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1. Introduction

In [7] and [8], L. Desvillettes and C. Villani started the program about the trend to equilibrium
for kinetic equations. Up to now, there are three classes of techniques to study the convergence to
equilibrium. The first class of technique is the Lyapunov functional technique, which works for non-
linear equations. These techniques are developed in [5,7-9,12]. The second class of techniques is the
pseudo-differential calculus, which works for linear hypoelliptic equations, developed in [19,11,18,
20,28]. The third class of techniques is developed by Yan Guo in [16], which is in some sense an
intermediate method between the two previous ones, which works for nonlinear kinetic equations
in a close-to-equilibrium regime or the linearized versions of nonlinear kinetic equations. For a full
discussion on this, we refer to the note [29].

Using the techniques developed in [7,8], L. Desvillettes and F. Salvarani have investigated the speed
of relaxation to equilibrium in the case of linear collisional models where the collision frequency is
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not uniformly bounded away from 0. The two models that they considered are the non-homogeneous
transport equation and the Goldstein-Taylor model

P _
Y vvi=owd -, (1)
and
8—qua—u—a(x)(v—u)
at - ax ’ (12)
av 8v_ _
5_87_0()()@ V).

They prove that when o is greater than a positive polynomial and o belongs to H2, one can get
polynomial decays of the solutions toward the equilibrium points. However, the techniques used in
the paper could not be extended to consider the case where the cross section o is 0 on a set of
strictly positive measure. A conjecture in this paper is to find explicit decay rates for these systems
in wider classes of o. In the same spirit of [10], K. Aoki and F. Golse [3] have studied the case of a
collisionless gas enclosed in a vessel, where the surface is kept at a constant temperature, and they
have investigated the convergence to equilibrium for such a system.

We introduce a new approach to the problem of convergence toward equilibrium in the kinetic
theory and use it to study the question of L. Desvillettes and F. Salvarani in [10] for Goldstein-Taylor
and related models. We can relax the regularity property of o as well as the condition that o is
greater than a positive polynomial and prove that the decay is exponential (see Theorems 2.1, 2.2).
The main idea of our techniques is similar to the work of Haraux [17]: in order to prove an exponen-
tial decay for the solution of the equation

df
— + A(f)=-K(f), teR.,
f(0) = fo,
we can study the following homogeneous equation with the same initial condition
g
— 4+ A(g) =0, teR,,
T + A(g) + (14)
£(0) = fo,
and prove that the following observability inequality holds
T
/(/C(g),g)dt > C|l foll®. (1.5)
0

A natural way of proving the exponential decay for the solutions of (1.3) is to prove that K is coercive

(KH, f)=ClfI?,

however this is not always true, especially in the case of Goldstein-Taylor and related models.
The task of proving of the observability inequality (1.5) turns out to be much easier than proving
an exponential decay for solutions of (1.3) since the solutions of (1.4) are explicit. Inequality (1.5)
could be considered as a ‘weak’ coercive inequality. The details of this technique will be explained in
Section 3 (see Lemmas 3.1, 3.2, 3.3, 3.4 and 3.5).
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Consider the dissipative inequality for (1.1)

I f1IZ =— / o)\ f — f1*dxdv,

Td xRd

we can see that the damping fkad o®)|f — fI?dxdv is too strong to lead to a polynomial de-
cay. A reasonable question is if we can get a polynomial decay with a weaker damping. We give an
example where the damping is quite weak

*lfIZ, =— / |1 = 0P 2(F = )] dxdv,

Td xRd

where € is a positive constant. Since the order of the pseudo-differential operator (1 — Ay)~¢/? is —e,
it leads to a polynomial decay and this is the result of Theorem 2.3.

Another question is that: our method works well for kinetic models of collisionless particles,
could it be applied to more sophisticated models? The answer is yes. We also succeed to apply our
technique to study the convergence toward equilibrium for the linearized Boltzmann equation (see
Theorem 2.4). In the context of the linearized Boltzmann equation, the main tool to prove the expo-
nential and polynomial convergence toward the equilibrium is based on the spectral gap estimate for
the hard potential case and the coercivity estimate for the soft potential case. Using this technique,
C. Mouhot has proved exponential decays in the case of hard potential (see [4,22-24]). For the soft
potential case, R.M. Strain and Y. Guo have proved results about the almost exponential decay (which
means that the convergence is faster than any polynomial convergence) in [25], or some exponential
decay of the type exp(—tP) (p < 1) in [26]. However, obtaining spectral gap and coercivity estimates
is sometimes very hard. Using our tools, we can prove an exponential decay for the hard potential
case and an almost exponential decay for the soft potential case. Since we do not need the coercivity
of the collision operator, we do not really need assumptions on the collision kernel B(|v — v|, cosf)
including the smoothness, convexity, .... The linearized Boltzmann collision operator is usually split
into two parts

Lifl=v(v)f —Kf,

where v(v) f is the dominant part. If K is good enough, the spectrum of L is included in the spectrum
of v(v), which leads to the coercivity of L. Our idea is to consider the ‘weak’ coercivity of L for only
a small class of functions: the solutions of (1.4). For a solution g of (1.4), the integral

T

/L(g) dt

0

is equivalent to

Tv(v)g —C(T)Kg

in some sense, where C(T) <« T. This means that C(T)Kg is absorbed by Tv(v)g when T is large and
we still have the ‘weak’ coercivity of L without assuming more conditions on K. The only assumption
we need is that the usual dominant part in the linearized Boltzmann collision kernel remains dom-
inant with our very general conditions (see assumptions (2.17), (2.18)). These assumptions are the
least property that we could expect from the linearized Boltzmann collision operator and they cover
both cases: with and without Grad cut-off assumptions. Similar as in the case of the Goldstein-Taylor
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and related models, our proof remains true if the collision kernel B(|v — v,|, cos#) depends on the
space variable, which means that the effect of the collision of particles depends also on the position
where they collide; however, we have not found any real model for this.

The plan of the paper is the following: the main results of the paper are stated in Section 2 and
the main tool of the proofs is studied in Section 3. Sections 3, 4, 5, 6 are devoted to the proofs of
Theorems 2.1, 2.2, 2.3 and 2.4.

