗

μ1
(|v(τ, ·)|) − |v̄(τ, ·)|p∗

μ1
(|v̄(τ, ·)|)∥∥

L1∩H 1dτ if n = 2,

and

∥∥∇k
(
vnl − v̄nl)(t, ·)∥∥

L2

�
t∫

0

(1 + t − τ)−
n
4 − k

2
∥∥|u(τ, ·)|q∗

μ2
(|u(τ, ·)|) − |ū(τ, ·)|q∗

μ2
(|ū(τ, ·)|)∥∥

L1∩L2dτ,

∥∥(vnl − v̄nl)(t, ·)∥∥
L∞

�

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t∫
0

(1 + t − τ)−
n
2
∥∥|u(τ, ·)|q∗

μ2
(|u(τ, ·)|) − |ū(τ, ·)|q∗

μ2
(|ū(τ, ·)|)∥∥

L1∩L2dτ if n = 1,

t∫
0

(1 + t − τ)−
n
2
∥∥|u(τ, ·)|q∗

μ2
(|u(τ, ·)|) − |ū(τ, ·)|q∗

μ2
(|ū(τ, ·)|)∥∥

L1∩H 1dτ if n = 2.

Applying the mean value theorem gives the following integral representation:

|v(τ, x)|p∗
μ1

(|v(τ, x)|) − |v̄(τ, x)|p∗
μ1

(|v̄(τ, x)|)

18
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= (
v(τ, x) − v̄(τ, x)

) 1∫
0

d|v|G
(
ωv(τ, x) + (1 − ω)v̄(τ, x)

)
dω,

where G(v) = |v|p∗
μ1(|v|). Since the condition (7) of moduli of continuity holds, one gets

d|v|G(v) = p∗|v|p∗−1μ1(|v|) + |v|p∗
d|v|μ1(|v|) � |v|p∗−1μ1(|v|).

Thus, it follows that

∣∣|v(τ, x)|p∗
μ1

(|v(τ, x)|) − |v̄(τ, x)|p∗
μ1

(|v̄(τ, x)|)∣∣
�

∣∣v(τ, x) − v̄(τ, x)
∣∣ 1∫

0

∣∣ωv(τ, x) + (1 − ω)v̄(τ, x)
∣∣p∗−1

μ1
(∣∣ωv(τ, x) + (1 − ω)v̄(τ, x)

∣∣)dω.

Similarly, we also obtain

∣∣|u(τ, x)|q∗
μ2

(|u(τ, x)|) − |ū(τ, x)|q∗
μ2

(|ū(τ, x)|)∣∣
�

∣∣u(τ, x) − ū(τ, x)
∣∣ 1∫

0

∣∣ωu(τ, x) + (1 − ω)ū(τ, x)
∣∣q∗−1

μ2
(∣∣ωu(τ, x) + (1 − ω)ū(τ, x)

∣∣)dω.

By the aid of Hölder’s inequality and applying the same tools as in the proof of inequality (19), 
we arrive at the inequality (18). Summarizing, the proof of Theorem 1.1 is completed. �
Remark 2.1. Here we want to underline that in the proof of Theorem 1.1 we have used the 
following auxiliary properties of the weight function � = �(τ) in Case 2:

i) (1 + τ)
q∗−p∗
p∗q∗−1 �(τ) is increasing for τ > 0; (28)

ii) (1 + τ)
− 1+p∗

p∗q∗−1 �(τ) ≤ (1 + τ)−ε (29)

for a sufficiently small and positive ε. Indeed, by change of variables s = c(1 + τ)−ε we may 
re-write

f (τ) := (1 + τ)
q∗−p∗
p∗q∗−1 �(τ) = (1 + τ)

q∗−p∗
p∗q∗−1

(
μ1

(
c(1 + τ)−ε

)
μ2

(
c(1 + τ)−ε

)
) 1

q∗+1

= C s
− q∗−p∗

ε(p∗q∗−1)

(
μ1(s)

μ2(s)

) 1
q∗+1 = C

(
s
− (q∗−p∗)(q∗+1)

ε(p∗q∗−1)
μ1(s)

μ2(s)

) 1
q∗+1

.

