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Abstract

We consider a planar differential systeṁx = P(x, y), ẏ = Q(x, y), whereP and Q are C1

functions in some open setU ⊆ R2, and˙= d
dt

. Let � be a periodic orbit of the system inU.

Let f (x, y) : U ⊆ R2 → R be aC1 function such that

P(x, y)
�f
�x

(x, y) + Q(x, y)
�f
�y

(x, y) = k(x, y) f (x, y),

where k(x, y) is a C1 function in U and � ⊆ {(x, y) |f (x, y) = 0}. We assume that ifp ∈ U
is such thatf (p) = 0 and ∇f (p) = 0, thenp is a singular point.

We prove that
∫ T

0

(
�P
�x + �Q

�y

)
(�(t)) dt=∫ T0 k(�(t)) dt , whereT >0 is the period of�. As an

application, we take profit from this equality to show the hyperbolicity of the known algebraic
limit cycles of quadratic systems.
© 2005 Elsevier Inc. All rights reserved.

Keywords:Limit cycle; Planar differential system; Stability; Hyperbolicity; Polynomial vector field

∗ Corresponding author.
E-mail addresses:Hector.Giacomini@phys.univ-tours.fr(H. Giacomini), mtgrau@matematica.udl.es

(M. Grau).
1 Partially supported by a MCYT Grant number BFM 2002-04236-C02-01 and by a FPU grant with

reference AP2000-3585.

0022-0396/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jde.2005.02.010

http://www.elsevier.com/locate/jde
mailto:Hector.Giacomini@phys.univ-tours.fr
mailto:mtgrau@matematica.udl.es


H. Giacomini, M. Grau / J. Differential Equations 213 (2005) 368–388 369

1. Introduction

We consider aplanar differential system

ẋ = P(x, y), ẏ = Q(x, y), (1)

where P and Q are C1 functions in some open setU ⊆ R2, and˙ = d
dt

. A singular
point of system (1) is a pointp ∈ U such thatP(p) = Q(p) = 0. We assume that all
the singular points of (1) are isolated.

Given a system (1), we can always consider its vector field representationF(x, y) =
(P (x, y),Q(x, y)).

We will denote by div(x, y) the divergenceof system (1), that is, div= �P/�x +
�Q/�y.

We also need to consider theflow of system (1), which we denote by�t (p) and which
represents the unique solution of system (1) passing through the pointp ∈ U ⊆ R2.
We notice that for eachp ∈ U there exists an�p > 0 (which may be�p = +∞) such
that t ∈ (−�p, �p) is the maximal symmetric interval of existence of the solution of (1)
passing throughp. We have thatd�t

dt
(p) = (P (�t (p)),Q(�t (p))), for all p ∈ U and

t ∈ (−�p, �p), and �0(p) = p. Given p ∈ U , the function�(·, p) : (−�p, �p) → R2,
where�(t, p) := �t (p), defines asolution curveor orbit of (1) through the pointp.

A limit cycle of system (1) is an isolated periodic orbit. Let� be a limit cycle for
system (1). We say that� is stableif there exists a neighborhoodU� ⊆ U of � such that
for all p ∈ U�, we have limt→+∞ d(�t (p), �) = 0. As usual, the previous application
d is the distance between sets in the Hausdorff sense. Analogously, we say that� is
unstableif there exists a neighborhoodU� ⊆ U of � such that for allp ∈ U�, we have
lim t→−∞ d(�t (p), �) = 0.

There might be limit cycles which are neither stable nor unstable. Using the Jordan
curve theorem, which states that any simple closed curve, as the limit cycle,� separates
any neighborhoodU� of � into two disjoint sets having� as a boundary, we can
consider U� as the disjoint union ofUi ∪ � ∪ Ue, where Ui and Ue are open sets
situated, respectively, in the interior and exterior of�. When for anyp ∈ Ui we have
lim t→+∞ d(�t (p), �) = 0 whereas for anyq ∈ Ue we have limt→−∞ d(�t (q), �) = 0
(or, the other way round, for anyp ∈ Ui we have limt→−∞ d(�t (p), �) = 0 whereas
for any q ∈ Ue we have limt→+∞ d(�t (q), �) = 0), we say that� is semi-stable.

Any limit cycle � of a system (1) is either stable, unstable or semi-stable as it is
stated in [16]. For a detailed description of the classical known results on limit cycles
see also [16].

The following result, which is stated as a corollary in [16, p. 214], gives a formula
to distinguish the stability of a limit cycle.

Theorem 1. Let �(t) be a periodic orbit of system(1) of period T. Then, � is a stable
limit cycle if

∫ T

0
div(�(t)) dt < 0
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and it is an unstable limit cycle if

∫ T

0
div(�(t)) dt > 0.

It may be stable, unstable or semi-stable limit cycle or it may belong to a continuous
band of cycles if this quantity is zero.

A sketch of the proof of this theorem is given after the forthcoming Theorem3.
When the quantity

∫ T

0 div(�(t)) dt is different from zero, we say that the limit cycle
� is hyperbolic.

Since we are considering differential systems (1) in the class of functionsC1, we
may have a limit cycle� belonging to a sequence of periodic orbits{�n , n ∈ N} with
�n+1 in the interior of �n, such that the sequence accumulates to a singular point, a
periodic orbit or a graphic and such that every trajectory between�n and �n+1 spirals
towards�n or �n+1 as t → ±∞. This kind of phenomena does not exist for analytic
systems.

In this work, we give another quantity which equals to
∫ T

0 div(�(t)) dt for a periodic
orbit � defined in an implicit way, as explained below. This is the main result of
the article and it is stated in Theorem 2 in the following section. We can, therefore,
distinguish the hyperbolicity of a limit cycle using two different quantities.

