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Abstract

In this paper, we study a free boundary problem for compressible spherically symmetric Navier—Stokes
equations without a solid core. Under certain assumptions imposed on the initial data, we obtain the global
existence and uniqueness of the weak solution, give some uniform bounds (with respect to time) of the
solution and show that it converges to a stationary one as time tends to infinity. Moreover, we obtain the
stabilization rate estimates of exponential type in L°°-norm and weighted H L_norm of the solution by
constructing some Lyapunov functionals. The results show that such system is stable under the small per-
turbations, and could be applied to the astrophysics.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

We consider the compressible Navier—Stokes equations with density-dependent viscosity in
R™ (n > 2), which can be written in Eulerian coordinates as

{atp"'v'(pﬁ):oa

- . . . - - 1.1
d:(pit) + V- (pii @ ii) + VP =div(u(Vii + Vi ")) + V(rdivii) — p f. (1.1
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Here p, P, u = (uy,...,u,) and f are the density, pressure, velocity and the external force,
respectively; u = pu(p) and A = A(p) are two viscosity coefficients.
In this paper, the initial conditions are

p(E,0)=po(r), rel0,b], (1.2)

i(E,0) =uo(r>§, re0.bl, i 0)z_y=uo(0)=0, (1.3)

where r = |§| = ,/512 +---+ &2 and b > 0 is a constant, the boundary condition is
[(P—adivi)ld — (Vi + Vi ")} -ii = Prii, & €382, (1.4)

where 082, = (3829, T) is a free boundary, 7 is the unit outward normal vector of 9£2; and

Pr > 0is a external pressure. Here 0§29 = {§ e R™: |§ | = b} is the initial boundary and  is the
flow of u:

{a,x/i(s,r)fu(w(s,r>,r), EeR", s
W, 0)=E.

To simplify the presentation, we only consider the famous polytropic model, i.e. P(p) = Ap?
with y > 1 and A > 0 being constants. And we assume that the viscosity coefficients p and A
are proportional to p?, i.e. u(p) = c1p? and A(p) = c2p? where ¢, c; and 6 are three constants.

For the initial-boundary value problem (1.1)—(1.4), we are looking for a spherically symmetric
solution (p, it):

pE,7) = p(r, ), ﬁ(g,r)=u(r,r)§,

with the spherically symmetric external force

r

f:f(m,r, T)éa m(p,r)zfp(s, T)Sn_lds, r>0,
0

and 392, = {£ e R": €| = b(1), b(0) = b, b (z) = u(b(1), 7)}.
Then (p, u)(r, T) is determined by

-1
z pu=0,
p

0cp + 0, (pu) +
00zt + udyu) + 9, P (1.6)

5 n—1 n—1 n—1
=X+2u)| o/, u+ . oru — = u )20, uoru + 0y A\ 0pu + . u|—pof,

where (r, ) € (0, b(t)) x (0, 00), with the initial data

(0, u)lr=0 = (po, u0)(r), 0<r<bh, 1.7
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the fixed boundary condition
uly=o =0, (1.8)

and the free boundary condition

n—1
{P — 20, u —A(&ru + u)}
r

where b(0) = b, b'(t) =u(b(7), 7).
Additionally, we assume the external force f (m, r, T) and external pressure Pr(t) € C 1(IRJF)
satisfy

= Pr, (1.9)

r=b(t)

Pr(t)=Px + AP(7), fm,r,t) = foolm,r)+ Af(m,r, 1), (1.10)

forall » > 0 and t > 0, with

m(p,r):[ps”_lds, Af(m,r, 1) e C'(Ry x Ry x Ry), (1.11)
0
[Af G D o, wr,) SA@.  [@ALIANC D] g, wr,) < L@, (112)

fil,AP e L®NLY(Ry), (AP, f» e L*(R,), (1.13)

Gm
Sfoo(m,r) =

=1’

where Ry = [0, 00), Ps and G are two positive constants, the perturbations (AP, Af) tend
to 0 as T — 0o in some weak sense. f is the precise expression for its own gravitational force
and Af expresses the influence of the outside gravitational force, in the astrophysical case (with
spherical symmetry). Pr also could express the influence of the surface tension force on the free
boundary. This system can be treated as a simple model of one fluid in £2;, whose evolution is
influenced by the gravitational force and the external pressure generated by the other substance
in R" \ £2;. We study the stabilization problem of such system, which could be applied to the
astrophysics.
Now, we consider the stationary problem, namely

(P(ps0)), = = poc foo (m(poos 1), 1) (1.14)

in an interval r € (0, [») with the end /, satisfying

P(poo(ls)) = Poo, (1.15)
loo b
fpoor"—ldrzM:/por"—ldr. (1.16)
0 0

The unknown quantities are the stationary density pso = 0 and free boundary /o, > 0. If

_2n—2

y = and Gn'i M7 <2A (1.17)
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or

2n—2
y > ! , (1.18)

n

from Proposition 2.5, we know that there exists a unique solution (oo, loo) to the stationary
system (1.14)—(1.16), satisfying 0 < p < poo(r) < P < 00, (Po)r(r) <0, 0 < r < lo with
loo < +00. -

To handle the free boundary problem (1.6)—(1.9), it is convenient to reduce the problem in
Eulerian coordinates (r, 7) to the problem in Lagrangian coordinates (x, t), via the transforma-
tion:

r

x=/y”‘1p(y,r)dy, t=1. (1.19)
0

Then the fixed boundary r = 0 and the free boundary r = b(7) become

b(7) b
x=0 and x=/y"’lp(y,r)dy=fy”’lpo(y)dy=M,
0 0

where M is the total mass initially. So that the region {(r, 7): 0 <r < b(t), T > 0} under con-
sideration is transformed into the region {(x,#): 0 <x < M, ¢t > 0}.
Under the coordinate transformation (1.19), Egs. (1.6)—(1.9) are transformed into

p(x,1) = —p*0x (r"~'u),

u
du(x,r)=r""" {ax [P O +21)0, (r"'u) — P] —2(n — 1);3)6“} — fx, 1),

(1.20)
X
" (x, 1) =n/p_1(y, ndy,
0
where (x,t) € (0, M) x (0, 00), with the initial data
X 1
(P, u)|r=0 = (po, uo)(x), rl=0 =ro(x) = <nf,o0_1(y) dy) (1.21)
0
and the boundary conditions
u(0,¢t) =0, (1.22)
{P—p(k+2u)8x(r"1u)+2(n—1)/j,z} =Pr, t>0. (1.23)
r'}lx=m

It is standard that if we can solve the problem (1.20)—(1.23), then the free boundary problem
(1.1)—(1.4) has a solution.
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From (1.14)—(1.16), it is easy to see that ps,(x) is the solution to the stationary system

X

AP (%), =~ fooriroo).  riL(@)=n f pdy, xe©.M),  (124)
0

P\ 7
Poo(M):<7) . (1.25)

The results in [6,18] show that the compressible Navier—Stokes system with the constant vis-
cosity coefficient have the singularity at the vacuum. Considering the modified Navier—Stokes
system in which the viscosity coefficient depends on the density, Liu, Xin and Yang in [9]
proved that such system is local well-posedness. It is motivated by the physical consideration
that in the derivation of the Navier—Stokes equations from the Boltzmann equation through the
Chapman-Enskog expansion to the second order, cf. [4], the viscosity coefficient is a function
of the temperature. If we consider the case of isentropic fluids, this dependence is reduced to the
dependence on the density function.

Since n > 2 and the viscosity coefficient i depends on p, the nonlinear term 2(n — 1)%148)( in
(1.20), makes the analysis significantly different from the one-dimensional case [9,14,17,19,20].
Considering the compressible spherically symmetric Navier—Stokes equations without a solid
core, the techniques in the case of similar system with a solid core [1,2,11,13,21] failed to be of
use in our case, so we need obtain some new a priori estimates.

For spherically symmetric solutions of the Navier—Stokes equations with constant viscosity,
in [7], the author gave an information near the origin that the solution may develop vacuum
region about the origin. The difficulty of this problem is to obtain the lower bound of the density
p and the upper bound of the term %u When the initial data are small in some sense, using some
new a priori estimates on the solution, we can obtain the lower bound of the density and the
upper bound of the term %u The key ideas are using the classical continuity method and the
result of Claim 1. In Claim 1, we want to prove that there is a small positive constant €1, such
that, for any 7 > 0, if

<2, Viel0,T],

10 =196 = paf p+ | 200

LOO
then
I1(t) <€, Vtel0,T].
Let
M
2 2n—2+a 2 u2
B[p,u,r]=/ (0= Pc)” 7 (P_poo)x+r_2
0

X

22 +r2n—2+a(pl+9 (r”_lu)x)z} dx.



298 T. Zhang, D. Fang / J. Differential Equations 236 (2007) 293-341

where o = % — n. In Lemmas 3.3-3.8, we get some uniform a priori estimates (with respect to
time) on the solution in the weighted Sobolev space and the upper bound of B[p, u, r]. Using
the bound of B[p, u, r] and Sobolev’s embedding theorem, we can finish the proof of Claim 1.
Then, we will construct a weak solution by using the finite difference approximation. Our re-
sults show that: such system does not develop vacuum states or concentration states for all time,
and the interface 902, propagates with finite speed. Since these estimates of the solution are
uniform in time, we could show that the solution converges to a stationary one as time tends to
infinity. Moreover, we construct various Lyapunov functionals and obtained the stabilization rate
estimates of exponential type.