For this reason, in order to prove that f = f (τ) is an increasing function, it suffices to verify that

h1(s) := s
− (q∗−p∗)(q∗+1)

ε(p∗q∗−1) μ1(s)
19
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is a decreasing function in the case q∗ > p∗ due to the increasing property of the function μ2. 
Here we take into consideration that in the case q∗ = p∗ the assumption

s ∈ (0, c] → μ1(s)

μ2(s)
is a decreasing function

implies immediately that f = f (τ) is an increasing function. To complete the case q∗ > p∗, we 
have

h′
1(s)

= − (q∗ − p∗)(q∗ + 1)

ε(p∗q∗ − 1)
s
− (q∗−p∗)(q∗+1)

ε(p∗q∗−1)
−1

μ1(s) + s
− (q∗−p∗)(q∗+1)

ε(p∗q∗−1) μ′
1(s)

≤ s
− (q∗−p∗)(q∗+1)

ε(p∗q∗−1)
−1

μ1(s)

(
− (q∗ − p∗)(q∗ + 1)

ε(p∗q∗ − 1)
+ C

) (
since sμ′

1(s) ≤ Cμ1(s) from (7)
)

≤ 0,

after the choice of a sufficiently small constant ε > 0. This provides the first statement (28). In 
an analogous way, we may conclude the second one (29).

2.2. Blow-up result

To prove our result, the following generalized Jensen’s inequality comes into play.

Lemma 2.4 (Lemma 8 in [1]). Let η = η(x) be a nonnegative function almost everywhere on �, 
provided that η is positive on a set of positive measure. Then, for each convex function h on R
the following inequality holds:

h

⎛
⎜⎜⎜⎜⎝

∫
�

f (x)η(x) dx

∫
�

η(x)dx

⎞
⎟⎟⎟⎟⎠ ≤

∫
�

h
(
f (x)

)
η(x)dx

∫
�

η(x)dx

,

where f is any nonnegative function such that all the above integrals are meaningful.

Proof of Theorem 1.2. Our proof relies on ideas from the recent paper [1] of the second author 
and collaborators, where the paper is devoted to the study of the single semi-linear damped wave 
equation (2). First of all, we introduce a test function ϕ = ϕ(ρ) fulfilling

ϕ ∈ C∞
0

([0,∞)
)

and ϕ(ρ) =

⎧⎪⎨
⎪⎩

1 if 0 ≤ ρ ≤ 1/2,

decreasing if 1/2 ≤ ρ ≤ 1,

0 if ρ ≥ 1.

Also, we introduce the function ϕ∗ = ϕ∗(ρ) as follows:
20
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ϕ∗(ρ) =
{

0 if 0 ≤ ρ < 1/2,

ϕ(ρ) if 1/2 ≤ ρ < ∞.

Let R be a large parameter in [0, ∞). We introduce two functions

φR = φR(t, x) =
(
ϕ
( t2 + |x|4

R4

))ν+2
and φ∗

R = φ∗
R(t, x) =

(
ϕ∗( t2 + |x|4

R4

))ν+2
,

where the parameter ν > 0 will be fixed later. Then, we may observe that

suppφR ⊂ QR := {
(t, x) : t2 + |x|4 ≤ R4},

suppφ∗
R ⊂ Q∗

R := QR \ {
(t, x) : t2 + |x|4 < R4/2

}
.

Now we define the following two functionals:

IR :=
∞∫

0

∫
Rn

|v(t, x)|p∗
μ1

(|v(t, x)|)φR(t, x) dxdt =
∫

QR

|v(t, x)|p∗
μ1

(|v(t, x)|)φR(t, x) d(x, t),

JR :=
∞∫

0

∫
Rn

|u(t, x)|q∗
μ2

(|u(t, x)|)φR(t, x) dxdt =
∫

QR

|u(t, x)|q∗
μ2

(|u(t, x)|)φR(t, x) d(x, t).