2. Preliminaries and statements of the main results
2.1. Stabilization of the Goldstein-Taylor equation and related models

We consider the Goldstein-Taylor model

ou  aJu
—t —=0®l-—-u),
at  ox 1)
v v )W — V) )
at  ax ’
where u :=u(t,x), v:=v(t, x), x€ T=R/Z, t > 0, with the initial condition
u(0,x) =ug(x),  v(0,x) =vo(x). (2.2)

Suppose that o € L(T). Define the asymptotic profile of the system (2.1):
1 1
(Uoo, Voo) = 3 (uo + vo) dx, 3 (uo +vo)dx ), (2.3)
T T

and the energy is then

Hu(t) = /[(u — Uoo)? + (v — Voo )?] di. (24)

T

We also consider the following non-homogeneous (in space) transport equation

%Jrv.vf:a(X)(f—f), (2:3)

where f:= f(t,x, v) is the density of particles at time t, position x and velocity v. The notation f
is fv f(t,x,v), where V is a bounded set of RY of measure |V|= 1. The solutions are considered

of periodic 1 or on T¢ = R%/Z%. We give an example where the damping is week enough to give a
polynomial decay

aa_{ +v.Vf=0m"21 - A0 20 ®?(F - f), (2.6)

where € is a positive constant. The initial data is

F0,%,v) = fox). (2.7)

Define the energy of (2.6)
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Hyo = [ [15 - fePavax 28)
TV
where the equilibrium state is
foo= / fo(x)dx. (2.9)
Td

Our main results are

Theorem 2.1. When o > 0, o € L2(T9), o # 0, (ug, vo) € L2(T%) x L2(T%), the solution of Eq. (2.1) decays
exponentially in time towards the equilibrium state of the equation.

Theorem 2.2. When o >0, 0 € H'(T%), o #0, fo € L®(T9), the solution of Eq. (2.5) decays exponentially
in time towards the equilibrium state of the equation.

Remark 2.1. Compare to the results in [10], our results not only improve the type of convergence
from polynomial to exponential, but also relax the regularity on the initial condition and the cross
section. Moreover, we do not need the condition that the cross section o is greater than a positive
polynomial.

Theorem 2.3. When o = 1, fo € C®(T?%), the solution of Eq. (2.6) decays polynomially in the following sense
VM > 0, there exist positive constants C(M) and k > M such that

Hp(®) SCMY(E+1)7 ) fo = foollfre- (2.10)

Remark 2.2. The existence of a solution of this equation can be proved by a Picard iteration technique;
however, we do not go into details of this classical proof.

Remark 2.3. Since the order of the pseudo-differential operator (1 — Ay)~¢/2 is —e in (2.6), which
means that the damping is quite weak, we get a polynomial decay. According to our theorem the
order of the convergence is —oo, or we can get an almost exponential decay with this damping.

2.2. Stabilization of the linearized Boltzmann equation

The Boltzmann equation describes the behavior of a dilute gas when the interactions are binary
(see [6,13,27])

&%F+Vv.Vx\F=Q(F,F), t>0,xeT% veRd. (211)
In (2.11), Q is the quadratic Boltzmann collision operator, defined by
Q(F.F)= / /(F’F; — FF,)B(|v — v4|,cosf)do dv,,
SN—1RN
where F = F(t,x, V), F. = F(t,x, vy), Fi.(t,x,V,), F/=F(t, x,v") in which

, Vv, [v — vy , V+ Vg [v — vy
V=——+tt ——o0; V,=——— —0O

: L , oesN L
2 2 2 2
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This is the so-called “o-representation” of the Boltzmann collision operator. Up to a Jacobian fac-
tor 2N—2 sinN_2(9/2), where cos6 = (v, — V)).(Ve — V)/|Vs — v|2, one can also define the alternative

“w-representation”,

Q(F,F)= / /(F/F; — FF)B(V — vy, w) dv, do,

SN-1RN

with

and

B(v — vy, @) =2""2sin""2(6/2)B(|v — v/, cos).

The equilibrium distribution is given by the Maxwellian distribution

_vl2
M(,O,U,T)(V)=LNexp<_|u v| )
QrT)? 2T

where p, u, T are the density, mean velocity and temperature of the gas at the point x

p:/f(v)dv, u:l/vf(v)dv, T:L/|u—v|2f(v)dv.
P Np
Rd Rd

Rd

Denote by

p(v) = (2m) "2 exp(—|v|?/2),

(212)

(2.13)

the normalized unique equilibrium with mass 1, momentum O and temperature 1, we consider F to

be a solution of the equation near w. Put F = u + /i f, then

O f +v.Vuf =217 2Q (, VI + T V2QI L VIR

Define

r(f, H=u2Q/if, Vi),

and

LIf1=21""2Q (u, VIS),

the following equation is the linearized Boltzmann equation

& f+v.Vif =L[f],

where

(2.14)

(2.15)
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Lifl= / 2B 2 (yp v [ 2(vV) F (VL) + u 2 (VL) F (V)

RN xSN-1

— 1) fv) = 2w f(v.)]dvido,

with the initial condition

fQ0,x,v) = fo(x, v).

We assume the following conditions on the collision kernel B:

(B1) There exist a constant o > —d + 1 and a positive constant M1 such that

/ LBV — vil, 0)dodvs > M1(Jv| +1)%.

Rd xSd—1

(B2) There exist constants 1 —d < 8 <o + 2/3, and M3 > 0 such that

B(Iv = vil, ®) < Ma|v — v P |v/ — v

We impose these conditions to assure that the term

B(|v = vsl, 0)u(vs) f (v) dvy do

Rd xSd—1

411

(2.16)

(2.17)

(2.18)

is the dominant term in the linearized Boltzmann collision operator. These assumptions cover

both cases: with and without Grad cut-off.

Consider the energy of f

Hp(t) = / |f12dxdv, (219)
Td x R4
and its derivative in time
d 1 _ _ — _1/2712
Ghro=-3 f Buap[fi” P 4 fi' =2 = fopl V2 — fum 2] do dv. dvdx
Td xRA x RY x Sd—1
<0, (2.20)

where we use the notation f = f(v,), f' = f(V), fa = f(vy), f = fv), ul, = pn,), W =pn),

M= (vy) and L = p(v).
For p € R, define

L((IvI+1)"):={f | (I +1)" f e 2(T¢ x RY)}.

Denote by S(t) fo the solution of the linearized Boltzmann equation and suppose that fy is orthogonal

to the kernel of the linearized Boltzmann collision kernel:
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[ 12 s0av = [ w2witsodv = [ w2ivR fodv <o,
R4 Rd Rd
forallie{l,...,d}.
Theorem 2.4. With the assumptions (B1) and (By):

o The ‘hard potential’ case o, B > 0: suppose that fo € L2(T¢ x RY), there exist positive constants Mo,

such that
HS(t)(fo— / fodv) fo— [ fo
R4 Rd

o The ‘soft potential’ case —(d — 1) < «, B < 0: suppose that fo € L>((|v|+ 1)) (V8 > 0), for any M1 > 0,
there exist p > M1 and M, > 0 such that

HS(f)<f0— fodv> fo— | fodv
/ /

Remark 2.4. In this theorem, since we prove a ‘weak’ coercive estimate instead of spectral gap
and coercivity estimates for the linearized Boltzmann operator, we can get exponential and almost
exponential decays without requiring too much assumptions on the collision kernel including the
smoothness, convexity, .... The only property that we need is that the dominant term remains dom-
inant with our conditions (B1) and (B5).

(2.21)

< Mg exp(—ét)
L2

L2

(2.22)

< Myt™P
LZ

L2

Remark 2.5. Our proof works well also for the case where B depends on x; however, we have not
found any real application for this.