We now briefly review the previous works in this direction. For the related free boundary prob-
lem of one-dimensional isentropic fluids with density-dependent viscosity (like i(p) = cp?),
see [9,14,17,19,20] and the references therein. For the spherically symmetric solutions of the
Navier—Stokes equations with a free boundary, see [1,2,11,13,21], etc. Ducomet [2], Zlotnik [21]
studied the similar system with a solid core and without the nonlinear term 2(n — 1)%148)6 . Also
see Lions [8] and Vaigant and Kazhikhov [16] for multidimensional isentropic fluids. For the
related stabilization rate estimates in the one-dimensional case, see [3,10,12,15,20], etc.

Main assumptions on cy, ¢, 8 and y can be stated as follows:

(A1) condition (1.17) or (1.18) holds;
(A2) 6 2 0. c1 and c; satisty that

c1 >0, 2c1 +ncy >0
and
[2610[ +cr(2n — 2+a)]2 —4(2cq +02)[2c1 m—1D+co(n—1)(n—1 —i—oc)] <0, (1.26)
3

where o = 5 —n.

Under the above assumptions (A1), (A2), we will prove the existence of a global weak solution
to the initial-boundary value problem (1.20)—(1.23) in the sense of the following definition.

Definition 1.1. A pair of functions (p, u, r)(x, t) is called a global weak solution to the initial—
boundary value problem (1.20)—(1.23), if for any T > 0,

p,ue L®([0, M1 x [0, TT)nC'([0, T1; L*([0, M1)),
reC'([0, T1; L*([0, M1)),

(r"~2u) ., (""7Y), € L({0, T1; L™~ 2 ([0, M1)),
and
(r"~'u), € L®([0, M] x [0, T1) N o (10, T1; L2([0, M1)).

Furthermore, the following equations hold:
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pi+p (") =0, p(x,0)=po(x) ae.

X

rr=u, r"(x,t):n/‘pfl(y,t)dy, r(x,0)=ro(x) ae.
0

and

oo M
//uw, (P—p+20(" " u) ) ("),
0 0

+2(n — l)u(r"_zul/f)x — f(x,r, l)l//] dx dt

00 M
:/Pp(r"_lw)(M,t)dt—/uo(x)w(x,O)dx,
0 0

for any test function ¥ (x,t) € C(‘)’O(Q) with 2 ={(x,1): O <x <M, t >0}
In what follows, we always use C(C;) to denote a generic positive constant depending only
on the initial data, independent of the given time T'.

We now state the main theorems in this paper. Let p= MiNye[0, M] Poo a0d 0 = MaXye[0, M] Poo-

Theorem 1.1. Under the conditions (1.10)—(1.12) and (A1), (A2), there exists a positive constant
€o > 0, such that if

[ AP ooyt + [ (APY | 2 + 1 f2ll 22 < €0, (1.27)

10 = poollz + Blpo, 1o, ro] < €5, (1.28)

then the system (1.20)—(1.23) has a unique global weak solution (p, u, r) satisfying

p(x,t) e 58,5,0 , r”(x,t)e[C x,Cx], (1.29)
HZ(-J) < Clax(r"'u) (-, )~ < Ceo, (1.30)

r L
Blpo,u,r] < Ceo, (1.31)

forallt >0 and x € [0, M]. Furthermore, we have

M
lim {x 2n—n2+ot [,{)ZC +x2n —2+a [(pg)x . (Iogo)x]Z} dx = O,

t—>—+00

0
Jim (€0 o+ (26D = pooO)] e+ [0 = roe )] o = 0.
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Remark 1.1. In fact, assumption (1.26) gives a restriction on %, ie.

—184+8n+8n2 —8/3(n— 1)/4n —3

9 — 12n + 4n?
L —18+8n+8n? +8«/—(n—1)«/4n—
<L
u 9—12n+4n2

If n =3, we can choose % = 2 € (3(13 - 8+/3), (13 + 8v3)).
Remark 1.2. We can choose the constant € as in (3.75).

The proof of the uniqueness part of Theorem 1.1 also shows that the continuous dependence
of the solution on the initial data holds. We may state the following result without a proof.

Theorem 1.2. For each i = 1,2, let (p;, ui, r;) be the solution to the system (1.20)—(1.23) with
the initial data (po;, uo;i, roi ), which satisfy regularity conditions (1.29)—(1.31). Then we have

M
/ [ — u2)® + (p1 — p2) +x 7 (r1 — )] (x, 1) dx
0

M
2
c /[(Mm —u02)? + (po1 — po2)* +x "1 (ro1 — ro2)*] dx
0

forallt > 0.

Theorem 1.3. Under the assumptions of Theorem 1.1 and
[i) + HO) + [AP@)|+ [(AP) ()| < Ce™ ", (1.32)

where ag is a positive constant, then we have

M
/ r2n72+a(p _ poo))% _|_r2n72+a[8X(p1+98)((rnflu))] + % }dx < Cefat7

(&),

forallt >0, where a is a positive constant.

\:|=

o+ 10C. 1) = oo foo + [F (1) = Foo ()] oo < Ce™,

Remark 1.3. Considering the general case that (i, 1)(p) € CR4) N WIL’COO (R4), under the con-
ditions (1.10)—(1.12), (A1) and

u(p) >0, 2u(p) +ni(p) >0,
[Z;ux +A2n -2+ oc)]2 —4Q2u+ A)[Zu(n —D+Ax(n—1Dm—1+ a)] <0,

for all p € [%/_) , %ﬁ], we can obtain the same results.
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Remark 1.4. In this paper, we study the case of ¥ > 1 and prove the main results in this case
only, since the case of ¥ = 1 can be discussed through the similar process. The main difference
is that (2.10) is replaced by

M Vv

ﬂmz/CMmyH@w+/GnmfﬁM)m,

0 1
when y =1 and n =2.

The rest of this paper is organized as follows. First, we obtain the existence and uniqueness
of the solution to the stationary problem in Section 2. In Section 3, we will prove some a priori
estimates which will be used to obtain global existence of the weak solutions. In Section 4, using
the finite difference approximation and a priori estimates obtained in Section 3, we prove the
existence part of Theorem 1.1. In Section 5, we will prove the uniqueness of the weak solution.
In Section 6, we show that the solution of the free boundary problem tends to a stationary one,
as t — 4-00. In Section 7, we will obtain the stabilization rate estimates of exponential type on
the solution by constructing some Lyapunov functionals.

2. The stationary problem

We start with a proof of the existence of a positive solution to the Lagrangian stationary
problem. Zlotnik and Ducomet [21] studied the stationary problem with a solid core r > ro > 0.
Using similar arguments in [21], we can obtain the following results for the stationary problem
without a solid core.

Proposition 2.1. If
2n —2
y > 2.1)
n
or
2n—2 2-n 2
y = and Gnn Mn <2A, (2.2)
n
or
n—2 G 220 2 2nn—2 y
O<y< and Poo+3n nMndy " < Ady, (2.3)
where

2n—2 n
Ayn n 2n—2—ny
(n—1)GM

then the Lagrangian stationary problem (1.24)—(1.25) has a positive solution ps, € WP ([0, M]),
where B € [1, -5) is a constant.
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Proof. We introduce the nonlinear operator
1:K — Wh"P([0, M1),
L .
where K ={f € C([0, M]): minyepo,m1f(x) = (PT”)V }, by setting

oo"‘f G — 2)1 2 dy
1(f)(X)=( 1 )

with r;i x)=n fox f_1 (y)dy, x € [0, M]. We can restate the problem (1.24)—(1.25) as the fixed-
point problem

Poo =1 (pco)- (2.4)

1
Forall f e Ks={f € K: fgé}with8>(%o)7,wehave

nxd~' < rf(x)
and
M
SA(I(H)) < P+ G857 n 0 /xZ; dx
0
G m—2 220 _ 2
o+ =8 7" nn Mn.
2
2n—2
If y ) C Ks,, where §; is a positive constant satisfying Poo + 3 8 X

2—r
nT M AS%/. And one can immediately verify that I is a compact operator on Ks,. Since

K3, is a convex closed bounded nonempty subset of C ([0, M]), the problem (2.4) has a solution
p € Ks, by Schauder’s fixed point theorem.

Ify= 2”_2 and Gn% M% < 2A, then I (K;s,) C Ks,, where 6, is a positive constant satisfy-
ing Poo + Ga T M < A8

Ify < &= 2" 2 and
2n—2 2n—2 2n—2 ny
P+ Gn2_an< Ayn n >2"—2—"V . A< Ayn n >2n—2—'ly
(%) — n n e — < e —
2 (n—1)GM?* n—1)GM?

then I (Ks,) C Ks,, where

2n—=2 n
Ayn n 2n—2—ny
pom (A Y
(n—1)GMn

We can finish the proof of the theorem immediately. O
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Letting Voo = r7°° , using the equality pi = (Vo)x, One can eliminate the function p, from the
o0

Lagrangian stationary problem (1.24)—(1.25) and obtain an equivalent boundary value problem
for a nonlinear second-order ODE:

(A(Va)?), = —Gan Vot . x € (0, M), 2.5)
A 1
Voo (0) =0, (Voo)x (M) = (P_> ; (2.6)

for a function V, € Cl([O, M) such that (Vo) > 0.
In accordance with the method of small perturbations, we replace Vo, by V = Vo, + W with
small W and linearize the operator in the last problem:

2—-2n 2-2n

(AV)") +Gxn™n VT

= (7 AV T W) + Q= 20Gx (Vo) T W Ao, x € (0, M),

VO =0+W©0), AV | _y — Po=—vA{(Ve)s" " Wil _py +--

up to the terms of the second order of smallness with respect to W. We define the linearized
operator

y+1 2-3n
LIW]=(—yApL Wi) +Q2—2m)Gx(nVe) @ W, W € Ky, 2.7

where Ko = {W € C1([0, M]): W(0) =0, W,(M)=0}.1Itis easy to get

M
(LIW], W) = /(yA(,ooo)Hy W2 — (2n—2)Gx(nVeo) 7 W2)dx, W e K.
0
Let
M
JIW]:= f(yA(pw)l+y W2 — (20— 2)Gx(nVio) o W2)dx, (2.8)
0

for W e Ky ={f € C'([0, M]): f(0)=0}.
We say a stationary solution Vi is statically stable if

JIWT = 83(|We) [ 20000 + X WO 320,00, 2.9)

for some 63 > 0 and all W € K.
Now, the static potential energy takes the following form:

M Vv

A - 22
S[V]zf (V) V+P00Vx+/Gx(nh) i dh | dx. (2.10)
v —

0 1
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We call V € K> = {f € CL([0, M]): £(0)=0, min(f,) > 0} is a point of local quadratic mini-
mum of S if

SV 4+ W] = S[V] = 84| Wi (x) ||iz(0’M) + ||x*1W(x)Hiz(O’M)), (2.11)

forall W € K| and ||W||C1([0,M]) < 85, for some §4 > 0 and &5 > 0.
We can clarify the variational sense of the definition of statically stable as follows.