Let us assume that (u, v) = (u(t, x), v(t, x)) is a global (in time) Sobolev solution to (5) for 
data satisfying the assumptions of the theorem. We multiply the left-hand sides of (5) by φR =
φR(t, x) and integrate by parts to achieve

0 ≤ IR = −
∫
Rn

u1(x)φR(0, x) dx +
∫

QR

u(t, x)
(
∂2
t φR(t, x) − �φR(t, x) − ∂tφR(t, x)

)
d(x, t)

=: −
∫
Rn

u1(x)φR(0, x) dx + I ∗
R, (30)

and

0 ≤ JR = −
∫
Rn

v1(x)φR(0, x) dx +
∫

QR

v(t, x)
(
∂2
t φR(t, x) − �φR(t, x) − ∂tφR(t, x)

)
d(x, t)

=: −
∫
Rn

v1(x)φR(0, x) dx + J ∗
R. (31)

To estimate I ∗ and J ∗ , a straightforward calculation gives the following estimates:
R R
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∣∣∂tφR(t, x)
∣∣ � 1

R2

(
ϕ∗( t2 + |x|4

R4

))ν+1
,

∣∣∂2
t φR(t, x)

∣∣ � 1

R4

(
ϕ∗( t2 + |x|4

R4

))ν

,

∣∣�φR(t, x)
∣∣ � 1

R2

(
ϕ∗( t2 + |x|4

R4

))ν

,

where we have used the support conditions of φR and φ∗
R . As a consequence, we arrive at

|I ∗
R| � 1

R2

∫
QR

|u(t, x)|
(
ϕ∗( t2 + |x|4

R4

))ν

d(x, t) = 1

R2

∫
Q∗

R

|u(t, x)| (φ∗
R(t, x)

) ν
ν+2 d(x, t), (32)

and

|J ∗
R| � 1

R2

∫
QR

|v(t, x)|
(
ϕ∗( t2 + |x|4

R4

))ν

d(x, t) = 1

R2

∫
Q∗

R

|v(t, x)| (φ∗
R(t, x)

) ν
ν+2 d(x, t). (33)

Let us now turn to estimate the above integrals. For this purpose, we define two functions

�p = �p(s) = sp∗
μ1(s) and �q = �q(s) = sq∗

μ2(s).

We have

�q

(
|u(t, x)| (φ∗

R(t, x)
) ν

ν+2
)

= |u(t, x)|q∗ (
φ∗

R(t, x)
) νq∗

ν+2 μ2

(
|u(t, x)| (φ∗

R(t, x)
) ν

ν+2
)

≤ |u(t, x)|q∗ (
φ∗

R(t, x)
) νq∗

ν+2 μ2
(|u(t, x)|) = �q

(|u(t, x)|) (φ∗
R(t, x)

) νq∗
ν+2 (34)

since μ = μ(s) is an increasing function and it holds

0 ≤ (
φ∗

R(t, x)
) ν

ν+2 ≤ 1

for any ν > 0. It is obvious from the assumption (13) that

�′′
q(s) = sq∗−2

(
q∗(q∗ − 1)μ2(s) + 2q∗ sμ′

2(s) + s2μ′′
2(s)

)
≥ 0,

that is, �q is a convex function on a small interval (0, c0] with a sufficiently small constant c0 >

0. Additionally, we can choose a convex continuation of �q outside this interval to guarantee that 
�q is convex on [0, ∞). The application of the generalized Jensen’s inequality from Lemma 2.4

with h(s) = �q(s), f (t, x) = |u(t, x)|(φ∗
R(t, x)

) ν
ν+2 , η ≡ 1 and � ≡ Q∗

R leads to the following 
estimate:
22
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�q

⎛
⎜⎜⎜⎜⎜⎝

∫
Q∗

R

|u(t, x)|(φ∗
R(t, x)

) ν
ν+2 d(x, t)

∫
Q∗

R

1d(x, t)

⎞
⎟⎟⎟⎟⎟⎠ ≤

∫
Q∗

R

�q

(
|u(t, x)|(φ∗

R(t, x)
) ν

ν+2
)

d(x, t)

∫
Q∗

R

1d(x, t)

.

