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We present a KAM theory for some dissipative systems (geomet-
rically, these are conformally symplectic systems, i.e. systems that
transform a symplectic form into a multiple of itself). For systems
with n degrees of freedom depending on n parameters we show
that it is possible to find solutions with a fixed n-dimensional (Dio-
phantine) frequency by adjusting the parameters.
We do not assume that the system is close to integrable, but we
present the results in an a-posteriori format. Our unknowns are
a parameterization of the quasi-periodic solution and some pa-
rameters in the system. We formulate an invariance equation that
expresses that the system with the parameters leaves invariant the
solution given by the embedding. We show that if there is a suffi-
ciently approximate solution of the invariance equation, which also
satisfies some non-degeneracy conditions, then there is a true so-
lution nearby. The smallness assumptions above can be understood
either in Sobolev or in analytic norms.
The a-posteriori format has several consequences: A) smooth de-
pendence on the parameters, including the singular limit of zero
dissipation; B) estimates on the measure of parameters covered
by quasi-periodic solutions; C) convergence of perturbative expan-
sions in dissipative analytic systems; D) bootstrap of regularity (i.e.
that all tori which are smooth enough are analytic if the map is
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analytic); E) a numerically efficient criterion for the breakdown of
the quasi-periodic solutions.
The proof is based on an iterative quadratically convergent method.
The iterative step takes advantage of some geometric identities;
these identities also lead to an efficient algorithm. If we discretize
the parameterization with N terms, a modified Newton step re-
quires O (N) storage and O (N log(N)) operations. The a-posteriori
theorems allow one to be confident on the numerical results even
very close to breakdown. The algorithm does not require that the
system is close to integrable, so that a continuation algorithm is
guaranteed to continue the tori till the breakdown (in practice,
only limitation being the total memory and the precision). The al-
gorithms have been implemented and run in other papers.

© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

Kolmogorov–Arnol’d–Moser (hereafter KAM) theory represented a breakthrough in the theory of
the stability of nearly-integrable systems [55,5,67]. Under very general assumptions, KAM theory
yields the persistence of quasi-periodic tori with Diophantine frequencies for the perturbed system,
provided the perturbing parameter satisfies smallness conditions. The theorems of persistence are dif-
ferent when the systems considered have geometric properties (e.g., symplectic, volume preserving,
reversible, which have been studied in classical works, see [70,71,11,10]). Depending on the geometric
properties preserved, the continuation of the quasi-periodic solution requires to adjust parameters in
the system.

In this paper we prove a KAM theorem in a geometric context different from those above. We con-
sider “conformally symplectic” systems (maps and flows). A system is called conformally symplectic
when it transports a symplectic form into a multiple of itself. KAM theory for some particular cases
of conformally symplectic systems was obtained in [14].

Conformally symplectic systems appear in a variety of physical problems, notably mechanical sys-
tems with friction proportional to the velocity, in models of transport [34,89] and in optimization of
discounted systems common in economics (see Section 2.3 and [9,51]).

Following [70], we will seek tori with a fixed frequency. Since conformally symplectic systems will
be dissipative, finding a quasi-periodic orbit with a given frequency will require considering a family
of systems depending on parameters and adjusting the parameters to ensure that the attractor is of
the desired form. Indeed, for a system with fixed parameters, it could well happen that the only
dynamics in the attractor is not quasi-periodic1 (e.g., a strange non-chaotic attractor – [61]) or if it is
quasi-periodic with a different function.

Therefore, the unknowns of our problem will be not just the quasi-periodic solutions, but the
parameters to be adjusted. With a view to numerical applications, we will seek the quasi-periodic
invariant torus by formulating a functional equation, namely (3.2) below, for the embedding of a torus
whose dimension is the number of degrees of freedom. It is very important for applications that the
number of variables in the embedding we are seeking is the number of degrees of freedom and not
the dimension of the phase space. Having functions with few variables in our functional equations is
important for numerics, because the difficulty of dealing with functions grows very rapidly with the
number of variables (the curse of dimensionality in the words of [8]). We stress again that Eq. (3.2) is
an equation not just for the embedding, but also for the parameters in the family.

The main result of this paper is provided by Theorem 20; its (somewhat technical) formulation is
the standard form of “a-posteriori theorems” (see [33]).

If we are given a) an approximate solution of (3.2) (i.e. a function and a set of parameters so that,
when substituted in (3.2), verify it up to a small error), b) that the approximate solution satisfies some
non-degeneracy assumptions (the quantitative measures of these non-degeneracies are called condi-
tion numbers in numerical analysis), c) that the error is sufficiently small (depending on the condition
numbers), then we conclude that there is a true solution of (3.2) and we can bound the distance be-
tween the approximate solution and the true solution by the error in the initial approximation (and
the condition numbers). The method of proof will also allow us to conclude that the exact solution is
unique in a neighborhood.

To make the above sketch precise, we just need to specify the sense in which the error is small,
the sense in which the true solution is close to the approximate one (this, of course, entails defining
some norms in spaces) and making explicit the non-degeneracy conditions.

1 One of the results that we will prove are lower bounds on the measure of parameters for which the motion is quasi-periodic.
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There are many choices of norms that we could use to make precise the notions of smallness al-
luded to above. In this paper we will present results both in analytic spaces and in Sobolev spaces.
Having two types of norms will allow us to discuss bootstrap of regularity. Note that, since the algo-
rithms give the Fourier series, the Sobolev norms are very accessible to the numerical computations
and they are the basis of a very practical criterion for breakdown discussed in Section 9.2. See [15,24]
for actual implementations.

The non-degeneracy conditions in Theorem 20 will be a generalization of the well-known twist
conditions in KAM theory. Defining them properly in a far from integrable context will require some
geometry. Note also that, since Eqs. (3.2) are equations for the embedding and the parameters, the
non-degeneracy conditions will involve both the approximate solution and the dependence on param-
eters. Nevertheless, we will see that in the limit of zero dissipation the non-degeneracy assumptions
reduce to twist conditions.

Note that given an a-posteriori theorem to conclude the existence of solutions one does not need
to justify the way that the approximate solutions were produced, but only that they lead to small er-
rors and that the non-degeneracy conditions are satisfied. This allows us also to validate some formal
asymptotic expansions; in particular, the a-posteriori format is very well suited to obtain computer
assisted proofs. One can take as the approximate solution assumed in Theorem 20 the output of a
non-rigorous (but sensible and effective) program. One needs only to produce rigorous estimates on
upper bounds for the error of the invariance equations and for the condition numbers. These rigorous
estimates can be produced using extensions of interval arithmetic to functions’ space (see, e.g., [64,
65,63,58]); this task is being pursued in [17].

Even for standard numerical computations, the a-posteriori format is particularly useful when we
are working close to the breakdown of the tori, so that we can be confident that the calculations are
correct and not corrupted by spurious solutions.

We also note that the simplicity of the proof presented here leads to very good estimates obtained
in the traditional way using only pencil and paper. On the other hand, we note that we have not
optimized the minimal regularity required or the regularity obtained. Of course, for many applications
in Celestial Mechanics, the systems considered are analytic and regularity is not an issue, but the
size of the perturbation is the dominant issue to obtain theorems that are applicable. For analytic
systems, the computer assisted studies can give information not only on the numerical values of the
perturbations allowed, but also on the domain of analyticity (see [15] for a non-rigorous study of the
frontiers of domains of analyticity in some examples).

As we will see later, the method of proof also leads to very fast and efficient algorithms. These
algorithms are non-rigorous, but very reliable in the traditional sense of numerical analysis. The strat-
egy used in this paper to prove Theorem 20 is to develop a (quasi)-Newton method for the functional
equation given by (3.2) below. This quasi-Newton method does not rely on transformation theory2

(which requires dealing with functions with a number of variables equal to the dimension of the
phase space), but rather it is just a modification of the standard Newton method for the invariance
equation. Using some identities that come from the geometry, the quasi-Newton step factorizes into
elementary steps, which can be done very efficiently either in Fourier or in real space (see Algo-
rithm 33).

The conclusion is that, if we discretize the functions with N numbers (and remember that we
are discretizing functions of a low number of variables), a Newton step requires O (N) storage and
O (N log(N)) operations. Note that, even if we have a quadratically convergent method, we do not
need to store (and much less to invert) a matrix of dimension N , which would have required O (N2)

storage and O (N3) operations.
The combination of the fast algorithm and the ability to compute reliably close to the boundary of

existence has been used in the exploration of the behavior near breakdown and in the study of the
domains of analyticity ([15,24]; for previous investigations of the behavior close to breakdown using
other methods, see [74–76]). This has led to a plethora of mathematical conjectures.

2 A proof of persistence of tori in quasi-integrable dissipative systems based on transformation theory has appeared in [84].
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The a-posteriori format with the local uniqueness leads almost immediately to other results (see
Section 9). Among them: a) a result on bootstrap of regularity, b) a criterion for the breakdown of
invariant tori. It was implemented numerically in [15] (a similar version of this criterion was pre-
sented for Hamiltonian systems in [21,20]), c) a proof of convergence of the asymptotic Lindstedt
series around a dissipative system. We provide some arguments that indicate that the expansions
starting near a conservative system could be divergent (see Section 10).

The method also leads to other results proved more or less in the same way, such as the per-
sistence of whiskered tori in conformally symplectic systems [18] as well as a way to obtain fast
algorithms for their computation along the lines of [46].

One respect in which the present method is inferior to transformation theory is in the study of
finite regularity measured in Cm . The papers [68,69,90,91] developed the double smoothing method
whose main idea is to approximate the original problem by a sequence of analytic ones. For Hamil-
tonian flows, this can be done smoothing the Hamiltonian. Smoothing maps while preserving the
geometric structures is cumbersome (unless one is in a neighborhood of the identity). See [38] for a
study of double smoothing while preserving a symplectic or volume structure.

For the sake of efficiency of exposition we present in great detail mainly results for maps, while
in Appendix A we present the minor modifications required to obtain results for the case of flows.

Of course, one could have deduced the results for maps from results for time periodic flows. From
our point of view, working with maps is more straightforward because the geometric reasons are
easy to explain and in practical problems they appear naturally; indeed, in the review of [91] for
Mathematical Reviews J. Moser suggested that it seems desirable to have a direct proof for this basic result
[the preservation of tori for maps].

We finally remark that we provide estimates for the different algorithms, but we do not intend
to give an explicit expression for the constants, though their dependence on parameters and norms
is presented when necessary. For this reason, throughout this paper C denotes a generic positive
constant. In practical applications – eventually carried out with the help of a computer – it is straight-
forward to write a sequence of functions that gives the constants entering in one step as functions
of the previous ones, even if the final expression of the constants would be cumbersome to write.
More quantitative results for concrete examples are taken up in [17]. With a view to these concrete
estimates in applications, the paper presents somewhat more details than what is customary in other
more theoretical papers.

1.1. Organization of the paper

The paper is organized as follows. In Section 2 we define conformally symplectic maps and flows.
In Section 3 we formulate the invariance equation and we present several geometric identities which
lead to the existence of an interesting system of coordinates in the neighborhood of an invariant
torus. In particular, in Section 3.3 we use this system of coordinates to apply the theory of normally
hyperbolic manifolds [36,37,49], as well as to obtain results on the regularity of the manifolds and
on the behavior of perturbations near the quasi-periodic solutions. In particular, we show that all the
quasi-periodic solutions are local attractors. This system of coordinates allows also to give a concise
formulation of the non-degeneracy assumptions. We hope that presenting early some results on the
geometry may serve as motivation for the form of the non-degeneracy conditions. In Section 4 we
introduce spaces of analytic functions and Sobolev spaces and provide some standard technical results
on them.

In Section 5, we state Theorem 20, which is the main result of this paper. Theorem 20 establishes
the existence of solutions of the invariance equation, provided that we have approximate solutions
which satisfy the non-degeneracy conditions. Of course, to read the statement of Theorem 20, only
the definitions (and not the elementary results) in the preliminary material are needed.

In Section 5 we also state some related results, such us Theorem 29 on the local uniqueness of the
solutions, Corollary 30 on the Lipschitz dependence on parameters of the solutions, and Corollary 32
on the measure in parameter space covered by quasi-periodic attractors.

The proof of Theorem 20 is based on a Newton-like method. The iterative step for the Newton’s
method is formulated in Section 6. The key idea of the iterative step is to use an adapted system of
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coordinates near the solution so that the corrections can be done very efficiently. This is accomplished
in Section 7.1. The estimates for the corrections applied in one iterative step are performed in Sec-
tion 7. In Section 7.2 we make precise the statement that the error after one step is quadratic in the
original error. After these quadratic estimates, there are standard abstract theorems that show that
alternating the iteration with carefully chosen smoothings, the procedure converges. There are many
variants of these ideas; a theorem well adapted to these methods appears in Appendix A of [21],
while a slight improvement of it appears in Theorem 47 and we present a complete proof. For the
sake of completeness, in Section 7.6 we also present a short proof of the convergence in the analytic
case.

The proof of the uniqueness of the solution is presented in Section 8. In Section 9 we discuss
some consequences of the a-posteriori formalism, such as the bootstrap of regularity and a criterion
to compute the breakdown threshold. The perturbative expansions, namely the formal series solutions
and their convergence, are discussed in Section 10. The algorithm to compute the parametric repre-
sentation of quasi-periodic solutions for flows and the easy modifications required for the proof are
presented in Appendix A.

2. Geometric preliminaries

We consider the phase space M = T
n × B , B ⊆ R

n (B being an open, simply connected domain
with a smooth boundary), endowed with the standard scalar product and a symplectic form Ω .

Note that this does not entail any loss of generality, since we can take M to be a subset of another
manifold. Clearly, if we aim to look for an invariant torus, we can find a neighborhood of it of the
form M and we will always work on M.

We do not assume that Ω has the standard form; this generality is useful in several applications,
for example when dealing with surfaces of section of Hamiltonian systems. We denote by J = J (x)
the matrix representing Ω at x, namely for any vectors u, v , one has

Ωx(u, v) = (
u, J (x)v

)
,

where (·, ·) denotes the Euclidean scalar product. We consider systems described by conformally sym-
plectic mappings (see Section 2.1) or by conformally symplectic flows (see Section 2.2), which are
defined as follows.

2.1. Conformally symplectic mappings

We introduce the notion of conformally symplectic maps (see [87,34,89,50,72,7,13] for studies of
conformally symplectic geometry).

Definition 1. We say that a diffeomorphism f on M is conformally symplectic, if there exists a function
λ :M→R such that3

f ∗Ω = λΩ. (2.1)

When n = 1, any diffeomorphism is conformally symplectic with λ(x) = σ |det(D f (x))|, σ =
+1,−1 depending on whether the diffeomorphism is orientation preserving or reversing. When n � 2,
the only possible λ is a constant function. In fact, taking the exterior derivatives of the left hand side
of (2.1) one obtains

d
(

f ∗Ω
) = f ∗ dΩ = 0,

3 By f ∗ we denote the pull-back via f (see [4,86] for an introduction to Cartan’s calculus).
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while from the right hand side of (2.1) one obtains:

d(λΩ) = dλ ∧ Ω + λ ∧ dΩ = dλ ∧ Ω,

from which it follows that dλ = 0 for n � 2; since the manifold M is simply connected, one obtains
that λ is constant.

Throughout this paper we will always consider the case λ equal to a constant, unless explicitly stated.
Note that if f is conformally symplectic, so it is the j-th iterate f j . Indeed, when λ is constant

one gets

(
f j)∗

Ω = λ jΩ.

In general, one has:

(
f j)∗

Ω = λ ◦ f j−1(x) · · ·λ(x)Ω(x).

We remark that there exist more general definitions of conformally symplectic diffeomorphisms
[7], but we prefer to use the formulation (2.1) with λ constant as it will be apt for several applications
to physical problems.

An example of a conformally symplectic system that has appeared often in practice is the dissi-
pative standard map, which is a 2-parameter family of maps, say fμ,ε , given by fμ,ε(I,ϕ) = ( Ī, ϕ̄)

with

Ī = (
I + εV ′(ϕ) + μ

)
λ,

ϕ̄ = ϕ + Ī, (2.2)

where V (ϕ) is a periodic, analytic function and V ′(ϕ) denotes its first derivative. Notice that for

the mapping (2.2) one has that J =
(

0 1
−1 0

)
. The map (2.2) has been extensively investigated in the

literature (see, e.g., [25,74–76]). The conservative case is obtained setting λ = 1 and μ = 0.

For completeness we introduce also the following definition of exact conformally symplectic map,
which applies also when studying the limit λ = 1.

Definition 2. If Ω = dα, we say that a diffeomorphism f is exact conformally symplectic, if there exists
a single-valued function P such that

f ∗α = λα + dP .

The function P is called the primitive function of f . In the conservative case, it was extensively
studied in [41]. Many of the properties of the primitive function for conservative systems have ana-
logues in the conformally symplectic case.

Note also that, given a symplectic form, there can be several α’s. The exact symplectomorphisms
do no change, but their primitive functions depend on what is the α chosen.

As an example, if we take α = Idϕ , we see that in the standard map (2.2), we obtain:

f ∗α = Ī dϕ̄ = λI dϕ + dP (I,ϕ) + λμdϕ + λ2μdI + λ2μεV ′′(ϕ)dϕ

with P (I,ϕ) = λεV (ϕ) + (λ2/2)I2 + λ2εV ′(ϕ)I + ε2(λ2/2)V ′ 2(ϕ).
Therefore the standard map (2.2) is exact conformally symplectic if and only if μ = 0. This can

be seen more easily noting that the standard map can be written as S = Se ◦ Sc , where Se(I,ϕ) =
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(I, I +ϕ), Sc(I,ϕ) = (λ(I + εV ′(ϕ) +μ),ϕ). It is easy to see that Se is always exact symplectic, while
Sc is exact conformally symplectic when and only when μ = 0.

Remark 3. It should be clear that the results of this paper generalize to a somewhat more general
context. In fact, if the phase space decomposes as

M = M1 × · · · ×M j, Ω = Ω1 ⊗ · · · ⊗ Ω j, j � 1,

it suffices to assume that

f ∗Ω = λ1Ω1 ⊗ · · · ⊗ λ jΩ j

with λ j constants. This general set-up appears naturally in physical applications. It corresponds to j
particles moving by a Hamiltonian interaction supplemented by a friction. Each particle experiences
a frictional force proportional to its velocity, where the friction coefficient of each particle might be
different. As we will see in Section 2.2, the friction coefficient of each particle is related to λ. The
main ingredient is that the automatic reducibility discussed in Section 3.1 generalizes to the above
context (more details are given in Remark 8).

2.2. Conformally symplectic flows

Definition 4. We say that a vector field X is a conformally symplectic flow, if there exists a function
η : R2n → R such that for the symplectic form Ω , we have:

L XΩ = ηΩ,

where L X denotes the Lie derivative.

If η is constant, then the time t flow Φt satisfies

(Φt)
∗Ω = exp(ηt)Ω.

In the case that Ω = dα, there is a particularly interesting characterization of conformally symplectic
flows. Denoting by i X the contraction with the vector field X , one has

d(ηα) = ηdα = L XΩ = i X dΩ + d(i XΩ) = d(i XΩ),

so that ηα and i XΩ differ by a closed form. We say that the vector field X is exact conformally
symplectic, when there exists a function H such that

i XΩ = ηα + dH . (2.3)

When Ω is the standard form, say Ω = ∑n
j=1 dϕ j ∧ dI j , then α = I dϕ , so that Eq. (2.3) becomes

İ = −∂ H

∂ϕ
− ηI,

ϕ̇ = ∂ H ; (2.4)

∂ I
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notice that Eqs. (2.4) are a generalization of the standard Hamilton’s equations in symplectic geom-
etry. In the 2-dimensional (1 degree of freedom) case, if div(X) = −η and η is a constant, then the
flow Xt changes the volume by a factor exp(−ηt).