3. The main tool

Let (H, {.,.), ||l.I) be a real Hilbert space with its inner product and its norm, .4 be an operator on
H satisfying (A(x),x) =0 for all x in H and K be a self-adjoint linear operator. Suppose that

(K@), y) = (x, Ky)) = (K2x), K2(y)).

Let f be the solution of the evolution equation

0
Vv an=—rxmp. ter,,

fO) = fo, foeH,

(31)

and let g be the solution of

g
m +A(g) =0, teRy, (32)

g(0) = fo.
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Lemma3.1. Forall T in Ry

T T
/||/c1/2(f)||2at</||/c1/2(g)|\2dt. (3.3)
0 0

Proof. Consider the norm of || f — g||?

T

If —glI*(T) = 2/<atf —dg, f—gdt

0

T
=- / 22, KYV2(f — g))dt
0

T T
:—2/y|/c1/2(f)”2dt+2/(K1/2(f),lc”z(g))dt
0

T

0
T
<= [l Pas [
0

0

which leads to

T T
[l Pas [icrolPe o
0 0

Lemma 3.2. If K1/2 is bounded, then for all T in R,

T

T
M f |28 de < / |2 d. (34)
0 0

where M is a positive constant.

Proof. Take the derivative in time of || f — g||?

F*lf —gll> =2(3f — dg, f — &)
==2(K"2(f),K2(f - g))
<[P+ K - o))
<|E2H|P+Clf - gl

the last inequality follows from the boundedness of K1/2(f — g), where C is a positive constant.
Gronwall’s inequality then leads to
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t

If - g2 < fexp(ca —9) K2 ds,

0

which together with the boundedness of X'/2(f — g) leads to
t
|K2(F - )] >0 < Cexp(Ct) / |26 ds,
0
where C is some positive constant. This deduces
T T
/||1c1/2(f —g|de< CTexp(CT)/||/c1/2(f)||2dt.
0 0
The triangle inequality deduces
T T
/HIC]/Z(g)”zdt<2(CTexp(CT)+1)/”IC]/2(f)”2dt. 0
0 0

Lemma 3.3. Let (H', ||.|lo) be a Banach subspace of H with its norm. Suppose that for any h in H’, ||h|| <
M ||h|lo, where M is a positive constant and that for any solution g of (3.2)

I foll = g®

, Vte R+ . (35)

We assume that for any positive constant €, the operator IC could be decomposed into the sum of two linear
operators K¢ 1 and K¢ 2 such that

K=Kei1+Kepo, (3.6)

[R12)° = a2 | + e 2, 3.7)
|Kea?(m)| < Ci(e)lnll, YheH', (3.8)
|Ke2' 2] < Ca(e)lIhllo. YheH', (3.9)
<2y || < CO)lhllo, VYheH', (3.10)

1/2

where C1(€), C2(€) and C(K) are positive constants, C2(€) tends to 0 as € tends to 0, and K’

defined in the following way

,ie{1,2}are

1/2
€,i

1/2
€,i

(Ke,ith), k) = (K, KK/F (), VhikeH.

Suppose that there exist positive numbers To and C such that

To
/||/c”2<g)||2dt> Clifol2. (3.11)
0
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Then there exists a constant My depending on T such that

T

T
Ml/II’C“2<g>||2dt</H’C”Z(f)ilzdn (3.12)
0

0
forall T > Ty.
Proof. Similar as in the previous lemma

1/2 1/2

(f - ) -2K5H. K5 - 9)
V-9’ —2Ak3 . K3 - 9)
-9

allf — gl = —2(c/F (. k]
)+ |k

<KD +cr@?if — gl + 2|k Kkl

<|x

the last inequality follows from (3.8). Gronwall’s inequality deduces

t

I1f — gl < /(||/C”Z<f>|| +2|K

0

1/2 1/2

(f)HHIC (f - g)”)eXp Cl(é) (t—s))

1/2 1/2

t
< exp(C1(€)*t) / IO 20K K5 —9]) ds.
0

The previous inequality implies

T
/nf gl|? dt < T exp(C1(€)°T) / (13O +2|KZ D K5 —g))dt.  (313)

0

for any T > Tg. The two inequalities (3.8) and (3.13) lead to

T
/ |C12(f — @) de < TC1(e)? exp(C1 (€)2T) / (2P + 262 K2 - o)) .
0

Apply the triangle inequality to the previous inequality to get

/HICl/Z(g)” dt <2(TC1(€)? exp(C1(€)?T) + 1)

T
x/ (K212 + 205NNk - o)) de. (3.14)
0

The three inequalities (3.9), (3.10) and (3.11) imply that for € small enough
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/||/c”2(g)|| de > C(e)/”lc]/z(g)” dt, (3.15)

where C(€) is a positive constant depending on €.
Combine (3.14) and (3.15) to get

c© 1/2
2(TC1(6)2exp(C1(e)27)+1)/H’C ()]~ at
0

T
/||/c”2<f) 1242020 |CY2f - o) d. (3.16)
0

Since for any positive constant §

T
JURG P + 205Dk - ol
0

< [ (Il + SIKEOP +olkl3a - ol )ar

O\'ﬂ

T T
<(1+25+5) [ Pac+2s [ e a
0 0

inequality (3.16) leads to

T
C(e) B 12 5
<2(TC1(€)ZeXp(C1(6)2T)+1) 28)[”’C (@ at
0

T
< <1+25+%>/||K1/2(f)||2dt,
0

which implies (3.12) for § small enough. O

Remark 3.1. Lemma 3.2 will be used later for the case of Goldstein-Taylor and related models, while
Lemma 3.3 will be used for the linearized Boltzmann equation.

Lemma 3.4. Consider Egs. (3.1) and (3.2). Suppose that K satisfies the conditions in Lemmas 3.2 or 3.3 and
that there exist positive numbers To and C such that

To
/||/c‘/2(g> I2dt > Cllfo (317)
0



M.-B. Tran / ]. Differential Equations 255 (2013) 405-440
then there exist positive numbers T1 and § such that for all t > T4

| F©® < exp(=80)ll foll.

Moreover, (3.18) also leads to (3.17).

Proof. Step 1. (3.17) leads to (3.18).
Choose T = kTp, where k is a positive integer. Since

T
@1 =I5l = [ K20 [P ae
0

there exists p in {0, ...,k — 1} such that

o
2
ooz [P
pTo
Let h be the solution of
ah + A(h) =0,

with h(0) = f(pTp). Inequality (3.17) implies that

2

To
/||ic1/2(h)||2dr>c||f(pro)
0

which together with Lemmas 3.2 and 3.3 deduces

To
/ |2 )| de > | £ (pTo) |
0

This leads to

1
| F&To)|* < | FpTo)| < &/ 2,

where C is some positive constant, since
1> ==2(K2f, K2 f),

or || f] is decreasing; for k large enough. The previous inequality implies

)

Hf(T*)H < EXP(_S*T*)”f(O)

417

(3.18)
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where T, =kTg and 8, = I“Z(TC:‘)

, which means

| f (T | < exp(=8.T.) | f((n—1DT.)