Proposition 2.2. A function V € K> is a point of local quadratic minimum of S if and only if
V = Vi is a solution of the problem (2.5)—(2.6) and satisfies static stability condition (2.9).

Proof. Let V € K>, W € K and || W|| 1o, a7y = 1. Using Taylor’s formula, we have

1 d?
SIV 4+ eW] = S[V]+8S[V](EW) + = —S[V +teW]|
2d7? =i
where
M
5S[V](eW) = /(—A(Vx)’VeWx + PaoeW, + Gx(nV) 7 € W) dx
0
and
M
&? —1- 2
WS[V+I€W]: (yA(Vx—i—teWx) Y (eWy)
0

2—

—(2n —2)Gx(n(V + reW))% (eW)?)dx,

for all || < —— and some 7 € [0, 1]. If (2.11) holds, we have

min V

2

d
ﬁS[V +reW]< CGZ(” Wi (x) ”iZ(O,M) + Hx_l W(x)”iZ(o,M))

and
CE (W a0y + 5 W@ 20,00 + €3SVION) >0,
for all |e| € (0, min(§s, m)) and ||Wlc1 o, p7) = 1. Thus, we obtain
§S[VI(W) =0,

i.e.

M
/(—A(VX)_V Wy + PooWy + Gx(nV) 7 W)dx =0,
0
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for all W € Ky and [[W/l¢cijoa) = 1, that is, V' is a stationary point of S and a solution of the
problem (2.5)—(2.6). We can rewrite j—:zS [V + te W] as follows

42
TSIV +TeW]=8S[VIEW) + 51,
T

where 62S[V](eW) = L5 S[V + e W]|;—o and

2

1S1]= |- SIV + 1eW] — 8>S[V](e W)
dt

_ 2
< CG(HGWX(X)”iZ([O,M]) + Hx IGW(X)”LZ([O,M]))'
Thus, we obtain
*SIVI(eW) > (84 — CE)(HEW)C(X)”iZ([o,M]) + Hx_leW(x)Hiz([O,M])),

for all € € (0, min(Js, Wl\g z(s—é)) and |W|lc1(0,p) = 1. Moreover, we have

5
JIW]:=82S[VI(W) > 74(” Wx(x)”iz([o’M]) + ||x71W(x)||iz([0’M])), 2.12)

for all W € K.
If V = V is a solution of the problem (2.5)—(2.6) and satisfies static stability condition (2.9),
we can prove V is a point of local quadratic minimum of P easily. O

Proposition 2.3. If V = V is a solution of the problem (2.5)~(2.6) and y > #:=2, then (2.9)
and (2.11) hold.

2-2n
Proof. From (Apl), = —G =25 =—Gx(nVs) » ,using integration by parts, we have
Too

M
J[W] = /(J/A(poo)l'H/ W2 — (21— 2)Gx(nVeo) 5" W2) dx

(7 AGooo) T WE + 2n = D A(pko), (nVeo) T W?) dx

2n—2
(yA(,ooo)l'H’ W2 —202n —2)Apk (nVeo) TWW, + ' PY 1vo;zwz) dx
n

o\ag O\.,E =

2
+n— 2>Poo(£><M)
nVso
W2
= Io[W]+ 2n — 2)POO<F)(M), for all W € Ko. (2.13)

o]
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Ify> 2”’;2, we have

M

-2 14y w2

w1 = | == apldr (w, - dx. (2.14)
5 n Poo Voo

If (2.9) not holds, we have for any integer m > 1, there exists W,, € Ko and ||W,, ”Cl([O,M]) =1
such that

1
Wl < — ([ W @) [ 220,00y + 5 W @20, (2.15)
Then, there is a subsequence m — oo for which

W, — W in C([0, M]),
(Wi)x — Wy in L*([0, M]).

From (2.13)—(2.15), we have

Wx

= . x€(0,M),
Poo Voo

and W(0) = W(M) = 0. Thus, we obtain W = 0. It is a contradiction.
Therefore, if y > Z”n_ 2, then (2.9) holds. From Propositions 2.1 and 2.2, we can obtain (2.11)
immediately. O

Now, we shall use the shooting method to prove the uniqueness of the solution.

Proposition 2.4. Under the assumptions (2.1)—(2.2), the Lagrangian stationary problem (1.24)—
(1.25) has a unique positive solution peo.

Proof. We consider the Cauchy problem

2—-2n

(APL), = —Gx(Vo) T (Veode =p3l. x€(0. M), (2.16)

,Ooo|x:0 - Ga VOO'XZO - 07 (2.17)

for the unknown functions ps (0, x) and Vi (o, x), where o > 0 is the shooting parameter. For
each o > 0, using similar arguments in Proposition 2.1, we can obtain the existence of the solu-
tion to this problem, satisfying

Po(0, %) € [%a} Vao(0, %) € B 20_1 x € [0, Mol, (2.18)

poc € WHP(10, Mol), Voo € C'(10, Mo]), (2.19)
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. . e w2 2-n 2
where M) is a positive constant satisfying Ac? — o %n n My > A(%)” and My < M. If

there exist two solutions (p1, V1) and (p2, V») to this problem satisfying
pi € W (10, Mi1),  x €10, M;], (2.20)

where M; € (0, M],i = 1, 2. From (2.20), there exists a positive constant M3 € (0, min{M;, M>})
such that

o x 2x .
pix)e|=,0| and Vix)e|—,— |, xe[0,M3],i=1,2.
2 o o
Then, we have
X X y
y y 2-2n 2:’2” 2712" 2-2n 1 1
Apy —Apy = | Gyn = (V2 -V )dy <C [y ’,01 -0, |(z)dzdy,
0 0 0

and

€

2-n 2
o1 — p2llLe(o,en < Cllp1 — 21l L= ((0,e) f y i dy < Coen|lpr — p2llLeeo,en >
0

for all x, € € (0, M3]. Choosing € < C, 2, we have
p1=p2, forallxe]l0,e].

Considering the Cauchy problem

y 2—2n —1 €
(Apx), ==Cx(Voo) ™, (Vodx =pss x€(35 M), 221
%
€ _
Poolx=¢ =p1<0, §>, Voolx=¢ =/pl "o,y dy, (2.22)
0

using the classical ODE theory, we have p;(x) = p2(x), x € [%, min{M, M3}]. Thus, for each
o > 0, there exists a unique solution to the problem (2.16)—(2.17) satisfying pxo(x, o) > 0 for
x € [0, M), where either poo|x=pm, =0 and M, € (0, M) or My = M.

Clearly, if po is a solution to the problem (1.24)—(1.25), then po, satisfies (2.16)—(2.17) for
some o > 0. We will show that this can be possible only for one value of ¢. Using similar
arguments in the above part and in [5, §V.3], we obtain that (9, 0L, 35 Vo) is well defined and
satisfies the linear Cauchy problem

2-3n

Y Ty
A(95p), = 2n = 2)Gx (Vo) ™ 85 Voo, (B Voo)e = = o

3 Pos  (2.23)
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where x € [0, M),
o 05| _g=1. 5 Voolx=0 =0. (2.24)
It is easy to see that
3P >0, (BsVoo)r <0, 35V <0
hold on [0, My), where either 8(,,03,/0|x:1;/14 =0and M4 € (0, M) or My = M,. We claim that
only M4 = M, can occur.

Assume that My € (0, My). Letting ¢ = Apk (35 Voo)x + 525 Ado 0k (Vo) from (2.16)
and (2.23), we have

M.
n 4

n—2

Aaapgo Voo }

My

/¢dx= {Apzoaavm
2 0

0

By the estimates pxo (0, Ms) > 0, 80,03;0|x=M4 =0, dy Voolx=m, < 0 and the initial conditions
(2.17) and (2.24), we get

My
/¢dx <0.
0

On the other hand, from (2.16) and (2.23), we have

n 1
——1>0, € (0, My).
P y) x €(0, My)

¢ =Apy! aapgo(

It is a contradiction.
Thus, we obtain

Poo >0, o Poo >0, x€(0,M,),

and M, is nondecreasing on o € (0, 00). Therefore, for each fixed point x € [0, sup, .o Mo ), the

1 .
function ps (0, X) is strictly increasing on o > (PTOO) v, and satisfies Aplo|x=my = Poo for at most
one valueof . O

Using the properties of the transformation (1.19) and Propositions 2.1-2.4, we can obtain the
following proposition immediately.