Taking account of ∫
Q∗

R

1d(x, t) ≈ Rn+2

it follows

�q

⎛
⎜⎜⎜⎜⎜⎝

∫
Q∗

R

|u(t, x)|(φ∗
R(t, x)

) ν
ν+2 d(x, t)

Rn+2

⎞
⎟⎟⎟⎟⎟⎠ ≤

∫
Q∗

R

�q

(
|u(t, x)|(φ∗

R(t, x)
) ν

ν+2
)

d(x, t)

Rn+2 . (35)

From the estimates (34) and (35) one derives

�q

⎛
⎜⎜⎜⎜⎜⎝

∫
Q∗

R

|u(t, x)|(φ∗
R(t, x)

) ν
ν+2 d(x, t)

Rn+2

⎞
⎟⎟⎟⎟⎟⎠ ≤

∫
Q∗

R

�q

(|u(t, x)|) (φ∗
R(t, x)

) νq∗
ν+2 d(x, t)

Rn+2 . (36)

Due to the fact that μ = μ(s) is a strictly increasing function, �q = �q(s) is also a strictly 
increasing function on [0, ∞). As a result, it implies from (36) that

∫
Q∗

R

|u(t, x)|(φ∗
R(t, x)

) ν
ν+2 d(x, t) ≤ Rn+2 �−1

q

⎛
⎜⎜⎜⎜⎜⎜⎝

∫
Q∗

R

�q

(|u(t, x)|) (φ∗
R(t, x)

) νq∗
ν+2 d(x, t)

Rn+2

⎞
⎟⎟⎟⎟⎟⎟⎠ .

(37)

Collecting the estimates (30), (32) and (37) we obtain

IR +
∫
Rn

u1(x)φR(0, x) dx � Rn �−1
q

⎛
⎜⎜⎜⎜⎜⎜⎝

∫
Q∗

R

�q

(|u(t, x)|) (φ∗
R(t, x)

) νq∗
ν+2 d(x, t)

Rn+2

⎞
⎟⎟⎟⎟⎟⎟⎠ .
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In the same manner using (31) and (33) one also gets

JR +
∫
Rn

v1(x)φR(0, x) dx � Rn �−1
p

⎛
⎜⎜⎜⎜⎜⎜⎝

∫
Q∗

R

�p

(|v(t, x)|) (φ∗
R(t, x)

) νp∗
ν+2 d(x, t)

Rn+2

⎞
⎟⎟⎟⎟⎟⎟⎠ .

Thanks to the assumption (12) we have

∫
Rn

u1(x)φR(0, x) dx > 0 and
∫
Rn

v1(x)φR(0, x) dx > 0

for all R ≥ R0, where R0 is a sufficiently large, positive constant. Thus, it holds

IR � Rn �−1
q

⎛
⎜⎜⎜⎜⎜⎜⎝

∫
Q∗

R

�q

(|u(t, x)|) (φ∗
R(t, x)

) νq∗
ν+2 d(x, t)

Rn+2

⎞
⎟⎟⎟⎟⎟⎟⎠ , (38)

JR � Rn �−1
p

⎛
⎜⎜⎜⎜⎜⎜⎝

∫
Q∗

R

�p

(|v(t, x)|) (φ∗
R(t, x)

) νp∗
ν+2 d(x, t)

Rn+2

⎞
⎟⎟⎟⎟⎟⎟⎠ , (39)

for all R ≥ R0. Next, for λ > 0 and s > 0 we define the following auxiliary functions:

gq = gq(λ) =
∫

Q∗
R

�q

(|u(t, x)|) (φ∗
λ(t, x)

) νq∗
ν+2 d(x, t) and Gq = Gq(s) =

s∫
0

gq(λ)λ−1 dλ,

gp = gp(λ) =
∫

Q∗
R

�p

(|v(t, x)|) (φ∗
λ(t, x)

) νp∗
ν+2 d(x, t) and Gp = Gp(s) =

s∫
0

gp(λ)λ−1 dλ.