One important class of examples, extensively studied in the literature, is systems with a dissipation
proportional to the velocity and subject to an external forcing through a potential force. In such a
case, the time t map (obtained taking the solution of the flow at discrete times) will be conformally
symplectic.

An example that has been studied several times in the literature is the spin-orbit problem [23],
used to model the rotation of an oblate satellite around a planet. It is described by the equations

İ = −∂V (ϕ, t)

∂ϕ
− ηI + μ,

ϕ̇ = I, (2.5)

where V (ϕ + 1, t) = V (ϕ, t), V (ϕ, t) = V (ϕ, t + 1). All the vector fields (2.5) are conformally sym-
plectic for the form Ω = dϕ ∧ dI . They are exact conformally symplectic, if and only if μ = 0. They
correspond to the (local) Hamiltonian Hμ = 1

2 I2 + V (ϕ, t) − μϕ . Note that, even if Hμ is locally
well defined, it is a globally defined function if and only if μ = 0 (in old function language, Hμ is
multi-valued when μ 	= 0). Hence, the flow is exact conformally symplectic precisely when μ = 0.
The conservative case corresponds to η = 0 and μ = 0. As it is well known, for conservative vector
fields there are homotopically non-trivial invariant tori if and only if they are exact. Note that (2.2) is
a discrete analogue of (2.5).

2.3. Conformally symplectic systems in variational problems with discounted systems

Conformally symplectic systems appear as the Euler–Lagrange equation of exponentially dis-
counted variational principles with a Legendre condition. That is, for some real parameters η > 0
or 0 < λ < 1 we are interested in critical points of

S(q) =
∞∫

0

e−ηt L
(
q(t), q̇(t)

)
dt,

S(u) =
∞∑

n=0

λn S(un, un+1) (2.6)

respectively in the continuous-time case (with L = L(q, q̇) being the Lagrangian function in phase
space coordinates), and in the discrete-time case (with S = S(un, un+1) being the generating function).
Models of this form are very common in finance, were future gains are exponentially discounted by
the interest. They also appear in mechanics and other contexts [9]. The functionals (2.6) are very often
bona-fide functionals, in contrast with the action principles of mechanics, which are often just formal
integrals.

It is easy to see that the Euler–Lagrange equations for the above problems are, respectively,

∂1L
(
q(t), q̇(t)

) − d

dt
∂2L

(
q(t), q̇(t)

) − η∂2L
(
q(t), q̇(t)

) = 0,

∂1 S(un, un+1) + λ∂2 S(un−1, un) = 0, (2.7)

where ∂ j denotes the derivative with respect to the j-th argument. Under the customary Legendre
conditions, (2.7) can be transformed into conformally symplectic systems. Of course, when the Legen-
dre conditions fail, the variational problem is very different from a conformally symplectic system.
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Some issues such as the convergence of the critical points or mimimizers of (2.6) to the solutions
of the Hamilton–Jacobi equation as η → 0 or λ → 1 are actively pursued in the literature (see [9,51]).
Note that the results presented in Section 10 establish the convergence of the quasi-periodic solutions
of the dissipative system to the corresponding solutions of the Hamiltonian one.

As customary in the comparison of KAM and variational methods, the KAM methods do not need
convexity as the variational methods, but on the other hand the variational methods do not need
assumptions on the size of the perturbations, and require less assumptions on smoothness than for
KAM results.

3. Formulation of the functional equations satisfied by the embeddings of quasi-periodic tori

We denote by ω ∈ R
n the frequency of motion, which we assume to satisfy the Diophantine con-

dition

|ω · k − �| � ν|k|−τ , � ∈ Z, k ∈ Z
n \ {0}, (3.1)

for suitable positive real constants ν � 1, τ � 1.
The set of Diophantine vectors is denoted by Dn(ν, τ ). If the dimension of the space is obvious,

we will omit the subindex n.
Given a family fμ of conformally symplectic maps (that satisfies some non-degeneracy assump-

tions to be specified later) with μ ∈ Λ, Λ ⊆ R
n open, we look for a value μ, say μ = μe , and an

embedding K : Tn →M, such that the following invariance equation is satisfied:

fμe ◦ K (θ) = K (θ + ω). (3.2)

Eq. (3.2) will be the centerpiece of our treatment. For example, setting ε = 0 in (2.2) we can see that,
for any λ, one gets

K (θ) = (θ,ω), μe = (ω − ωλ)/λ.

Notice that if (K ,μe) satisfy (3.2), then fμe (Range(K )) = Range(K ) and, since K is an embedding,
Range(K ) is diffeomorphic to T

n . Notice also that if (3.2) holds, then for any σ ∈ T
n the sequence

{xn} = K (σ + nω) is an orbit of the map fμe ; therefore, the dynamics of fμe |Range(K ) is diffeomorphic
to a rotation.

Notice that our results are based in studying embeddings of a torus, so that we can study tori that
are contractible (secondary tori) or meandering tori, which are not graphs in a system of coordinates.
It is well known that secondary tori appear naturally near resonances [27,43] and that meandering
tori appear in relation to oscillations [61]. The method presented here just requires that we find a
parametrization solving approximately an invariance equation.

Remark 5. The solutions of (3.2) are never unique. Defining the shift Tσ such that Tσ (θ) = θ +σ , it is
easy to see that if (K ,μe) is a solution of (3.2), then (K ◦ Tσ ,μe) is also a solution for every σ ∈ T

n .
Hence, Eq. (3.2) admits n-parameter families of solutions (obtained by choosing a different origin

of phase of the solution). All these solutions correspond to the same geometric invariant object in
phase space. In Sections 5.1 and 8 we will show that this is the only non-uniqueness of the problem
in a neighborhood of the solution. In particular, the geometric tori are locally unique.

The geometric meaning of the lack of uniqueness pointed above is such that we shift the origin of
coordinates in the reference torus we embed.

The problem of global uniqueness has been considered in [1], which contains global results for
some particular systems – modifications of geodesic flows – with strong enough dissipation. The
paper [1] shows that, under these circumstances, there is a unique Lagrangian manifold invariant
under the flow. The paper [1] does not consider whether the motion in this manifold is given by
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a rotation. Of course, there is no hope to obtain global uniqueness results unless one makes global
assumptions.

Remark 6. For a family of conformal vector fields Xμ , fixing ω Diophantine in the sense defined in
Appendix A, the invariance equation means to look for a value μe and an embedding K , such that

Xμe ◦ K (θ) = (ω · ∂θ )K (θ).

The following result, stating that invariant tori are Lagrangian, is already known for tori invariant
by exact symplectic maps (or flows) (see, e.g., [30]), but we state it here for tori invariant by confor-
mally symplectic mappings. Later, in Lemma 37, we will show that approximately invariant tori are
approximately Lagrangian.

Proposition 7. Let n � 2, let f be conformally symplectic with |λ| 	= 1 and let K satisfy (3.2). Then, one has

K ∗Ω = 0. (3.3)

If λ = 1, assuming furthermore that ω is irrational and that f is exact, then (3.3) holds.

The case n = 1 is trivial, since in a 1-dimensional manifold one can only define trivial 2-forms.

Proof. One easily obtains that

( f ◦ K )∗Ω = K ∗ f ∗Ω = λK ∗Ω

and that

(K ◦ Tω)∗Ω = T ∗
ω K ∗Ω.

In coordinates we see that if K ∗(Ω) ≡ ∑
Aij(θ)dθi ∧ dθ j (for suitable functions Aij = Aij(θ)), then we

have Aij(θ + ω) = λAij(θ). If λ > 1, we note that Aij(θ) = λ−n(Aij(θ + nω)). Since Aij is bounded, we
obtain (3.3) taking the limit as n → ∞, while if λ < 1 we take the limit as n → −∞. For the (slightly
more complicated) symplectic case, compare with [90,30]. From K ∗Ω = T ∗

ω(K ∗Ω) we deduce that, in
coordinates, K ∗Ω is constant, since the rotation is irrational. If Ω ≡ dα, we obtain that K ∗Ω = d(K ∗α)

and the only constant form which is an exact differential is identically zero. �
For further applications, it will be important to generalize the Lagrangian character of invariant

tori to quasi-invariant tori, namely tori which satisfy the invariance equation (3.2) up to a small error
term. The precise formulation of the results for quasi-invariant systems requires quantitative measures
of the quasi-invariance as well as some results on the solutions of the difference equations as it will
be done in Section 4.

3.1. Automatic reducibility

A key argument for our results is that in the neighborhood of an invariant torus, there is an
explicit change of coordinates that makes the linearization of the invariance equation into a constant
coefficient equation. We also note that this system of coordinates makes it also particularly simple to
study the long term behavior of the variational equations, hence we can use this system of coordinates
to obtain dynamical information such as Lyapunov exponents. The geometric interpretation of these
identities is illustrated in Fig. 1. These geometric effects were already observed in [29,30] for the case
of symplectic mappings.
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Fig. 1. Geometric explanation of automatic reducibility, where V (θ) is perpendicular to DK(θ) and such that the area of the
shaded parallelogram is unitary.

In this section, we explain in detail the geometric reason for the so-called automatic reducibility of
invariant tori (i.e. the fact that the preservation of a geometric structure leads to the existence of a
system of coordinates, where the linear evolution is a constant coefficient matrix). Later, in Section 3.4,
we will present a generalization to approximately invariant tori.

As we will see, this system of coordinates for approximately invariant solutions is crucial to obtain
a Newton’s step that has quadratic convergence, but “tame” estimates in the sense of Nash–Moser
implicit function theorems. We think it is worth to start by covering first the exactly invariant case,
since then all the arguments are geometrically natural. They can be adapted to the quasi-invariant
case rather easily. Furthermore, we point out that we will use the coordinates in the exactly invariant
case for other purposes, namely: A) to compute the Lyapunov exponents (Section 3.3), B) to estab-
lish local uniqueness (Section 8), C) to show that there exist perturbation theories to all orders, to
establish their convergence and to develop fast algorithms for their computation (Section 10). Further
applications of the adapted system of coordinates appear in [16].

3.2. An adapted system of coordinates for solutions of (3.2)

Taking the derivative of (3.2) (we write μ instead of μ∗ to make the formulas less cluttered), we
obtain:

(D fμ) ◦ K DK −DK ◦Tω = 0. (3.4)

Geometrically, the above equation (3.4) means that each of the vector fields ∂i K gets transported by
D fμ into itself. Note that the range of DK(θ) is the tangent space of Range(K ) at K (θ). Since the
range of a matrix does not change if we multiply it on the right, we find it convenient to introduce
the normalization

N(θ) ≡ (
DK(θ)T DK(θ)

)−1
. (3.5)

Let us define the function V (θ) as

V (θ) ≡ J−1 ◦ K (θ)DK(θ)N(θ).
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Expressing K ∗Ω in coordinates,4 the fact that K is Lagrangian is written as (see [30,3])

DKT (θ) J ◦ K (θ)DK(θ) = 0. (3.6)

Due to the Lagrangian character of the invariant torus, we have

Range
(
DK(θ)

) ∩ Range
(

J−1 ◦ K (θ)DK(θ)
)

= J−1 ◦ K (θ)
[
Range

(
J ◦ K (θ)DK(θ)

) ∩ Range
(
DK(θ)

)]
= {0}.

Hence, we have that Range(DK(θ))⊕Range( J−1 ◦ K (θ)DK(θ)) is a 2n-dimensional vector space, which
coincides with the whole tangent space. Therefore can write

D fμ ◦ K (θ)V (θ) = V (θ + ω)A(θ) + DK(θ + ω)S(θ), (3.7)

where, setting

P (θ) ≡ DK(θ)N(θ), (3.8)

we will see that A(θ) and S(θ) are given by

A(θ) ≡ λ Id,

S(θ) ≡ P (θ + ω)T D fμ ◦ K (θ) J−1 ◦ K (θ)P (θ) − N(θ + ω)T γ (θ + ω)N(θ + ω)A(θ) (3.9)

and

γ (θ) ≡ DK(θ)T J−1 ◦ K (θ)DK(θ). (3.10)

When J is a complex structure, J−1 = − J , and the Lagrangian character of the torus is the same
as γ (θ) = 0. The same conclusion leading to γ (θ) ≡ 0 happens also when J 2 is a multiple of the
identity (which is what happens when one considers symplectic polar coordinates).

To prove (3.9) we just multiply (3.7) by appropriate factors and use geometric identities that come
from the invariance and from the geometric properties of the torus (notably the Lagrangian character).
For later purposes, it is important to remark that exactly the same procedure works for approximately
invariant tori; in that case, of course, we will obtain that the identifications happen up to errors which
can be estimated by the error in the invariance equation and in the Lagrangian character (which
will, in turn, be controlled by the error in the invariance). Multiplying the left hand side of (3.7) by
DK(θ + ω)T J ◦ K (θ + ω) and using (3.4) we obtain

DK(θ + ω)T J ◦ K (θ + ω)D fμ ◦ K (θ) J−1 ◦ K (θ)DK(θ)N(θ)

= λDK(θ + ω)T D f −T
μ ◦ K (θ)DK(θ)N(θ)

= λDK(θ)T DK(θ)N(θ)

= λ Id, (3.11)

4 Recall that K ∗(Ω)(u, v) = Ω(DK u,DK v) for any vectors u, v , applying the general formulas of pull-back for forms [4].
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where in the first line we have used the fact that fμ is conformally symplectic,5 namely

D fμ ◦ K (θ)T J ◦ K (θ + ω)D fμ ◦ K (θ) = λ J ◦ K (θ). (3.12)

Moreover, from the right hand side of (3.7) one has

DK(θ + ω)T J ◦ K (θ + ω)
[

J−1 ◦ K (θ + ω)DK(θ + ω)N(θ + ω)A(θ) + DK(θ + ω)S(θ)
]

= DK(θ + ω)T DK(θ + ω)N(θ + ω)A(θ)

= A(θ),

where we have used the definition of N and the Lagrangian character of the torus (see (3.6)). To
compute S(θ) we multiply (3.7) by P (θ + ω)T = N(θ + ω)T DK(θ + ω)T and we obtain

P (θ + ω)T D fμ ◦ K (θ)V (θ) = P (θ + ω)T V (θ + ω)A(θ) + P (θ + ω)T DK(θ + ω)S(θ)

= N(θ + ω)T γ (θ + ω)N(θ + ω)A(θ) + S(θ),

where, in the last line, we have just used the definition of γ (θ) (see (3.10)) and that

P (θ + ω)T DK(θ + ω) = Id .

This completes the proof of (3.9).
Defining M(θ) as the 2n × 2n matrix obtained juxtaposing the two 2n × n matrices DK(θ), V (θ),

namely

M(θ) = [
DK(θ)

∣∣ J−1 ◦ K (θ)DK(θ)N(θ)
]
, (3.13)

we obtain

D fμ ◦ K (θ)M(θ) = M(θ + ω)

(
Id S(θ)

0 λ Id

)
. (3.14)

The geometric reason why (3.14) is true is illustrated in Fig. 1. We note that the vector field DK(θ)

gets transported; geometrically V (θ) is a vector orthogonal to DK(θ), normalized so that the area of
the parallelogram formed by them is equal to 1. Equivalently, the area of the parallelogram formed
by DK(θ + ω) and V (θ + ω) is also equal to 1. The action of the derivative D fμ on the parallelogram
contracts the area by a factor λ; due to (3.7), the projection of D fμ ◦ K (θ)V (θ) onto V (θ + ω) has to
be λ times the length of V (θ + ω).

Remark 8. The above construction generalizes to the case discussed in Remark 3 in which we consider
different particles, each with its own friction coefficient. More precisely, we consider θ = (θ1, . . . , θ j)

and similarly K (θ) = (K1(θ), . . . , K j(θ)), where Ki takes values in the i-th copy of the manifold
and it describes the motion of the i-th particle. We note that taking derivatives of the invariance
equation we still obtain D fμ ◦ K (θ) Dθi Ki(θ) = Dθi Ki(θ + ω). Note also that, because the sym-
plectic form is a product, we can define a symplectic conjugate v(θ) = (v1(θ1), . . . , v j(θ j)) with

5 The conformally symplectic condition is equivalent to saying that Ω f (x)(D f (x)u, D f (x)v) = λΩx(u, v) for any vectors u, v .
Therefore, (D f (x)u, J ◦ f (x)D f (x)v) = λ(u, J (x)v); being valid for any vectors u, v , one gets D f (x)T J ◦ f (x)D f (x) = λ J (x),
which gives (3.12) taking x = K (θ).
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vi(θi) = J−1
i ◦ Ki(θ)Dθi Ki(θ)Ni(θ). The same geometric argument used in the text shows that we

have

D fμ ◦ K (θ)vi(θi) = λi vi(θ + ω) + Si(θ)Dθi Ki(θ + ω)

D fμ ◦ K (θ)M(θ) = M(θ + ω)

(
Id S(θ)

0 Λ

)
,

where Λ is a diagonal matrix with entries λ1, . . . , λ j .

Remark 9. One can make further changes of variables so that the matrix S in (3.14) takes a simpler
form. For example we can consider

M̃(θ) = M(θ)

(
Id B(θ)

0 Id

)
, (3.15)

for a suitable matrix B to be determined as follows. Using (3.14) and (3.15) we see that

D fμ ◦ K (θ)M̃(θ) = M(θ + ω)

(
Id S(θ)

0 λ Id

)(
Id B(θ)

0 Id

)
= M̃(θ + ω)

(
Id −B(θ + ω)

0 Id

)(
Id S(θ)

0 λ Id

)(
Id B(θ)

0 Id

)
= M̃(θ + ω)

(
Id −λB(θ + ω) + S(θ) + B(θ)

0 λ Id

)
= M̃(θ + ω)U (θ + ω), (3.16)

where the last equality defines U (θ + ω). Hence, if we use the theory of solutions of cohomology
equations when |λ| 	= 1 (see Section 4.2), we can choose B(θ) in such a way that

0 = −λB(θ + ω) + S(θ) + B(θ). (3.17)

Since (3.17) does not involve any small divisors, the solution B is as smooth as S . The geometric
meaning of the construction above is that, when |λ| 	= 1, we choose a coordinate system in which
there is a contracting invariant space transversal and complementary to the tangent of the tori.

In the case that λ = 1, we cannot solve (3.17), but we can have that the left hand side of (3.17) is
a constant. Hence we can arrange that U (θ) in (3.16) becomes a constant upper-diagonal matrix with
Id in the diagonal.

3.3. Relation with the regularity theory of normally hyperbolic manifolds

Remark 9 has important consequences for the dynamics, which we will now discuss. To simplify
the exposition, we present only the case |λ| < 1; the case |λ| > 1 is reduced to the previous case by
considering the inverse map.

The main observation is that Remark 9 has the dynamical interpretation that we can find a frame
of reference in which the linearized dynamics is given by a constant diagonal matrix with eigenval-
ues 1, λ, each of them with multiplicity n. This says, in particular, that the manifolds are normally
hyperbolic. From Remarks 8 and 9 we have that for j > 0:

D f j
μ ◦ K (θ) = M̃(θ + jω)

(
Id 0
0 λ j Id

)
M̃−1(θ),
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where M̃ is the matrix in Remark 9. We have, therefore, shown that there exists a decomposition

T K (θ)M = Range
(
DK(θ)

) ⊕ Es
K (θ) (3.18)

(we use the standard notation from differential geometry, where TxA denotes the tangent space of
the manifold A at the point x), where Es

x is the eigenspace corresponding to the eigenvalue λ in the
constant system of coordinates. We have also shown that Range(DK(θ)) = T K (θ) K (Tn) and that DK
corresponds to the eigenvalue 1.