< EXP(—(S*HT*) || f(O)

, VneN.

For t € [nT,, (n+ 1)T,),

3

8s
If@©| < | fnTo| <exp(=8nTH | fO)] < exp(—;r) | f(0)

which leads to the exponential decay (3.18) with § = 57*

Step 2. (3.18) leads to (3.17).
Inequality (3.18) deduces that there exist constants C <1 and T, > 0 such that for T > T,

T
lr@)-lrm] =/ [ 2| de>cl o).
0

Lemma 3.1 implies that

|2. O

T
[ k2@ Pae=clro)
0

We also recall Lemma 4.4 in [2], for a proof of this lemma we refer to [1] and [21].

Lemma 3.5. Let {&y} be a sequence of positive real numbers satisfying

2
Eki1 <& —CELT, Vk=0,

where C > 0 and ¢ > —1 are constants. Then there exists a positive constant M, such that

M

& < k>0.

—_—
(k+ 1)+
4. Decay rates of the Goldstein-Taylor model

This section is devoted to the proof of Theorem 2.1 for the model (2.1)-(2.2). We consider the
following system:

d d
WL,
x (41)
9 99 _,
ot ax
where ¢ 1= @(t,x), ¢ :=¢(t,x), xe T=R/Z, t > 0, with the initial condition
90,0 =@po(x),  ¢(0,X)=¢o(X). (4.2)

Then asymptotic profile and the energy of the system are then
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1 1
(@00 oc) = (5 / (g0 +90)dx, 5 / (o + ¢o>dx), (43)
T T
and
Hy(t) = / [(@ — 0oc)? + (¢ — Poo)?] dx. (44)
T

The following proposition is a consequence of Lemmas 3.1, 3.2 and 3.4.

Proposition 4.1. Suppose that there exist positive numbers T and § such that

Vt > To, Vug, voe WHI(T):  Hy(t) < exp(—8t)Hy (0), (4.5)

then there exist a positive number T and a nonnegative number C such that

Ty
/ / o (9 — )P dxdt > C [ [(@ — 90)® + (6 — boe)?] di. (46)
0T T

for o = up and ¢g = vo.
Moreover, if there exist T1 and C such that (4.6) satisfies, then there exist To and & such that (4.5) is true.

Theorem 2.1 is a direct consequence of Proposition 4.1 and the following proposition.

Proposition 4.2. There exists a positive constant Tq such that for T > Ty

T
f / o (¢ — ¢ dude > C(T) / (00 — 9oc)? + (G0 — foo)?] dx. (47)
0T T

where C(T) is a positive constant depending on T.

Proof. Since (¢, ¢) is the solution of the system (4.1),

(@, ) = (po(x — 1), po(x +1)).

Write ¢o and ¢¢ under the form of Fourier series:
o
@o(x) = Z exp(inmx)ay,
—00

$o(x) =) _ exp(inmx)bn,

then
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@o(x —t) = Z exp(inm (x — t))an,

—00

do(x+1) = Z exp(inm (x + t)) by.

—0o0

Choose T to be a positive integer, the previous formulas imply

2

o0
Z exp(inmx) (ap exp(—inmt) — by exp(inzt))| dt

—00

T
:/O’
0

T

. . . 2 )

= Mh_r)noo( Z /a |an exp(—inst) — by exp(inmt)|” dt + Z exp(i(n — m)mx)
[n|<M g In[,Im|<M, n#m

T
X /[an exp(—inmt) — by exp(inmt)|am exp(—imsmt) — by exp(immt) dt)
0

T

= lim /a’anexp(—innt)—bn exp(innt)|2dt
M— o0
In|<M 0

= Y To(lan* + |bal®) + Tolao — bol*,
neR, n#0

which leads to
T
//0(¢—¢)2dtdx:chrdx< > (Ian|2+|bn|2)+|ao—bo|2>. (4.8)
T 0 T neR, n#0

Moreover, the right-hand side of (4.7) is equal to

/ [(@0 = @o0)® + (d0 — Bo0)*]dx=" > (lan|* + Ibnl?). (4.9)

T neR, n#0
Inequality (4.7) follows by (4.8) and (4.9). O

5. Decay rates of the non-homogeneous transport equation

In this section, we will prove Theorem 2.2 for Eqgs. (2.5)-(2.7). We also consider the homogeneous
equation
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0g
— +v.Vg=0, 5.1
o TVVE (5.1)
with the initial condition
£(0,x,v) = go(x). (5.2)
The energy of (6.1) is then defined
Hg(t) = / g — gool?dx, (5.3)
Td
where
2= [ 20t dx. (5.4)

Td
The following proposition is a direct consequence of Lemmas 3.1, 3.2 and 3.4.

Proposition 5.1. Suppose that there exist positive numbers To and 8 such that

Vt > To, Yfo e L°(T x V): Hj(t) <exp(—8t)Hf(0), (5.5)

then there exist a positive number T1 and a nonnegative number C such that

Tq
fffa(g — g)z dvdxdt > C//(go - goo)2 dvdx, (5.6)

0TdV Td V

for go = fo.
Moreover, if there exist T1 and C such that (5.6) satisfies, then there exist To and & such that (5.5) is true.

Theorem 2.2 is a direct consequence of Proposition 5.1 and the following proposition.

Proposition 5.2. For o belongs to H'(T%), there exists a positive constant Tq such that for T > To

T T
///a|g—g|2dvdxdt>C(T)//|go—goo|2dxdt. (5.7)

0 Td V 0 Td

Proof. Write g under the form of Fourier series

gx,v,t) =go(x — vt) = Z an exp(iZnn(x - vt)).

nezd
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The left-hand side of (5.7) becomes

T
///alg—glzdvdxdt

0d V
T
0

2
—/an exp(—iZnnvt)exp(iZnnx)dv)] dvdxdt
v

[ %

/[c[ Z (an exp(—i2mnvt) exp(i2wnx)
v

Td nezd

2
ap exp(—i2mnvt) —/an exp(—i2mnvt)dv

0 Td V \n|<M n#0
+ Z exp(i(p — Q)7 x) (ap exp(—i2mw pvt) — /ap exp(—i2m pvt) dv)
Ipl1gl<M; p.q#0; p#q
X Qg exp(—i2mqvt) — /aq exp(—i2mwqvt) dv] dvdxdt. (5.8)
v

In the last sum, consider the integral

T

//(ap exp(—ianvt)—/ap exp(—i2npvt)dv>
%

0oV

X <aq exp(—i2mwqvt) — /aq exp(—i27rqvt)dv) dvdt

T
//exp i2(q — p)mvt)apagdvdt
0V

—

—//exp(—i2p7rvt)apdv/exp(ianvt)aT,dvdt. (5.9)
4 14

o

Consider the first integral in the previous equality

T
//exp i2(q — p)mvt)apagdvdt
0
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V sin(z (p — Q)VT)[ cos((p —q)vT) —isin(w (p — q)vT)]apaqgdv