Therefore, we can express

Gq(R) =
R∫

0

( ∫
Q∗

�q

(|u(t, x)|) (φ∗
λ(t, x)

) νq∗
ν+2 d(x, t)

)
λ−1 dλ
R

24



T.A. Dao and M. Reissig Journal of Differential Equations 299 (2021) 1–32
=
∫

Q∗
R

�q

(|u(t, x)|)( R∫
0

(
ϕ∗( t2 + |x|4

λ4

))νq∗
λ−1 dλ

)
d(x, t).

By performing the change of variables λ̄ = t2 + |x|4
λ4 , we take into account that to given (x, t) ∈

Q∗
R we have

λ̄ = t2 + |x|4
λ4 ∈

[1

2
,1

]
on the support of ϕ∗ for λ ∈ (0,R).

Moreover, the function ϕ∗ is decreasing on 
[1

2 , ∞)
. Hence, we may conclude from

t2 + |x|4
R4 ≤ t2 + |x|4

λ4 for λ ∈ (0,R)

that

ϕ∗( t2 + |x|4
λ4

)
≤ ϕ∗( t2 + |x|4

R4

)
as far as

t2 + |x|4
R4 ≥ 1

2
.

But this is clear due to (x, t) ∈ Q∗
R . Summarizing we arrive at the following chain of inequalities:

Gq(R) = 1

4

∫
Q∗

R

�q

(|u(t, x)|)
⎛
⎜⎜⎜⎝

∞∫
t2+|x|4

R4

(
ϕ∗(λ̄)

)νq∗
λ̄−1 dλ̄

⎞
⎟⎟⎟⎠ d(x, t)

≤ 1

4

∫
Q∗

R

�q

(|u(t, x)|)(ϕ∗( t2 + |x|4
R4

))νq∗

⎛
⎜⎜⎝

1∫
1
2

λ̄−1 dλ̄

⎞
⎟⎟⎠ d(x, t) (40)

(
since suppϕ∗ ⊂ [1/2,1])

≤ log 2

4

∫
Q∗

R

�q

(|u(t, x)|)(ϕ
( t2 + |x|4

R4

))νq∗
d(x, t)

(
since ϕ∗ ≡ ϕ in [1/2,1])

≤ C

∫
QR

�q

(|u(t, x)|)(ϕ
( t2 + |x|4

R4

))νq∗
d(x, t),
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since ϕ is decreasing. An analogous argument implies

Gp(R) ≤ C

∫
QR

�p

(|v(t, x)|)(ϕ
( t2 + |x|4

R4

))νp∗
d(x, t).

Let us now choose ν ≥ max
{ 2

p∗ − 1
, 

2

q∗ − 1

}
= 2

p∗ − 1
. Thus, it follows that

Gq(R) ≤ C

∫
QR

|u(t, x)|q∗
μ2

(|u(t, x)|)(ϕ
( t2 + |x|4

R4

))ν+2
d(x, t) = CJR, (41)

Gp(R) ≤ C

∫
QR

|v(t, x)|p∗
μ1

(|v(t, x)|)(ϕ
( t2 + |x|4

R4

))ν+2
d(x, t) = CIR. (42)

Furthermore, the following relations hold:

dGq

ds
(s)s = gq(s), in particular,

(dGq

ds

)
(s = R)R = gq(R),

dGp

ds
(s)s = gp(s), in particular,

(dGp

ds

)
(s = R)R = gp(R),

which imply

G′
q(R)R = gq(R) =

∫
Q∗

R

�q

(|u(t, x)|) (φ∗
R(t, x)

) νq∗
ν+2 d(x, t), (43)

G′
p(R)R = gp(R) =

∫
Q∗

R

�p

(|v(t, x)|) (φ∗
R(t, x)

) νp∗
ν+2 d(x, t). (44)

Combining the estimates (38), (39) and from (41) to (44) gives

Gq(R)

C
≤ JR ≤ CRn �−1

p

(G′
p(R)

Rn+1

)
,

Gp(R)

C
≤ IR ≤ CRn �−1

q

(G′
q(R)

Rn+1

)
.