By construction, the splitting in (3.18) is invariant under D fμ and we have that there is a constant
C such that for all j ∈ Z,

C−1λ j|v| � ∣∣D f j
μ ◦ K (θ)v

∣∣ � Cλ j|v| ⇐⇒ v ∈ Es
K (θ),

C−1|v| � ∣∣D f j
μ ◦ K (θ)v

∣∣ � C |v| ⇐⇒ v ∈ T K (θ)K
(
T

n). (3.19)

The constants C are estimated by the norms of ‖M̃‖L∞ , ‖M̃−1‖L∞ .
The properties (3.19) imply the assumptions of the theory of normal hyperbolicity with rate con-

ditions (see, e.g., [36,37]). Indeed, the standard definition of normal hyperbolicity only requires the
analogue of (3.19) with the exponential estimates of D f j

μ|Es for positive j; the definition of normal
hyperbolicity can accommodate also an unstable space and some (small) rate of growth of the deriva-
tive on the tangent space. Hence, applying the theory of normally hyperbolic manifolds, we obtain
several consequences, among them, the following result.

Proposition 10. If fμ is conformally symplectic, |λ| < 1 and K satisfies (3.2), then the manifold K (Tn) is an
attractor.

We can prove Proposition 10 in several ways. For example, it suffices to appeal to the results in
[36] on the dynamics on stable manifolds (in our case, the stable manifold is the whole space). The
most direct proof is to show that if we consider the map expressed in the coordinates given by the
frame constructed in Remark 9, we have that it is given by

(I,ϕ) → (λI,ϕ + ω) + R(I,ϕ),

where |R(I,ϕ)| � C |I|2, |D R(I,ϕ)| � C |I|. In such circumstances, it is clear that for I in a small neigh-
borhood, I decreases exponentially under the forward iteration. Note that in Proposition 10 we do not
need to assume any non-resonance property on ω. The only thing that we need is the possibility to
construct the frame in Remark 9, which depends only on the fact that K (Tn) is a manifold and that
it is Lagrangian, without assuming irrationality of the rotation when |λ| < 1.

Several further developments on the behavior near quasi-periodic solutions are obtained in [16].
We now develop some other consequences of the theory of normally hyperbolic manifolds for our

case.

Proposition 11. When |λ| < 1 the tori K = K (Tn) are as differentiable as the map, when measured in the Cr

regularity classes, r ∈N (similarly for |λ| > 1, considering the inverse mapping).

The reason why Proposition 11 is true is that in Remark 9 we have seen that there is a continuous
splitting TxM = TxK ⊕ Es

x . When v ∈ TxK, we have |D f j(x)v| � C |v| for all j ∈ Z. When v ∈ Es
x we

have: |D f j(x)v| � Cλ j |v| for all j ∈ N. In the language of [36,37], we have different growth rates
in the tangent space and in the complementary distribution, which are given by ρc = 1, ρs = λ. In
those papers, one can find that the manifold is C� , where � = min(− log(ρs)/ log(ρc), r) where r is
the regularity of the map. In our case, � = r. Note that the theory of regularity of [36,37] does not
require any Diophantine property of the rotation.
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Remark 12. Of course, the function K , conjugating the motion on the manifold to a rotation, may be
less differentiable than the manifold K, because the conjugation of a smooth map to a rotation may
be less smooth than the map itself. The Diophantine properties of the rotation play an essential role
in this loss of differentiability, but also the dimension n plays a role.

When the dimension n = 1, we have the powerful results of [47,83,53], which show that the
conjugating map is Cr−τ−ε , ε > 0 sufficiently small, independently from the map; when n � 2, the
smooth conjugacy to rotations has other obstructions (see [48]).

Remark 13. Assume that n = 1, the rotation is Diophantine and that the map is analytic, while the
conjugacy has to be Cr for any r; then, we can apply the bootstrap of regularity result provided
in Theorem 54 to conclude that K is actually analytic and so are the decompositions into spectral
bundles.

Remark 14. Very often one considers families depending on other parameters, so that the tori exist
for some values of the parameter and not for others. The above considerations show that, when n = 1,
the rotation is Diophantine and the mapping is analytic, then the conjugacy K has to remain analytic
up to the breakdown. The only possibility left by the previous considerations is that the sufficiently
smooth norms of the conjugacy K blow up (this was studied in [15]). Furthermore, since the conju-
gacy cannot break down if the manifolds remain smooth (and this is implied by the hyperbolicity),
the only possibility is that the hyperbolicity also breaks down.

On the other hand, the automatic reducibility shows that the Lyapunov exponent is identically λ.
Hence, the only way that hyperbolicity can break down is that the angle between the stable space
and the tangent to the manifold goes to zero, so that the stable bundle merges with the tangent
space. Breakdown of hyperbolicity by the merging of bundles was studied in [45,44]. In the problem
at hand, the breakdown of hyperbolicity has been studied numerically in [24]. The numerical studies
in [24] lead to remarkable conjectures.

Remark 15. When n � 2, to study the breakdown of the solutions of (3.2), one has also to consider,
besides the breakdown of normal hyperbolicity, the phenomenon that happens at the breakdown of
the smooth conjugacy of the maps of the circle to rotations. However, this boundary is very poorly
understood, even at the level of numerical experiments (except for some particular classes such as
linear skew products).

3.4. Automatic reducibility for approximately invariant tori

Of course, in the applications for iterative methods, we want to deal with approximately invariant
tori, not with exactly invariant ones. The goal of this section is to show that, for approximately in-
variant tori, the automatic reducibility found before for invariant tori still holds up to an error that
can be estimated by the error in the invariance equation. The precise estimates will be given once we
introduce appropriate function spaces to measure the errors.

The procedure to establish these results is very similar to that of Section 3.1. Some of the identities
used in Section 3.1 will hold only approximately, but it is important that we can estimate the error
by that of the invariance equation. Because the errors in the reducibility are estimated by the error
in the invariance, we will show that they do not affect the quadratic convergence of the algorithm, so
that for the purposes of the Newton’s step, the system can be considered as reducible. We emphasize
that the calculations leading to (3.14) just rely on

a) taking derivatives of the invariance equation and then applying algebraic manipulations, which
use

b) the conformally symplectic properties of the map,
c) the fact that the torus is Lagrangian.

In the case of an approximate invariant torus, we follow exactly the same algebraic manipulations
(they are not geometrically natural and they require to use coordinates); however, a), c) are only
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approximate identities and we show that (3.14) holds with an error which can be estimated by the
error in the invariance equation. Whenever the rotation number is Diophantine or λ 	= 1, we show
that the following expression holds:

D fμ ◦ K (θ)M(θ) = M(θ + ω)

(
Id S(θ)

0 λ Id

)
+ R(θ), (3.20)

for a suitable error function R = R(θ), which will be bounded in Section 7.
The explicit expression for R can be found as follows. Let (3.2) be satisfied with an error E = E(θ),

say

fμ ◦ K (θ) − K (θ + ω) = E(θ); (3.21)

by differentiating (3.21) we obtain

D fμ
(

K (θ)
)

DK(θ) − DK(θ + ω) = D E(θ). (3.22)

We will denote by

E L(θ) ≡ DK(θ)T J ◦ K (θ)DK(θ), (3.23)

the error in the Lagrangian character of the torus, which will be later (see Lemma 37b)) bounded by
the error in the invariance equation.

If EL is sufficiently small in the C0 sense (which, as we will see in Section 7, follows from the
smallness in the invariance error in a sufficiently smooth norm), then the spaces DK(θ) and V (θ) ≡
J−1 ◦ K (θ)DK(θ)N(θ) (where N is defined in (3.5)) are transversal and we can write as in (3.7) any
vector in a unique way as a linear combination of the columns of DK(θ) and V (θ). Hence, there exist
uniquely determined functions Ã(θ), S̃(θ), such that we can write

D fμ ◦ K (θ)V (θ) = V (θ + ω) Ã(θ) + DK(θ + ω) S̃(θ). (3.24)

Of course, in the approximately invariant case, Ã and S̃ will not have the expressions given in (3.9).
Indeed, we want to estimate Ã(θ) − A(θ), S̃(θ) − S(θ), where A, S are given in (3.9). Recall that, by
the definition of R in (3.20), and by (3.22), (3.13), we have

R(θ) = [
D E(θ)

∣∣ V (θ + ω)
(

Ã(θ) − A(θ)
) + DK(θ + ω)

(
S̃(θ) − S(θ)

)]
. (3.25)

We now proceed to compute Ã, S̃ , so that we can give expressions for the error in reducibility.
Multiplying (3.24) on the left by DK(θ + ω)T J ◦ K (θ + ω), we obtain as in (3.11), just λ Id since the
calculation does not need any modification. Equating to this the multiplication of the right hand side
of (3.24) by the same factor produces

λ Id = Ã(θ) + E L(θ + ω) S̃(θ), (3.26)

where E L is the error in the Lagrangian character defined in (3.23). Multiplying on the left both sides
of (3.24) by P (θ + ω)T with P defined in (3.8), we obtain:

P (θ + ω)T D fμ ◦ K (θ) J−1 ◦ K (θ)P (θ) = N(θ + ω)T γ (θ + ω)N(θ + ω) Ã(θ) + S̃(θ). (3.27)
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We see that (3.26), (3.27) can be considered as equations for Ã, S̃ , because they determine uniquely
such quantities (note that the diagonal terms are the identity and that the upper-diagonal terms in
the system (3.26), (3.27) are small).

Solving the system of Eqs. (3.26), (3.27) by a contraction mapping principle, we obtain that the
difference between Ã, S̃ – the approximate solutions of (3.26), (3.27) – and A, S – the exact solutions
of (3.26), (3.27) – are bounded by a constant times the error of the approximate solution. That is, we
can bound the size of Ã − A, S̃ − S by a constant times the size of E L . Precise estimates will be given
once we have defined appropriate function spaces, but we point out that, since they depend only on
just using linear algebra and precise formulas, these estimates will be uniform provided that we take
norms which are a Banach algebra under multiplication.

Now that the geometric procedure is specified, we proceed to develop estimates. This will require
that we specify some spaces and that we develop estimates for some auxiliary equations, such as
difference equations, which we will do in the next section.

4. Estimates on the solutions of the linearized equation

Since the KAM procedure is based on the application of a Newton’s method, the estimates on the
linearized equation are extremely important.

In our case, we will be concerned with an equation for ϕ : Tn →C, given η : Tn →C, of the form

ϕ(θ + ω) − λϕ(θ) = η(θ), (4.1)

where λ ∈ C, ω ∈ R
n are given. Equations of the form (4.1) appeared in many contexts of dynamical

systems; when |λ| 	= 1, they appear often in the study of hyperbolic dynamical systems, while when
|λ| = 1, (4.1) is recognized as the standard small divisor equation. We remark that the cases |λ| = 1,
|λ| 	= 1 are very different. When |λ| 	= 1, one can solve (4.1) by an elementary contraction mapping
argument, which works for all real vectors ω. When |λ| = 1, it is well known that the argument is
more subtle and, in particular, it depends on the arithmetic properties of ω and Im(log(λ)).

4.1. Several function spaces

In this section we present precise definitions of the norms and some elementary properties of the
solutions of (4.1).

In this work we present two types of KAM theorems, one with the analytic estimates and another
one with the estimates in Sobolev spaces. In each type of scale of function spaces, we present a
theorem that assumes smallness in one space of the scale and we conclude existence of solutions on
another space of the same scale. We also present estimates which are uniform in λ, as λ approaches
1 and estimates which assume that |λ| 	= 1 and are not uniform in λ.

The main results of this section are Lemma 18 and 19, which deal with the solution of (4.1) for
the case |λ| 	= 1 and for the case that applies uniformly for all λ ∈R, including λ = 1.

The reason to present the results in two regularity scales is that the Sobolev norms are a rather
straightforward byproduct of the algorithms we present here (which provide with the Fourier coeffi-
cients). Furthermore, we also present a bootstrap of regularity result, which states that the Sobolev
solutions of high enough order are analytic. Another important reason to present estimates on both
spaces is that, as shown in [15], we obtain that the breakdown of analytic circles happens when and
only when the Sobolev norms of high enough order break up. This criterion is rather practical be-
cause it works without any fine-tuning, since it only relies on computing objects which are locally
unique. For example, it avoids the computation of periodic orbits, which for many systems appear in
a complicated way [35,59]. A comparison of this criterion based on blow up and other methods in
the literature to compute breakdown can be found in [21, Appendix B], while implementations can
be found in [19,20] for the conservative systems and in [15] for the conformally symplectic systems
considered here.

The estimates uniform in λ are analytically more delicate since the difference equations involve
small denominators. They also involve some more geometric obstructions. The reason why to include
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both cases is that we want to pay particular attention to the case of small dissipation. This is a case
that has received a great deal of attention in the applications, especially in Celestial Mechanics, [22,
14,23]. One of the good features of the method presented here is that it allows to continue seamlessly
through the Hamiltonian case.

Definition 16. Given ρ > 0, we denote by T
n
ρ the set

T
n
ρ = {

z = x + iy ∈C
n/Zn: x ∈ T

n, |y j| � ρ, j = 1, . . . ,n
}
.

Given ρ > 0, we denote by Aρ the set of functions which are analytic in Int(Tn
ρ) and extend contin-

uously to the boundary. We endow Aρ with the norm

‖ f ‖Aρ = sup
z∈Tn

ρ

∣∣ f (z)
∣∣. (4.2)

More generally, if C ⊂ C
n/Zn ×C

n is a domain with a smooth boundary, we denote by AC the space
of functions which are analytic in the interior of C and extend continuously to the boundary. We
endow AC with the norm

‖ f ‖AC = sup
z∈C

∣∣ f (z)
∣∣.

Given m > 0 and denoting the Fourier series of a function f = f (z) as f (z) = ∑
k∈Zn f̂k exp(2π ik · z),

we define the space Hm as

Hm =
{

f : Tn →C: ‖ f ‖m ≡
( ∑

k∈Zn

| f̂k|2
(
1 + |k|2)m

)1/2

< ∞
}
. (4.3)

For a vector valued function f = ( f1, f2, . . . , f j), j � 1, we define the norm

‖ f ‖X =
√

‖ f1‖2
X + ‖ f2‖2

X + · · · + ‖ f j‖2
X ,

where X is either Aρ or Hm . For an n1 × n2 matrix valued function F we define

‖F‖X = sup
v∈Rn2+ , |v|=1

√√√√√ n1∑
i=1

( n2∑
j=1

‖Fij‖X v j

)2

.

Notice that if F is a matrix valued function and f is a vector valued function, then one has

‖F f ‖X � ‖F‖X ‖ f ‖X
for X being Aρ or Hm with m > n

2 .

To distinguish clearly between analytic and Sobolev norms we will use the notation ‖ f ‖Hm instead
of ‖ f ‖m .

It is well known that Aρ and Hm , endowed with their corresponding norms (4.2), (4.3), are Banach
spaces. It is also well known that Aρ and Hm with m > n/2 are Banach algebras under pointwise
multiplication [85]:
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‖ f g‖Aρ � C‖ f ‖Aρ ‖g‖Aρ ,

‖ f g‖Hm � C‖ f ‖Hm‖g‖Hm , m >
n

2
,

for a suitable real positive constant C .
It will be essential for the proof of the main result to have estimates on the composition of func-

tions belonging to the Banach algebras introduced above. We include the composition estimates in the
following lemma. As stated in the introduction, we use the same letter C for all constants appearing
in the forthcoming estimates.

Lemma 17. The following estimates for the composition of functions in Sobolev spaces and in spaces of analytic
functions hold.

A.1) Let f ∈ Cm be the space of functions with m continuous derivatives defined in the whole space. Then, for
g ∈ Hm ∩ L∞(Tn) one has:

‖ f ◦ g‖Hm � Am
(‖g‖∞

)‖ f ‖Cm
(
1 + ‖g‖Hm

)
,

where Am depends on ‖g‖∞; ‖ · ‖∞ denotes the essential supremum norm.
A.2) Let f ∈ Cm+2 , m > n/2. Then, for g,h ∈ Hm ∩ L∞(Tn) one has:

∥∥ f ◦ g − f ◦ h − D f ◦ h(g − h)
∥∥

Hm � Ãm
(‖g‖∞

)∥∥D2 f
∥∥

Cm‖g − h‖2
Hm .

B.1) Let f ∈ AC be an analytic function on a domain C ⊂ C
n/Zn × C

n, where C is a compensated domain.
Assume that g = (g1, . . . , gn) is such that g(Tn

ρ) ⊂ C and gi ∈Aρ with ρ > 0. Then f ◦ g ∈Aρ and

‖ f ◦ g‖Aρ � ‖ f ‖AC ,

where ‖ f ‖AC = supz∈C | f (z)|.
B.2) Similarly, if g,h are as above

∥∥ f ◦ g − f ◦ h − D f ◦ h(g − h)
∥∥
Aρ

� C
∥∥D2 f

∥∥
AC

‖g − h‖2
Aρ

.

Proof. A.1) is proven in [85, Section 13.3]. B.1) is obvious from the definition of the analytic norm as
supremum.

For the other two cases, we just use the fundamental theorem of calculus to write

f ◦ g(z) − f ◦ h(z) − D f ◦ h(z)(g − h)(z) =
1∫

0

dt

t∫
0

ds D2 f
(

gs(z)
)
(g − h)⊗2(z), (4.4)

where gs(z) is a path such that g0(z) = h(z), g1(z) = g(z).
In A.2), where we are assuming that the function f is defined everywhere, we can just take gs =

sg + (1 − s)h. This formula for gs also works when C is a convex domain, but for more general
domains we could need a more complicated path and the argument above only gives an estimate in
the right hand side of B.2) by the square of the length of the path. The definition of compensated
domains [31] is precisely that given any pair of points in the domain, we can find a path that joins
them, whose length is not more than a constant times the distance between the points. Of course,
all the convex domains are compensated. Note that, for the previous argument, since we are doing
pointwise estimates, there is no need that the paths corresponding to different z are related.
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Note that the same proof using (4.4) works both in the analytic and in the Sobolev case. Never-
theless, in the Sobolev case, since the Sobolev norms are not just pointwise estimates, one needs that
the paths joining two points depend well on the point. Hence, we included the assumption that the
functions are defined in the whole space. �
4.2. Estimates on cohomology equations

In this section, we collect estimates on the solutions of cohomology equations of the form (4.1),
which are the main tool in KAM theory. The results collected here are very standard. We note that
we provide estimates in two kinds of spaces: analytic and Sobolev spaces. We also present two types
of estimates, one that corresponds to |λ| 	= 1 and the other that applies uniformly for all λ ∈ R,
including λ = 1. Roughly, the estimates for |λ| 	= 1 involve no loss of differentiability, but they include
constants that depend on λ. When we present estimates that are valid for all values of λ in an interval
including 1, we will use the name the uniform case. The estimates for |λ| 	= 1 will be referred to as the
non-uniform case.

We also consider the dependence of the solutions on λ, but that is easy by observing that the
derivatives with respect to λ also satisfy cohomology equations.

It is interesting to remark that when |λ| 	= 1, the cohomology equations have a unique solution for
all the data. When λ = 1, they only have solutions for data in a space of codimension 1 (there is one
obstruction), but when there is a solution, there is a one-dimensional space of solutions. This is rem-
iniscent of what happens for finite dimensional matrices. Stating unified results for both the uniform
and the non-uniform case will give the key for the formulation of the limit of zero dissipation.