T(p—q)Vv

<laplia q|/

Let B(O, R) be a ball of radius R and centered at the origin, such that V C B(0, R). Let € be a positive
constant. Denote

sin(w (p —q)vT)

T(p—qv (>10)

m= sup I{Igvi <1},
[¢]=1, veB(0.R)

and rewrite the previous integral into the following form

/

sin(z (p —qvT) dv
T(p—qv

sin(zw (p —qvT) dv
T(p—qv

sin(z (p —q)vT) d f

v+
w(p—qv
(I (p—q)vi<e, veV) {IT(p—q)v|>€, veV}

<T|{|m(—qv|<e, veB(O, R)}|+f|{]rr(p q)v|>e€, veB(0,R)}

T
mdp —q|4

T me
mdlp —q|d

1
+-|B(0.R)|
€
1
+—|B(0,R)|.
€
Due to Cauchy’s inequality

me 1 172 [mIB(O, R)|
Tﬁ—i——]B(O,R)‘)ZT i
wlp—ql® € wlp —q|

the previous inequality implies

/

for a suitably chosen € and C is some positive constant. Combine this inequality with (5.10)

: _ T T1/2
sin(zw (p —q)vT) dv < .
T(p—qQv Ip—ql/

1/2

Clap|laq] (5.11)

T
//exp i(q — p)wvt)ayagdvdt| <
0

lp—ql'/?’

where C is some positive constant.



424 M.-B. Tran / ]. Differential Equations 255 (2013) 405-440

Consider the following term in (5.9)

T
/(/exp(—ipﬂvt)apdv/exp(iqrrvt)@dv) dt
14

0 14

aplla
_ lapllag|

= J/pllal’

Combine (5.9), (5.11) and (5.12) to get

T
//[(ap exp(—i271pvt)—/a,J exp(—i2npvt)dv>
0 v

Vv

X ag exp(—i2mwqvt) — /aq exp(—ianvt)dv] dvdt

1'%
1 T1/2 (512)
<laplla |< +C ) 512
PR\ VIpTal T Ip—ql'2
Suppose that |py — qi| = max{|p1 —q1l, ..., |Pa — qal},
. exp(i27m (p — q)x)
o (x)exp(i2m (p — q)x) dx| = ‘—/alo(x),—dx
/ ( ) ‘ 1277 (Pk — qi)
Td Td
1
g/\ako(x)|7dx
27| pk — Gkl
']I'd
< Cllo] !
X 173
" p —q

where C is some positive constant. Combine this inequality with (5.12)

T
///o(ap exp(—ianvt)—/ap exp(—i2npvt)dv>
1% 4

Td 0

X aq exp(—i2mwqvt) —/aq exp(—i2mqvt)dvdvdtdx

1%

1 T1/2
S Gl lap”“"'( e —al  Cip —q|3/2>

1 1/2
<Cllo|l 1< +C ) lap|?® + lag|?). (5.13)
T\ VIplallp —al * Ip—q*2 (lap )
Since
T 2
//anexp(—iZnnvt)—[anexp(—iZnnvt)dv dvdt
0V 1%
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T 2
= |an|2/<1 — l/exp(—iZnnvt) dv >dt
0 v
T 2
= (T —/‘/exp(—iZnnvt)dv dt)lanl2
0V

> (T — 1)]an|?,

for T large, inequality (5.13) implies
A T
olg— gl>dvdxdt > —lan|?,
O/T/V/ g -2l negﬂﬂ nl
which leads to (5.7). O

6. Decay rates of the special transport equation

The equation studied in this section is (2.6)-(2.7). Similar as in the previous section, we consider

g
— +v.Vg=0, 6.1
or TVYE (61)
with the initial condition
g(0,x,v) =go(x), (6.2)

and
goo=/go(x) dx.
Td
For n in Z¢, define
Ap= / 8o(x) exp(—in2mx) dx.
0,1y
6.1. The observability inequality

Proposition 6.1. There exist positive constants To and C(T) such that for T > Tg

T
_ _ An|?dv
1= A)~¢2(g — g)[*dvdxdt > C(T Joa 1Anl"dv 6.3
f//!( )~¢/2(g — )| dvdxdt > C( )HEEZ; e (63)

0 Td V
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Proof. Write g under the form of Fourier series:

gx,v,t) =go(x—vt) = Z Ap exp(iZnn(x — vt)),

nezd

which deduces

T
///|(1 —AY (g — )| dedx

T™d V 0

=ml£nw/{ 3 1Anl?](1 = Ay~ exp(i2rnx) | dx

md \ neZd; jnj<m; n£0
T 2
x// exp(—iZnnvt)—/exp(—iZnnvt)dv dvdt
0V v
+ > (1— Ay)~% exp(i2 px)A,

p.qeZ4; |pl.|q|<m: p#q: p.q-0

T
x (1— Ax)_§ exp(iZyrqx)Aq//[(exp(—ianvt) —/exp(—ianvt)dv)
0V

1%

x exp(—i2mqvt) — / exp(—i2mwqvt) dv} dv dt] dx. (6.4)
4

Similar as in the previous section, we have

/!

for T large enough, and

2
T
dvdt > —,
2

exp(—i2mnvt) —/exp(—iZnnvt)dv
14

v

T T
//exp(iZn(q—p)vt) dvdt—/(
0V 0

(5am* 757
<C + ,
Ip —ql'/? [pllql

where C is some positive constant. Consider the sum

T
//((exp(—iZﬁpvt)—/exp(—i27‘[pvt)dv)exp(—ianvt)—/exp(—iZﬂqvt)dv) dvdt
0V 4

/exp(—ianvt)dv/exp(i271qvt)dv> dt

4 4
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Z |An|2/|(1 —A) io exp(i27rnx)|2dx
nezZd; In|<m; n#0 Td

gl

T ¢
> Z EIAnIZ/](l —Ay)"2 exp(i2nnx)‘2dx

2
exp(—i27mvt)—fexp(—iZnnvt)dv dvdt

1%

nezd; [n|<m; n#0 Td
|An]?
>2TC Z (1—1——112)5’ (6.5)

neZd; [n|<m; n#£0

where C is a positive constant.
Now, consider the term

Z 1- Ax)’ga exp(i2mw px)Ap(1 — Ax)’% exp(i2mqx)Aq
p.aeZ%; |pl.lgl<m; p#£q
T
X /[ /(exp(—ianvt)—/exp(—ianvt)dv)
0o Vv 4
X exp(—i2nqvt)—/exp(—ianvt)dv} dvdt
|Apl |Aqgl ( T2 1 >
< > +
2\$ 2\$ —q|3/2 —
paezis Ipi<m: prg (1T 1PIDZ (A +1a®z \Ip—dl Ip —qlvipliql
1
T2 1 |Ap|? |Aql? )
< c + )( + . (6.6)
2 <|p—q|3/2 Ip —qlv/Ipllgl /\ (1 +p1He (1 +1q1*)¢

p.qeZ%; |pl,lqI<m; p#£q

Combine (6.4), (6.5) and (6.6) to get

///|(1—Ax) (g - dvdxde > C(T) Y fRdlA (V”Edv,
52 i +1nf?)
for T large. O

6.2. Convergence to equilibrium: proof of Theorem 2.3

Step 1. The boundedness of [|3% f |2, Vk € Z°.
Derive (2.6) to get

[k + [ vty = /(1—Ax> O (F - ).