Given a planar system (1) (or equivalently its vector field representationF(x, y) =
(P (x, y),Q(x, y))), we define aninvariant curveas a curve given byf (x, y) = 0,
wheref : U ⊆ R2 → R is a C1 function in the open setU , non-locally null and such
that there exists aC1 function in U , denoted byk(x, y), for which

P(x, y)
�f
�x

(x, y) + Q(x, y)
�f
�y

(x, y) = k(x, y) f (x, y) (2)

for all (x, y) ∈ U . Identity (2) can be rewritten by∇f ·F = kf . As usual,∇f denotes

the gradient vector related tof (x, y), that is,∇f (x, y) = (
�f
�x (x, y),

�f
�y (x, y)), F(x, y)

is the previously defined vector(P (x, y),Q(x, y)), and · denotes the scalar product.
We will denote byḟ or by df

dt
the function∇f · F once evaluated on a solution of

system (1).
We will always assume that ifp ∈ U is such thatf (p) = 0 and ∇f (p) = 0, then

p is a singular point of system (1). This is a technical hypothesis which generalizes
the notion of not having multiple factors for algebraic curves. For instance, if we had
written that the periodic orbit� was contained inf 2(x, y) = 0, then we would have
that ∇(f 2)(p) = 0 for all p ∈ �, in contradiction with the hypothesis.

We notice that, as a particular case, we may have a functionf (x, y) given by a
polynomial in R[x, y]. In such a case,f (x, y) = 0 is called aninvariant algebraic
curve. When, in addition, the system is polynomial, that is,P,Q ∈ R[x, y], then the
function k(x, y) is a real polynomial calledcofactor. When we consider an algebraic
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curve, we can always assume that it is defined by a polynomialf (x, y) = 0 such that
the decomposition off (x, y) has no multiple factors. The same assumption must be
done for curves defined byC1 functions and it is equivalent to the assumption that if
p ∈ U is such thatf (p) = 0 and ∇f (p) = 0, thenp is a singular point of system
(1). More explicitly, assume that system (1) has an invariant algebraic curve given by
f (x, y) = 0 and assume that the decomposition off (x, y) in the ring R[x, y] has
no multiple factors, that is,f (x, y) = b1(x, y)b2(x, y) . . . bk(x, y) where bj (x, y) is
an irreducible polynomial inR[x, y] and bi(x, y) �= cbj (x, y) for any c ∈ R − {0} if
i �= j . Let p ∈ U be such thatf (p) = 0 and ∇f (p) = 0. Since the decomposition
of f (x, y) has no multiple factors, we deduce thatp is a singular point of the curve
f (x, y) = 0 and, hence, it is a singular point of system (1).

Our main result, Theorem 2, can only be applied when the periodic orbit� is given
in an implicit way, that is, when there exists an invariant curvef (x, y) = 0 such that
� ⊆ {(x, y) | f (x, y) = 0}. For instance, let us consider the followingC1 system defined
in all R2:

ẋ = (x + y) cos(x) − y(x2 + xy + 2y2),

ẏ = (y − x)(cos(x) − y2) + x2 + y2

2
sin(x), (3)

which hasy2 − cos(x) = 0 as invariant curve. We definef (x, y) := y2 − cos(x) and
we have thatf ∈ C1(R2) and that∇f (x, y) = (sin(x),2y). Therefore, there is no
p ∈ R2 such that bothf (p) = 0 and ∇f (p) = 0. Moreover,f (x, y) = 0 satisfies
Eq. (2) with k(x, y) = 2y(x − y) − (x + y) sin(x). The divergence of this system is
div(x, y) = −4y2 + 2 cos(x) − x sin(x) and V (x, y) = (x2 + y2)f (x, y) is an inverse
integrating factor. We denote by�n, n ∈ Z, the oval off (x, y) = 0 belonging to the
strip −�/2 + 2�n�x��/2 + 2�n. Each oval�n, with n ∈ Z, gives a periodic orbit
of (3) with minimal periodTn > 0. The oval�0 is a hyperbolic stable limit cycle for
system (3), which can be shown just applying Theorem 1. We have, after some easy
computations, that

∫ Tn

0
div(�n(t)) dt = −4 arctan

(
x√

cos(x)

) x = �/2 + 2�n,

x = −�/2 + 2�n,

which is zero whenn �= 0 and it is −4� for �0. Each one of the other ovals of
f (x, y) = 0, �n with n �= 0, belongs to the period annulus of a center as it can be
shown from the fact that the functionH(x, y) = f (x, y)(x2 + y2)exp{2 arctan(y/x)}
is a first integral for system (3). Our result can be applied for any of the periodic orbit
�n of this example.

When considering a polynomial system, as far as the authors know, only algebraic
limit cycles are known in this implicit way. A limit cycle is said to bealgebraic if its
points belong to an invariant algebraic curve.
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The paper is organized as follows. Section2 contains the statement and proof of the
main result of this work, i.e. Theorem 2. Using Theorem 2, in Section 3, we will show
that all the known algebraic limit cycles of a quadratic system are hyperbolic.

2. Main result

Theorem 2. Let us consider a system(1) and �(t) a periodic orbit of periodT > 0.
Assume thatf : U ⊆ R2 → R is an invariant curve with� ⊆ {(x, y) | f (x, y) = 0}
and let k(x, y) be theC1 function given in(2). We assume that ifp ∈ U is such that
f (p) = 0 and ∇f (p) = 0, then p is a singular point of system(1). Then,

∫ T

0
k(�(t)) dt =

∫ T

0
div(�(t)) dt. (4)

In order to prove Theorem2, we need to recall the definition and some properties
of the Poincaré map. Let us consider� a periodic orbit with minimal periodT > 0
for system (1) andp0 ∈ �. Let U� ⊆ U be a neighborhood of� not containing any
singular point and� = {q ∈ U� | (q − p0) · F(p0) = 0}, where · denotes the scalar
product between the vectorsq − p0 andF(p0).