Proposition 2.5. Under the assumptions (2.1)—(2.2), the Eulerian stationary problem
(1.14)—(1.16) has a unique positive solution (peo,lxo), satisfying 0 < P < Poo(r) < p < 00,
(Poc)r(r) < 0,0 <r <ls with loo < +00.
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3. A priori estimates
From (1.11), (1.20) and (1.24), we could obtain the following lemma easily.

Lemma 3.1. Under the assumptions of Theorem 1.1, we have

rr=u, 3.1
T G
y
ApLo(x) = Poo + / 2y, (3.2)
* )
X
P 1
Y
<%°) <po<p<oo, rix)el[C'x, Cx], (3.3)
d Y X

forall x € [0, M].
Lemma 3.2. Under the assumptions of Theorem 1.1, we have

r

M
d ({1, Apr' P
—f W2y 2P +;’°+/Gids dx
dt -1 0 sn—1

0

1
2 2n —1 2
T
n n rp

—/Afudx—AP(w"—l)(M,t). (3.5)

0

+

=z O\E

Proof. Multiplying (1.20); by u, integrating the resulting equation over [0, M ], using integration
by parts and the boundary conditions (1.22)—(1.23), we obtain

dMl M

— | = — [ ApY n—l
d/Z /pa )dx
0 0

M
+ /{(201 + cz)/ol"’e[(r”_lu)x]2 —2c1(n — l)pe(r”_zuz)x}dx
0

=—Pr(ur" ") (M, t)—ffudx. (3.6)
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From (1.20), we have

M
d A

M
— / Apyax(r"_lu) dx = o v 1py_1 dx, 3.7
0 0

—Pr(ur™ ") (M, 1) = —Po (ryr" ') (M, 1) — AP (ur"™') (M, 1)

d r'"(M,t) e

:_E{Pw—n }—AP(ur N, 1)
M

__d P;‘Od — AP (ur" )(M 1) (3.8)

T dr 0 * o .
0

d M r M
_/ __E//G dsdx—/AfudX, (3.9)
0 0 0

and
Z1.3\2 _
Q2c1 + c2)p't? (r” lu)x —2¢c1(n—1)p? (r” 2u2)x

2 2(n —1 2
= (;cl + c2>p1+9 (r”_lu)i + qulw <r”_1ux - i) . (3.10)

n ro

From (3.6)—(3.10), we obtain (3.5) immediately. O

Claim 1. Under the assumptions of Theorem 1.1, there is a small positive constant €1, such that,
forany T >0, if

1@6) =] pC 1) = poo] oo + H%( )

<2, Viel0,T], (3.11)
LOO

then
It)<e€, Vtel0,T].

Using the results in Lemmas 3.3-3.8, we can give the definition of €; in (3.74) and finish the
proof of Claim 1.

Lemma 3.3. Under the assumptions of Theorem 1.1 and (3.11), if €1 is small enough, we obtain

1 3_
,o(x,t)e |:§Bs Epjls (312)
r(x,1) € [C7'x, Cx], (3.13)

u(-,t L2+ PG, 1) — Poso L2+ Foo (r" —15) | 2 < Cieo, .
JuC 0l 2+ oG = pocll o+ [r (" =) [ 2 < € (3.14)
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t

M
2
//(:ﬁ + 22 ”—2> dxds < Cie, (3.15)
r
0 0

forallt €0, T] and x € [0, M].

Proof. From Lemma 3.1 and (3.11), we can easily obtain the estimate (3.12) when 2¢; < %B .
From (1.20)3 and (3.12), we can obtain (3.13) immediately. From (2.10), (3.2) and (3.5), we have

M

0

T(/2 2(n—1 2
+/{<_Cl +cz>pl+e(r”_lu)i+ (n— )C1p1+0<rn—lux_i> }dx

n n rp
0
M
:—/Afudx—AP(ur"*l)(M,t), (3.16)
0

where Voo = % and V = % From (1.27), (2.11), (3.12)—(3.13) and Proposition 2.3, we have

T V — Vao)?
C‘lf[(p—poo)%ﬂ]dx
0

V&
r V = Veo)?
<stvi=stvat <€ [ |-+ 7 ax, @3.17)
0 Yoo
when ||V — V00||C1([0,M]) < Cre1 < 85, and
" }
|AP(ur™") (M, )| < Ceo</|ax(r”_1u)|2dx) : (3.18)
0
From (1.27)—(1.28), (3.12) and (3.16)—(3.18), we obtain
M t M 5
/(uz + (0 = poc)? + 1" (r" — rgo)z) dx + //{(r"_lu)i + (r”_lux - %) }dx ds
0 0 0
t
< +C [ A©lut.9)] 2 ds (3.19)
0

using Gronwall’s inequality and (1.27), we can obtain (3.14)—(3.15) immediately. O
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Lemma 3.4. Under the assumptions of Lemma 3.3, if €q is small enough, we obtain

t M
//[(,0 — poo)? + rO_OZ" (r" - rgo)z] dxds < C3e§, (3.20)
00

forallt €[0,T].

Proof. Multiplying (1.20); by rl_”(rni — %), integrating the resulting equation over [0, M],
using integration by parts and the boundary conditions (1.22)—(1.23), we obtain

r r

M

n n
/A(Pgo _ py)(p—l _ po—ol) + Gx(r2—2n _ rgo—Zn)(_ _ ﬁ) dx
0

n n
M n n n n
— [ (5= Yarsar| s -
ri— n n n n
0

x=M
M 1—n M n n
—/Afr (" —rgo)dx+/2c1(n— 1)p9<Z (r— - rﬁ)) dx
n r\n n)j)),
0 0
M

+/(261 +e2)p" 0, (r"u) (ox! — ") dx
0

5
=>n (321)
i=1

‘We can rewrite the left-hand side of (3.21) as follows

M
n no\ 2
L.H.S. of (3.21) Z/[VApgoH(p_l _ po_o1)2 —@n— Z)ergo—3n<’"_ _ Vﬁ) i|dx
n n
0
M
_ 2 B n 7 2
+/[gl(p - rs) +g2rw2”(— - E) dx,
n n
0
where
A(pk — p") Iy
g1l = | ———— —vAprc | < Caey
— Poo
and
hn 7 -1
lg2] = ergg’ (r2_2” - rgo_Z")(— - ﬁ) +Q2n — 2)er§o_” < Cyey.
n n
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From (2.9), we have

n no\ 2
LHS. of 3.21) > (2Cs _C4€1)/|:(,0_1 _po—ol)2+ro—o2n<r_ B @) }dx
n

M 2
—2n r' rgo
> Cs — ,0oo + re | ——— dx, (3.22)
n n
0
when Cyqe1 < Cs.

From (3.11) and (3.12)—(3.13), using integration by parts, we can estimate [; as follows:

u r T n—nr
=2 2 (T ) gy L T o)y
! dt r”_1<n n) +/ <n+ nrh ) *
0 0

J M " " M
u r r 2
< —E rn_] (; — 7) dx + C/M dx, (323)
0
M c M
I = AP/(p_l —pl)dx < 1—5 /(p—1 —p)dx+cClaPP, (3.24)
0 0
C M n no\ 2
I < —S/ro;?”(r— - rﬂ) dx +Cf2, (3.25)
1 n n
0

M M
n n o\ 2 2
I < %/[(p‘l — )’ +r;§”<% = ’°°> ]a’x + C/([(r”_lu)x]z + ”—2) dx (3.26)
0 0

and
c M M
5 — _ 2
lsgl—/(p L) dx—i—C/(” "u) . dx. (3.27)
0 0
From (3.21)—(3.27), we get
d M M n n o\ 2
_ r r
- [lom (- o
0 0
M
SC/( 12y 4 )dx+c(|AP|2+f12), (3.28)
0

and from (3.12)—(3.15), we obtain (3.20) immediately. O
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From now on, we study the case of 8 > 0 and prove the main results in this case only, since
the case of & = 0 can be discussed through the similar process.

Lemma 3.5. Under the assumptions of Lemma 3.3, if €1 is small enough, we obtain

M t M
/[ﬂ"—z(p — poo)i](x, ) dx + / /[rzn_z(p — poo)i](x,5)dxds < Ceel,  (3.29)
0

forallt €[0,T].

Proof. From (1.20), we have

Ayp? 0
GH+ Xy
2c1 42
Ay B 2c1 + ¢
:mpy Ou+ <T —201)(n— "2 u(p ) — flx,r1)
(n—1)Q2ci+c2) ,_ Ayp?fr!
- ] r” Zu(pgo)x - 2] (pgo)x’ (330)

where H = u + 2082 ,n=1(pf — pf ) Multiplying (3.30) by H, integrating the resulting equa-
tion over [0, M], using the Cauchy—Schwarz inequality, we obtain

/H2(x t)dx+C7/H2(x 1)dx

M
c/<|HpV -0 |+‘ H?| + ‘— '+|AfH|>dx
0
M M
PV ! % n—2 (v
+/'G N — (Apoo)x'|H|dx+C/|r u(,ooo)xH|dx
0
M ) 2 2n—4 1 M )
C/(u + —= rgg_4 )dx+<Z+C8€])C7/H dx
0 0
M py —6n—1 2
+C/‘G e (Apk).| dx+Cfi. (3.31)
0 OO

From (3.4) and (3.12), we have

2
dx

OO

M

py —0 = 1 y
[lom + =t o),
0
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M
x xp? 012
=C | |G -G dx
=1 y—0 2n—2
o Poo Too

<C [ [r—r)* + (0 — pso)?]dx.