Consequently, we may conclude

�p

(
Gq(R)

CRn

)
≤ G′

p(R)

Rn+1 ,

�q

(
Gp(R)

CRn

)
≤ G′

q(R)

Rn+1 ,
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for all R ≥ R0. Then, recalling the definition of the functions �p and �q we derive

(
Gq(R)

CRn

)p∗

μ1

(
Gq(R)

CRn

)
≤ G′

p(R)

Rn+1 ,

(
Gp(R)

CRn

)q∗

μ2

(
Gp(R)

CRn

)
≤ G′

q(R)

Rn+1 ,

for all R ≥ R0. These estimates imply

1

CRn(p∗−1)−1
μ1

(
Gq(R)

CRn

)(
Gq(R)

)p∗ ≤ G′
p(R),

1

CRn(q∗−1)−1
μ2

(
Gp(R)

CRn

)(
Gp(R)

)q∗ ≤ G′
q(R),

for all R ≥ R0. Due to the increasing property of the functions μ1 = μ1(s), μ2 = μ2(s), Gp =
Gp(R) and Gq = Gq(R), the following inequalities hold:

1

CRn(p∗−1)−1
μ1

(
Gq(R0)

CRn

)(
Gq(R)

)p∗ ≤ G′
p(R),

1

CRn(q∗−1)−1
μ2

(
Gp(R0)

CRn

)(
Gp(R)

)q∗ ≤ G′
q(R).

Hence,

C

Rn(p∗−1)−1
μ1

(
C0R

−n
)(

Gq(R)
)p∗ ≤ G′

p(R),

C

Rn(q∗−1)−1
μ2

(
C0R

−n
)(

Gp(R)
)q∗ ≤ G′

q(R),

for all R ≥ R0, where C0 = C0(C, R0) := 1

C
min

{
Gp(R0), Gq(R0)

}
. For simplicity, putting 

τ := R and denoting

θ1(τ ) := 1

τn(p∗−1)−1
μ1

(
C0τ

−n
)
, θ2(τ ) := 1

τn(q∗−1)−1
μ2

(
C0τ

−n
)
,

we obtain the following system of ordinary differential inequalities for τ ≥ R0:

G′
p(τ) ≥ C θ1(τ )

(
Gq(τ)

)p∗
, (45)

G′
q(τ ) ≥ C θ2(τ )

(
Gp(τ)

)q∗
. (46)

For any r > R0, after multiplying (45) by G′
q(τ ) and integrating by parts over [R0, r] we arrive 

at
27
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Gp(r)G′
q(r) − Gp(R0)G

′
q(R0) −

r∫
R0

Gp(τ)G′′
q(τ ) dτ

≥ C

p∗ + 1
θ1(r)

(
Gq(r)

)p∗+1 − C

p∗ + 1
θ1(R0)

(
Gq(R0)

)p∗+1

− C

p∗ + 1

r∫
R0

θ ′
1(τ )

(
Gq(τ)

)p∗+1
dτ.

This relation is equivalent to

Gp(r)G′
q(r) +

r∫
R0

Gp(τ)G′
q(τ )

τ
dτ −

r∫
R0

Gp(τ)g′
q(τ )

τ
dτ

≥ C

p∗ + 1
θ1(r)

(
Gq(r)

)p∗+1 +
(
Gp(R0)G

′
q(R0) − C

p∗ + 1
θ1(R0)

(
Gq(R0)

)p∗+1
)

− C

p∗ + 1

r∫
R0

θ ′
1(τ )

(
Gq(τ)

)p∗+1
dτ, (47)

where we have used the equality

G′′
q(τ ) = g′

q(τ ) − G′
q(τ )

τ
.

To control the right-hand side (RHS) of (47), at first let us choose a sufficiently small constant 
C = C(R0) > 0 to verify the inequality

Gp(R0)G
′
q(R0) − C

p∗ + 1
θ1(R0)

(
Gq(R0)

)p∗+1 ≥ 0.