As stated and proved in [16, pp. 210–211], we have that there exists a� > 0 and
a unique function� : � → R, which is defined continuously and differentiable for any
q ∈ �∩ B�(p0) such that�(p0) = T and ��(q)(q) ∈ �. As usual,B�(p0) is the ball of
centerp0 and radius�. Then, for anyq ∈ �∩B�(p0), the functionP(q) = ��(q)(q) is
called thePoincaré mapfor � at p0. It is clear that fixed points of the Poincaré map,
P(q) = q, give rise to periodic orbits for system (1). Moreover, it can be shown that
P : � → � is a C1 diffeomorphism.

We consider� as a subset ofU ⊆ R2, so P is considered as a planar function from
� ⊂ R2 to R2. Hence, we notice that the derivative ofP at p0, which is a point in
�, can be represented by a 2× 2 matrix, which we denote byDP(p0). The following
theorem, stated and proved in [2, p. 118], is very useful to establish the stability of�.

Theorem 3. Let v be a non-null vector normal toF(p0). Then,

v · DP(p0) = exp

(∫ T

0
div(�(t)) dt

)
v. (5)

Theorem 3 is proved by using the variational equations of first order related to
system (1). If�t (x, y) is the flow related to the vector fieldF(x, y), we have that
d
dt

(D�t (x, y)) = DF(�t (x, y)) · D�t (x, y) with the initial conditionD�t (x, y)|t=0 =
I , whereD means the differential with respect to the point(x, y) and I is the identity
matrix. These equations with respect to the matrixD�t (x, y) are the variational equa-
tions of first order. SinceP(q) = ��(q)(q), the solution of the variational equations of
first order allows the computation ofDP(p0) in a pointp0 ∈ �.
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In order to show that the stability of� is determined by the value ofv · DP(p0),
as stated in Theorem1, we consider thedisplacement functionand we follow the
reasoning of [16, p. 213]. For anyq ∈ � ∩ B�(p0), we have thatq = p0 + sv, with
s ∈ (−�/|v|, �/|v|). Since P(q) ∈ �, we have that givens ∈ (−�/|v|, �/|v|), there
exists a�(s) ∈ R such thatP(p0 + sv) = p0 + �(s)v. Therefore, we have defined a
C1 function � : (−�/|v|, �/|v|) → R and the displacement function is given by d:
(−�/|v|, �/|v|) → R with d(s) = �(s) − s. It is clear that d(0) = 0, d′(s) = �′(s) − 1
andv ·DP(p0+sv) = �′(s)v. Since d(s) is C1, we have that the sign of d′(s) coincides
with the sign of d′(0) for |s| sufficiently small as long as d′(0) �= 0. By the mean value
theorem, we have that given|s| sufficiently small there exists a� ∈ (0, s) such that
d(s) = d′(�)s. Therefore, if d′(0) > 0, we have that d(s) > 0 for s > 0 and d(s) < 0
for s < 0, which implies that the periodic orbit� is an unstable limit cycle. Similar
reasonings show that if�′(0) > 1 then � is an unstable limit cycle and if�′(0) < 1
then � is a stable limit cycle. Theorem 1 clearly follows from Theorem 3 and the fact
that �′(0)v = v · DP(p0).

Lemma 4. Let us consider a system(1) and let f : U ⊆ R2 → R be a non-null
C1(U)-function. There exists aC1 function k(x, y) such that∇f (q) · F(q) = k(q)f (q)

for any q ∈ U if, and only if, for any q ∈ U and anyt ∈ R such that�t (q) ∈ U , the
following identity is satisfied:

f (�t (q)) = f (q) exp

(∫ t

0
k(�s(q)) ds

)
. (6)

Proof. Assume that∇f (q) ·F(q) = k(q)f (q) for any q ∈ U . We fix a pointq ∈ U and
we define�(t) = f (�t (q)) for any t ∈ R such that�t (q) ∈ U . We have thatt belongs
to an open interval(−�q, �q) with �q > 0 (and it may be that�q = +∞). We have,
using some of the properties of the flow and the factḟ (�t (q)) = k(�t (q)) f (�t (q)),
that:

�̇(t) = ∇f (�t (q)) · d�t

dt
(q) = ∇f (�t (q)) · F(�t (q)) = ḟ (�t (q)) = k(�t (q)) �(t).

We deduce thatd�
dt
(t) = k(�t (q)) �(t) and �(0) = f (q). Solving this linear equation

in the function�(t) we get�(t) = f (q)exp
(∫ t

0 k(�s(q)) ds
)

. As we can consider the

same reasoning for anyq ∈ U , we obtain identity (6). The reciprocal is proved by the
same reasoning.�

Lemma 5. Let us consider a system(1) and �(t) a periodic orbit of periodT > 0.
Assume thatf : U ⊆ R2 → R is an invariant curve with� ⊆ {(x, y) | f (x, y) = 0}
and let k(x, y) be theC1 function given in(2). Take anyp0 in �. Then,

∇f (p0) · DP(p0) = exp

(∫ T

0
k(�(t)) dt

)
∇f (p0). (7)
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Proof. We consider the Poincaré map defined in an interval of the straight line�
containingp0, P(q) = ��(q)(q). Since f (x, y) = 0 is an invariant curve defined in
U ⊆ R2, it is clear that for anyq ∈ U and anyt ∈ R such that�t (q) ∈ U , identity
(6) is satisfied as proved in Lemma 4. Hence,

f (P(q)) = f (q)exp

(∫ �(q)

0
k(�s(q)) ds

)

and differentiating this identity with respect toq we get

∇f (P(q)) · DP(q) = exp

(∫ �(q)

0
k(�s(q)) ds

)
∇f (q)

+f (q)exp

(∫ �(q)

0
k(�s(q)) ds

)

×
[∫ �(q)

0
(∇k) (�s(q)) · D�s(q) ds + k(P(q))∇�(q)

]
,

where DP(q) and D�s(q) stand for the Jacobian matrix with respect toq of the
functionsP and �s , respectively, in the pointq.