Then, if €1 < 1 and Cge; < %, from (3.31)-(3.32), we obtain
d T C T
E/Hz(x,t)dx+77/H2(x,t)dx

0 0

M
<C / (u® + (= roo)> + (p = poo)?) dx + CfT.
0

From (3.12)—(3.15), (3.20) and (3.33), we obtain (3.29) immediately. O
Lemma 3.6. Under the assumptions of Lemma 3.3, if €1 is small enough, we obtain

t

(P(M. 1) — pao (M) + / (P(M. 5) — poo(M))? ds < Croed.
0

t M
//V%*m(p—poo)zdde<Cue§,
0 0
M t M 2
Lom 2 omf on—2 2 U 2
(r2 u)(x,t)dx+ r2 r ux+—2 dxds < Cro¢g,
r
0 00

t

M M
1 1
J e oty [ [0 - ) drds < Cused
0 00
M

oG 1) = Poo ()] oo +/|(p — poo)x|(x. 1) dx < Ciseo,
0

|r(x, 1) = roo ()| < Crg0x7,  x €[0, M1,

forallt €[0, Tlandm=0,1,...,n— 1.

315

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)
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Proof. From (1.20); and the boundary condition (1.23), we have

2
ApY(M.1) — ppy 2T -
;

. a,(p9)<M,r)=—2c1(n—1><p9 )(M,t).

Multiplying the above equality by p? (M, 1) — pgo (M), we obtain

2eci+ed 45 52
IR

+ (07 (M, 1) = pS,(M)) (Ap? (M, 1) — Pr)
x=M

+AP(p" (M, 1) = pl(M).

=—2¢i(n — 1)[,09;(,09 — pﬁo)]
x=M

Combining (3.12)—(3.13), using the Cauchy—Schwarz inequality, we get

d
= (0" (M, 1) = plo (M) +C 7 (0% (M, 1) — p2 (M)

dt
M
<C|AP|2+C(u2r”)(M,t)=C|AP|2+C/8x(u2r”)dx
0
M 2
<C|AP]? + c/(ﬂ”—zuﬁ 4 Lr‘—z) dx. (3.40)

Integrating the above inequality over [0, 7], using the estimates (3.12) and (3.15), we can ob-
tain (3.34).
From (3.14)—(3.15), (3.20) and (3.29), we know that the estimates (3.35)—(3.37) hold with

m=0.

Claim 2. If (3.35)—(3.37) hold with m < k, k € [0, n — 2], then the estimates (3.35)—(3.37) hold
withm =k + 1.

We could prove Claim 2 as follows. Let oy = % — k — 1. Using Holder’s inequality, we have

M M M 2
/ P (p — poo)?dx = / e (p(M, $) — poo(M) — / D(p— poo>dy> dx
0 0 X
<C(p(M.5) = poo(M))’
M M M
+C/rak P (p o )2 dy/r272nfak,1 dydx
0 X X

M
<C(p(M, ) = poo(M))* +C / PN (p — poo)idx. (3.41)
0
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From (3.34), (3.37) (m = k) and (3.41), we obtain (3.35) (m =k + 1).
Multiplying (1.20), by ur®, integrating the resulting equation over [0, M, using integration
by parts and the boundary conditions (1.22)—(1.23), we obtain

M M
i/— —/%r“"_lbﬁdx
d 2 2

0 0

M
- /[(261 +e2)p !0 (") (") = 210 = 1)p” ("), Jdx
0

M M
+/A(,0y —pgo)(r"_H“ku)xdx—/Afur“" dx
0 0

M

G
—AP( "1+ak)(Mt)+f n1+ak /( 2n2_r2y>dydx

5
=Y L. (3.42)
i=1

We can estimate L1 as follows

M
= f{(ch + o) p146,,2
0
+ [ZOtkcl +c2n—2+ ak)]pe’"n_2+a"uux
+ [26‘1(11 —D4+cn—1Hn—-1+ ak)]pe—lrak_zuz} dx. (3.43)
Since
[20ci + 220 =2+ @)]* = 4@2e1 + en)[2e1 (1 — 1) + e2(n — D — 1 +0)] <0,

where o = % —n, and

[22n =) —4Qc1 +c)[2c1(n = 1)+ ea(n — 1)?] <0
we have

[2akcl 4+c2(2n—2 +oek)]2 —4Q2c1 + cz)[ch(n —D4+cn—1)n-—-1 +ak)] <0.
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Then there exists a positive constant C13 such that

M
1 >C13/ -2har 40,2 | 01 en=2,2) g (3.44)
0

From (3.12)—(3.13), using the Cauchy—Schwarz inequality, we obtain

M M

y _ Y
L2=/A(,oy —pgo)r”_1+°‘kuxdx+/A(n—1+ak)r“"_1uwdx
o

0
M

0
C M
13/ 2n 2+Olklol+9 2+p9 1 C{k -2 2)dx+C/ (xk(p Iooo) dx (3 45)
0 0

o/ 2y dx 4 Cf7, (3.46)

&
N
a

M

1

—C13/ (P2 Tre g1+, 2 4 p0=1,a=2,2) g 4 C|A PP (3:47)
0

and

M
C13/( -2ha 40,2 4 01 e=2,2) iy

0

M

2
) Gy Gy
rak|:/(_2n_2 = 2>dy:| dx
'oo
M

(P2 10,2 4 P pa2,2) dx+C/r°‘k(p—poo)2dx. (3.48)
0
From (3.11), (3.12)—(3.13) and (3.42)—(3.48), we obtain
M

M
d 2 —1 2n—2 2 2
E/(r“ku )(x,t)dx+2C14/ < "= ”x+r_2 dx
0 0
M

M

2
u
C(f12+|AP|2)+Cl4€1/rakr_zdx+C/r“"(p—poo)2dx.
0 0
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When Cﬁe] < %, using the estimate (3.35) (m =k + 1), we can get

J M M 5
-1 m-22 U
7 (x dx+Cyy /r“"(r " ”x+r_2>dx
0 0
C(f12+|AP|2)+C/r°"‘(,o—poo)2dx (3.49)
0
and (3.36) (m =k + 1) holds.
From (1.20), we have
Ay
& H vH
1 1+2€1+C2,0 1
O % W2 4 Ay y—6,.% Aypyfer’““ra?k )
=2 2+’ T 0 Poo)x
2c1 +c o 0%
+|: 10 2(n—1+7k> —ZCl(n—l)i|r” 2+2ku(,09)x
n—1+%)Q2c +c¢ « a
¢ 7)1 Z)r"_z"'Tku(pgo)x—f(x,r, ore, (3.50)

0

where H; = r3u + %ﬁr"”*'a?k (o — ,ogo)x. Multiplying (3.50) by Hj, integrating the result-
ing equation over [0, M], using the Cauchy—Schwarz inequality, we obtain

J M M
E/le(x,t)dx—i—Clg/H]z(x,t)dx
0 0

M
<c/(|H1pV 9r2u|+‘ 'Hl L u2|H1|+ra2k|AfH1|>dx
0

Gx p;/f@rnfl

(40%), 1112

M
w [l a4
0

—1 —0
. P&
M x2r2n—4+ak
<C / (ro”‘u2 42yt — T uz) dx + Cfl2

0 Foo

M M
1 Gx ,()V_er"_1 2
+ (Z+C1761>C18/H12dx+C/ (o), | dx. (35D

0 0 Poo

Ife; <1,Cr7¢; < 4, using the estimates (3.11) and (3.12)—(3.13), we have
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d T Cis T
E/H (x, t)dx—i—T/Hl(x t)dx
0 0

[ro‘ku2 +r%(p — ,000)2 +r%@r — roo)z] dx + Cfl2

[ u? + 1% (p — poc)*]dx + Cf7, (3.52)

and from (3.35)-(3.36) (im =k + 1), we have

M t M
/Hf(x,z)der/fo(x,s)dxdsgceg
0 00

From (3.12) and (3.35)-(3.36) (m =k + 1), we obtain (3.37) (m = k + 1) immediately and
finish the proof of Claim 2.

From Claim 2, we obtain that the estimates (3.35)—(3.37) mm =0, ..., n— 1) hold. From (3.13)
and (3.37), using Holder’s inequality, we obtain

M M 1 M 1

2 2
/ (0 = poo)x|dx < ( f P (p — poo)y dx) ( / pontie dx) < Cep. (3.53)

0 0 0

From (3.13)-(3.14) and (3.53), using Sobolev’s embedding theorem, we could obtain (3.38)—
(3.39) immediately. O

Lemma 3.7. Under the assumptions of Lemma 3.3, if €1 is small enough, we obtain

M
/( + 22 2)()c t)dx—i—//u (x,s)dxds < Cgeo( +H( n—l ) HLOO) (3.54)
0

forallt €[0,T].