Lemma 18. Assume |λ| 	= 1, ω ∈ R
n. Then, given any Lebesgue measurable function η, there is one Lebesgue

measurable function ϕ satisfying (4.1). Furthermore, for ρ > 0, m > 0, the following estimates hold:

‖ϕ‖Aρ �
∣∣|λ| − 1

∣∣−1‖η‖Aρ ,

‖ϕ‖Hm �
∣∣|λ| − 1

∣∣−1‖η‖Hm . (4.5)

Finally, one can bound the derivatives of ϕ with respect to λ as

∥∥D j
λϕ

∥∥
Aρ

� j!
||λ| − 1| j+1

‖η‖Aρ , j � 1,

∥∥D j
λϕ

∥∥
Hm � j!

||λ| − 1| j+1
‖η‖Hm , j � 1. (4.6)

Proof. Note that (4.1) is equivalent to

ϕ(θ − ω) − 1

λ
ϕ(θ) = −1

λ
η(θ − ω), (4.7)

which is of the same form as (4.1), but it involves 1/λ in place of λ. Therefore, it suffices to consider
the case |λ| < 1. Note that (4.7) implies

ϕ(θ) = η(θ − ω) + λϕ(θ − ω)

= η(θ − ω) + λη(θ − 2ω) + λ2ϕ(θ − 2ω)

=
N∑

λiη
(
θ − (i + 1)ω

) + λN+1ϕ
(
θ − (N + 1)ω

)
.

i=0
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Using Lusin’s theorem and Poincaré recurrence theorem, it is easy to see that we have almost
everywhere limN→∞ λN+1ϕ(θ − (N + 1)ω) = 0. Therefore the only measurable solution of (4.1) is

ϕ(θ) =
∞∑

i=0

λiη
(
θ − (i + 1)ω

)
. (4.8)

Since

∥∥η(· − (i + 1)ω
)∥∥

Aρ
= ∥∥η(·)∥∥Aρ

and

∥∥η(· − (i + 1)ω
)∥∥

Hm = ∥∥η(·)∥∥Hm ,

we obtain that (4.8) converges uniformly in Aρ , Hm , whenever η belongs to these spaces. On spaces
X =Aρ or X = Hm , we also have that

‖ϕ‖X �
( ∞∑

i=0

|λ|i
)

‖η‖X ,

which establishes (4.5).
To study the limit of conservative systems, we note that, taking derivatives with respect to λ of

(4.8) and observing that the resulting series converges uniformly on 0 < |λ| � 1 − ε for any ε > 0, we
obtain that

D j
λϕ(θ) =

∞∑
i= j

i!
(i − j)!λ

i− jη
(
θ − (i + 1)ω

)
,

from which (4.6) follows straightforwardly; note that the estimates (4.5) and (4.6) become singular as
|λ| → 1. �

Next we consider the case λ in an interval containing 1 and we present the following result, which
is standard in KAM theory (see [77]).

Lemma 19. Consider (4.1) for λ ∈ [A0, A−1
0 ] for some 0 < A0 < 1 and let ω ∈ D(ν, τ ). Assume that η ∈ Aρ ,

ρ > 0 (respectively η ∈ Hm, m > τ ) and that ∫
Tn

η(θ)dθ = 0.

Then, there is one and only one solution of (4.1) with zero average:
∫
Tn ϕ(θ)dθ = 0. Furthermore, if ϕ ∈Aρ−δ

for every δ > 0 (resp. ϕ ∈ Hm−τ in the Sobolev estimate), then we have

‖ϕ‖Aρ−δ � C
1

ν
δ−τ ‖η‖Aρ ,

‖ϕ‖Hm−τ � C
1 ‖η‖Hm , (4.9)

ν
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where C is a constant that depends on A0 and the dimension of the space, but it is uniform in λ and it is
independent of the Diophantine constant ν .

Note that, when λ = 1, there are other solutions of (4.1), but all the solutions differ by a constant.
The result of Lemma 19 is that the estimates of solutions of cohomology equations normalized to
average zero are uniform when λ ranges over an interval that contains 1.

Proof. The analytic bound is established in [77]; in that reference, only the case λ = 1 is treated in
detail, but all other cases can be treated by the same method as well. We note that, if we express η in
Fourier coefficients, η(θ) = ∑

j∈Zn η̂ j exp(2π i j · θ) and similarly for ϕ , we see that (4.1) is equivalent
to having for all j ∈ Z

n ,

(
λ − exp(2π i j · ω)

)
ϕ̂ j = η̂ j. (4.10)

Clearly, when λ = 1 and j = 0, it is impossible to satisfy (4.10) unless η̂0 = 0. In such a case, we have
that ϕ̂0 is arbitrary. In all other cases, provided that (λ− exp(2π i j ·ω)) 	= 0, we can find ϕ̂ j by setting

ϕ̂ j = (
λ − exp(2π i j · ω)

)−1
η̂ j .

Hence, it suffices to estimate the multipliers using Cauchy bounds and (3.1), as it is done in [78] to
get (4.9). �

Note that Lemma 19 involves only values of λ ranging over a real interval. A conjecture concerning
complex values of λ will be given in Section 10. The result is false for sets that include circular
segments of the circle |λ| = 1, because in such segments there are new small (or zero!) divisors that
appear.

5. Statement of the main results

In this section we formulate the main results for maps which we state in Theorem 20. We note
that this result is formulated in an a-posteriori format, namely we show that if there is a function
which solves approximately the invariance equation (3.2) and satisfies some explicit non-degeneracy
condition, then there is a true solution which is locally unique. Furthermore, we can bound the dif-
ference between the original approximate solution and the exact one by the original error in the
invariance equation. It is quite important to note that we do not assume that the system is close to
integrable, but only that we have an approximate solution. We note that Theorem 20 involves adjust-
ment of parameters, as it is certainly needed in the dissipative case as indicated before (see [61]). In
the conservative case, as it is well known, the adjustment of parameters is not needed and one can
choose suitable initial conditions.

A general KAM theory with adjustment of parameters is developed in [70]. Nevertheless, the pa-
rameter count of Theorem 20 is somewhat different than the parameter count in [70] because, as
shown in Section 3.1, the geometric structures present in our problems produce the automatic re-
ducibility and fix some of the parameters. On the other hand, the requirement that the geometry is
fixed imposes extra restrictions.

As noted before, we present statements in analytic and Sobolev norms as well as statements that
are uniform in λ as λ approaches 1, and also statements that assume that |λ| is away from 1.

In Section 8 we present local uniqueness results as well as some elementary consequences (Lip-
schitz dependence, measure estimates). In Section 10 we will also show that one can obtain pertur-
bative expansions including the rather singular limit of zero dissipation. We also show that these
expansions are convergent when there is some dissipation. In Section 9 we show the bootstrap of the
regularity of solutions, from which we obtain a numerically accessible criterion for the study of the
boundary of the analyticity domain of the solutions. The criterion roughly asserts that the boundary
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of analyticity can be computed by a continuation method deforming the parameters while monitor-
ing some Sobolev norms. This criterion has been already used for dissipative mappings in [15,24] and
found to be quite practical and accurate. Of course, even if a method can theoretically reach arbi-
trarily close to breakdown, in practical implementations one has to deal with limitations in memory
precision and time of machines. The results of [15,24] show that the method is quite practical. Similar
justifications and implementations in the conservative cases can be found in [19,21,20].

The method of proof of Theorem 20 is to show that if we start a quadratically convergent method,
it will converge; the quadratic convergence is used to overcome the small divisors that appear in
the iterative step. A detailed formulation of the iterative step will be presented in Section 6. The
step is based on some geometric identities (“automatic reducibility”, already discussed in Section 3.1),
which reduce the Newton’s step to the solution of the standard difference equations with constant
coefficients discussed in Section 4. We note that the automatic reducibility leads to a very efficient
numerical algorithm (see Algorithm 33).

We present the estimates both in analytic spaces and in Sobolev spaces. Given the abstract formu-
lation we use, this does not require much more work. We also present a self-contained proof in the
analytic case (Section 7.6), which is much easier to read and which could be appropriate for a first
reading.

For a function B we denote by B its average and by (B)0 = B − B .

Theorem 20. H1 Let ω ∈Dn(ν, τ ) according to (3.1). Let M be as in Section 2.
H2 Let fμ with μ ∈ Λ, Λ ⊆ R

n open, be a family of conformally symplectic mappings with respect to a
symplectic form Ω , that is f ∗

μΩ = λΩ (see Definition 1) with λ constant.
Let K0 : Tn →M, μ0 ∈R

n and define E, such that

fμ0 ◦ K0 − K0 ◦ Tω = E.

H3 Assume that the following non-degeneracy condition holds:

det

(
S S(Bb)

0 + Ã1

(λ − 1) Id Ã2

)
	= 0, (5.1)

where the n × n matrix S is an algebraic expression involving derivatives of K0 written explicitly in (3.9). The
n×n matrices Ã1 , Ã2 denote the first n and the last n columns of the 2n×n matrix Ã = M−1 ◦Tω Dμ0 fμ0 ◦ K0 ,
where M is written explicitly in (3.13). The n × n matrix (Bb)

0 is the solution (with zero average) of λ(Bb)
0 −

(Bb)
0 ◦ Tω = −( Ã2)

0 . We denote by

T ≡
∥∥∥∥∥
(

S S(Bb)
0 + Ã1

(λ − 1) Id Ã2

)−1∥∥∥∥∥
and we refer to T as the twist constant.

A) Analytic case:
Assume H1–H3 and that K0 ∈ Aρ for some ρ > 0. Assume furthermore that for μ ∈ Λ we have that fμ

is a C1-family of analytic functions on a domain – open connected set – C ⊂ C
n/Zn × C

n with the following
assumption on the domain.

H4 There exists a ζ > 0, so that

dist(μ0, ∂Λ) � ζ,

dist
(

K0
(
T

n
ρ

)
, ∂C

)
� ζ.

Furthermore, assume that the solution is sufficiently approximate in the following sense.
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H5 We assume that, for some 0 < δ < ρ/2, E satisfies the inequality

‖E‖Aρ � Cν2�δ2�τ ;

here and below C denotes a constant that can depend on τ , n, T , ‖DK0 ‖ρ , ‖N‖ρ , ‖M‖ρ ‖M−1‖ρ , where N,
M are defined in (3.5), (3.13) as well as on ζ entering in H4. In such a case, � takes the value 2. If we allow C
to depend on λ with |λ| 	= 1, we can take � = 1.

Then, there exists μe, Ke such that

fμe ◦ Ke − Ke ◦ Tω = 0. (5.2)

The quantities Ke , μe satisfy

‖Ke − K0‖Aρ−�δ
� Cν−�δ−�τ ‖E‖Aρ ,

|μe − μ0| � C‖E‖Aρ .

B) Finitely differentiable, Sobolev case:
Assume H1–H3 and that for μ ∈ Λ, Λ being an open set in R

n, we have that fμ is a C1-family of Cr

functions (where r � m + 13�τ + 2 with m > n
2 + �τ and � specified below) on a domain – open connected

set – C ⊂ T
n ×R

n.
H4’ Assume that there exists a ζ > 0, so that

dist(μ0, ∂Λ) � ζ,

dist
(

K0
(
T

n), ∂C)
� ζ.

Furthermore, assume that the solution K0 ∈ Hm+13�τ is sufficiently approximate in the following sense.
H5’ Assume that E and ε∗ > 0 satisfy the inequality

‖E‖Hm−�τ � ε∗,

where ε∗ = ε∗(τ , ν,n,T ,‖DK0 ‖Hm ,‖N‖Hm ,‖M‖Hm ,‖M−1‖Hm ) is an explicit function.
Then, there exists Ke,μe satisfying (5.2) and such that they also satisfy the following distance bounds:

‖Ke − K0‖Hm � C‖E‖Hm−�τ ,

|μe − μ0| � C‖E‖Hm−�τ ,

with � = 2 in the uniform case, while � = 1 if C depends on λ with |λ| 	= 1.

Remark 21. We note that the properties on the function f enter only very mildly, since it suffices to
find bounds on some of its derivatives. Of course, in the analytic case, one can obtain the derivatives
from estimates on the size in a slightly bigger domain.

Remark 22. Notice that the non-degeneracy condition H3 has just the structure of the inverse of a
matrix obtained averaging algebraic expressions of the derivatives of K0. This makes it reasonably
clear that if we modify K0 slightly, the condition H3 will also hold and that in a neighborhood of K0
we can maintain the twist constant uniformly bounded. In particular, when we make small modifi-
cations by iterating the Newton procedure, the twist constant can be maintained. More details and
quantitative estimates of the change will be developed in the proof.



1004 R.C. Calleja et al. / J. Differential Equations 255 (2013) 978–1049
Remark 23. Notice that the non-degeneracy condition in H3 has a well-defined meaning when λ

approaches 1, since for λ = 1, (5.1) just amounts to det(S) 	= 0, which is the standard Kolmogorov

twist condition in KAM theory (see [30]), and det( Ã2) 	= 0, which is just the non-degeneracy of the
family with respect to parameters.

Remark 24. When λ = 1, the existence of invariant tori requires that Ω is an exact form and that the
mapping f is exact. For λ close to 1 one does not need that Ω is an exact form, nor that f is exact.

The reason is that the exactness comes into the proof because the automatic reducibility requires
that the approximately invariant torus is approximately Lagrangian. This is proved showing that K ∗Ω
solves a cohomology equation with a small right hand side. In the case |λ| 	= 1 this is indeed enough
to show that K ∗Ω is small. In the λ = 1 case, this cohomology equation only allows to conclude that
K ∗Ω is almost constant and we need to use the exactness to conclude that the constant is zero.

In the case that Ω is exact, we can see that the existence of an approximately invariant torus
implies that the map is approximately exact. The non-degeneracy condition H3, includes that we can
change the cohomology of the map by changing μ. Hence, since fμ is approximately exact, using
H3 we can make a small change of parameters so that the mapping becomes exact. This choice of
parameters is implicit in the procedure. We see that, as λ approaches 1, the parameters μ approach
zero, so that fμ gets to be exact.

The solutions produced by Theorem 20 are essentially unique; as already remarked, the only pos-
sibility to get different but close solutions of the invariance equation is to change the origin in the
parameterization. This will be made more explicit in Theorem 29.

The main idea in the proof Theorem 20 (in the notation of [90]) is that the linearized equation
has a right inverse. To obtain the uniqueness result of Theorem 29 we remark that there is also a left
inverse.

5.1. Uniqueness results

5.1.1. A preliminary normalization
In order to deal with the non-uniqueness pointed out in Remark 5, we note that it is possible to

impose an extra normalization (see (5.3) below) for all possible candidates to a solution in a neigh-
borhood of the solution. We note that the proof that the normalization can be achieved is elementary
and it only uses the standard implicit function theorem. Hence, at the only price of complicating
slightly the proximity assumptions in the statement of Theorem 29, one can formulate Theorem 29
without involving the normalization (see Remark 27).

The normalization (5.3) below also plays a role in the study of perturbative expansions, see Sec-
tion 10. Of course, to discuss dependence on parameters, one needs to eliminate arbitrary choices, so
that some normalization that makes the solutions unique is needed. We also note that some variants
of this normalization are easy to impose in the algorithms that we are going to discuss.

Our chosen normalization is as follows. We want that the function K (σ )
2 = K2 ◦ Tσ satisfies∫

Tn

[
M−1(θ)

(
K (σ )

2 (θ) − K1(θ)
)]

1 dθ = 0, (5.3)

where the subindex 1 in the braces means taking the first n components. In other words, if we write
K (σ )

2 − K1 = MWσ , we are imposing that [Wσ ]1 has zero average.

Remark 25. The geometric meaning of the lack of uniqueness pointed out in Remark 5 is just that we
can shift the origin of coordinates in the reference torus we are embedding. The geometric meaning
of the normalization (5.3) is precisely that we make a definite choice of the phase. We note that the
torus K1 admits a natural system of coordinates. The integral in (5.3) can be understood geometrically
as the average phase of K (σ )

2 in the coordinates associated to K1 in Section 3.2. Since the torus K2 is
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horizontal in the coordinates given by K1 (their tangent spaces are very close), we see that a change
in the phase of the embedding K2 changes the average phase K2 and we can obtain the normalization
(5.3) applying the implicit function theorem. As we will see later, the fact that the shift in phase is
the only non-uniqueness of the solution is related to the fact that we characterize the non-uniqueness
of the solutions of the linearized invariance equation.

The normalization equation (5.3) can be considered as the average over the angle coordinates of
the difference in the adapted coordinates (introduced in Section 3.2) in the neighborhood of K1.

Proposition 26. Let K1, K2 be solutions of (3.2), ‖K1 − K2‖C1 be sufficiently small (with respect to quantities

depending only on M – computed out of K1 – and f ). Then, there exists σ ∈ R
n, such that K (σ )

2 = K2 ◦ Tσ

satisfies (5.3). Furthermore:

|σ | � C‖K1 − K2‖C0 , (5.4)

where C can be chosen to be as close to 1 as desired by assuming that fμ , K1 , K2 are twice differentiable,
DKT

1 DK1 is invertible and ‖K1 − K2‖C0 is sufficiently small.
The σ thus chosen is locally unique.

Proof. The proof is an easy application of the finite dimensional implicit function theorem.
We realize that, expressing Wσ in the coordinates given by M , we have

K (σ )
2 − K1 = DK1[Wσ ]1 + J−1 ◦ K1 DK1 N1[Wσ ]2.

If we take derivatives with respect to σ , we obtain:

Dσ K (σ )
2 = DK1[Dσ Wσ ]1 + J−1 ◦ K1 DK1 N1[Dσ Wσ ]2.

Multiplying the left hand side by DKT
1 J ◦ K1 and by DKT

1 , using that the torus K1 is Lagrangian and

that Dσ K (σ )
2 = DK2 ◦Tσ , we get

DKT
1 J ◦ K1 DK2 ◦Tσ = [Dσ Wσ ]2,

DKT
1 DK2 ◦Tσ = DKT

1 DK1[Dσ Wσ ]1 + γ1N1[Dσ Wσ ]2,

where γ1 is as in (3.10) corresponding to the torus K1. By (3.6) we obtain that [Dσ Wσ ]2 is small,
if DK1 is close to DK2 and σ is small; under these conditions we obtain that [Dσ Wσ ]1 is close
to the identity. An application of the implicit function theorem concludes the proof. In fact, if we
define a function F (x, σ ) = ∫

Tn [M−1(θ)(K (σ )
2 (θ)− K1(θ)−x)]1 dθ , we recognize that F (K2 − K1,0) = 0.

Moreover,

Dσ F (x,σ ) =
∫
Tn

[Dσ Wσ ]1 dθ

is close to the identity if K2 is close to K1. Applying the implicit function theorem, there exists a
differentiable function u = u(x), such that F (x, u(x)) = 0; from u(x) = σ one obtains the estimate
(5.4). �
Remark 27. Notice that the normalization (5.3) does not use at all that K1 is a solution of the invari-
ance equation (3.2). We just use that M is invertible and that the inverse function theorem for the
average can be used. Hence, it works just as well when K1 is an approximate solution.



1006 R.C. Calleja et al. / J. Differential Equations 255 (2013) 978–1049
Remark 28. Note that from the inequality

‖K2 − K2 ◦ Tσ ‖ � ‖D K2‖|σ | � C‖DK2 ‖‖K1 − K2‖C0 ,

we can derive bounds on ‖K1 − K2 ◦ Tσ ‖ from bounds on ‖K1 − K2‖.
The statement of Theorem 29 will be done under the assumption that the solution K2 is nor-

malized with respect to K1. In numerical applications computing the shift is not very difficult and
for concrete solutions one can get better estimates using direct numerical calculations, than those
obtained using the triangle inequality as above.

5.1.2. Statement of the local uniqueness theorem
Theorem 29. Let ω ∈ Dn(ν, τ ) according to (3.1). Let fμ be a family of conformally symplectic mappings
satisfying Definition 1 with λ constant. Let (K1,μ1), (K2,μ2) be solutions of (3.2). Assume also that K2
satisfies (5.3).

In the analytic case, let fμ be a C1-family of analytic functions, satisfying the non-degeneracy condition
H3 at K1 , μ1 and assume that assumption H4 about the domain of fμ1 and the range of K1 holds. Let M+ ≡
max(‖M‖Aρ ,1), M− ≡ max(‖M−1‖Aρ ,1). Assume that we have the following inequality:

C‖DμD(I,ϕ) fμ‖ACν−�δ−�τ M3+M− max
(‖W ‖Aρ+�δ

, |μ1 − μ2|
)
< 1. (5.5)

Then, we have

K1 = K2, μ1 = μ2.