We evaluate the previous identity inq = p0, taking into account thatf (p0) = 0 and
�(p0) = T , and we get identity (7). �

Proof of Theorem 2. The vector∇f (p0) is a non-null vector that is normal to the
vector F(p0) sincef (x, y) = 0 is an invariant curve that contains�, andp0 ∈ �. The
fact of ∇f (p0) to be a non-null vector is ensured by the assumption that ifp ∈ U is
such thatf (p) = 0 and ∇f (p) = 0, thenp is a singular point of system (1). Since
p0 belongs to a periodic orbit, it cannot be a singular point.

Therefore, the vectorv in identity (5) of Theorem 3 can be replaced by∇f (p0).
Using identity (7) of Lemma 5, we deduce that

exp

(∫ T

0
div(�(t)) dt

)
= exp

(∫ T

0
k(�(t)) dt

)
,

from which (4) follows. �

3. Hyperbolicity of the known algebraic limit cycles of quadratic systems

We consider the families of quadratic systems with algebraic limit cycles known at
the time of composition of this paper. These families sweep all the algebraic limit
cycles defined by polynomials of degrees 2 and 4 for a quadratic system, as it is
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proved in[9]. In [12–14], it is shown that there are no algebraic limit cycles of degree
3 for a quadratic system. See [8] for a short proof. In [11], two examples of quadratic
systems with an algebraic limit cycle of degree 5 and 6 are described. We study the
hyperbolicity of all these limit cycles.

The following result is due to Ch’in Yuan-shün [10] and characterizes the algebraic
limit cycles of degree 2 for a quadratic system.

Theorem 6 (Yuan-shün Ch’in[10] ). If a quadratic system has an algebraic limit cycle
of degree2, then after an affine change of variables, the limit cycle becomes the circle

� := x2 + y2 − 1 = 0. (8)

Moreover, � is the unique limit cycle of the quadratic system which can be written in
the form

ẋ = −y (ax + by + c) − (x2 + y2 − 1),
ẏ = x (ax + by + c),

(9)

with a �= 0, c2 + 4(b + 1) > 0 and c2 > a2 + b2.

We summarize the four families of algebraic limit cycles of degree 4 for quadratic
systems in the following result, which is stated and proved in[9]. We remark that these
families were encountered previously to the work [9], but in this work it was shown
that there are no other algebraic limit cycle of degree 4 for a quadratic system. System
(10) was first described in [17], system (12) in [15], system (14) in [5] and system
(16) in [9].

Theorem 7 (Chavarriga et al.[9] ). After an affine change of variables the only
quadratic systems having an algebraic limit cycle of degree4 are

(a) Yablonskii’s system

ẋ = −4abcx − (a + b)y + 3(a + b)cx2 + 4xy,
ẏ = (a + b)abx − 4abcy + (4abc2 − 3

2 (a + b)2 + 4ab)x2

+8(a + b)cxy + 8y2,

(10)

with abc �= 0, a �= b, ab > 0 and 4c2(a − b)2 + (3a − b)(a − 3b) < 0.
This system has the invariant algebraic curve

(y + c x2)2 + x2 (x − a)(x − b) = 0, (11)

whose oval is a limit cycle for system(10).
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(b) Filipstov’s system

ẋ = 6(1 + a) x + 2y − 6(2 + a) x2 + 12x y,
ẏ = 15(1 + a) y + 3a (1 + a) x2 − 2 (9 + 5a) x y + 16y2,

(12)

with 0 < a < 3
13. This system has the invariant algebraic curve

3(1 + a)(a x2 + y)2 + 2y2(2y − 3(1 + a)x) = 0, (13)

whose oval is a limit cycle for system(12).
(c) Chavarriga’s system

ẋ = 5x + 6x2 + 4(1 + a) x y + a y2,

ẏ = x + 2y + 4x y + (2 + 3a) y2,
(14)

with −71+17
√

17
32 < a < 0 has the invariant algebraic curve

x2 + x3 + x2 y + 2a x y2 + 2a x y3 + a2 y4 = 0, (15)

whose oval is a limit cycle for system(14).
(d) Chavarriga et al.’s system

ẋ = 2 (1 + 2x − 2a x2 + 6x y),

ẏ = 8 − 3a − 14a x − 2a x y − 8y2,
(16)

with 0 < a < 1
4 has the invariant algebraic curve

1

4
+ x − x2 + a x3 + x y + x2 y2 = 0, (17)

whose oval is a limit cycle for system(16).

In a work due to Christopher et al. [11] two families of quadratic systems with an
algebraic limit cycle of degrees five and six, respectively, are given. These two families
are constructed by means of a birational transformation of system (16). Abirational
transformationis a rational change of variables such that its inverse is also rational.
Moreover, they prove that there is also a birational transformation which converts
Yablonskii’s system (10) into the system with a limit cycle of degree 2, that is, system
(9).

The fact of the limit cycle of degree 2 being hyperbolic is stated in [18] (see
pp. 256–258) following the proof of [10]. As a consequence, and taking into ac-
count the forthcoming Lemma 9, one of the limit cycles of degree 4 (the one due
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to Yablonskii) is also hyperbolic, because this limit cycle of degree 4 is birationally
equivalent to the one of degree 2, as it is shown in[11]. Our contribution is the
proof of the hyperbolicity of the other known limit cycles of quadratic
systems.

Lemma 8. Let us consider a differential system(1) and a change of variablesx =
F(u, v) andy = G(u, v), whereF,G are C2 functions inU . We denote bẏu = R(u, v),
v̇ = S(u, v) the transformed differential system. Let

J (u, v) := �F
�u

(u, v)
�G
�v

(u, v) − �F
�v

(u, v)
�G
�u

(u, v),

be the Jacobian of the transformation. Then,

�P
�x

(F (u, v),G(u, v)) + �Q
�y

(F (u, v),G(u, v)) = �R
�u

(u, v) + �S
�v

(u, v)

+ 1

J (u, v)

(
�J
�u

(u, v)R(u, v) + �J
�v

(u, v) S(u, v)

)
. (18)

Lemma 8 is a computational result whose proof is clear after some easy manip-
ulations. We use it to prove the following result which states that the value of the
integral of the divergence on the limit cycle does not change under transformations of
dependent variables.