Td Td
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This leads to
k cl12
defofl <o,
which means

37 15 © < 3k ol -

Step 2. The polynomial convergence.
The previous proposition and Lemma 3.2 imply

|Anl?

—_—. 7
(1+In|2)¢ 7

Hy(0) —Hp(T) > C(T.0) )
nezd

Let k1, k2 and ks be positive numbers satisfying —2€k; + kyksz = 0. According to Jensen inequality

Z A kq 2141k \ k3 2 2 ks kq+k3
( nezd <1+|n|2)€> (Znezdlf\nl In| 2) 5 ( )3 |An|*((1 4 In|?) F¥s Inl"1+k3)>
=
ZneZd |An? ZneZd |An? ZneZd |Anl?

nezd

|An|2 kq+k3
(X s lwe)
neXZ:d ZneZd |A”|2

= C,
where C is some positive constant, which yields
2 Z 2 B
|An| d | An| k
L e -\ 2 WS A ) (6%
nezd nezd nezd 17in

for some positive constant C.
Denote

M((—-DT)= Y [FaD) |’ |nfe,

nezd

for I € N{0}, where f/(l?) is the Fourier transform in x of f(IT).
Inequalities (6.7) and (6.8) imply

k-
Hf(O)—CHf(O)<Hf—(O)>k? > Hp(T). (6.9)
M(0)
Since the energy Hy is decreasing, (6.9) deduces
';_3
H(IT) —CHf(lT)<I-I{/{((llTT))> 'S Hi(+1T), (6.10)
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for all | in N U {0}. Step 1 implies M(IT) < C, where C is a positive constant, which together with
inequality (6.10) implies

H(T)

k3
Hf(lT)—CHf(lT)( >k1 > Hp((+1)T). (611)

Put

& =Hg(T),

inequality (6.11) yields

B+l
1 <&g-Cg

where C is some positive constant. According to Lemma 3.5

k

1 2]
Hf(IT) < C| — Hf(0),
£(T) <l+1> £(0)

where C is some positive constant. Let % tend to oo we get the theorem.

7. Decay rates of the linearized Boltzmann equation

In this section, we will prove Theorem 2.4 for the linearized Boltzmann equation (2.15). Let g be
the solution of

org + voxg =0, (7.1)

with the initial datum

g0,x,v) = fo(x,v),

where fo(x, v) is the initial datum of (2.15). For the sake of simplicity, we suppose that

/ fodv =0. (7.2)
Rd

7.1. The observability inequality
Similar as in the previous sections, we prove

Proposition 7.1. There exists a constant T, depending on the structure of the equation, such that forall T > T,

T
/ / B(lvse — v, @) pspt
0 TdxRAxRA xSd—1

x (gL, 4 g 2 — gV — g PP do dv.dvdx

>C f (IvI+1)%| fol* dxdv. (7.3)

Td xRd
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Proof. Since g is a solution of (7.1), it could be written under the form

g(t,x,v) =go(x — vt,v) = Z An(v)exp(i2n(x — vt)),

nezd

this implies

fT f B(1va — V], )ttt

0 TdxRd xR xSd-1

x (g, P4 g =g - g P dwodv. dvdxt

T
= Z/ / B/,L*,I,L|An:k/£;_l/2 exp(—i2mnvit) + Ay~ exp(—i2nv't)
neZd ) pd  Rdxgd-1

— Ansitz 2 exp(—i2mnvat) — Anp V2 exp(—i2mnve) |2 dwdv,dvdt

T
=43, / / B[ —An,,” ? Aan 2 exp(i2mn(v — v} )t)
neZ! ) pdyRdxgd-1
— AW VP A V2 exp(i2mn(v — v')t) + Anyits 2 Ag V2 exp(i2n(v — v,)t)

+ | Aap 2] dwdv, dv dt. (7.4)

Using the same technique as in [14,15,24], we consider the components of the last integral of (7.4)
separately.

Part 1. Considering the dominant component of (7.4), by using (2.17) we get

T
Blis b Anu’l/z‘zda)dv*dvdt:T / Bty Anl? dwdv., dv
0 RdxRdxSd—1 RI xRd x Sd—1
> TC/(|V| +1)%|Anl?dv, (7.5)
Rd

where C is some positive constant.

Part 2. Consider the second component of (7.4),

T
/ / Bul/zul/zAn*A_nexp(an(v —vot)dodv,dvdt
0 RdxRdxSd—1

Isin(wn(v —vy)T)|

< B2 (1% | Ay | Anl dwdv, dv
|[Tn(v — vyl
RI xR xSd-1
1 1/2 [sin(zzn(v — v,)T)|
<= Bu'2ul?1a,2 dwdv,dv. 7.6
> [ eI . (76)

RA xRd xSd—1
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The kernel of (7.6) could be bounded in the following way

i —vi)T)|
B 1/2 1/2|sm(nn(v Vi) dwdv,
/ e = vl

Rd xSd-1

172 . TP 172
< |sd-1]1/2 / B2uu) 2 dodv, [sin(rn(v — vy) I dy,
s ()" doodv vy

Rd xS4-1 Rd

Isin(n(v — v,)T)|?
|[Tn(v — V*)|2

<C(|v|+1)5‘2/3(
Rd

1/2
(w*ﬂ/zdv*) , (7.7)

where C is some positive constant and the last inequality follows from (2.18).
In order to estimate the last integral of (7.7), let € be a positive constant, we consider two cases.
For [n(v — vy)| <€,

Isin(rn(v — v,)T)? 172 172
Tty —v *)|2 (/m*)”zdv*) <T / (p)' 2 dv,

{In(v—v.)l}<e {In(v—v.)l}<e

< TC(e), (7.8)

where C(¢) tends to 0 as € tends to 0.
For |n(v — vy)| > €,

Isin(rn(v — v,)T)|? 172 1 1/2
(v — V*)|2 (/’LM*)UZ dv, < / (/’LM*)UZE_Z dv,

{In(v—v.)l}>€ {In(v—v,)[}>€

C
< -, (7.9)