Proof. Multiplying (1.20); by u,, integrating the resulting equation over [0, M], using integra-
tion by parts and the boundary conditions (1.22)—(1.23), we obtain

M M
fu% dx +f(2€1 +cz)p1+9 (r”_lu)x(r”_lu,)x dx
0 0

M
:/A,oy(r"—lu,)xdx—P (r"u) (M, 1)
0
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M M
+/2c1(n— l)pe(r"_zuut)xdx—/fuldx
0 0
4
= ZN,. (3.55)
i=1

From (3.11), (3.12) and (3.15), using the Cauchy—Schwarz inequality, we obtain

M
/(2c1 +cz)p1+9 (r”_lu)x(r"_lu,)x dx
0
d MZ
_a [Z2a+ta IO (! 2
_dt/ u)x] dx
0

— /(26‘1 +e)n—1)p't? (r"_lu)x (r”_zuz)x dx

M
+ / Ll;m (A +0)p>[("u) ] dx

M

d [2

> [ T
0

2
- 2 u -
—c(lomta #5160, 336
M M
M= [t [ o [0 ), P
0 0
M y M uz
—/2A(n— l)py—(r"_lu)xdx+/An(n— l)py_1—2dx
r r
0 0
d [ ul?
d—f r"u) dx+C<||( ) 5+ | = ) (3.57)
L2
0 X
J M
Np=-— /(Poo +AP®)) (" 'u), dx
0
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M M
+ /(n — 1D (Pso + AP)(r"_zuz)x dxds + (AP)’/(r”_lu)x dyds

J M
\_E/ Poo + AP®))(r"'u) dx
0
ul? /12
+c(]" ||L2 - +]@apry|), (3.58)
r L%
d M M
N3 = E/cl(n— Dp (r”_zuz)xdx—i-/Zch(n— D[ u) T dx
r
0 0
M 2 M 3
—/9c1n(n— l)pgu—z(rn_lu)xdx—l—/-bzcl(n— D(n—2)p" 1% dx
r r
0 0
M
9“2 1
—/3cl(n— D(n—2)p r—z(r”_ u)xdx
0
M 2
d 6(.n—2,2 n—1 2 u
<— [ ciin—1)p (r u)xdx—i—C ||(r u)x + |- (3.59)
dt x T2
O X
and
d M M
() 0

From (3.55)—(3.60), using the fact that

M
[{50 + et 071, P — a0 (r2e), fax
0

M
2
=13 Cerr ) ot o O et (- 2
n rp
0

we have



T. Zhang, D. Fang / J. Differential Equations 236 (2007) 293-341 323

M M
d G G
< d_{ /|:(Apy—Apgo—AP)(r"_lu)x+(r"_lu)x/( 2n{2 B 2n{2)dy:| dx}
' ey -
0 x

+C(+ [ (" u), |

(10 |2+ elent). o

Integrating (3.61) over [0, ¢], using the estimates (3.13)—(3.15) and the Cauchy—Schwarz inequal-
ity, we can obtain (3.54). O

Lemma 3.8. Under the assumptions of Lemma 3.3, we obtain

M t M
/ 2 (x, t)dx+// =2yt 4+ 2ul)dx ds < Croeg, (3.62)
0 0
H%( A | (") (D) oo < Ca0€0, (3.63)
M
/( + 22 2>(x t)dx+//u (x,s)dxds < Ca€3, (3.64)
0

forallt €0, T], where o« = % —n.

Proof. We differentiate Eq. (1.20), with respect to ¢, multiply it by u,;r® and integrate it over
[0, M], using the boundary conditions (1.22)—(1.23), then derive

d Ml T
E/Er“utzdx— %/r“‘luutzdx
0 0

u
[(2c1 +c)p! (") — ApY + Poo = 2¢1(n — l)p";]

I|
o\g

M
x (1 = Dr" >, dx f o [@01 +e2)p! (") = Ap?
0

+ ApX, —2¢1(n — l)pgg](r"_l‘“"u,)x dx

M M
+/2c1(n—1)8,< n-l 98 ( >>r“u,dxds—/f,r°’u[dx
0 0

— [ = DAP(" ™2 uu ) (M, 1) + (APY (r" " u, ) (M, 1)]
=N+ Db+ 4+ Ja+Js. (3.65)
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From (3.12), (3.35) and (3.36), using the Cauchy—Schwarz inequality, we obtain

xt

M
Ji < 6/0(22 2n2+a2)dx
0

M
+C€(1+ || n— 1 ||Loo / 2n 2+0{ 2 D{ 2u2+r0t(p_poo)2]dx (366)
0

From (3.12)—(3.13), using the same argument in the proof of (3.44) and the Cauchy—Schwarz
inequality, we get

M
Jr+J3=— /[(201 + cz),oH'e (r”_lu,)x (r”‘”“u,)x —2ci1(n — l)pe (r"_2+°‘u12)x] dx
0

M
+f {(261 + )(1 +9),00+2[(r"_1u)x]2 —(m—1Qc + cz)p1+0(r”_2u2)x
0

2
_ _ u u
- ypVH(r" lu)x —2c1(n — 1)9/)9“(}"" lu)x; —2c1(n — 1)p9r—2}

a—1

X |:(n -1 +a)r e + r"_1+°‘utx:| dx

P
M
+2c1(n—1) / {(n - 1)r"‘2+“up9<5) uy
0 "
_ g1+ 9+1(rn—lu) Sl IR P ”_2 u, Vdx
p o\ ) )
X

(C22 _E)/ 2n 2+Ot 2 ro{—zutz) dx

M
+C€ 1+ || n— 1 ||LOo / 2n— 2+Ot 2 roz 2M2+ra(,0—,000)2]d)€, (367)
0

M
Ji<e | r¢2 2dx+C€/((l—n)erfnu+8rAfu+8,Af)2r2+°‘dx
0

<e€

[
[

M
a=2 2dxds+CE(f22+/r2+“ 2 dx ) (3.68)
0
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and

Js = [(AP) ( n= 1+“u,)x + (- I)AP(r"_H“uu,)x] dx

\E

e [ (r2ud + 72722 ) dx + C (IAPI + |(APY ). (3.69)

o\g -

Lete =g L Cy,, from (3.65)—(3.69), we have

J M M
d_/ udx+C222/ M-dhay2 4 pa=2,2) gy
0 0
M
(+||n] /2n2+a2 a22+r(p ;Ooo)]
0
M
FC(2+1APP + |(APY ) + Crzer 2 / 02,2 g
0
If Crze; < %, from (3.35) and (3.36), we can obtain
p M M
d__/ Cf/ Me2te2 42,2 gy
0 0
M
(+||n] /2n2+a2 a22+r(p ,Ooo)]
0
C(Z+IaPP+[aP)[) (3-70)
and
M t M
/ (x t)dx—}-/[ =22y g 214,2)(x,s)dxds
0 0
<Cq(I+ ("), [l})- 3.71)

From Eq. (1.20),, we have

(2c1 + )" 1o, (p1+93x (r”*lu)) =u; + Ar"”! (p”)x +2c1(n — l)r"*zu(,oe)x + f,
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and using the estimates (3.11), (3.12)—(3.13), (3.35)—(3.37) and (3.71), conclude that

M
/rz”*”“ [0 (0" 70, (7"~ u)) [ dx < C (14 | ("), )
0

and

M

[0 00" ) dx < Ceo(1 4+ 07, ). (372

0

for all r+ € [0,T]. From (3.12), (3.54) and (3.72), using Sobolev’s embedding theorem
wlhles 1% we can obtain

(" ) [ e < Caneo(1 10" ), [ oe): (3.73)

If Ca4€0 < 3, from (3.54), (3.71) and (3.73), we can get (3.62)—(3.64) immediately. O

Now, we can let
= (Ci6 + Cao)eo. (3.74)

If (1 + + + C“ +4Cg + 2C 4 T4C17 +2C3)€1 + 2Co4€0 < 1, using the results in Lem-
mas 3.3— 3 8, we ﬁmsh the proof of Claim 1. Thus, we can let €( be a positive constant satisfying

4 ¢ C
(1 + o+ 5—2 + C—“ +A4Cy +2C%, +4C1 + 2023)(06 + Cap)eo +2Cueo=1.  (3.75)
p s s

Using the classical continuity method, we can obtain the following lemma.

Lemma 3.9. Under the assumptions in Theorem 1.1, the solution (p,u) satisfies the estimates
(3.12)—(3.15), (3.20), (3.29), (3.34)—(3.39), (3.62)—(3.64) for all t > 0.

From Lemma 3.9, we can obtain the following lemma easily.

Lemma 3.10. Under the assumptions in Theorem 1.1, if € is small enough, we have

loC.t) = pC. )|, < Clti — 2],
|uC.0) —u(, )] 2 < Clo — 1l
|r¢.o) —rC. 0|« <Clti — 2l
s (" ) ¢ 11) = B ("~ ) (L 12) ] 12 < Clen = a2,

[((" 72 (7)) )

n,% ~ Ca

forallt), tr,t > 0.
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4. Difference scheme and approximate solutions

In this section, applying a discrete difference scheme as in [1], we construct approximate
solutions to the initial-boundary value problem (1.20)—(1.23).

For any given positive integer N, let h = % be an increment in x and x; = jh for j €
{0, ..., N}. For each integer N, we construct the following time-dependent functions:

(pj @), uj®),rj®), j=0,...,N,

that form a discrete approximation to (p, u r)(xj, t) for j =0,...,N.
First, p;(t), uj(t) and r;11(t), i =0,. ,j=1,..., N, are determined by the following
system of 3N + 2 differential equations:

d

TP =—pp8(r7 i), @.1)
4 =" 8a =20 — 18 4.2
=Ty %o - (n—=Dr; "uid(uj-1) = fj 4.2)
d
Erl—ﬂ =Ui+1, (4.3)
with the boundary conditions:
uo(t) =0, ro(t)=h, 4.4)

UN+1
Py = pn Gy +2un)8(ry un) + 200 — ="y = Pr, (4.5)

N+1

and initial data

jh jh
1 1

(j—=Dh (j—=Dh
p0(0) = p1(0), up(0) =0, ro(0) =1, 4.7
r0)=h+n Z (0) i=1,...,N+1, (4.8)

and u y+1(0) satisfies
0
Py (0) — pn (0) (A (0) + ZMN(O))fS(VXfI(O)UN(O)) +2(n — 1)%#1\1(0) = Pr(0), (4.9
+

where § is the operator defined by dw; = (w1 —w;)/h, and

ojt)=pj—1(Xj- +2Mj—1)5(r;l:11”j—1) - Pj_q,
Aj=A(pj), mj=p(pj), Pj=P(pj),
fi@®) = fGh,rj,0).
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The boundary conditions (4.4)—(4.5) are consistent with the initial data. The condition (4.5) de-
termines u 41 (f).
Let (pco.is rgo,l.) = (poo(ih), h + 1 (ih)),i =0,..., N, we have

Gjh

-1 Y

rgo,jS(Apoo,j—l) = + 01,

m’j
j—1
_h+nZ—+Q217
Poo,k
and
Lo l=n 2 .
Q11 <C(jh)™ h, |02 <C(jh)nh, j=1,...,N.