Lemma 9. Let us consider a differential system(1) with a periodic orbit � of pe-
riod T > 0 and a change of variablesx = F(u, v) and y = G(u, v) which is
well-defined in a neighborhood of�. We denote byu̇ = R(u, v), v̇ = S(u, v) the
transformed differential system and byϑ the corresponding periodic orbit.
Then,

∫ T

0

(
�P
�x

+ �Q
�y

)
(�(t)) dt =

∫ T

0

(
�R
�u

+ �S
�v

)
(ϑ(t)) dt.

Proof. Using the same notation as in Lemma8, we have that the integral
∫ T

0

(
�P
�x + �Q

�y

)
(�(t)) dt becomes, under the transformation of dependent variablesx = F(u, v) and
y = G(u, v),

∫ T

0

(
�P
�x

(F (u, v),G(u, v)) + �Q
�y

(F (u, v),G(u, v))

)
(ϑ(t)) dt
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which, by Lemma8, equals to

∫ T

0

(
�R
�u

(u, v) + �S
�v

(u, v)

)
(ϑ(t)) dt

+
∫ T

0

1

J (u, v)

(
�J
�u

(u, v)R(u, v) + �J
�v

(u, v)S(u, v)

)
(ϑ(t)) dt.

We notice that the integrand of the second integral in the former expression can be
rewritten asd(J (u, v))/J (u, v) and, since the change of variables is well defined in a
neighborhood of�, we have that this expression is a well defined, exact 1-form which
is integrated over the closed curveϑ, so

∮
ϑ d(J (u, v))/J (u, v) = 0. �

Therefore, in order to prove that all these families of limit cycles are hyperbolic, we
only need to study the stability of the limit cycles of systems (12), (14) and (16). The
hyperbolicity of the two limit cycles described in [11] is shown by the fact that they
are birationally equivalent to (16).

Theorem 10. Each one of the limit cycles of systems(12), (14)and (16) is hyperbolic.

Proof. In order to prove the hyperbolicity of the limit cycles of systems (12), (14) and
(16) we use the same process for all of them. These systems depend on a parametera
which belongs to a certain open interval when the limit cycle� exists. We denote by
T > 0 the period of the limit cycle and byD(a) the value of the integral

∫ T

0 div(�(t)) dt
for any value of the parameter for which the limit cycle exists. This value decides the
hyperbolicity character of the limit cycle� in the system with parametera. By virtue
of Lemma 9, we may consider any birational transformation of these systems well
defined in a neighborhood of the limit cycle and we may consider the transformed
system instead of the previous one because the value of the integral

∫ T

0 div(�(t)) dt
does not change.

Using Theorem 2, we have that

D(a) =
∫ T

0
div(�(t)) dt + w

(∫ T

0
div(�(t)) dt −

∫ T

0
k(�(t)) dt

)
,

wherek is the cofactor of the invariant algebraic curve containing the limit cycle and
w is any real number.

We show that the functionD(a) has no zero whena belongs to the interval of
existence of limit cycle by choosing an adequatew ∈ R and parameterizing the limit
cycle �. The way of choosing the adequate value ofw is purely heuristic, although we
expect that this choice is related to some geometric property. We find it very surprising
that it is possible to choosew = −3 for each one of the three families of systems.
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3.1. Hyperbolicity of the limit cycle given by the algebraic curve (17) for system (16)

The stability of the limit cycle� is given by the following function of the parameter
a of the system,D(a) := ∫ T

0 div(�(t)) dt , where div(x, y) = 2(2 − 5ax − 2y) is the
divergence of system (16) andT > 0 the period of the limit cycle. Theorem 2 gives∫ T

0
div(�(t)) dt =

∫ T

0
k(�(t)) dt,

wherek(x, y) = 4(2 − 3ax + 2y) is the cofactor of the invariant algebraic curve (17).
So, given any real numberw, we have that

D(a) =
∫ T

0
div(�(t)) dt + w

∫ T

0
(div − k)(�(t)) dt

=
∫ T

0
((1 + w)div − wk) (�(t)) dt.

We consider the following parameterization of the oval of the algebraic curve (17):

x(�) = �, y±(�) = −1 ± 2
√
(−a)�(� − �1)(� − �2)

2�
, (19)

where�1 = 1−√
1−4a

2a , �2 = 1+√
1−4a

2a and the parameter� ∈ (�1, �2). The positive sign
y+(�) gives a half of the oval and the negative signy−(�) the other half. One of the

endpoints of both parameterizations is(x1, y1) = (1−√
1−4a

2a ,−1+√
1−4a
4 ) and the other

endpoint is(x2, y2) = (1+√
1−4a

2a , −1+√
1−4a

4 ). We have that the vector field in(x1, y1)

is (0,6
√

1 − 4a) and in (x2, y2) is (0,−6
√

1 − 4a), so the flow on the limit cycle is

clockwise. The line 2ax = 1 cuts the limit cycle in two points with ordinates±
√

1−4a
2 −

a, which are given, respectively, byy±(1/2a). We have the following relation between
the differentials:d� = P(x(�), y±(�)) dt whereP(x, y) = 2(1+2x−2ax2+6xy). Then,

D(a) =
∫ T

0
((1 + w)div − wk) (�(t)) dt

=
∫ �2

�1

(
((1 + w)div − wk)

P

)
(�, y+(�)) d�

+
∫ �1

�2

(
((1 + w)div − wk)

P

)
(�, y−(�)) d�

=
∫ �2

�1

[(
((1 + w)div − wk)

P

)
(�, y+(�))

−
(
((1 + w)div − wk)

P

)
(�, y−(�))

]
d�.
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For w = −3 and substituting by the parameterization, we get,

D(a) = 8
∫ �2

�1

√
a�(� − �1)(�2 − �)
�(1 + 8� + a�2)

d�.