€

where C is some positive constant. Inequalities (7.7), (7.8) and (7.9) then imply
T
Bul2ul? An, An exp(i2rn(v — v,)t) dwdv, dvdt
0 RdxRd xSd-1
. C _

gmm{TC(e), z}/(Iv|+1)ﬂ 2/3|An(V)|2dV. (7.10)

Rd

Part 3. Consider the last components of (7.4), by the change of variables w - —w

T
I:= f / BM*M[—AH;M;_UZA_HM_]/Z exp(i2rn(v — v},)t)

0 RdxRdxSd-1

— A V2 Aapn V2 exp(i2en(v — v')t) | dwdv, dv dt



432 M.-B. Tran / ]. Differential Equations 255 (2013) 405-440

T
/ / 2BpafiAn w2 A2 exp(i2rn(v — v/)t) dwdv, dvdt
0 RdxRd xSd-1

< / 2|V—V*|ﬁ|V—V/|d_2|An/||An|
RY xRA x §d-1

Isin(mn(v —vOT| 12 ,12
dwdv, dv, 711
e Wi Sl deodv, dv (711)

the last inequality is derived by taking the integral in time and by (2.18).
Denote

[sin(rn(v — v/)T)| 12,12

dwdvy,
(v —v)| w f0AVs

K* = / 2v — v v —v/|"*|Ad|
R xSd—-1

and for w fixed perform the following changes of variables on K*: v, >V =v,—vand V=ro+z
with z € wt. Since the Jacobians of the two changes of variables are 1,

in(wrTn.
K* = / 2rd‘2|An(v+rw)]M /(,u*,u;)l/zlrw—i—zlﬂdz dwdr.
|Trn.w|

Rd x§d-1 ot

Now, make the change of variable (r, w) — W = rw. The Jacobian of this change of variables is 2r—+1

sin(wTn.W
K* = / 4|An(v+W)||W|_1M</(,u*,u;)l/2|W+z|ﬁdz>dW.

[Tn.W|
RA x§d-1 wt
Since
2
Vil + Vo[ = v+ W + 22 +|v + 22
1 2 1 2
== |W+2(v+2)|" + 5 |W]|
2 2
1 2 2 15
=§|W+2(v.a))a)| +2|z4+v - (v.o)w| +3IWE
then

W2 |z+v— (v.o)ol? |W+2(v.a))a)|2)

1/2 _
(aptl) ' = @) d/zeXD< 5 o

which implies

Wiz W +2(v.a))w|2>

K* = f 4(2n)—d/2|An(v+W)||W|—1exp< g o

R xSd-1

|sin(7rTn.W)|(/ ( z4+ Vv — (v.o)w|?
X — exp| ———m—

p—T > >|w+z|ﬁdz>dw.

wi
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Define

/ 2 ’ 2 : 1
_ — — 2(v. aTn.(v' —
K i a@m) 2]y’ — | 1exp(_|v V2V —v2(v.o)ol >|sm( n.(v' = v))|

8 8 |Tn.(v/ — v)|
_ 2
X ( /\eXl)(_w)h/_V_i_z|ﬁdz>7
wt
then
I< /1 K|An(v')||An(v)| dwdv' dv. (712)
RI xRd xSd—1

Now, consider the integral in z in the kernel K

_ 2
/exp<_w>|‘/—v+z|ﬂdz

2
C()L
B R . B
= | exp( -~ V-v+z—(v-(vow)| dz
<c(1 +|v’—v—(v—(v.a))w)|)ﬂ, (713)

since B > —(d — 1), the integral is well-defined. Let s be a real number, according to the inequality

Isl

(+ ') <c+1e) 1+ —¢|)™,

the following estimate follows from (7.13)

/K@+W®Mw

Rd
I 2 ;o 2
gc(“r|V|)S/|V’—V|_1exp(—|v 8V| _v V+82(v.a))a)| )
Rd
|sin(z Tn.(v/ — v))| L 5 s
T — )| 1+ ]V =v—(v—wo))’ (1+][]v —v|)"dv

lTn.(v —v)|3 8

: Tn.(v/ — 3 412 1/3
<c0+wwf< Isin(zr Tn.(v/ — v))| “pCJV V')dW)
d

R
, _32 WV —v]2 3|V —v+2(v.o)w|?
X |V —v|“exp( - -
8 16
Rd

2/3
x(14+ |V =v—(v- (v.a))a))|)3/2ﬁ(l + v = v|)3/2‘s‘ dv’)



434 M.-B. Tran / ]. Differential Equations 255 (2013) 405-440

I 12 ’_ 2
<(1+|v|)smin{TC(e),g}(/exp(—lv vl —3|V v+2(v.a))a)|>

8 16

Rd
2/3
x C|v — v|73/2(1 + |V =v—(v- (v.w)w)|)3/2ﬂ(1 + v - v|)3/ZISI dv/) . (714)

the last inequality is obtained by the same argument that we use in Part 2. Now, we consider two
cases § >0 and 8 <O.

Casel. g > 0.

/K0+¢dew

Rd
. C vV —vZ 3|V —v+2(v.o)w|
< s = _ _
<(141v)) mm[TC(e), E}(/exp( g T >
Rd
2/3
x CIv' = v| (1 + v = v.wyw|) P (14 v — v]) P aw)
) C vV —v]?2 3|V —v+2(v.o)w|?
< s+8 * / . .
<(14v)) mm{TC(e), 6}( exp g T
Rd
2/3
e e I T | dv/>
Denote

vV —v]2 3|V —v+2(v.o)o)? _3/2 3/2Is]+3/2
J1 ::/exp(— s T |V —v| / (1+]v =v|) [2ISHH3128 g1
Rd

Perform the changes of variables V — u=v' —v and u =rw, r e R4, w € S% !, and choose v as the
north pole vector in the angle parametrization

o0 b
3 2
]1 — |Sd72|/rd75/2(1 +r)3/2\5|+3/2/5 exp< )/exp( (r+ |1V6|COS¢) )sindfz((p)d(pdr.
0

For the case d > 3, since sind (go) sin(¢),

o0 T
3(r+2 2
h< |Sd—2|/rd—5/2(1+r)3/2\s\+3/2ﬁ exp( )/ ( (r+ |1V6|C05<ﬂ) )sin(go)qudr.
0 0

Now, make the change of variables y =r + 2|v|cos(¢) in the ¢ integral to get
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® 2N ¥ 2
J1 < ‘Sd’2||v|’]/rd’5/2(l +1)3/2Is143/28 exp(—%) / exp<—3f—6) dydr
0

—0o0

<Clv|™,

where C is a positive constant. Notice that since 8 > 0, the integral

o0

2
/rd’s/z(l +1)3/2Is143/28 exp<—%> dr,
0

is well-defined.
For the case d =2, we perform the same change of variables

oo

2
< ‘Sd72“v|71 /rde/Z(l 4 r)3/21s1+3/28 exp(—%)

r+2|v|

3y2 y—r\2\ 12
2 V1=
X f exp( 16)( <2|v|) dydr

r—=2|v|

oo
2
< C/rd—S/Z(l 4 p)3/2is3/28 exp(_%>

r+2|v| 5
3 _
X / exp(—%>(4|v|2—(y—r)2) 1/zdydr,
r—2|v|

where C is some positive constant.