Then, for any small 4, the initial data (p;, ©;, r;)(0) and the external force f;,i =0,..., N,
satisfy

2 2
X 101 (0) = pos,i|” +ZO "TH(8p) — 8poc, ) ] (VR < Cég, (4.10)
N
CHi 4+ Dh <rf0) < CG + D, Z[r;2u§+rf"‘2(5uj)2](0)h<c€§, (4.11)
j=0
N
>3 (pl 8 (= uj1)) ) Ok < €, (4.12)
j=1

where C > 0 is independent of 4.
The basic theory of differential equations guarantees the local existence of smooth solutions
(pi,ui,ri) (i =0,..., N)to the Cauchy problem (4.1)—(4.9) on an interval [0, T™), such that

0 < pi(t) < o0, ()] <oo, i=0,...,N,

with the aid of (4.10)—(4.12).

For any fixed T > 0, by virtue of Lemmas 3.1-3.10 and using similar arguments as in [1,7],
we can obtain the following lemma and prove that the Cauchy problem (4.1)—(4.9) has a unique
solution for ¢ € [0, T] when h < hr ¢, Where h7 ¢, > 0 is a constant dependent on 7" and €.

Lemma 4.1. For any h € (0, ht ¢, there exists a positive constant C independent of h such that

1 3
pi (1) € [5;_), 55}, |0i (1) = poc.i]| ;o < Ceos

ri(t) e [CTM(I+ Dh, C(+ DA,
N

SR + 00 — oo j )1 < CEL,

=0

~.
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ul(t) @

ri(t) ’

t N 2
/ Z<u§+r§"‘2(5u,)2 )(s)hds cel,

Jj=0 r]

N Y 2
Z( : Zn 2(8u1)2>(t)h+/2<_u1) (S)hds §C€(2),
j=0Tj 0 /=0

t

N
/Z[r;x(pj IOOO]) +(r] _roo]) ]hds CEO,

o /=0
N N u2
> o (rrud) ) dx + / > o (rf."—z(auj)z + —é)hds <cel,
j=0 o J=0 T
N—1 tN 1
2 (" Bpj = 8po0. 1)) +/ D (") — 8peo. j)7) ()hds < Ceg,
Jj=0 0 j=0
N—1
> " 180) — 800,11V < Cep,
j=0
N d 2
Z[V?(Euj) i|(t)h < Cél,
j=0

8(r'ui) ()| < Ceo,

1

N
S (o) = pj @) + |uj @) —uj()|)h < Clty — 12,
=0

~.

[r(t) —ri(w)| < Cly — 1],

Zla “lup) ) = 8( uj) () Ph < Cln — 1,

forallt;,tr,t€[0,T],i€{0,...,N}andl e{l,...,N+1}.

Now, we can define our approximate solutions (,oN ,ul PNy (x, 1) for the Cauchy problem
(1.20)—(1.23). For each fixed N and t € [0, T], we define piecewise linear continuous functions
(o™, u™,rN)(x,t) with respect to x as follows: when x € [[xN], [xN]+ 1]
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o™ (x, 1) = pen @) + (xN — [xN1) (ppeni+1 (1) — ppeni (@),
uM (e, ) = upeny (@) + (XN = [xN1) (upeni1(0) — upeny (0)),

PV 1) = (g ) + (XN = BNT) (g0 (6 = Fpy )

From Lemma 4.1, using similar arguments as in [1,7], we can obtain the compactness of
approximate solutions (p”,u",r") and prove the existence part of Theorem 1.1. Since the
constant C in Lemma 4.1 is independent of 7', we can obtain the regularity estimates (1.29)—
(1.31) easily.

5. Uniqueness

In this section, applying energy method, we will prove the uniqueness of the solution in The-
orem 1.1. Let (o1, uy, r1)(x,t) and (o2, uz, r2)(x,t) be two solutions in Theorem 1.1. Then we
have,i =1,2, (x,t) € [0, M] x [0, T],

S|=

13
pi(x,t)e[ii_’viﬁ}, Cxn <rix.1) < Cxn, G.D
| (e, )]+ [T i (v, 0] < C. (5.2)

For simplicity, we may assume that (p1, u1, r1)(x, t) and (o2, u2, r2)(x, t) are suitably smooth
since the following estimates are valid for the solutions with the regularity indicated in Theo-
rem 1.1 by using the Friedrichs mollifier.

Let

0 =p1— P2, w=1uj —uy, R=r—n.

From (3.1), we have

M

M
d
—/x_%Rz(x,t)dt=2/x_%Rwdx
dt
0

0
M M
<e/ “iw dx+C€fx_%R2dx. (5.3)
0 0
From (1.20) and (5.1)—(5.2), we have

p M M
Ef&(ac,r)dt:z/gat(m — p2)dx
0

M
:2/Q<—pfrf_18xu1+p§r2 Oylly — pi pau 2)abc
r
0
M M
e/x n w +x~ nw dx+C€/Q +x~ nR2 dx. 5.4)
0 0
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From Eq. (1.20); and boundary conditions (1.22)—(1.23), we get

M

d 1

— —wz(x,t)dx

dt ] 2
0

M
2
40 -1y 12, 2m—=1) |4 w
2 - d
+O/{< 61+02>p1 [ w) ]+ n (rl o r1,01> } *

M
/8X (r}~ 1w )[Qc1 +e2)(p, 1+0 p21+9)8x(r’1“_1u2)
0

+ Qer 4oy 0 ((rf 7 = 13 u2) — (o] — p3)]dx

M
n—1 1 1 0
+ | 2ci(n = Doy | r{ wuz| — — — ) |py dx
r r
0
M
n—1, [ U2 6 0
+ [ 2c1(n = Doy |r]" w E (,ol—pz)dx
0

M

/26‘1(}’[—1),02 |:( n—l —ry 1)wu—2:|dx

rn

~ [t =5 2)w)[Cer + cpt a3 ur) = o

M
+/wa(r21— —r )dx—}—/w(Af(x,rz,t)—Af(x,rl,t))dx. (5.5)
0 0

From (5.1)—(5.2) and (5.5), we have

J M M

7 sz(x,t)dx—i—sz/ X w +x- nwz}dx

0 0

M

gc/(x—%R2+g2+w2)dx. (5.6)
0
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From (5.3)—(5.4) and (5.6), letting € = }TCZZ’ we obtain

d
d

~

M M

/[u)2 + 0% +x 71 R dx < C/(x*%R2 +0% +w?)dx.
0 0

Using Gronwall’s inequality, we have for any ¢ € [0, T],

M

/[w2 + 0% +x 77 R*]dx =O0.

0

This proves the uniqueness of solution in Theorem 1.1.
6. Asymptotic behavior

In this section, we consider the asymptotic behavior of the solution to the free boundary
problem (1.20)—(1.23). We will show that the solution to the free boundary problem tends to the
stationary solution as ¢t — 4-00.

The following lemma is proved in [15].

Lemma 6.1. Suppose that y € WI})’CI (R™) satisfies

y=yi+y,
and
n n
2l <Y e, IYI<SD B, onRY,
i=1 i=1

where y| € WIL’CI (RY), and limg_, 1 ooy1(s) = 0 and «;, Bi € LPi(RY) for some p; € [1,00),
i=1,...,m. Thenlimg_, ;5 y(s) =0.

Proposition 6.1. Under the assumptions of Theorem 1.1, the total kinetic energy

M
1
E(t) :=/Eu2(x,t)dx—>0 ast — —+oo.
0

Proof. From (3.15) and Lemma 3.9, we have E(¢) € L1(R™). Using the Cauchy—Schwarz in-
equality, we obtain

M
|E'(n| < Er) +/u,2dx.
0
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Taking into account the estimate (3.64) and Lemma 3.9, applying Lemma 6.1, we finish the
proof. O

Proposition 6.2. Under the assumptions of Theorem 1.1, we have

M
f(r ) dr — 0 ast— oo,

Proof. From (3.20) and Lemma 3.9, we have fOM(r — roo)?(x,1)dx € L'(RT). Using the
Cauchy-Schwarz inequality, we obtain

J M M M
E/(r—roo)zdx = 2f(r—roo)udx <2E(t)+/(r—roo)2dx.
0 0 0

Taking into account the estimate E(¢) € L' (R™), applying Lemma 6.1, we finish the proof. O

Proposition 6.3. Under the assumptions of Theorem 1.1, we have

/(p—pooﬁ(x,r)dx»o (6.1)

and
1o = po).0)| g = 0. g€l 00), (6.2)
ast— +o0.

Proof. From (3.20) and Lemma 3.9, we have /OM (p — poo)*(x,1)dx € L"(R"). From (1.29),
using the Cauchy—Schwarz inequality, we obtain

M M M
d 2 2 P 1
di (0= poo)dx| < | (p— poc) dx +C

0 0 0

Taking into account the estimate (3.15) and Lemma 3.9, applying Lemma 6.1, we obtain (6.1).
From (1.29), (3.3) and (6.1), we can obtain (6.2) easily. O

Proposition 6.4. Under the assumptions of Theorem 1.1, we have

M
/x z+a - (pgo)x)z(x, )dx -0, ast— +oo.
0
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Proof. From (1.29), (3.35), (3.37) and Lemma 3.9, we have

M

[ (6, - () P nax e L @),

0

From (1.20), (1.29)—(1.30) and (3.3), using the Cauchy—Schwarz inequality, we have

d M
2 o
g [T~ (),
0
M
2n—2+4a n
=20 [ (), (0),) (0" 0 )
0
20 2n—2+«a 9 9 Uy
S [ (0, - 000 (s + 4 7),
0
+zcl(n—1)”(’; ) ﬂjﬂﬁ”)
M
C/ FEEP) = (P) ) o 41— o)
0

+7%(p = poo)® + 7 2ut]dx + f1.