Since �1 > 0 and �2 > �1 for any a ∈ (0,1/4) and the integrand
√
a�(�−�1)(�2−�)
�(1+8�+a�2)

is
also strictly positive and well defined for any� ∈ (�1, �2) and a ∈ (0,1/4), we have
that D(a) > 0 for all a ∈ (0,1/4), which implies that the limit cycle in system (16) is
hyperbolic (and unstable).

3.2. Hyperbolicity of the limit cycle given by the algebraic curve (13) for system (12)

In order to simplify our computations, we consider the following birational change
of the parameter,a = 3c/(4 + 5c), with inversec = 4a/(3 − 5a) and we have that
c ∈ (0,1/2).

We consider the birational change of variables(x, y) → (u, v) given by (x, y) =
(X(u, v), Y (u, v)), where

X(u, v) = − 2(1 + 2c)

c2(1 + u)3 (c − 2(1 + c)u + cu2 − 2
√

1 + 2c v),

Y (u, v) = − 12(1 + 2c)2

c2(4 + 5c)(1 + u)4 (c − 2(1 + c)u + cu2 − 2
√

1 + 2c v).

The inverse of this change is given by(u, v) = (U(x, y), V (x, y)) with

U = 6(1 + 2c)x

(4 + 5c)y
− 1,

V =
√

1 + 2c

(4 + 5c)3y3

[
(1 + 2c)

(
54c2x4 + 18c(4 + 5c)x2y

−6(4 + 5c)2xy2)]+ √
1 + 2c.

The Jacobian of this change of variables is

�U
�x

�V
�y

− �U
�y

�V
�x

= 324c2 (1 + 2c)5/2 x4

(4 + 5c)4 y5
,

which can be seen to be well defined and different from zero in all the points of the
oval of the curve given in (13).

We get a transformed system in which we reparameterize its timet multiplying by
c2(4 + 5c)(1 + u)3/(12(1 + 2c)). This reparameterization does not affect the direction
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of the flow on the limit cycle. The new system reads for:

u̇ = −2u (cu + 4 + 9c)(cu2 − u + c) − 2
√

1 + 2c (cu2 − (4 + 5c)u + 2c)v,
v̇ = −c2

√
1 + 2c (u + 1)2(u − 1)(3u + 2)

−(cu + 4 + 9c)(3cu2 − 2u + c)v + 2
√

1 + 2c (4 + 5c − 3cu)v2
(20)

and the limit cycle is transformed to the real oval of the curvev2 +u(cu2 −u+c) = 0.
This algebraic curve is invariant for system (20) with cofactork(u, v) = 4

√
1 + 2c (4+

5c−3cu)v−2(cu+9c+4)(3cu2−2u+c). The divergence of system (20) is div(u, v) =
2
√

1 + 2c (12+15c−8cu)v−[11c2u3+c(28+81c)u2+(5c2−54c−24)u+3c(4+9c)].
We consider the following parameterization of the oval of the algebraic curvev2 +

u(cu2 − u + c) = 0:

u(�) = �, v±(�) = ±√c�(� − �1)(�2 − �), (21)

where�1 = 1−√
1−4c2

2c , �2 = 1+√
1−4c2

2c and the parameter� ∈ (�1, �2). We notice that for
c ∈ (0,1/2), we have that 0< �1 < 1 < �2. The endpoints of both parameterizations
are (�1,0) and (�2,0), and the vector field at the point(�i ,0) is (0, c2

√
1 + 2c (�i +

1)2(3�i + 2)(1 − �i )), for i = 1,2. Therefore, the flow on the limit cycle is clockwise.
We follow analogous arguments to the previous example to deduce that

D(c) =
∫ �2

�1

[(
((1 + w)div − wk)

P

)
(�, v+(�))

−
(
((1 + w)div − wk)

P

)
(�, v−(�))

]
d�,

whereP(u, v) is the polynomial which defineṡu = P(u, v). For w = −3 and substi-
tuting by the parameterization, we get

D(c) = 8
√

1 + 2c
∫ �2

�1

√
c�(� − �1)(�2 − �)

(� + 1)(c�2 + (17c + 8)� + 4 + 8c)
d�.

Since 0< �1 < 1 < �2 for any c ∈ (0,1/2) and the integrand is strictly positive and
well defined for any� ∈ (�1, �2) and c ∈ (0,1/2), we have thatD(c) > 0 for all
c ∈ (0,1/2), which implies that the limit cycle in system (20) given by the real oval of
v2 +u(cu2 −u+ c) = 0 is hyperbolic (and unstable). Hence, using Lemma 9, we have
that the limit cycle given by the oval of the curve (13) in system (12) is hyperbolic
and unstable.

3.3. Hyperbolicity of the limit cycle given by the algebraic curve (15) for system (14)

We consider the following birational change of variables(x, y) → (u, v) with
(x, y) = (X(u, v), Y (u, v)) where

(X(u, v), Y (u, v)) = (−2,−2u)

v + 1 + u + 2au2 .
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The inverse of this change is(u, v) = (U(x, y), V (x, y)) with

U(x, y) = y

x
, V (x, y) = −2a

y2

x2 − (y + 2)

x
− 1.

This change of variables is well defined in a neighborhood of the real oval of the curve
(15) and its Jacobian is

�U
�x

�V
�y

− �U
�y

�V
�x

= − 2

x3 .

The algebraic curve (15) is transformed tov2 + 4au2(u − 1) − (u + 1)2 = 0. We
consider the transformed system in which we make a reparameterization of its timet
which consists on multiplying byv + 1 + u + 2au2. This reparameterization reverses
the direction of the flow on the transformed limit cycle and the new system is written
as

u̇ = (u + 1)2 − 4au2(u − 1) + (1 − 3u)v,
v̇ = 2(u + 1)(3 + u + 2au − au2) + (1 + 4au + u − 6au2)v − 5v2.