In the Sobolev case, let fμ be a C1-family of Cr functions, r � m + 2, m > n/2 + �τ satisfying the non-
degeneracy condition H3 at K1 , μ1 . Let M+ ≡ max(‖M‖Hm ,1), M− ≡ max(‖M−1‖Hm ,1), where M has been
defined in (3.13). Assume that we have the following inequality:

C‖DμD(I,ϕ) fμ‖Cmν−�M3+M− max
(‖W ‖Hm+�τ , |μ1 − μ2|

)
< 1. (5.6)

Then, we have

K1 = K2, μ1 = μ2.

In both analytic and Sobolev cases, we can take � = 1 if we allow the constants to depend on λ with |λ| 	= 1
and � = 2 if we allow the constants to be independent on λ.

The proof of Theorem 29 is given in Section 8. Of course, given Proposition 26 if we assume just
that the solutions are sufficiently close (in a slightly stronger sense), we can assume that there is a
normalized solution which is also normalized. Then Theorem 29 concludes that there exists σ ∈ R

n

such that K1 = K2 ◦ Tσ .

5.1.3. Some straightforward conclusions of uniqueness: Lipschitz dependence on parameters, measure
estimates

An easy corollary of Theorems 20 and 29 is that if we consider a family of maps, which depends in
a Lipschitz way on a parameter, then we obtain a Lipschitz dependence of the solution with respect
to the parameter. Later, in Section 10.3, we will obtain sharper conclusions of differentiability on
parameters, assuming, of course, that the problem is differentiable with respect to parameters. This is
closely related to the existence and convergence of perturbative expansions.
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Corollary 30. Assume that the family fμ,φ depends also on a parameter φ , belonging to a metric space (Y,d),
and assume that for each value of φ , the map fμ,φ satisfies the hypotheses of Theorem 20 with uniform con-
stants. Assume also a Lipschitz dependence with respect to the parameter φ for m > n/2+�τ for a fixed K . That
is, assume that for a φ0 ∈Y with φ,φ′ sufficiently close to φ0 and for all K in a sufficiently small neighborhood
of Kφ0 , in the corresponding spaces we have:

‖ fμ,φ ◦ K − fμ,φ′ ◦ K‖Aρ � ÃL d
(
φ,φ′),

‖ fμ,φ ◦ K − fμ,φ′ ◦ K‖Hm � ÃL d
(
φ,φ′) (5.7)

for a suitable constant ÃL . Then, there exists a constant AL such that the solution (φ, Kφ,μφ) of the invariance
equation

fμφ,φ ◦ Kφ = Kφ ◦ Tω,

produced by applying Theorem 20 (and normalized so that we obtain uniqueness) is Lipschitz with respect to
the parameter φ with a constant C ÃL , i.e.

‖Kφ − Kφ′ ‖Aρ−�δ
� C ÃLν

−�δ−�τ d
(
φ′, φ

)
in the analytic case with δ as in Theorem 20 and

‖Kφ − Kφ′ ‖Hm � C ÃL d
(
φ′, φ

)
in the Sobolev case with

|μφ − μφ′ | � C ÃL d
(
φ′, φ

)
,

where � = 2 in the uniform case and � = 1 if we allow C to depend on λ with |λ| 	= 1.

The proof of Corollary 30 (see Section 8) relies on the remark that if (φ, Kφ,μφ) is a solution of
(3.2) corresponding to the parameter φ, we have∥∥ fμφ,φ′ ◦ Kφ − Kφ ◦ Tω

∥∥
Aρ

= ∥∥ fμφ,φ′ ◦ Kφ − fμφ,φ ◦ Kφ

∥∥
Aρ

� ÃL d
(
φ,φ′).

Then, applying Theorem 20 and the local uniqueness for normalized solutions, Theorem 29, we obtain
Corollary 30.

A simple consequence of Corollary 30 is the following.

Corollary 31. Assume that in the hypotheses of Theorem 20, we have an exact solution fμ0 ◦ K0 − K0 ◦ Tω0 = 0
with K0 ∈Aρ+δ (K0 ∈ Hm+1 , m > n/2 + �τ ), ω0 ∈Dn(ν, τ ). Fix 0 < δ < ρ; then, for s > 0 sufficiently small

and for all ω ∈ D̃s ≡ Dn(ν, τ ) ∩ Bs(ω0) (we denote by Bs(ω0) ⊂ R
d, the ball of radius s around ω0), there

exist Kω ∈Aρ−�δ (Kω ∈ Hm), μω ∈ R
n such that

fμω ◦ Kω − Kω ◦ Tω = 0,

and Kω is normalized according to (5.3).
Furthermore, the mapping ω → (Kω,μω) is Lipschitz, when considered as a mapping from the closed set

D̃s to Aρ−�δ × R
n (Hm × R

n), where � = 2 in the uniform case and � = 1 if we allow the Lipschitz constant
to depend on λ with |λ| 	= 1.
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We note that there are more sophisticated arguments that give that the dependence on the fre-
quency is differentiable in the Whitney sense [88].

The proof of Corollary 31 is simply to observe that

‖ fμ0 ◦ K0 − K0 ◦ Tω‖Aρ = ‖K0 ◦ Tω0 − K0 ◦ Tω‖Aρ � Cδ−1‖K0‖Aρ+δ |ω − ω0|

in the analytic case and

‖ fμ0 ◦ K0 − K0 ◦ Tω‖Hm = ‖K0 ◦ Tω0 − K0 ◦ Tω‖Hm � C‖K0‖Hm+1 |ω − ω0|

in the Sobolev case. Hence, when |ω − ω0| is small enough, we can take K0,μ0 as an approximate
solution of the invariance equation for the frequency ω, so that the error in the invariance can be
made arbitrarily small by making |ω − ω0| sufficiently small. We also note that the non-degeneracy
conditions depend only on K0,μ0 and therefore they are uniform with the choices of ω.

It then follows from the application of Theorem 20 that we can have a solution Kω,μω . Further-
more, we have that ‖Kω − K0‖Aρ−�δ

(‖Kω − K0‖Hm ) and |μω − μ0| are smaller than C |ω − ω0|. It is
important that we choose K normalized, for example satisfying the normalization (5.3).

Now, we observe that we can apply the argument again to all ω, ω′ ∈ D̃s and, eventually redefining
the constants and making the smallness conditions stronger, we obtain

‖Kω − Kω′ ‖Aρ−�δ
,‖Kω − Kω′ ‖Hm , |μω − μ0| � C

∣∣ω − ω′∣∣.
An immediate consequence of Corollary 30 is the following.

Corollary 32. In the conditions of Theorem 20, there is a positive measure set of μ, such that there is a K and
an ω satisfying (3.2).

The proof of Corollary 32 is just to observe that the set of Diophantine points is a set of positive
measure. Since the mapping ω → μω is bi-Lipschitz, it sends a set of positive measure into a set of
positive measure.

Notice that, due to Proposition 10, the solutions of (3.2) are attractors. Hence, we show that the
set of parameters μ for which the attractor is quasi-periodic has positive measure. Furthermore, the
set described by Corollary 32 is bi-Lipschitz equivalent to the set of Diophantine numbers Dn(ν, τ ).
This is a geometrically complicated set full of gaps. In the gaps of this set (which can be large in
some topological sense) the attractors could have a dynamics more complicated than quasi-periodic
(e.g., strange attractors, see [61]).

6. Formulation of the iterative step in the proof of Theorem 20

In this section we formulate the iterative step of the Newton’s method and we argue that it leads
to a fast and efficient algorithm (we present the algorithm in Section 6.2.2). Estimates showing that
the error after a Newton’s step is quadratic in the original errors (using the appropriate norms) will be
developed in Section 7. Given these estimates, standard KAM theory ensures that, if the initial error is
small enough, then the iteration procedure can be repeated indefinitely and it converges to a solution
which is close to the initial approximation. In Section 7 we provide estimates on the dependence on
parameters, characterizing the limit of small dissipation. The efficiency of the iterative step is due to
the fact that we take advantage of some identities of geometric origin as described in Section 3.1.
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6.1. The Newton’s equation for the invariance equation

We start with an approximate solution of (3.2) up to an error term E , say

fμ ◦ K − K ◦ Tω = E, (6.1)

where E is supposed to be small. Newton’s method consists in finding corrections �, σ to K and
μ respectively, such that the linear approximation of the transformation associated to K + �, μ + σ
quadratically reduces the error. Taking into account that

fμ+σ ◦ (K + �) = fμ ◦ K + [D fμ ◦ K ]� + [Dμ fμ ◦ K ]σ + O
(‖�‖2) + O

(|σ |2),
the resulting equation is

[D fμ ◦ K ]� − � ◦ Tω + [Dμ fμ ◦ K ]σ = −E. (6.2)

6.2. A method to find approximate solutions of the linearized equation (6.2). A quasi-Newton method

Eq. (6.2) is not easy to solve, since it involves the unknown function � evaluated at different
points and, moreover, the factor D fμ ◦ K appearing in the first term is not constant.

We will not solve (6.2) exactly, but we will find approximate solutions that still lead to a quadrat-
ically convergent procedure.

The main idea to find approximate solutions of (6.2) is to use the geometric identities developed
in Section 3.1. Using the matrix valued function M introduced in (3.13), we change variables in (6.2)
by setting

� = MW (6.3)

and we seek W instead of �. Note that in the iterative step M is known because it is an explicit
expression (given in (3.13)) involving derivatives of K , which is known.

The geometric meaning of (6.3) is that M defines a frame of vector fields that transforms very
simply under the map fμ . The new unknown W is just the expression of � in the coordinates given
by M . Using (6.3) we have that Eq. (6.2) is equivalent to

D fμ ◦ K MW − (M ◦ Tω)(W ◦ Tω) + Dμ fμ ◦ Kσ = −E;

using (3.20) one obtains that (6.2) is equivalent to:

M ◦ Tω

[(
Id S(θ)

0 λ Id

)
W − W ◦ Tω

]
+ Dμ fμ ◦ Kσ = −E − RW , (6.4)

where R is the error in (3.20). Since we expect that �, and therefore W , are estimated by E and, as
we argued before, so is R , we obtain that the term RW in (6.4) is quadratic in E; therefore, we expect
that we can omit this term without changing the quadratic nature of the method. Precise estimates
for R and for the other quantities will be established in Section 7.

Our iterative step consists in solving the following equation (6.5), obtained dropping the term RW
from (6.4): (

Id S(θ)

0 λ Id

)
W − W ◦ Tω = −M−1 ◦ Tω E − M−1 ◦ Tω Dμ fμ ◦ Kσ . (6.5)
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As we will see, (6.5) reduces to difference equations with constant coefficients, so that it can be
solved very efficiently by using Fourier methods. Eq. (6.5) can be expressed in components as

W1 − W1 ◦ Tω = −SW2 − Ẽ1 − ( Ãσ)1,

λW2 − W2 ◦ Tω = −Ẽ2 − ( Ãσ)2, (6.6)

where, to simplify the notation, we have written

Ẽ = M−1 ◦ Tω E ≡ (̃E1, Ẽ2),

Ã = M−1 ◦ Tω Dμ fμ ◦ K . (6.7)

Note that Ã is a 2n × n matrix that we write as Ã = [ Ã1| Ã2] with Ã1, Ã2 being n × n matrices.
The system of equations (6.6) has an upper triangular structure. The second equation involves

only W2, but the first equation involves W1 and W2. So, it is natural to try to solve first the equation
for W2, substitute in the first equation of (6.6) and then find W1.

Note that both equations in (6.6) for the unknowns W1, W2 are cohomology equations of the form
studied in Section 4.2. The main subtlety of the procedure comes from the fact that these equations
involve small divisors and obstructions which will be accommodated by choosing parameters. These
obstructions and choices of parameters are different when λ = 1 and when |λ| 	= 1, but we will
present a choice that works uniformly in both cases. We will first discuss these choices of parameters;
once we do that, the discussion of estimates will become an application of the results of Section 4.2.

6.2.1. The choice of parameters
When |λ| 	= 1, the second equation can always be solved and has a unique solution, while for any

λ the first equation involves small divisors and it requires that the right hand side has zero average.
On the other hand, when λ = 1, both equations involve small divisors and require that the right hand
side has zero average, but the solution of W2 is not unique and it admits an arbitrary constant. In
some way, the freedom of having an arbitrary average for W2 compensates the extra obstruction
required for λ = 1.

We now study the problem systematically. Given a function B we denote by B its average and by
(B)0 = B − B , the no-average part.

We can divide (6.6) into two systems, one for the average and another one for the no-average part:

0 = −SW2 − S(W2)0 − Ẽ1 − Ã1σ ,

(λ − 1)W2 = −Ẽ2 − Ã2σ , (6.8)

(W1)
0 − (W1)

0 ◦ Tω = −(SW2)
0 − (̃E1)

0 − ( Ã1)
0σ ,

λ(W2)
0 − (W2)

0 ◦ Tω = −(̃E2)
0 − ( Ã2)

0σ . (6.9)

Unfortunately, the two systems (6.8) and (6.9) are not completely uncoupled due to the term S(W2)0

appearing in the first equation of (6.8). Nevertheless, it is easy to uncouple the system because (W2)
0

is an affine function of σ , since it satisfies (6.9). We define (Ba)
0, (Bb)

0 to be the zero average
solutions of, respectively,

λ(Ba)
0 − (Ba)

0 ◦ Tω = −(̃E2)
0,

λ(Bb)
0 − (Bb)

0 ◦ Tω = −( Ã2)
0. (6.10)
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These equations (6.10) are readily solvable using the lemmas in Section 4.2. In particular, note that
we have estimates which are uniform in λ as λ goes through 1.

We therefore see that we can transform (6.8) into

0 = −S W2 − S(Ba)0 − S(Bb)
0σ − Ẽ1 − Ã1σ ,

(λ − 1)W2 = −Ẽ2 − Ã2σ . (6.11)

The system (6.11), in spite of its typographically formidable appearance, is a finite dimensional system
that we can write as(

S S(Bb)
0 + Ã1

(λ − 1) Id Ã2

)(
W2

σ

)
=

(−S(Ba)0 − Ẽ1

−Ẽ2

)
. (6.12)

The non-degeneracy condition that we assumed in H3 is precisely that the determinant of the matrix
at the left hand side of (6.12) is not zero.

In summary, the algorithm to perform a quasi-Newton step is to: 1) form the auxiliary quantities
entering into (6.11), 2) solve for W2, σ , 3) solve (6.9). In Section 6.2.2 we will present the algorithm
and in Section 7 we will present estimates.

6.2.2. The algorithm for the improved approximation
The procedure described before in Section 6.2 leads to the algorithm described below for a given

Diophantine frequency ω, where each step is denoted as follows: “a ← b” means that the quantity a
is assigned by the quantity b.

Assume that we are given a family fμ , and that we can compute D fμ , Dμ fμ . The family is quasi-
conformal so that f ∗

μΩ = λΩ . The following algorithm computes an improved approximation for any
λ ∈ R.

Algorithm 33. Given K : Tn →M, μ ∈ R
n, we denote by λ ∈ R the conformal factor for fμ . We perform the

following computations:

1) E ← fμ ◦ K − K ◦ Tω

2) α ← DK

3) N ← [αT α]−1

4) M ← [α, J−1 ◦ KαN]
5) β ← M−1 ◦ Tω

6) Ẽ ← βE

7) P ← αN

A ← λ Id

γ ← αT J−1 ◦ Kα

S ← (P ◦ Tω)T D fμ ◦ K J−1 ◦ K P − (N ◦ Tω)T (γ ◦ Tω)(N ◦ Tω)A

Ã ← M−1 ◦ Tω Dμ fμ ◦ K

8) (Ba)
0 solves λ(Ba)

0 − (Ba)
0 ◦ Tω = −(̃E2)

0

(Bb)
0 solves λ(Bb)

0 − (Bb)
0 ◦ Tω = −( Ã2)

0

9) Find W 2 , σ solving

0 = −S W2 − S(Ba)0 − S(Bb)
0σ − Ẽ1 − Ã1σ ,

(λ − 1)W2 = −Ẽ2 − Ã2σ .
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10) (W2)
0 = (Ba)

0 + σ(Bb)
0

11) W2 = (W2)
0 + W 2

12) (W1)
0 solves (W1)

0 − (W1)
0 ◦ Tω = −(SW2)

0 − (̃E1)
0 − ( Ã1)

0σ

13) K ← K + MW

μ ← μ + σ .

We formulate in Appendix A the equivalent of the Algorithm 33 for flows.

Remark 34. Algorithm 33 is constructed as follows. Step 1 follows from (6.1); step 2 defines α; steps
3, 4 follow respectively from (3.5), (3.13); step 5 defines β; steps 6, 7 follow respectively from (6.7),
(3.9); step 8 follows from (6.10); step 9 gives the solution of (6.11); step 10 solves the second of (6.9);
step 11 provides the solution W2; step 12 solves the first of (6.9); step 13 determines the corrections
�, σ with � as in (6.3).

Remark 35. There are two important points to underline in the above algorithm. One is that no large
matrix (i.e. a matrix of dimension equal to the elements used in the discretization) is stored (and
much less, inverted).

Another important point is that steps 2), 8), 10), 11), 12) are diagonal operations in the Fourier
space, while all other steps are diagonal in the real space (a few of the steps, 10), 11) are diagonal
in both spaces). Of course, once we obtain a representation of the function in discrete points or in
Fourier space, we can obtain the other applying the Fast Fourier Transform (FFT). Therefore, if we
decide to discretize the unknowns using N Fourier modes (as well as N discretization points), the
storage required is O (N) and the number of operations is O (N log N) – due to the FFT we use to
switch from the representations in Fourier modes and in discrete space.

We will show that the algorithm has quadratic convergence.
Note that the algorithm does not require that the system is close to integrable. In particular, a

continuation method can follow the tori all the way to breakdown.
Note that the algorithm is reasonably easy to implement and indeed has been implemented and

run in [15,24].

Remark 36. Denoting by J0 =
(

0 Id
− Id 0

)
the standard symplectic structure, we have that

MT J ◦ K M = J0 + O (E). (6.13)

Without changing the quadratic character of the algorithm, we can modify step 5) of the algorithm
by using an approximate inverse M−1 obtained as J−1

0 MT J ◦ K .
Of course, from the theoretical point of view both methods for step 5 require O (N) operations. If

we use 5), the coefficient is the number of operations needed to invert n × n matrices, while in the
case of (6.13) it is the number of operations needed to carry out the multiplication indicated. Note
that J0 is a very simple matrix, so that the multiplication is just a rearrangement of the coefficients,
which in practice is easier to program. We do not need to link to linear algebra routines to compute
n×n inverses and the only operations needed are very simple ones (such as those in the BLAS package
[26]).

7. Estimates for the iterative step

7.1. Approximate reducibility

In this section, we present estimates on the approximate reducibility (see Lemma 37), which is a
perturbation of the geometric arguments developed in Section 3.1. We present two versions of the
estimates: one in the spaces of analytic functions and another in the space of Sobolev functions.
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Lemma 37. Let fμ : M → M be an analytic (respectively, Cr ) conformal symplectic mapping. Let ω ∈
D(ν, τ ).

Let K : Tn → M be an embedding such that K ∈ Aρ (respectively, K ∈ Hm, m > n/2 + τ + 1 in the
uniform case, m > n/2 + 1 in the non-uniform case, r � m + 1).

Assume further that for some ζ > 0:

1) K (Tn
ρ) ⊂ domain( fμ),

dist
(

K
(
T

n
ρ

)
, ∂ domain( fμ)

)
� ζ > 0;

2) the approximate invariance equation holds:

fμ ◦ K − K ◦ Tω = E. (7.1)

Then, we have

a) ‖D fμ ◦ K DK −DK ◦Tω‖Aρ−δ
� Cδ−1‖E‖Aρ ,

‖D fμ ◦ K DK −DK ◦Tω‖Hm−1 � C‖E‖Hm ,

b) ‖K ∗Ω‖Aρ−(�−1)δ−δ/2 � Cν−(�−1)δ−1−τ (�−1)‖E‖Aρ ,

‖K ∗Ω‖Hm−(�−1)τ−1 � Cν−(�−1)‖E‖Hm ,
where � = 2 when C is independent of λ and � = 1 when C can depend on λ with |λ| 	= 1.