We consider the integral in two regions |y —r| < |v| and |y —r| > |v|. On the first region, (4|v|? —
(y —1)?)~1/2 < Jv|~1. On the second region, either r > |v|/2 or |y| > |v|/2 gives an exponential decay.
Finally, we get

/K(l V) dv < c(1+ v
Rd
Case 2. 8 < 0.
JNS g s . C WV —vZ 3|V —v+2(v.o)w|?
/K(] +|v[)"dv’ < (1+|v])” min{ TC(e), < /exp - - T
R4 Rd
2/3
x Clv' — v|_3/2(l +]v— (v.w)w])B/zﬁ(l + v - v‘)3/2‘5|+3/2‘ﬂ|dv/>

Again, perform the change of variables u = rw, r € Ry, w € S¢=1, choose v as the north pole vector
in the angle parametrization. Denote
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o0
2
Jo= |Sd72| /rd75/2(1 4 1)3/2Is1+3/21p] exp(—%)

T
3(r+2 2
x/ |v|sm<p 2ﬁexp<—w>sm 2pdedr.
0

1

Split the integral into two regions |cos¢| < —= and |cos¢| > L In the first case, since sing >

V2 V2
then

(1+ |v|sing) /2'3<C( +|v|)3/2’3

the proof is then similar as in the case g > 0. In the second case,

(r 4 2|v| cos ¢?) N vi2  r?

2 ~ 12 16’
this leads to an exponential decay in v. Finally, we get
/K(l + V) dv <c(1+vl)f R
Rd

Combine this estimate with (7.11), (7.12), (7.13) and (7.14) and argue similar as in [14,15,24]

1< / |An(W)]|An (V') |K dvdv

R xRd
12
< <f|An(v>|2(1 + |v|)ﬁ‘2/3)
Rd
172
x [/(l+|v|)7ﬂ+2/3/1<(v,v’)dv’(/K(v,v”)|An(v”)|2dv”> dv] ,
Rd Rd Rd

which implies

I< Cmin{TC(e), g}f|An(V)|2(1 " |V|)ﬁ—2/3.

Rd
When € is small and T is large enough, (7.4), (7.5), (7.10), (7.15) imply

T

/ / B(lve — V|, @) plspt
0 TdxRIxRd xSd-1

g P+ g W V2 — g2 — g P dwdv, dvdx

1

\/iv

to get

(7.15)
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CTZ/ + V) |An () [* dv
neZde

>CT / lgol?dxdv. O (7.16)

Td x R4

Proposition 7.2. Suppose that «, B > 0 and there exist positive numbers T and C such that

/ / B(|vi — V], @) st

0 TdxRAxRA xSd—1

s [guw, 4 g 2 — g2 — g do dv. dvdx
>C / (vl +1)%| fol dxdv, (717)
Td x R4

then there exist positive numbers To and 8 such that ¥t > Ty, ¥ fo € L2 (T4 x RY) N L°(RY, H!(T9))

H(t) < exp(—8t)Hf(0). (7.18)

Proof. We check that L satisfies the conditions (3.6), (3.7), (3.8), (3.9). Let € be any positive constant,
define
1
Ie:=x IV—v*Iég ,

T4
Lelg] 1=—/ / IB(lvse — vI, 0) s pt'/?

0 TdxRd xSd-1

=172 _ g'u—1/2 — g*M;]/z] do dv,dx,

—-1/2
x [g, "+ g
Ty
Le,z[g]:=—f / (1 = 10)B(1vs = v], @) a2
0 TdxRd xSd-1

/=1/2 -1/2

» [g;,u;q/Z o —gu — gL ]/Z]da dv,dx.

It is not difficult to see that L, L¢ 1, L¢ 2 satisfy (3.6), (3.7), (3.8), with H' = L2((1 + |v])%). Proceed
similar as in the previous proposition to get

|Lelgl]% < Co) / (vl +1)”Ig dxdv,
Td x R4

which means that (3.9) is satisfied. By Lemma 3.3, the conclusion of the proposition follows. O
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7.2. Convergence to equilibrium: proof of Theorem 2.4
The case «, B > 0 is straight forward from Proposition 7.1 and Proposition 7.2. We now prove the

theorem for the case —d + 1 < «¢, B < 0. According to Proposition 7.1 and Lemma 3.2, there exist a
time T and a constant C such that

IF @)% - | fM|% = C / (1v1+1)%| 0| dxdv.
Td x R4
This implies that for all k in
| F&T) |2 = | F(G+DT)|Z, > C / (v1+1)%|F&T)|* dxdv. (7.19)
Td x R4

Now, for positive numbers k1, ko and k3 satisfying ak; + koks = 0, according to the Holder inequality

( / (|V|+1)a|f(kT)‘2)kl< / (|VI+1)"2|f(kT)|2>k3

Td x R4 Td x R4
) k1+k3
> < / | f(kT)| ) . (7.20)
Td xRd
Combine (7.19) and (7.20) to get

kq+k3

I1f KT,

k
it e (1V] + D2 | £ (T2 R

| F(k+DT) |7 < | FRT)[72 — €

(7.21)

Now, choose (|v|+ 1)%2 f (k, > 0) as a test function in the linearized Boltzmann equation to obtain

[(vi+ D)2 r @) 5 — | (1v1+ 1) faem | 1

> / B(lve — vl, @) a2 (1v] + 1)

Td xRA x Sd—1
) [f V24 P = fLl VP — V) fdo dvdx
2 07
then
[(1v1+ 1) FRT) |72 < C| £ O) | Fagrvparny- (7.22)

where C is some positive constant. The two inequalities (7.21) and (7.22) lead to

ey +h3

|£(k+DT) |7 < | FRD) |7 = C|FRT)[ "
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This implies

kq+k3
kq

|5 (+DT) 52 < [ F&DL = (1 F (R+DT)[2) 5

where C is some positive constant. According to Lemma 3.5,

Ck

2
lfan)? < —F .
(k+ 1)k
where C is some positive constant. Let f—; = —% tend to oo, we get the theorem.

8. Conclusion

We have presented a new approach to the problem of convergence to equilibrium of kinetic equa-
tions. The idea of our technique is to prove a ‘weak’ coercive estimate on the damping. The approach
seems to work very well in the context of linear equations. Our technique is constructive, since the
constants in the decay rates could be obtained explicitly. A reasonable question is if this technique
could be extended to study the trend to equilibrium of nonlinear kinetic equations, where a typi-
cal example is the nonlinear Boltzmann equation. In an ongoing project, we are trying to analyse
this method for the linearized Uehling-Uhlenbeck equation, where a spectral gap estimate is hard to
obtain but a ‘weak’ coercive estimate is easier to get.
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