(22)

The divergence of this system is div(u, v) = 3(1 + u) + 12au − 18au2 − 13v. The
algebraic curvev2+4au2(u−1)−(u+1)2 = 0 is invariant for system (22) with cofactor
k(u, v) = 2(1+ u+ 4au− 6au2 − 5v). The real oval of this curve is a hyperbolic limit
cycle for system (22) if, and only if, the real oval of the curve (15) is a hyperbolic limit
cycle for system (14), by Lemma 9. We are going to compute the functionD(a) =∫ T

0 div(�(t)) dt , where� is the real oval of the curvev2 + 4au2(u− 1)− (u+ 1)2 = 0.
To do so, we parameterize this oval by

u(�) = �, v±(�) = ±
√

4a�2(1 − �) + (� + 1)2,

where� takes values between�1 and�2. The values�1 and�2 are the two smallest roots
of the polynomialg(a, �) := 4a�2(1− �)+ (� + 1)2 in �. We considera in the interval
between(17

√
17− 71)/32 and 0, which are the values of the parameter for which the

limit cycle exists. Since the coefficient of the highest order term ofg(a, �) is −4a which

is strictly negative,g(a,−(3 + √
17)/2) = 4(29+ 7

√
17)

[
a − (17

√
17− 71)/32

]
> 0

and g(a,−1) = 8a < 0, we deduce that�1 < −(3 + √
17)/2 < �2 < −1. We denote

by P(u, v) the polynomial which defineṡu = P(u, v) in system (22). We consider the
point with coordinates

(u0, v0) =

−3 + √

17

2
,2

√
29+ 7

√
17

√
a + 71− 17

√
17

32



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and we have thatv2
0 − g(a, u0) = 0 and P(u0, v0) = v0[v0 + (11 + 3

√
17)/2]. We

deduce thatP(u0, v0) > 0 and that the flow on the limit cycle is clockwise. Using
analogous arguments as in the previous examples we conclude that:

D(a) =
∫ �2

�1

[(
((1 + w)div − wk)

P (u, v)

)
(�, v+(�))

−
(
((1 + w)div − wk)

P (u, v)

)
(�, v−(�))

]
d�.

For w = −3 and substituting by the parameterization, we get

D(a) = 2
∫ �2

�1

√
g(a, �)

(� − 1) � (a� + 2)
d�.

We have that�1 < −(3 + √
17)/2 < �2 < −1 and that� − 1 < 0 and � < 0 < −2/a

for any � ∈ (�1, �2) and for anya ∈ ((17
√

17 − 71)/32,0). Hence, the integrand is
strictly positive and well defined for any� ∈ (�1, �2) and a ∈ ((17

√
17− 71)/32,0).

We deduce thatD(a) > 0 for all a ∈ ((17
√

17 − 71)/32,0), which implies that the
limit cycle in system (22) given by the real oval ofv2 − g(a, u) = 0 is hyperbolic
(and unstable). Thus, using Lemma 9 and the sign in the change of time, we have that
the limit cycle given by the oval of the curve (15) in system (14) is hyperbolic and
stable. �
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Appendix A

The aim of this appendix is to present some relations among elliptic integrals which
the authors obtained by using the identity given by Theorem 2 for systems (12) and
(16).

Before the presented proof of Theorem 10, the authors got its proof for systems
(12) and (16) by computing the corresponding integrals which give place to elliptic
integrals. The identity given in Theorem 2 was used to encounter a Fuchs equation for
the function D(a). After some thorough analysis of this Fuchs equation, we deduce
the non-vanishing of the functionD(a) for any value of the parameter in which the
limit cycle exists. We are not going to give this proof, but we think that the relations
among elliptic integrals obtained by the former reasoning are interesting by themselves.
Hence, we give the identities obtained which, as far as we know, do not appear in any
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book of tables of integrals and relations between classical functions. On the other hand,
we also give the obtention of the Fuchs equation for the functionD(a) in the case of
system (16).

A.1. Identities among elliptic integrals

The functions involved in this subsection are the complete elliptic integrals of first,
second and third kinds, denoted by K(	), E(	) and �(
,	), respectively. We recall
the definition of these functions

K(	) =
∫ �/2

0

d�√
1 − 	 sin2(�)

=
∫ 1

0

dt√
(1 − t2)(1 − 	t2)

,

E(	) =
∫ �/2

0

√
1 − 	 sin2(�) d� =

∫ 1

0

√
1 − 	t2√
(1 − t2)

dt,

�(
,	) =
∫ �/2

0

d�

(1 − 
 sin2(�))
√

1 − 	 sin2(�)

=
∫ 1

0

dt

(1 − 
t2)
√
(1 − t2)(1 − 	t2)

and their derivatives

K ′(	) = 1

2(1 − 	)	
E(	) − 1

2	
K(	),

E′(	) = 1

2	
E(	) − 1

2	
K(	),

��(
,	)

�

= 1

2
(
 − 1)
K(	) + 1

2(
 − 1)(	 − 
)
E(	)

+ 
2 − 	
2
(
 − 1)(	 − 
)

�(
,	),

��(
,	)

�	
= 1

2(
 − 	)(	 − 1)
E(	) + 1

2(
 − 	)
�(
,	).



H. Giacomini, M. Grau / J. Differential Equations 213 (2005) 368–388 385

We use the following parameterization of the oval of the algebraic curve (17) to
explicitly compute the integrals for system (16). We parameterize the oval by

x(�) = �, y±(�) = −1 ± 2
√
(−a)�(� − �1)(� − �2)

2�
, (23)

where�1 = 1−√
1−4a

2a , �2 = 1+√
1−4a

2a and the parameter� ∈ (�1, �2). The positive sign
y+(�) gives a half of the oval and the negative signy−(�) the other half. The explicit
computation of the integrals for system (16) gives that identity (4) stated in Theorem
2 reads for

−9 K(	0) + c+ �(	+,	0) + c− �(	−,	0) ≡ 0, (24)

which is valid for a ∈ (0,1/4), where

	0 = 2
√

1 − 4a

1 + √
1 − 4a

, 	± = 2
√

1 − 4a

9 + √
1 − 4a ± 2

√
16− a

,

c± = 9 − √
1 − 4a

2
± √

16− a.