Remark 38. The proof is based on repeating the calculations performed in Section 3.1, but keeping
track of the estimates. In contrast with the calculation for exactly invariant systems done in Sec-
tion 3.1, which could be performed with geometrically natural operations, in this section we need
to perform geometrically unnatural operations such as comparing vectors at different points; they are
possible because the phase space we are considering is a Euclidean manifold. Therefore in this section
we will use a matrix formulation in preference to the more intrinsic geometric notation.

Proof. The proof of a) is just the chain rule applied to (3.2). The first step is to obtain estimates for
the form EΩ defined as:

T ∗
ω K ∗Ω − λK ∗Ω = EΩ. (7.2)

Note that, if h, g are diffeomorphisms (or more generally smooth maps with range M), the matrix
corresponding to h∗Ω − g∗Ω is:

DhT J ◦ hDh − DgT J ◦ g Dg = (
DhT − DgT )

J ◦ hDh + DgT ( J ◦ h − J ◦ g)Dh

+ DgT J ◦ g(Dh − Dg). (7.3)

In our case, of course, we will apply the above formula (7.3) for h = fμ ◦ K , g = K ◦ Tω . Hence, we
can estimate straightforwardly (7.2) using the above, Cauchy bounds (or the mean value theorem) and
(7.1), as

‖EΩ‖Aρ−δ/2 � Cδ−1‖ fμ ◦ K − K ◦ Tω‖Aρ + ‖∇ J‖Aρ ‖ fμ ◦ K − K ◦ Tω‖Aρ

� Cδ−1‖E‖Aρ ,

‖EΩ‖Hm−1 � C‖E‖Hm .
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We now observe that, because ( fμ ◦ K )∗Ω = K ∗ f ∗
μΩ = λK ∗Ω , we have that K ∗Ω satisfies (7.2), which

in coordinates is a difference equation of the form we studied in Lemma 19, namely,(
DKT J ◦ K DK

) ◦ Tω − λ
(
DKT J ◦ K DK

) = ẼΩ, (7.4)

where ẼΩ is the expression in coordinates of EΩ . Furthermore, since for Ω = dα we have K ∗Ω =
K ∗ dα = d(K ∗α), we obtain that DKT J ◦ K DK has zero average, and henceforth ẼΩ has zero average.
Applying the estimates obtained in Lemma 18 and Lemma 19 to (7.4), we obtain b). Notice that
the limitation m − (τ + 1) > n/2 and Sobolev’s embedding theorem [85] ensure that we are dealing
with continuous objects, which also enjoy the Banach algebra properties under multiplication and the
composition estimates of Lemma 17. �
Lemma 39. Let fμ : M → M be an analytic (respectively Cr ) conformal symplectic mapping. Let ω ∈
D(ν, τ ). Let K : Tn → M be an embedding such that K ∈ Aρ (respectively, K ∈ Hm, m > n/2 + τ + 1
in the uniform case, m > n/2 + 1 in the non-uniform case, r � m + 1). Under the hypotheses of Lemma 37,
assume that

Cν−1δ−(τ+1)‖E‖Aρ � 1 or Cν−1‖E‖Hm � 1. (7.5)

Then, the matrix valued function

M(θ) = [
DK(θ)

∣∣ J−1 ◦ K (θ)DK(θ)N(θ)
]

satisfies

D fμ ◦ K (θ)M(θ) = M(θ + ω)

(
Id S(θ)

0 λ Id

)
+ R(θ),

where S(θ) is given by (3.9) and R satisfies:

‖R‖Aρ−(�−1)δ−δ/2 � Cν−(�−1)δ−1−τ (�−1)‖E‖Aρ ,

‖R‖Hm−(�−1)τ−1 � Cν−(�−1)‖E‖Hm , (7.6)

where � = 2 when C is independent of λ or � = 1 when C can depend on λ with |λ| 	= 1.

Proof. Due to the assumption (7.5) and to b) of Lemma 37, then ‖K ∗Ω‖C0 is sufficiently small, which
implies that the torus K (Tn) is approximately Lagrangian and that

Range DK(θ) ∩ Range
(

J−1 ◦ K (θ)DK(θ)
) = {0} for all θ ∈ T

n
ρ−δ.

Due to the transversality of the spaces Range( J−1 ◦ K (θ)DK(θ)) and Range DK(θ) for all θ , we obtain
that M(θ) in (3.13) is a linear isomorphism. Due to a) of Lemma 37, the left column of M satisfies the
bounds claimed in (7.6). The only thing that remains is to bound R2 (compare with (3.25)), namely to
study the right column of M provided by J−1 ◦ K DK N .

We define the error on the Lagrangian character (see (3.23)) as

E L ≡ DKT J ◦ K DK .

Due to b) of Lemma 37, the norm of E L is bounded by the norm of E . Moreover, from (3.9), (3.26),
(3.27), we obtain that
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Ã(θ) − A(θ) = −E L(θ + ω) S̃(θ),

S̃(θ) − S(θ) = −N(θ + ω)T γ (θ + ω)N(θ + ω)
(

Ã(θ) − A(θ)
);

therefore the norms over Aρ or Hm of ‖ Ã(θ) − A(θ)‖, ‖ S̃(θ) − S(θ)‖ are bounded by ‖E L‖. Due to
(3.25) we obtain the estimates in (7.6). �
7.2. Estimates for the increments in the step

In this section, we present estimates for the corrections �,σ obtained applying Algorithm 33 (we
follow the notations introduced there). We present estimates using analytic and Sobolev norms. We
note that, in the non-uniform case we can obtain better regularity estimates because we can use
Lemma 18, rather than Lemma 19 to estimate the second equation of (6.6). Nevertheless, as pointed
there, the constants depend on λ.

Lemma 40. Let fμ ∈ AC be a family of conformally symplectic maps on a domain C ⊂ C
n/Zn × C

n, K an
embedding, ω ∈D(ν, τ ).

A) Analytic case: assume that the map fμ is analytic and that for some ζ > 0,

K ∈ Aρ+δ, K
(
T

n
ρ

) ⊂ domain( fμ),

and

dist
(

K
(
T

n
ρ

)
, ∂

(
domain( fμ)

))
� ζ > 0.

Then, we have:

‖W ‖Aρ−�δ
� C

1

ν�
δ−�τ ‖E‖Aρ ,

|σ | � C‖E‖Aρ ,

where � = 2 in the uniform case, � = 1 in the non-uniform case and C is an explicit constant depending
only on the dimension and on the non-degeneracy condition.

B) Sobolev case: let fμ be a Cr map, r � m + 1 and m > n
2 + �τ . Assume that

K ∈ Hm+1

and that for some ζ > 0:

dist
(

K
(
T

n
ρ

)
, ∂

(
domain( fμ)

))
� ζ > 0.

Then, we have:

‖W ‖Hm−�τ � C
1

ν�
‖E‖Hm ,

|σ | � C‖E‖Hm ,

where � = 2 in the uniform case, � = 1 in the non-uniform case and C is an explicit constant depending
only on the dimension and on the non-degeneracy condition.
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Proof. We just follow the steps of Algorithm 33 estimating the output in terms of the input. We
note that steps 8) and 12) involve solving cohomology equations; all the other steps are algebraic
operations. The results of steps 8) and 12) are estimated using the results for difference equations in
Section 4. The algebraic steps are estimated using the Banach algebra properties of the norms.

Note that we use the non-degeneracy conditions in H3 of Theorem 20. As remarked before, note
that these conditions hold provided that K stays in a neighborhood.

We remark that the estimates of the derivatives of fμ with respect to the parameter μ immedi-
ately yield an estimate for Ã. Then, one has:∥∥(Dμ fμ) ◦ K

∥∥
Aρ

� sup
C

|Dμ fμ|

and ∥∥(D fμ) ◦ K
∥∥
Aρ

� sup
C

|D fμ|.

In both cases, we define Q as an upper bound on the supC |Dμ fμ| and on the supC |D fμ|; then, for
analytic norms we have that

‖ Ã‖Aρ � Q
∥∥M−1

∥∥
Aρ

.

In the case of Sobolev norms we obtain the estimates from the composition∥∥(Dμ fμ) ◦ K
∥∥

Hm � Am
(‖K‖∞

)‖Dμ fμ‖Cm
(
1 + ‖K‖Hm

)
,

while in the analytic case we have∥∥(Dμ fμ) ◦ K
∥∥
Aρ

� ‖Dμ fμ‖AC .

Similarly we have: ∥∥(D fμ) ◦ K
∥∥

Hm � Am
(‖K‖∞

)‖D fμ‖Cm
(
1 + ‖K‖Hm

)
,

and ∥∥(D fμ) ◦ K
∥∥
Aρ

� ‖D fμ‖AC .

Another estimate that will be needed throughout the proof is an estimate for S . The main point is that
S is an explicit algebraic expression involving only K and its derivatives, N , M−1. Provided that these
quantities remain in a small enough neighborhood of those corresponding to the initial guess, then S
is uniformly bounded. For completeness we report below some explicit estimates in the analytic and
Sobolev spaces that follow from the explicit formulas (see (3.9)):

‖S‖Aρ � C‖D fμ‖AC‖K‖2
Aρ+δ

‖N‖2
Aρ

∣∣ J−1
∣∣
Bζ

+ C‖N‖2
Aρ

Q
∥∥M−1

∥∥
Aρ

‖γ ‖Aρ ,

‖S‖Hm � C‖K‖2
Hm+1‖N‖2

Hm Am
(‖K‖∞

)‖D fμ‖Cm
(
1 + ‖K‖Hm

)∥∥ J−1
∥∥

Cm

+ C‖N‖2
Hm Q

∥∥M−1
∥∥

Hm‖γ ‖Hm ,

where Bζ denotes a neighborhood of radius ζ around the image of K (θ).
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The main point of the estimates above is that, provided that K , M, M−1, N remain in a neighbor-
hood, we have uniform bounds in S .

We now proceed to perform estimates of W , σ for |λ| 	= 1. Later, we will present estimates uni-
form for λ in an interval around 1.

The difference equations in steps 8), 9) of Algorithm 33 allow to conclude estimates for W 2 and
σ under the assumption H3 of Theorem 20. Setting

α1 = S(Bb)
0 + Ã1, β1 = −S(Ba)0 − Ẽ1, (7.7)

then we have

|W 2| � T
(|α1|‖E‖Aρ + |β1|Q

∥∥M−1
∥∥
Aρ

)
,

|σ | � T
(|λ − 1||β1| + ‖S‖Aρ ‖E‖Aρ

)
,

where

|α1| � C
1

||λ| − 1|
∥∥M−1

∥∥
Aρ

Q ‖S‖Aρ + Q
∥∥M−1

∥∥
Aρ

|β1| �
(

1

||λ| − 1| ‖S‖Aρ + 1

)∥∥M−1
∥∥
Aρ

‖E‖Aρ .

The estimates for W come from the fact that the components of W satisfy the difference equations
in (6.6). Thus we obtain the following estimates, where the key point is that we can bound the
norm of W by some other norm of E , times some quantities that are bounded provided that K (and
therefore M, M−1, S) remains in a sufficiently small neighborhood of the initial guess. Of course, the
norms for W and the norms for E are in different spaces. In the analytic case, we lose some domain
and the constants include a factor which is a power of the domain loss. From (6.6), Lemma 18 and
Lemma 19, we finally obtain:

‖W2‖Aρ � C

||λ| − 1|
(‖E‖Aρ + ‖Dμ fμ‖AC

∥∥M−1
∥∥
Aρ

|σ |)
� C‖E‖Aρ ,

‖W1‖Aρ−δ � Cδ−τ 1

ν

[‖S‖Aρ ‖W2‖Aρ + ‖E‖Aρ + ‖ Ã1‖Aρ |σ |]
� Cδ−τ ‖E‖Aρ , (7.8)

where C stands for a constant that depends on ‖D K‖Aρ T , ‖N‖Aρ ‖M‖Aρ , ‖M−1‖Aρ and λ. Similar
computations for the case of Sobolev spaces yield

|σ | � CT ‖E‖Hm

and

‖W2‖Hm � C

||λ| − 1|
(‖E‖Hm + Am(‖K‖∞)ν−1‖Dμ fμ‖Cm (1 + ‖K‖Hm )‖M−1‖Hm+1 |σ |)

� C‖E‖Hm ,



1018 R.C. Calleja et al. / J. Differential Equations 255 (2013) 978–1049
‖W1‖Hm−τ � C
1

ν

(‖S‖Hm‖W2‖Hm + ‖E‖Hm + ‖ Ã1‖Hm |σ |)
� C‖E‖Hm , (7.9)

where C again depends on λ. The result for |λ| 	= 1 follows.
We conclude this section with estimates which are uniform in λ in an interval around 1. These

estimates come from the fact that the solution of the first equation in (6.6) can be estimated by using
Lemma 19, providing uniform estimates in λ for the difference equation (4.1).

These estimates are somewhat more subtle than in the previous case, because to find B , we have
to solve a difference equation (6.10) that has small divisors. Note, in particular, that the equation for
(Bb)

0 has a right hand side which is not small. We start by observing that we can still get easily

|W 2|, |σ | � C‖E‖Aρ ,

|W 2|, |σ | � C‖E‖Hm . (7.10)

The reason for (7.10) is that the definition of α1, β1 in (7.7) only involves the function S(B)0 in the
real axis (or the C0 norm). Hence, in the analytic case we can take as domain loss ρ , which remains
uniformly bounded. In the Sobolev case, we see that the C0 norm of (Bb)

0 is bounded by the Hm

norm of A provided that m > n/2 + τ . Furthermore, we see that we can bound ‖(Ba)
0‖C0 � C‖E‖Aρ .

Like in the case for λ 	= 1, we can obtain estimates for W as follows (see (4.9)):

‖W2‖Aρ−δ � Cδ−τ 1

ν

(‖E‖Aρ + ‖Dμ fμ‖AC
∥∥M−1

∥∥
Aρ

|σ |)
� Cδ−τ 1

ν
‖E‖Aρ ,

‖W1‖Aρ−2δ
� Cδ−τ 1

ν

(‖S‖Aρ−δ‖W2‖Aρ−δ + ‖E‖Aρ + ‖ Ã1‖Aρ |σ |)
� Cδ−2τ 1

ν2
‖E‖Aρ , (7.11)

where C denotes a constant that is independent of λ.
Similarly, for the case of the Sobolev spaces we obtain:

‖W2‖Hm−τ � C
1

ν

(‖E‖Hm + Am
(‖K‖∞

)‖Dμ fμ‖Cm
(
1 + ‖K‖Hm

)∥∥M−1
∥∥

Hm |σ |)
� C‖E‖Hm ,

‖W1‖Hm−2τ � C
1

ν

(‖S‖Hm−τ ‖W2‖Hm−τ + ‖E‖Hm + ‖ Ã1‖Hm+1 |σ |)
� C‖E‖Hm . � (7.12)

7.3. Estimates for the convergence of the iterative step

In the present section we state and prove Lemma 42 which provides estimates for Algorithm 33.
The estimates in Lemma 42 allow to apply an abstract implicit function theorem (see Theorem 47
later), which establishes the convergence of the iterative scheme (or some modification involving
smoothing) and the bounds for the solutions claimed in Theorem 20. Note that in the analytic case,
we will also present a self-contained proof that does not require to use an abstract implicit func-
tion theorem. In the language of [90], Lemma 42 shows that the process we have presented in
Algorithm 33 describes an approximate right inverse of the derivative of the functional given by the
invariance equation.
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We have already shown (Lemma 40) that an application of Algorithm 33 provides a step that
makes the correction bounded (in a less smooth norm) by the original error. Now, let us restate the
result in Lemma 40 using a convenient operator notation. Following [90,62,21], we describe Algo-
rithm 33 by introducing a linear operator η[K ,μ], depending on the approximate solution (K ,μ). In
this context, the operator η produces the correction (�,σ ) from the error functional E = E[K ,μ],
where

E[K ,μ] = fμ ◦ K − K ◦ Tω. (7.13)

The procedure is completely specified in Algorithm 33. We will denote this process by

(�,σ ) = −η[K ,μ]E,

where � = −(η[K ,μ]E)1, σ = −(η[K ,μ]E)2; note that �, σ depend linearly on E .

Remark 41. We note that Lemma 40 provides linear estimates in the error E[K ,μ] for the operator η,
both in analytic and Sobolev spaces. One can also verify that Algorithm 33 is defined for all (K ,μ) in
an open ball in the corresponding spaces. Therefore, we have the following result.

A) Analytic case: under the hypotheses of Lemma 40A), the linear operator η : Aρ → Aρ−�δ is de-
fined for every (K ,μ) in the unit ball in Aρ centered at (K0,μ0), and satisfies

∥∥η[K ,μ]E
∥∥
Aρ−�δ

� C
1

ν�
δ−�τ ‖E‖Aρ .

B) Sobolev case: under the hypotheses of Lemma 40B), the linear operator η : Hm → Hm−�τ is de-
fined for every (K ,μ) in the unit ball in Hm centered at (K0,μ0), and satisfies

∥∥η[K ,μ]E
∥∥

Hm−�τ � C
1

ν�
‖E‖Hm .

The constants � and C behave as in Lemma 40, i.e. � = 2 in the uniform case, while � = 1 if λ 	= 1
and C depends also on λ.

It is well known in Nash–Moser theory that a quadratically convergence step converges even if
each step involves a loss of derivatives [70]. In the context of our problem, the quadratic estimates on
the step amount to proving that, in a space of less regular functions, the norm of the quantity

DE� + DμEσ + E (7.14)

is proportional to the square of the norm of the error E . The quadratic estimates will come from a
simple computation on the norm of (7.14) and from applying the estimates in Lemma 37, Lemma 40.

Lemma 42. Let η[K ,μ] be the linear operator produced by an application of Algorithm 33.
Assume that

Cν−1δ−(τ+1)‖E‖Aρ � 1 or Cν−1‖E‖Hm � 1,

so that the conclusions of Lemma 37 hold. Then, under the assumptions of Lemma 40A) and B), we have the
following quadratic estimates.
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A) Analytic case:

∥∥DE[K ,μ]� + DμE[K ,μ]σ + E
∥∥
Aρ−�δ

� C
1

ν2�−1
δ−1−τ (2�−1)‖E‖2

Aρ
.

B) Sobolev case (for r � m + 1, m > n/2 + �τ ):

∥∥DE[K ,μ]� + DμE[K ,μ]σ + E
∥∥

Hm−�τ � C
1

ν2�−1
‖E‖2

Hm .

The constants � and C behave as in Lemma 40.

Proof. Using the definition of E[K ,μ] in (7.13), M in (3.13), R in (3.20) and adding and subtracting,
one can verify the following identity.

DE� + DμEσ + E = DE� + DμEσ − RM−1� + RM−1� + E

= (
D fμ ◦ K − RM−1)� − � ◦ Tω + Dμ fμ ◦ Kσ + E + RM−1�

=
(

M ◦ Tω

(
Id S(θ)

0 λ Id

)
M−1

)
� − � ◦ Tω + Dμ fμ ◦ Kσ + E + RM−1�

= RM−1�, (7.15)

where we have used (3.20) and the fact that the operator η is obtained following Algorithm 33 to
solve Eq. (6.5).

To obtain the result, we estimate the right hand side of the last equality in (7.15) by using
Lemma 39 and the estimates in Remark 41. �
7.4. Estimates for the error of the improved solution

A natural consequence of the quadratic estimates in Lemma 42 above and the linear estimates in
Lemma 40 is the following estimate of the error of the improved solution, which follows from Taylor’s
theorem applied to the functional given by the invariance equations.