Hence, we can see that

RHS of (47) ≥ C

p∗ + 1
θ1(r)

(
Gq(r)

)p∗+1 − C

p∗ + 1

r∫
R0

θ ′
1(τ )

(
Gq(τ)

)p∗+1
dτ. (48)

A direct calculation gives the following equality:

θ ′
1(τ ) = −

(
n(p∗ − 1) − 1 + n

C0τ
−nμ′

1

(
C0τ

−n
)

μ1
(
C0τ−n

) )θ1(τ )

τ
.

Now we distinguish our considerations into the following two cases:
28



T.A. Dao and M. Reissig Journal of Differential Equations 299 (2021) 1–32
• If p∗ ≥ 1 + 1
n

, then n(p∗ −1) −1 ≥ 0. Thanks to the assumption (13), it is clear that θ ′
1(τ ) ≤

0. From (48) this implies immediately

RHS of (47) ≥ C

p∗ + 1
θ1(r)

(
Gq(r)

)p∗+1
. (49)

• If 1 < p∗ < 1 + 1
n

, then n(p∗ − 1) − 1 < 0. Thanks to the assumption (13) again, one has 
θ ′

1(τ ) ≥ 0 for large R0. From (48) we deduce

RHS of (47) ≥ C

p∗ + 1
θ1(r)

(
Gq(r)

)p∗+1 − C

p∗ + 1

(
1−n(p∗−1)

) r∫
R0

θ1(τ )
(
Gq(τ)

)p∗+1

τ
dτ.

(50)
Introducing the function

f1 : τ ∈ [R0,∞) → f1(τ ) := θ1(τ )
(
Gq(τ)

)p∗+1

τ

one derives

f ′
1(τ ) = θ ′

1(τ )
(
Gq(τ)

)p∗+1
τ + (p∗ + 1)θ1(τ )

(
Gq(τ)

)p∗
G′

q(τ )τ − θ1(τ )
(
Gq(τ)

)p∗+1

τ 2

≥ θ1(τ )
(
Gq(τ)

)p∗

τ 2

(
(p∗ + 1)G′

q(τ )τ − Gq(τ)
) (

since θ ′
1(τ ) ≥ 0

)
≥ θ1(τ )

(
Gq(τ)

)p∗

τ 2

(
(p∗ + 1)gq(τ ) − Gq(τ)

) (
since G′

q(τ )τ = gq(τ )
)

≥
(
p∗ + 1 − log 2

4

)θ1(τ )
(
Gq(τ)

)p∗
gq(τ )

τ 2 ≥ 0,

where we have used the relation Gq(τ) ≤ log 2

4
gq(τ ). Indeed, by recalling the estimate (40)

we may conclude

Gq(R) ≤ log 2

4

∫
Q∗

R

�q

(|u(t, x)|)(ϕ∗( t2 + |x|4
R4

))νq∗
d(x, t) = log 2

4
gq(R) (51)

for all R ≥ R0. This means Gq(τ) ≤ log 2

4
gq(τ ) for any τ ∈ [R0, r]. In such a way, we gain 

the increasing property of the function f1 = f1(τ ). So, one may estimate

r∫
θ1(τ )

(
Gq(τ)

)p∗+1

τ
dτ ≤ θ1(r)

(
Gq(r)

)p∗+1

r
(r − R0) ≤ θ1(r)

(
Gq(r)

)p∗+1
. (52)
R0
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Combining (50) and (52) we obtain

RHS of (47) ≥ Cn(p∗ − 1)

p∗ + 1
θ1(r)

(
Gq(r)

)p∗+1
. (53)

In order to estimate the left-hand side (LHS) of (47), it is obvious that g′
q(τ ) ≥ 0 for any τ ∈

[R0, r] since the function gq = gq(τ ) is increasing. Therefore, we may conclude

LHS of (47) ≤ Gp(r)G′
q(r) +

r∫
R0

Gp(τ)G′
q(τ )

τ
dτ. (54)

By introducing the function

f2 : τ ∈ [R0,∞) → f2(τ ) := Gp(τ)G′
q(τ )