Taking into account the estimates (1.29), (3.35)-(3.37), (3.62) and Lemma 3.9, applying
Lemma 6.1, we end the proof. O

From Propositions 6.3 and 6.4, using Sobolev’s embedding theorem, we can obtain the fol-
lowing corollary immediately.

Corollary 6.1. Under the assumptions of Theorem 1.1, we have

loC 1) = poc ()] oo + 7. 1) = Foo()|| joc = 0. ast — +oo0.
Proposition 6.5. Under the assumptions of Theorem 1.1, we have

M
2n—2+a 2
x n ui(x,t)dx -0, ast— 4oo.
0
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Proof. From the estimates (1.29), (3.36) and Lemma 3.9, we have

M
/xz"‘n“" u?(x,t)dx € L'(RY).
0

Using the Cauchy—Schwarz inequality, we have

dt

M
d -2ta
— | xT 7 uldx
0

M
2n—2+4a
21 x n ujpuyrdx
0

M M
g /x 2;1—]12-%—& u% dx + /x 2n—n2+01 uit dx'
0 0
Taking into account the estimates (1.29), (3.36), (3.62) and Lemma 3.9, applying Lemma 6.1, we

end the proof. O

From Propositions 6.1 and 6.5, using Sobolev’s embedding theorem, we can obtain the fol-
lowing corollary immediately.

Corollary 6.2. Under the assumptions of Theorem 1.1, we have
||u(', t)”LOo —0, ast— +oo.
Thus, we finish the proof of Theorem 1.1.
7. Stabilization rate estimates

Now we are in position to estimate the stabilization rate. We first state the following proposi-
tion which gives the stabilization rate estimates in L?([0, M1)-norm of the solution.

Proposition 7.1. Under the assumptions of Theorem 1.3, we have

M
0
and
" :
|:0(M, t) — ,Ooo(M)| + (/Vzn_z(P - poo);zc dx) + Hr(" - rOO(x)“LZ <Ce ™, (7.2)
0

forall t > 0, where ay is a positive constant.
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Proof. Let

M
1
Vi =/Eu2dx~|—S[V]—S[VOO],
0
M
n—1,\2 -2 2 u?
W1=/ (r"u) +r we+ 3 dx.
0

From (1.32), (3.16)—(3.18), we have

1 1
V] +2C31 Wy < CiV} +CIAP)? < Ce™™ V2 4 Ce 20", (7.3)
M
— — 2
€ [ (4 o = ) 457207 = 1))
0

M
SV <Can [+ (0 pue? 272" 1)) (7.4)
0

and

Caz|u(, 0], < Wi (1.5)

From (3.28), we have

M
[T po 207 s
0

M
d n n
<-cns [ 25 (V— - ’ﬁ) dx + Cys Wy + Ce™20", (7.6)
dt ] r n n
0

From (1.29), we obtain

M
c u "ok J
38 rn—1 ;_7 X
0

M
<Coo [ +10 = P v @)
0

Let
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M
n n
V2=V1+€C38/ - 1 (r——rﬂ>dx,
=\ n n
0
M

W2 — C3]W1 +€/[(,0y _ pé’o)z +x—2(rn — r::o)z] dX,
0

where € = min{%, s - From (7.3) and (7.4)~(7.7), we have

V4 Wy < Ce™ 207, (7.8)

M
C! [ (4 0= pe? 447207 = ) s
0

M
< V2 < Cy /(u2 +(p—poo)® +x72(r" — rgo)z) dx, (7.9)
0
and
M
Cao /(u2 + (P — poo)? +x72(r" — rgo)z) dx < Ws. (7.10)
0

Thus V5 is a Lyapunov functional. From (1.32), we obtain the estimate (7.1). From (1.29), (3.33),
(3.40) and (7.1), we can get (7.2) easily. O

Proposition 7.2. Under the assumptions of Theorem 1.3, we obtain

M

2
/(’:—2 4 r2”2u§>(x, ) dx < Ce™%', (7.11)
0

forallt >0, where a3 is a positive constant.

Proof. Let

r 1/2 (n—1) 2
n u
V3 = /{—(—01 —i—cz),o1 0[(r”7]u)x]2 + c1p? <r"1ux - —)
2\n n
0

o

+ (A,Ogo — Ap¥ + AP)(r”flu)x + I,t(GrnX1 - Gx;n—z) } dx.
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From (1.30) and (3.61), we have

M

1
V! +f S 0,5) dx < Can (7 + | (APY [+ W2).
0

From (3.13)—(3.14), we have

2
2 u —
V3> {C42(( " lu)x + ) + 2 214)2() —C43((/0_Poo)2+ |AP|2)}dx

2
{C44(( " 1u))zc—i-b:—2+ 2 2>+C43((,0 po)’ + AP )}

O\i O\i

Letting Va = V2 + V3 + nCa3|AP|%, where n =
have

mln{2 4C39C43 2C‘”} From (7.8)-(7.10), we

CWr>Vy=Clw,
and
V,+C ' Wa < C(fE+1APP +|(APY]).
Thus V4 is a Lyapunov functional. From (1.32), we can obtain the estimate (7.11). O

Proposition 7.3. Under the assumptions of Theorem 1.3, we obtain

M
/r%fm(p—poo)zdxdsgCe*”’, (7.12)
0
M
fr%—m(r — roo)2dxds < Ce™, (7.13)
0
M
f 2my2) (x, 1) dx < Ce™, (7.14)
0
M
/(rz"—”%—’" (0 — poo)?) (x, 1) dx < Ce™, (7.15)
0
forallt >20andm =0,1,...,n— 1, where a is a positive constant.

Proof. From (7.1)-(7.2), we know that the estimates (7.12)—(7.15) hold with m = 0.
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Claim 3. If (7.12)—(7.15) hold with m < k, k € [0, n — 2], then the estimates (7.12)—(7.15) hold
withm =k + 1.

We could prove Claim 3 as follows. Let oy = % —k—1.From (3.41), (7.1) and (7.15) (m = k),
we have

M

/r“" (P — poo)?dx < Ce™,
0

and (7.12) (m = k + 1) holds. From (1.29) and (7.12), we can obtain (7.13) (m =k + 1) easily.
From (3.49), we obtain

M M
d 2
E/r“kuzdx + C42/r°"‘ (ﬂ”‘%& + ”—2) dx <C(f+|AP*)+Ce ™. (7.16)
r
0

Thus fOM (r%u?)(x,1)dx is a Lyapunov functional, and we obtain (7.14) (m = k + 1) immedi-
ately.
From (3.52) and (7.12)—(7.14), we have

d T C r
2 13 2
E/‘Hldx‘i‘T/Hldx
0 0
M
< C/(r‘)‘"u2 +r%(p — poo)> 4 r%(r — roo)z) + Cf12 < Ce ™™,
0

Thus fOM H 12 (x, t)dx is a Lyapunov functional. Using the estimates (1.29) and (7.12)—(7.14), we
obtain (7.15) (m = k + 1), finish the proof of Claim 3 and Proposition 7.3 immediately. O

From (1.29), (7.12) and (7.15), using Holder’s inequality and Sobolev’s embedding theorem,
we could obtain the following proposition.

Proposition 7.4. Under the assumptions of Theorem 1.3, we obtain
oG, 1) = poo)]| oo + 7 1) = Foo()]| oo < Ce™,
forall t > 0, where a is a positive constant.

Proposition 7.5. Under the assumptions of Theorem 1.3, we obtain

M
/(rautz)(x, Ndx <Ce ¥, (7.17)
0

forallt >0, where o = 3 _nandaisa positive constant.
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Proof. From (1.30) and (3.70), we have

Q.|&

M M

2 n—24a 2 22
/ u; dx+C45/(r " +°‘uxt+ro‘ ut)dx
0 0

M
<C46/ 2n 2+a 2 Fo— 2u2+r°‘(,o—poo)2]dx
0

C(f2+1APP+|(aP)]). (7.18)

Let V4 = f (r®u®)(x, 1) dx + T 42 fo (r“u,z)(x, t)dx. From (1.32), (7.12), (7.16) (k =n — 2)
and (7.18), we have

Vi+ClVy < Cem® 4 Ce™ .
Thus V4 is a Lyapunov functional, and we obtain (7.17) immediately. O
Proposition 7.6. Under the assumptions of Theorem 1.3, we obtain

<Ce™™,
LOO

M
[l o P | (2 ), )
0

forallt >0, where o = % — n and a is a positive constant.
Proof. From Eq. (1.20),, we have
(2c1 + ) 1a, (p1+98x (r"_lu)) =u, + A"} (,oy)x +2c1(n — l)r”_zu(pa)x + f,

and using the estimates (1.29)—(1.30), (1.32), (7.12)—(7.15) and (7.17), conclude that

M
/r2n—2+(x [0, (,01+an (rn—lu))]zdx <Ce ™™
0

and

M

/|ax ("0, (r"'u))| dx < Ce . (7.19)

0

From (1.29), (7.11) and (7.19), using Sobolev’s embedding theorem Whles % we can obtain

Joc (") (0| o < Ce7
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and
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