We present the proof which is just a direct application of Lemma 17. This will allow us to give
a self-contained proof in the analytic case. The main subtlety to keep in mind is that, since the
estimates for the increment blow up if δ – the loss of domain – goes to zero, we cannot ensure that
the range of K + � is in the domain of fμ , so that the new error makes sense. Hence, in the direct
proof, if one fixes the rate of domain losses, one has to ensure that the error decreases fast enough,
so that the composition fμ ◦ (K + �) makes sense (in the abstract theorem, this corresponds to the
choices of smoothing steps to ensure that we never leave a neighborhood).

Lemma 43. Let η[K ,μ] be as in Lemma 42 and denote

� = −(
η[K ,μ]E

)
1 and σ = −(

η[K ,μ]E
)

2.

Assume that C , ζ and Λ are as in H4 – for the analytic estimates – (or as in H4’ for the Sobolev estimates) of
Theorem 20. Furthermore, assume that

Cν−1δ−(τ+1)‖E‖Aρ < ζ or Cν−1‖E‖Hm < ζ, (7.16)

and that ζ is small enough, so that the estimates of Lemma 42 hold.
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Then, we obtain the following composition estimates for r � m + 2, m > n/2 + �τ :

A) Analytic case:

∥∥E[K + �,μ + σ ]∥∥Aρ−�δ
� C

1

ν2�
δ−2�τ ‖E‖2

Aρ
.

B) Sobolev case:

∥∥E[K + �,μ + σ ]∥∥Hm−�τ � C
1

ν2�
‖E‖2

Hm .

The constants � and C behave as in Lemma 40.

Proof. The proof of the composition estimates follows from Taylor’s theorem and from the estimates
in Lemma 42. Define the remainder of the Taylor expansion as

R
[
(K ,μ),

(
K ′,μ′)] = E

[
K ′,μ′] − E[K ,μ] − DE[K ,μ](K ′ − K

)
− DμE[K ,μ](μ′ − μ

)
.

We notice that (7.16) guarantees that |σ | < ζ and

‖�‖Aρ−�δ
< ζ or ‖�‖Hm−�τ < ζ.

In particular, K + � ∈ C and μ + σ ∈ Λ. So one has:

E[K + �,μ + σ ] = E + DE[K ,μ]� + DμE[K ,μ]σ +R
[
(K ,μ), (K + �,μ + σ)

]
.

The first three terms of the above expansion are estimated in Lemma 42. The remainder is estimated
as follows. In the analytic setting we have:

‖R‖Aρ−�δ
� C

(‖�‖2
Aρ−�δ

+ |σ |2) �
[(

C
1

ν�
δ−�τ ‖E‖Aρ

)2

+ (
C‖E‖Aρ

)2
]
,

so that

∥∥E[K + �,μ + σ ]∥∥Aρ−�δ
� C

1

ν2�
δ−2�τ ‖E‖2

Aρ
.

In the Sobolev setting we have:

‖R‖Hm−�τ � C
(‖�‖2

Hm−�τ + |σ |2) �
[(

C
1

ν�
‖E‖Hm

)2

+ (
C‖E‖Hm

)2
]
,

so that

∥∥E[K + �,μ + σ ]∥∥Hm−�τ � C
1

ν2�
‖E‖2

Hm . �
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7.5. An abstract implicit function theorem. Conclusion of the proof of Theorem 20

To conclude the proof of Theorem 20, we can just apply the abstract implicit function theorem that
we state below for completeness (see Theorem 47). We follow the formulation of Theorem A.6 in the
appendix of [21] with some modifications presented later. The theorem holds for an arbitrary scale
of Banach spaces for which smoothing operators are available. The proof is done by combining the
Newton’s step, which looses derivatives, with smoothing that restores them. The procedure converges
if the order of the Banach spaces is bounded. The main hypothesis is that the initial guess satisfies
the equation very approximately as well as some other explicit non-degeneracy conditions.

For the sake of making the paper more self-contained, we also present an explicit proof of the
analytic case of Theorem 20 in Section 7.6.

We consider a one-parameter family of Banach spaces X r in the interval 0 � r′ � r � ∞,

X 0 ⊇ X r′ ⊇ X r ⊇ X∞

and with norms satisfying

‖g‖X r′ � ‖g‖X r

for all g ∈X r and 0 � r′ � r.
In a scale of Banach spaces we define smoothing operators as follows.

Definition 44. Given a scale of Banach spaces {X r}, we say that {St}t∈R+ is a family of smoothing
operators when

i) limt→∞ ‖(St − Id)u‖X 0 = 0,

ii) ‖St u‖Xm � Ctm−�‖u‖X � , for all 0 � � � m and for all u ∈X � ,

iii) ‖(Id−St)u‖X � � Ct−(m−�)‖u‖Xm , for all 0 � � � m and for all u ∈Xm .

In our case the scales of Banach Spaces will be either spaces of analytic functions or Sobolev
spaces. Smoothing operators in Sobolev spaces are standard in functional analysis (see for example
[85,21,73]). In the case of analytic functions the smoothing is obtained by rescaling the size of the
strip on which the analytic functions are defined.

As pointed out in [90], one important consequence of the existence of smoothing operators is the
validity of interpolation inequalities.

Proposition 45. Let f ∈X s; for r � s, 0 � θ � 1, we have

‖ f ‖X θr+(1−θ)s � C‖ f ‖θ
X r ‖ f ‖1−θ

X s . (7.17)

The proof in [90] is very elementary. It suffices to observe that, for all t > 0 we have f = St f +
(Id −St) f , so that we obtain the bound:

‖ f ‖X θr+(1−θ)s � ‖St f ‖X θr+(1−θ)s + ∥∥(Id −St) f
∥∥
X θr+(1−θ)s

� Ctθr+(1−θ)s−s‖ f ‖Xs + Ct−(r−(θr+(1−θ)s))‖ f ‖Xr .

Computing the minimum of the function in t at the right hand side, provides the interpolation in-
equality (7.17).
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Remark 46. Of course, for concrete examples of spaces, the interpolation inequalities were done much
earlier and by different methods. For analytic functions, (7.17) is given by Hadamard’s three circles
theorem, while for finite differentiable functions or Sobolev functions the result was obtained by other
methods [40,57,54,31].

To make the notation of the theorem more compatible with this paper, the elements of the Banach
spaces will have two components, which we denote as (K ,μ). Later, we will also separate the com-
ponents of the approximate inverse. In an arbitrary scale of Banach spaces with smoothing we have
the following result.

Theorem 47. Let α > 0 and p > α and let X q for p − α � q � p + 13α be a scale of Banach spaces
with smoothing operators. Let Bq be the unit ball in X q, B̃q = (K0,μ0) + Bq the unit ball translated by
(K0,μ0) ∈X q and let B(X q,X q−α) be the space of bounded linear operators from X q to X q−α . Consider
the functional E = E[K ,μ] with E : B̃q → X q and let η = η[K ,μ], with η : B̃q → B(X q,X q−α). Con-

sider a pair (K ,μ) ∈ B̃q and denote by E the function obtained by evaluating the functional E at (K ,μ), i.e.
E = E[(K ,μ)], and by � = −(η[(K ,μ)]E)1 , σ = −(η[K ,μ]E)2 . Furthermore, we assume:

i) E(B̃q ∩X q) ⊂X q for p − α � q � p + 13α;
ii) E |B̃q∩X q : B̃q ∩X q →X q has two continuous Fréchet derivatives for p − α � q � p + 13α;

iii) ‖(�,σ )‖X q−α � C‖E‖X q , (K ,μ) ∈ B̃q, for q = p − α, p + 13α;
iv) (quadratic estimates)

∥∥DE[K ,μ]� + DμE[K ,μ]σ + E
∥∥
X p−α � C‖E‖2

X p ,

where (K ,μ) ∈ B̃p ;
v) ‖E‖X p+13α � C(1 + ‖(K ,μ)‖X p+13α ), (K ,μ) ∈ B̃p+13α .

Then, if we can find (K0,μ0) ∈ Bp+13α such that ‖E0‖X p−α is sufficiently small (where E0 = E[K0,μ0]),
there exists (Ke,μe) ∈X p , such that E[Ke,μe] = 0. Moreover,

∥∥(Ke − K0,μe − μ0)
∥∥
X p � C‖E0‖X p−α . (7.18)

Remark 48. Note that, even if we are referring everything to the unit ball of the spaces for conve-
nience, we could use any ball. It suffices to redefine the norms multiplying them by a constant. Of
course, in such a case, the smallness conditions in the end could depend on the size of the balls.

Remark 49. Note that (7.18) provides bounds on a smoother space from bounds in a rougher space.
This is not paradoxical, because we are assuming that (K0,μ0) is in Bp+13α . Given the assumption v),
this implies that ‖E0‖Xp+13α

is bounded. Hence, by the interpolation inequalities (7.17) we obtain that
the smallness assumption on ‖E0‖Xp−α implies the smallness assumption on ‖E0‖Xs , p − α � s �
p + 13α.

Remark 50. The proof of Theorem 47 is very similar to that in Appendix A in [21], but since we
performed some modifications we prefer to insert the whole proof for completeness. In particular,
the parameters defining the scales of Banach spaces have been improved (p + 13α in this paper and
p + 17α in [21]); moreover, in assumption v) the norms are computed in the same space, while in
[21] they were computed in different spaces. These different composition estimates in v) are due to
the fact that the operator E does not lose regularity under composition in our case, while this loss of
regularity was allowed in [21]. Since the operator does not lose derivatives and since we are always
working on bounded sets, the hypothesis v) becomes just that the operator is bounded.
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Proof. The proof relies on an iterative procedure combining the ideas of [81,90]. Given (K ,μ) ∈
X p+13α and E = E[K ,μ] with the property that ‖E‖X p−α is sufficiently small compared with the
other properties of the function, the iterative procedure constructs (Ke,μe) such that E[Ke,μe] = 0.

Let κ > 1, β,γ , δ > 0, 0 < ψ < 1 be real numbers which will be specified later. We construct a
sequence {(Kn,μn)}n�0 by defining

(Kn+1,μn+1) = (Kn,μn) − Stnη[Kn,μn]En,

where tn = eβκn
. By induction we prove that the following properties and inequalities are satisfied:

(p1;n) ((Kn,μn) − (K0,μ0)) ∈ Bp ;
(p2;n) ‖En‖X p−α � ψe−γαβκn

;
(p3;n) 1 + ‖(Kn,μn)‖X p+13α � ψeδαβκn

.

Suppose that conditions (p1; j), (p2; j), and (p3; j) are true for j < n. We start by proving (p1;n).
First, we notice that (p2;n − 1), assumption iii) and assumption ii) of Definition 44 imply that

∥∥(Kn,μn) − (Kn−1,μn−1)
∥∥
X p = ∥∥Stn−1η[Kn−1,μn−1]En−1

∥∥
X p

� Ce2αβκn−1∥∥η[Kn−1,μn−1]En−1
∥∥
X p−2α

� Cψeαβκn−1(2−γ ).

Then if γ > 2, {(Kn,μn)} ⊂ X p converges to some (K ,μ) ∈ X p . In order to prove (p1;n), we remark
that, using κ j � j(κ − 1), we obtain

∥∥(Kn,μn) − (K0,μ0)
∥∥
X p � Cψ

∞∑
j=1

eαβκ j(2−γ )

� Cψ

∞∑
j=1

eαβ j(κ−1)(2−γ )

� Cψ
eαβ(κ−1)(2−γ )

1 − eαβ(κ−1)(2−γ )
, (7.19)

which shows that ‖(Kn,μn) − (K0,μ0)‖X p � Cψ for γ > 2 and β large enough.
In order to prove (p2;n), we add and subtract the terms En−1,

DE[Kn−1,μn−1]η[Kn−1,μn−1]En−1,

and

DE[Kn−1,μn−1]
[

Stn−1η[Kn−1,μn−1]En−1
]

1 + DμE[Kn−1,μn−1]
[

Stn−1η[Kn−1,μn−1]En−1
]

2

to En . Here � j = −(η[K ,μ]E j)1, σ j = −(η[K ,μ]E j)2. Next we collect the terms in three groups to
obtain
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‖En‖X p−α �
∥∥En − En−1 + DE[Kn−1,μn−1]

[
Stn−1η[Kn−1,μn−1]En−1

]
1

+ DμE[Kn−1,μn−1]
[

Stn−1η[Kn−1,μn−1]En−1
]

2

∥∥
X p−α

+ ∥∥DE[Kn−1,μn−1]�n−1 + DμE[Kn−1,μn−1]σn−1 + En−1
∥∥
X p−α

+ ∥∥DE[Kn−1,μn−1]
[
(Id −Stn−1)η[Kn−1,μn−1]En−1

]
1

+ DμE[Kn−1,μn−1]
[
(Id −Stn−1)η[Kn−1,μn−1]En−1

]
2

∥∥
X p−α . (7.20)

We estimate the first term in (7.20) using assumption iii) and the formula for the quadratic remainder
of Taylor’s expansion:

∥∥En − En−1 + DE[Kn−1,μn−1]
[

Stn−1η[Kn−1,μn−1]En−1
]

1

+ DμE[Kn−1,μn−1]
[

Stn−1η[Kn−1,μn−1]En−1
]

2

∥∥
X p−α

� Cψ2e2αβκn−1(2−γ ).

Concerning the second term of (7.20), using assumption iv) we obtain

∥∥DE[Kn−1,μn−1]�n−1 + DμE[Kn−1,μn−1]σn−1 + En−1
∥∥
X p−α � C‖En−1‖2

X p .

We estimate ‖En−1‖2
p by using the interpolation inequality, assumption v) and the induction hypothe-

ses (p2;n − 1) and (p3;n − 1):

‖En−1‖2
X p � C‖En−1‖26/14

X p−α‖En−1‖2/14
X p+13α

� C‖En−1‖26/14
X p−α

(
1 + ∥∥(Kn−1,μn−1)

∥∥
X p+13α

)2/14

� Cψ2eαβκn−1(− 26γ
14 + 2δ

14 ).

Concerning the third term of (7.20), we use the properties of the smoothing operators and the fact
that the Fréchet derivative, (DE, DμE), is bounded:

∥∥DE[Kn−1,μn−1]
[
(Id −Stn−1)η[Kn−1,μn−1]En−1

]
1

+ DμE[Kn−1,μn−1]
[
(Id −Stn−1)η[Kn−1,μn−1]En−1

]
2

∥∥
X p−α

� C
∥∥(Id −Stn−1)η[Kn−1,μn−1]En−1

∥∥
X p

� Ce−12αβκn−1∥∥η[Kn−1,μn−1]En−1
∥∥

p+12α

� Ce−12αβκn−1‖En−1‖X p+13α

� Ce−12αβκn−1(
1 + ∥∥(Kn−1,μn−1)

∥∥
X p+13α

)
� Cψeαβκn−1(δ−12).

Finally, the desired inequality (p2;n) is satisfied whenever

C
(
ψ2e2αβκn−1(2−γ ) + ψ2eαβκn−1( 2δ

14 − 26γ
14 ) + ψeαβκn−1(δ−12)

)
� ψe−γ αβκn
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or equivalently

C
(
ψe−αβκn−1(2(γ −2)−γ κ) + ψe−αβκn−1(− 2δ

14 + 26γ
14 −γ κ) + e−αβκn−1(12−δ−γ κ)

)
� 1. (7.21)

Condition (7.21) is satisfied for β sufficiently large, ψ sufficiently small and provided that

γ (2 − κ) > 4,

γ (26 − 14κ) > 2δ,

12 − γ κ > δ. (7.22)

This concludes the proof of (p2;n). To prove (p3;n), we start by remarking that

1 + ∥∥(Kn,μn)
∥∥
X p+13α � 1 +

n−1∑
j=0

∥∥St j η[K j,μ j]E j
∥∥
X p+13α

� 1 + C
n−1∑
j=0

eαβκ j ∥∥η[K j,μ j]E j
∥∥
X p+12α

� 1 + C
n−1∑
j=0

eαβκ j ‖E j‖X p+13α

� 1 + C
n−1∑
j=0

eαβκ j (
1 + ∥∥(K j,μ j)

∥∥
X p+13α

)

� 1 + Cψ

n−1∑
j=0

eαβ(1+δ)κ j
,

so that one obtains

(
1 + ∥∥(Kn,μn)

∥∥
X p+13α

)
e−δαβκn � e−δαβκn + Cψ

n−1∑
j=0

eαβκ j(1+δ−κδ). (7.23)

To have (p3;n) it suffices that the right hand side of (7.23) is less than 1. Therefore, if δ > 1
κ−1 , the

right hand side of (7.23) will be less than 1 for sufficiently large β . If we consider κ = 4/3, γ = 61/10
and δ = 7/2, then (7.22) and δ > 1

κ−1 are satisfied simultaneously. To complete the induction, we fix
β large enough so that (7.23) and (7.21) are satisfied.

Finally, with our choices of β and γ , we fix ψ to be ψ = ‖E‖X p−α eαβγ , which, together with
(7.19), leads to the estimate

∥∥(Ke − K0,μe − μ0)
∥∥
X p � Cψ

eαβ(κ−1)(2−γ )

1 − eαβ(κ−1)(2−γ )
� Cγ ,α,β,κ‖E‖X p−α ,

which completes the proof. �
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7.5.1. Choices of spaces and parameters
We apply Theorem 47 to prove the finite differentiable version of Theorem 20. To do so, we need

to make appropriate choices of the parameter p, of the loss of differentiability α, and of the scales of
Banach spaces X q for p −α � q � p +13α. In our case we choose the scale of Banach spaces to be the
Sobolev space Hq for the function K times the space Λ ⊂ R

n for the parameter μ, i.e. X q = Hq × Λ

with the product norm. We remark that smoothing operators for the spaces Hq are readily available,
see [85,21].

Our choice of p and α depends on the estimates on the increment of the step and the estimates
on the approximate reducibility in Section 7. According to Lemma 37 and 40 we choose the Sobolev
exponent p = m with m > n

2 + �τ and the loss of differentiability α = �τ . This allows us to use
the estimates in Remark 41 to justify iii) in Theorem 47. Moreover, item ii) of the abstract theorem
requires that the functional

E[K ,μ] = fμ ◦ K − K ◦ Tω,

defined in Hq for m − �τ � q � m + 13�τ , has two continuous Fréchet derivatives. The estimates in
[60,6] on composition operators guarantee that if the function fμ has two continuous derivatives
more than the highest Sobolev exponent, then the composition operator fμ ◦ K ∈ Hm+13�τ must have
at least two continuous Fréchet derivatives. Therefore, fμ should be in the space Cr for r � m +
13�τ + 2.

7.6. End of the proof of the results of Theorem 20 for analytic regularity

In this section we present a proof of the convergence of the iterative step in analytic spaces. We
start by remarking that the convergence statement follows from the abstract Theorem 47. Neverthe-
less, since the proof is fairly simple, we think it is worthwhile to present a self-contained proof,
which is very similar to that in [90] (see for instance the qualitative estimates in [92]); a pedagogical
exposition can be found in [29]. We point out that this proof is based on the technique of “ana-
lytic smoothing”, which is the oldest technique in KAM theory, going back to Kolmogorov [55]. One
constructs increasingly approximate solutions in smaller analyticity domains, but the loss of domain
slows down so that we end up with a positive radius of analyticity.

Remark 51. For the experts in KAM theorem, we recall that the papers [68,69] introduced the tech-
nique of double smoothing perfected in [92] which allows to obtain finite differentiability results from
the analytic ones.

The main observation of the method is that Ck+α spaces can be characterized by the speed of
approximation of analytic functions defined on decreasing domains.

Then, starting in a Cr problem, one can smooth it and obtain a sequence of analytic problems,
which yield a sequence of analytic solutions. The regularity of the problem translates into a fast con-
vergence of the sequence of problems, which in turn yields the speed of convergence of the solutions
using the a-posteriori format of the theorem. Therefore we obtain the smoothness of the solutions of
the final problem.