τ

one has

f ′
2(τ ) = G′

p(τ)G′
q(τ )τ + Gp(τ)G′′

q(τ )τ − Gp(τ)G′
q(τ )

τ 2

= G′
p(τ)G′

q(τ )τ + Gp(τ)
(
g′

q(τ ) − G′
q(τ )

) − Gp(τ)G′
q(τ )

τ 2(
since G′′

q(τ ) = g′
q(τ ) − G′

q(τ )

τ

)

≥ G′
q(τ )

(
G′

p(τ)τ − 2Gp(τ)
)

τ 2

(
since g′

q(τ ) ≥ 0
)

≥ G′
q(τ )

(
gp(τ) − 2Gp(τ)

)
τ 2

(
since G′

p(τ)τ = gp(τ)
)

≥
(

1 − log 2

2

)gp(τ)G′
q(τ )

τ 2 ≥ 0.

Here we notice that by an analogous argument to (51) we also derive the estimate Gp(τ) ≤
log 2

4
gp(τ) for any τ ∈ [R0, r], which comes into play in the last line of the above chain of 

estimates. As a result, we arrive at the increasing property of the function f2 = f2(τ ) to estimate

r∫
R0

Gp(τ)G′
q(τ )

τ
dτ ≤ Gp(r)G′

q(r)

r
(r − R0) ≤ Gp(r)G′

q(r). (55)

Collecting (54) and (55) gives

LHS of (47) � Gp(r)G′
q(r). (56)
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Consequently, from (47), (49), (53) and (56) it follows

Gp(r)G′
q(r) ≥ Cθ1(r)

(
Gq(r)

)p∗+1
,

that is,

Gp(r) ≥ Cθ1(r)
(
Gq(r)

)p∗+1

G′
q(r)

. (57)

By plugging (57) into (46), one gets

G′
q(r) ≥ Cθ2(r)

(
θ1(r)

)q∗(
Gq(r)

)q∗(p∗+1)(
G′

q(r)
)q∗ ,

which is equivalent to

G′
q(r) ≥ C

(
θ2(r)

) 1
q∗+1

(
θ1(r)

) q∗
q∗+1

(
Gq(r)

) q∗(p∗+1)

q∗+1

= C

r

(
μ1(C0r

−n)
) q∗

q∗+1
(
μ2(C0r

−n)
) 1

q∗+1
(
Gq(r)

) q∗(p∗+1)

q∗+1 .

Summarizing we have

C

r

(
μ1(C0r

−n)
) q∗

q∗+1
(
μ2(C0r

−n)
) 1

q∗+1 ≤ G′
q(r)(

Gq(r)
) q∗(p∗+1)

q∗+1

.

Integrating two sides of the last estimate over [R0, R∗] leads to

C

R∗∫
R0

1

r

(
μ1(C0r

−n)
) q∗

q∗+1
(
μ2(C0r

−n)
) 1

q∗+1 dr

≤
R∗∫

R0

G′
q(r)(

Gq(r)
) q∗(p∗+1)

q∗+1

dr

= − q∗ + 1

p∗q∗ − 1

(
Gq(r)

)− p∗q∗−1
q∗+1

∣∣∣r=R∗

r=R0
≤ n

2

(
Gq(R0)

)− 2
n ,

where we note that 
q∗ + 1

p∗q∗ − 1
= n

2
. For this reason, we pass R∗ → ∞ to derive

C

∞∫
1

r

(
μ1(C0r

−n)
) q∗

q∗+1
(
μ2(C0r

−n)
) 1

q∗+1 dr ≤ n

2

(
Gq(R0)

)− 2
n .
R0
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Finally, carrying out change of variables s = C0r
−n gives

C

C0R
−n
0∫

0

1

s

(
μ1(s)

) q∗
q∗+1

(
μ2(s)

) 1
q∗+1 ds ≤ n

2

(
Gq(R0)

)− 2
n .

This contradicts to the assumption (14). Summarizing, the proof of Theorem 1.2 is com-
pleted. �
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