The derivative of the expression in (24) with respect toa gives place to the same identity
(24). In fact, when computing the derivative with respect toa of the expression given
in (24), using the described formulas of derivation for these elliptic integrals, we get
−1/(1− 4a +√

1 − 4a) times the same expression (24). This simple factor is different
from zero whena ∈ (0,1/4).

In the same way, we can explicitly compute the integrals involved in the identity (4)
stated in Theorem 2 for system (12), via using the parameterization of the oval of (13)
given by

x±(�) = − 2(1 + 2c)

c2(1 + �)3 (c − 2� − 2c� + c�2 ± 2
√

1 + 2c
√

�(−c + � − c�2)),

y±(�) = −12(1 + 2c)2

c2(4 + 5c)(1 + �)4 (c − 2� − 2c� + c�2 ± 2
√

1 + 2c
√

�(−c + � − c�2)),

(25)

where � ∈ (�1, �2) with �1 = 1−√
1−4c2

2c and �2 = 1+√
1−4c2

2c . It is clear that 0< �1 <

1 < �2 for c ∈ (0,1/2). We defineg(c, �) = −�(c − � + c�2) = c�(� − �1)(�2 − �),
which is strictly positive for all� ∈ (�1, �2). The explicit computation of the integrals
involved in the identity (4) gives

5 K(�0) + C+ �(�+, �0) + C− �(�−, �0) ≡ 0, (26)



386 H. Giacomini, M. Grau / J. Differential Equations 213 (2005) 368–388

which is valid for c ∈ (0,1/2), where

�0 = 2
√

1 − 4c2

1 + √
1 − 4c2

, �± = 2
√

1 − 4c2

9 + 17c + √
1 − 4c2 ±√

64(1 + 2c)2 + c2
,

C± = −2(24+ 47c) ± 3
√

64(1 + 2c)2 + c2

9 + 17c + √
1 − 4c2 ±√

64(1 + 2c)2 + c2
.

The derivative of expression (26) with respect toc gives place to the same identity
(26).

The authors have not been able to give an analogous identity related to system (14)
due to the fact that the corresponding integrals require much more computations to be
identified with the elliptic integrals.

A.2. Fuchs equation forD(a) in system (16)

In this part of the appendix we develop the way we obtained a Fuchs equation for
the function D(a) in system (16), via using relation (24). We think that the fact of
obtaining a Fuchs equation satisfied by this function is interesting to further understand
the stability of algebraic limit cycles for polynomial systems. We obtained a similar
Fuchs equation for system (12), but we do not state it because the equation itself does
not give any further information about the properties of system (12) and the way it
was obtained is completely analogous to the way Eq. (27) for system (16) is obtained.

Let us consider system (16) and we parameterize the oval which contains the limit
cycle by (23). Taking the notation described in the previous subsection:

	0 = 2
√

1 − 4a

1 + √
1 − 4a

, 	± = 2
√

1 − 4a

9 + √
1 − 4a ± 2

√
16− a

,

c± = 9 − √
1 − 4a

2
± √

16− a

and


 =
√

1 + √
1 − 4a, b± = 2(4 ± √

16− a) c±,

we explicitly compute the value ofD(a)

D(a) =
∫ T

0
div(�(t)) dt

=
√

2



√

16− a

[
−34

√
16− a K(	0) + b+ �(	+,	0) − b− �(	−,	0)

]
.
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We compute the successive derivatives ofD(a)

D′(a) = −4
√

2


 (16− a)3/2

[√
16− a K(	0) + 2
2

√
16− a

a
E(	0)

− c+ �(	+,	0) + c− �(	−,	0)

]
,

D′′(a) = 6
√

2


 (16− a)5/2

[
(10a2 + 33a − 64)

√
16− a

3a(1 − 4a)
K(	0)

+ (73a2 − 420a + 128)
2
√

16− a

6a2(1 − 4a)
E(	0)

+ c+ �(	+,	0) − c− �(	−,	0)

]
,

D′′′(a) = −√
2


(16− a)7/2

[
(180a4 + 1347a3 − 9685a2 + 25664a − 4096)

√
16− a

a2(1 − 4a)2 K(	0)

+ (1812a4 − 20259a3 + 102164a2 − 60544a + 8192)
2
√

16− a

2a3(1 − 4a)2 E(	0)

− 15c+ �(	+,	0) + 15c−�(	−,	0)

]
.

By elimination of independent functions and using identity (24) we obtain the following
third-order homogeneous differential equation of Fuchs type forD(a):

8(a − 16)a(4a − 1)(17a + 8)D′′′(a) + 4(612a3 − 4119a2 − 2600a

+512)D′′(a) + 6(a − 2)(289a + 528)D′(a) + 3(17a + 64)D(a) = 0. (27)

An easy computation shows thatD(1/4) = 0, D′(1/4) = −8
√

2�/9 and D′′(1/4) =
98

√
2�/27. Hence, Eq. (27) univocally determines the functionD(a) defined ina ∈

(0,1/4]. A thorough analysis of the properties ofD(a) gives thatD(a) > 0 for a ∈
(0,1/4).

We remark that using identity (24) we get a Fuchs equation of order 3 forD(a). If
we did not have this relation, we would get an equation of order 4, which would make
the analysis of properties much more difficult. We notice that this Fuchs equation is an
interesting alternative method to prove the hyperbolicity of the limit cycle in system
(16). This kind of equation may exist for all algebraic limit cycle of a planar polynomial
system and may let distinguish its hyperbolic character.
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