As it is shown in [68,69,92], the double smoothing method yields better differentiability results,
than the one-step smoothing which is the basis of results such as Theorem 47. Nevertheless, we
remark that for our purposes a double smoothing is not so useful for the following reasons.

(1) Since we rely on geometric identities, we would need that also the smoothed problems preserve
the geometric properties. It is not so straightforward to show that a smooth diffeomorphism can
be approximated by analytic diffeomorphisms, which also preserve the same geometric structure
and satisfy quantitative bounds (in the symplectic, volume preserving contact case this is done in
[38]. It seems that one can adapt the methods of [38] to the present case, but the quantitative
statements are not so straightforward).
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(2) We are interested in presenting results in Sobolev norms rather than Ck+α norms, because
Sobolev norms are much easier to compute numerically. Then, Sobolev spaces are not easy to
characterize using approximations by analytic functions.

We are now able to present the estimates for the iterative step in the analytic space Aρ . Precisely,
we compute estimates for the increment and estimates for the new reminder (provided the compo-
sition of the correction can be well defined). To simplify the typography, we use the index h ∈ Z to
denote the steps of the iteration and we will use subindices to indicate the quantities after h steps.
We start by making the choice of domain losses. A convenient choice is

δh ≡ ρ0

2h+2

with ρ0 equal to ρ of Theorem 20 and

ρh+1 = ρh − δh

for h � 0. Note that ρh � ρ0
2 for h � 1. Define

εh ≡ ∥∥E(Kh,μh)
∥∥
Aρh

and let

dh ≡ ‖�h‖Aρh
, vh ≡ ‖D�h‖Aρh

, sh ≡ |σh|.

Remark 52. By Lemma 40 we have the following inequalities:

dh � Ĉhν
aδ−α

h εh,

vh � Ĉhν
aδ−α−1

h εh,

sh � Ĉhεh,

where Ĉh are explicit constants depending in a polynomial manner on ‖Mh‖Aρh
, ‖M−1

h ‖Aρh
, ‖Nh‖Aρh

and Th with a = −2, α = 2τ . If we allow Ch to depend also on λ, we can take a = −1, α = τ .

Remark 53. In the following we will denote by C a constant depending on ν , τ , n, ζ , ρ0, | J−1|Bζ
,

and that is a polynomial in ‖M0‖Aρ0
, ‖M−1

0 ‖Aρ0
, ‖N0‖Aρ0

, T0. We will denote as Ch the maximum

of the constants Ĉh and of the constants C̃h introduced in the Taylor estimate of Lemma 43 as

εh+1 � C̃hν
2aδ−2α

h ε2
h .

We assume that C is large enough, for instance C > 2C0. In the proof, we will give smallness condi-
tions, so that Ch � C for every h � 0. Since we look for a solution (Ke,μe) which is near to (K0,μ0),
it is natural to expect (as shown later) that the quantities ‖Mh‖Aρh

, ‖M−1
h ‖Aρh

, ‖Nh‖Aρh
and Th will

be close to ‖M0‖Aρ , ‖M−1
0 ‖Aρ , ‖N0‖Aρ and T0, respectively.
0 0 0
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We prove by induction that for all integers h � 0 the following properties hold:

(p1;h)

‖Kh − K0‖Aρh
� κK ε0 < ζ,

|μh − μ0| � κμε0 < ζ

with

κK ≡ Cνaρ−α
0 22α+1, κμ ≡ 2C; (7.24)

(p2;h)

εh � (κ0ε0)
2h−1ε0

with

κ0 ≡ Cν2aρ−2α
0 26α;

(p3;h) Ch � C .

Note that (p1;0), (p2;0) and (p3;0) are trivial. Assume that (p1;h), (p2;h), (p3;h) are true for
h = 1, . . . , H . Then, by Lemma 43 we obtain the Taylor estimate

εh = ∥∥E(Kh−1 + �h−1,μh−1 + σh−1)
∥∥
Aρh

� Cν2aδ−2α
h−1 ε2

h−1, (7.25)

where C , a, α are as in Remarks 52 and 53. Without loss of generality we can assume C � 1, ρ0 < 1.
We have:

εh � Cν2aρ−2α
0 22αh22αε2

h−1

�
(
Cν2aρ−2α

0 24α
)
22α(h−1)

(
Cν2aρ−2α

0 24α22α(h−2)ε2
h−2

)2

�
(
Cν2aρ−2α

0 24α
)1+2+···+2h−1

22α((h−1)+2(h−2)+···+2h−2)ε2h

0 .

Using that 1+2+· · ·+2h−1 = 2h −1, (h−1)+2(h−2)+· · ·+2h−2 = 2h−1 ∑h−1
j=1 j2− j = 2h −(h+1),

one obtains:

εh �
(
Cν2aρ−2α

0 24α
)2h−1

22α(2h−(h+1))ε2h

0

�
(
Cν2aρ−2α

0 24α22αε0
)2h−1

ε0

for h = 1, . . . , H .
Let us now prove (p1; H + 1), (p2; H + 1) and (p3; H + 1). We assume the induction assumption

(p1;h), (p2;h), (p3;h) and that
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‖Nh‖Aρh
� 2‖N0‖Aρ0

,

‖Mh‖Aρh
� 2‖M0‖Aρ0

,

‖M−1
h ‖Aρh

� 2‖M−1
0 ‖Aρ0

,

Th � 2T0

for h = 0, . . . , H .
First, we prove (p1; H + 1) as follows. Using j + 1 � 2 j , we have:

‖K H+1 − K0‖AρH+1
�

H∑
j=0

d j �
H∑

j=0

(
Ĉ jν

aδ−α
j ε j

)

� Cνaρ−α
0 22αε0

H∑
j=0

(
2 jακ2 j−1

0 ε2 j−1
0

)

� Cνaρ−α
0 22αε0

H∑
j=0

(
2ακ0ε0

) j

� Cνaρ−α
0 22α+1ε0,

assuming that ε0 is sufficiently small, e.g., 2ακ0ε0 � 1
2 . In conclusion,

‖K H+1 − K0‖AρH+1
� κK ε0

with κK as in (7.24). Moreover, we have:

|μH+1 − μ0| �
H∑

j=0

s j �
H∑

j=0

Ĉ jε j

� C
H∑

j=0

(κ0ε0)
2 j−1;

assuming that ε0 is sufficiently small, e.g., κ0ε0 � 1
2 , we conclude:

|μH+1 − μ0| � 2Cε0.

We take ε0 small enough so that κK ε0 < ζ and 2Cε0 < ζ . Since (p1; H + 1) is true, we use Taylor
estimate (7.25) with H + 1 in place of h to obtain (p2; H + 1).

In order to prove (p3; H +1) we need other hypotheses that are easier, but more tedious to verify:

‖Nh − N0‖Aρh
� C̃‖DKh −DK0 ‖Aρh

,

‖Mh − M0‖Aρh
� C̃‖DKh −DK0 ‖Aρh

,

‖M−1
h − M−1

0 ‖Aρh
� C̃‖DKh −DK0 ‖Aρh

,

|Th − T0| � C̃‖DKh −DK0 ‖Aρ ,

h
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where C̃ is a uniform constant. The above inequalities come from the fact that N , M , M−1 and T are
algebraic expressions of DK , D fμ and Dμ fμ . The inverses of the previous matrix valued functions can
be computed using Neumann series. To estimate DK H+1 note that

‖DK H+1 −DK0 ‖AρH+1
�

H∑
j=0

v j

�
H∑

j=0

Ĉ jν
aδ−α−1

j ε j

� Cνaρ−α−1
0 22(α+1)

H∑
j=0

2(α+1) j(κ0ε0)
2 j−1ε0

� Cνaρ−α−1
0 22α+3ε0. (7.26)

Indeed, we have bounded the sum in the second inequality as well as the last expression by taking
ε0 sufficiently small, e.g., 2α+1κ0ε0 � 1

2 . The other estimates follow from (7.26). Again, if we take

C̃ Cνaρ−α−1
0 22α+3ε0 small enough, we are able to verify (p3; H + 1), since C H+1 is an algebraic ex-

pression of ‖MH‖AρH
, ‖M−1

H ‖AρH
, ‖NH‖AρH

and TH .

8. Proof of Theorem 29 and Corollary 30

In this section we prove the uniqueness result of Theorem 29 and Corollary 30. We present in
detail the Sobolev case, which, of course, implies the analytic case. We also present the analytic case
directly.

Remember that we have:

fμ1 ◦ K1 = K1 ◦ Tω,

fμ2 ◦ K2 = K2 ◦ Tω. (8.1)

We denote by

R̃ ≡ fμ2 ◦ K2 − fμ1 ◦ K1 − D fμ1 ◦ K1(K2 − K1) − Dμ fμ1 ◦ K1(μ2 − μ1). (8.2)

We anticipate that, because of Taylor’s theorem, R̃ is quadratic in K2 − K1, μ2 −μ1. We also note that,
using the reducibility as in Section 3.1, for some specific M obtained using K1 in (3.13), we have:

D fμ1 ◦ K1(θ)M(θ) = M(θ + ω)B(θ), (8.3)

where B(θ) =
(

Id S(θ)

0 λ Id

)
. As before, we introduce the notation

K2(θ) − K1(θ) = M(θ)W (θ), (8.4)

where M is the matrix constructed in (3.13) corresponding to the solution K1, namely M(θ) =
[DK1(θ) | J−1 ◦ K1(θ)DK1(θ)N1(θ)], N1(θ) = (DK1(θ)T DK1(θ))−1. Subtracting the identities (8.1), and
using (8.2), (8.3), (8.4), we obtain
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0 = fμ2 ◦ K2 − K2 ◦ Tω − fμ1 ◦ K1 + K1 ◦ Tω

= D fμ1 ◦ K1(K2 − K1) + Dμ fμ1 ◦ K1(μ2 − μ1) + R̃ − (K2 − K1) ◦ Tω

= M(θ + ω)
[
B(θ)W (θ) + M−1(θ + ω)Dμ fμ1 ◦ K1(μ2 − μ1) − W (θ + ω)

+ M−1(θ + ω)R̃
]
. (8.5)

We emphasize that (8.5) is an identity satisfied by the difference between the two solutions and by
the related quantities we have introduced. Since M(θ +ω) is invertible we have the following identity

B(θ)W (θ) − W (θ + ω) + M−1(θ + ω)Dμ fμ1 ◦ K1(μ2 − μ1)

+ M−1(θ + ω)R̃(θ) = 0. (8.6)

The proof of Theorem 29 will be obtained by observing that (8.6) implies estimates for W and
for |μ1 − μ2| in terms of R̃ (note that (8.6) is very similar to the equations we had studied in
the Newton’s procedure) and that Taylor’s theorem implies estimates for R̃ in terms of W and
μ1 − μ2. Then, putting together the two estimates, we will obtain that max(‖W ‖, |μ1 − μ2|) �
C max(‖W ‖, |μ1 − μ2|)2. One small wrinkle is that the norms in both sides are different, but, as
we will show, one can use interpolation inequalities to take care of that.

8.1. Estimates of the function W in (8.6)

The importance of (5.3) is that applying Lemma 19 to (8.6) we obtain the following estimates on
the function W and on |μ2 − μ1| (recall that in order to obtain estimates on W we use that W1 has
zero average.)

Note that we are not using the full strength of Lemma 19, which asserts the existence of solutions.
In our case, we know that W exists and that it satisfies some equation. Lemma 19 gives us estimates
for the solution.

To simplify the typography, we introduce M+ = max(‖M‖Hm ,1), M− = max(‖M−1‖Hm ,1) and we
obtain for m > n/2 + �τ :

‖W ‖Hm−�τ � C M+M−
1

ν�
‖R̃‖Hm ,

|μ2 − μ1| � C M+M−‖R̃‖Hm , (8.7)

where � = 1 if we allow that the constants depend on λ with |λ| 	= 1 and � = 2 if we allow the
constants to be independent on λ.

Using Taylor’s theorem for the composition with Sobolev spaces, recalling (8.4) and the definition
of M+ , we obtain an estimate for the function R̃:

‖R̃‖Hm−�τ � 1

2
‖DμD(I,ϕ) fμ‖Cm M2+

(‖W ‖2
Hm + |μ2 − μ1|2

)
. (8.8)

8.2. Interpolation and end of the proof of Theorem 29

Putting together (8.7) and (8.8), we obtain:

max
(‖W ‖Hm−�τ , |μ1 − μ2|

)
� C‖DμD(I,ϕ) fμ‖Hmν−�M3+M− max

(‖W ‖Hm , |μ1 − μ2|
)2

. (8.9)
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Using the well-known interpolation inequalities (see, e.g., [85,21] and Proposition 45), we obtain

‖W ‖Hm � C‖W ‖1/2
Hm−�τ ‖W ‖1/2

Hm+�τ ,

where C is a constant depending on m and n; we transform (8.9) into

max
(‖W ‖Hm−�τ , |μ1 − μ2|

)
� C‖DμD(I,ϕ) fμ‖Cmν−�M3+M− max

(‖W ‖Hm+�τ , |μ1 − μ2|
)

max
(‖W ‖Hm−�τ , |μ1 − μ2|

)
(C depending on m, n), so that W = 0, namely K1 = K2 and μ1 = μ2 if (5.6) is satisfied.

8.3. The analytic case

The analytic case of Theorem 29 is implied by the previous one. Nevertheless, it is instructive to
give just the minor changes needed for a direct proof. Note that the analytic case has a free parameter
δ. Proceeding as before, and using the notation M± = max(‖M±1‖Aρ ,1), applying the analytic version
of Lemma 19 we obtain

‖W ‖Aρ−�δ
� C M+M−

1

ν�
δ−�τ ‖R̃‖Aρ

|μ2 − μ1| � C M+M−‖R̃‖Aρ ,

with � = 1 if we allow that constants to depend on λ with |λ| 	= 1 and � = 2 if we allow the con-
stants to be independent on λ. The only difference in the argument is that rather than using the
interpolation of Sobolev norms, we use Hadamard’s three circle theorem [2], which gives

‖W ‖Aρ � C‖W ‖1/2
Aρ−�δ

‖W ‖1/2
Aρ+�δ

.

Using (5.5) one obtains K1 = K2 and μ1 = μ2.

8.4. Proof of Corollary 30

Proof. To prove Corollary 30 we first note that thanks to Theorem 29, the solutions are unique in the
neighborhood we are considering. We know that

fμφ,φ ◦ Kφ = Kφ ◦ Tω

and for φ′ 	= φ we consider the function e defined as

e = fμφ,φ′ ◦ Kφ − Kφ ◦ Tω.

Then, we have that for φ in a metric space (Y,d) and for X being Aρ or Hm−�τ , due to (5.7):

‖e‖X = ‖ fμφ,φ′ ◦ Kφ − Kφ ◦ Tω − fμφ,φ ◦ Kφ + Kφ ◦ Tω‖X � ÃL d
(
φ,φ′).

Therefore if d(φ,φ′) is small enough, there exist (Kφ′ ,μφ′) such that

fμ ′ ,φ′ ◦ Kφ′ = Kφ′ ◦ Tω
φ
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and

‖Kφ − Kφ′ ‖Aρ−�δ
� C ÃLν

−�δ−�τ d
(
φ,φ′),

|μφ − μφ′ | � C ÃL d
(
φ,φ′),

with � = 2 in the uniform case and � = 1 if C depends on λ with |λ| 	= 1,

‖Kφ − Kφ′ ‖Hm � C ÃL d
(
φ,φ′),

|μφ − μφ′ | � C ÃL d
(
φ,φ′),

which is the desired Lipschitz property with Lipschitz constant AL = C ÃL . This concludes the Proof of
Corollary 30. �
9. Further consequences of the a-posteriori formalism

As pointed out in [21], the fact that we have an a-posteriori theorem leads to the two following
consequences.

(1) The solutions of the invariance equation, associated to analytic maps, which are Sobolev solutions
of high enough order, are also analytic.

(2) A parameter value φ0 of a map is on the boundary of the parameters with quasi-periodic at-
tractors if and only if a Sobolev norm of high enough order of the conjugacy of quasi-periodic
attractors for nearby parameters φ blows up as φ approaches φ0.

The key to both results is the a-posteriori format of Theorem 20 that shows that given an approxi-
mate solution (either in an analytic or in a Sobolev sense) that satisfies appropriate non-degeneracy
conditions, then there is a locally unique solution in the same spaces.

9.1. Bootstrap of regularity

The result on the bootstrap of regularity is obtained by observing that if the Sobolev regularity of
a solution is high enough, then a truncation will be an approximate solution in the analytic sense. In-
deed, the analytic a-posteriori theorem shows that there is an analytic solution close to the truncated
solution. Finally, the local uniqueness result in Sobolev spaces (see Theorem 29), together with the
fact that the Sobolev regularity is high enough, shows that the original and analytic solutions agree.
The bootstrap of regularity proof for Sobolev spaces in the context of twist maps is given in [21] (for
a full proof for twist maps in Cm spaces see [38,39]). In the case of conformally symplectic maps we
obtain the following result.

Theorem 54. Assume that the hypotheses of Theorem 20 hold and that the map fμ is a real analytic map. Let
Ks ∈ H p for p > n

2 + 2�τ , and μs ∈ Λ solve

fμs ◦ Ks − Ks ◦ Tω = 0.

Then, there exists a ρ > 0 such that Ks ∈ Aρ . The constant � is 1 if we assume that |λ| 	= 1 and � = 2 if we
assume that λ belongs to an interval containing 1.

Proof. We start with Ks ∈ H p , p > n
2 + 2�τ and μs ∈ Λ a solution of the invariance equation, i.e.

E(Ks,μs) = 0, obtained by applying Theorem 20.
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We consider an approximation to the solution K obtained by truncating the Fourier series at the
L-th Fourier mode, K �L(θ) = ∑

|k|�L Kke2π ik·θ . From the definition of K �L , we obtain the following

estimates in the C0 and C1 norms for every L sufficiently large:∥∥Ks − K �L
∥∥

C0 � C L−p+ n
2 ,

∥∥Ks − K �L
∥∥

C1 � C L−p+ n
2 +1. (9.1)

Later, we will use these estimates to guarantee that the function K �L satisfies the non-degeneracy
conditions, the twist condition H3, and the assumption H4’ on the domain of fμ whenever L is
large enough. This is due to the fact that the pair (Ks,μs) satisfies these conditions in the Sobolev
space H p .

To obtain an estimate in the AρL norm, for some ρL > 0, we will consider an α > 1 so that if

ρL = 1
L

log α
2π , we have that

∥∥K �L
∥∥
AρL

�
(
e2πρL

)L ∑
|k|�L

|K̂k| � α‖Ks‖H p . (9.2)

Indeed, using the estimates in (9.1) and (9.2), we obtain estimates for the invariance equation in the
space of analytic functions A ρL

2
. From the C0 estimate in (9.1), we know that

∥∥E(
K �L,μs

)∥∥
C0 = ∥∥E(

K �L,μs
) − E(Ks,μs)

∥∥
C0 �

(‖ fμs‖C1 + 1
)∥∥K �L − Ks

∥∥
C0 � C L−p+ n

2 ,

and we can use composition estimates to verify that, if ρs,p ≡ ‖Ks‖H p , then∥∥E(
K �L,μs

)∥∥
Aρs,p

� ‖ fμ‖A(‖Ks‖H p )
+ ∥∥K �L

∥∥
AρL

.

Using the log-convexity of the supremum of the analytic functions (Hadamard three circle theorem),
we can interpolate the previous inequalities and obtain estimates in A ρL

2
:

∥∥E(
K �L,μs

)∥∥
A ρL

2

� C L− p
2 + n

4 . (9.3)

The estimate in (9.3) is the last ingredient that we need to apply the analytic case of Theorem 20
using K �L and μs as an approximate solution and noticing that if L is large enough then we have
that Cν−2�(

ρL
2 )−2�τ ‖E(K �L,μs)‖A ρL

2

< 1.

The conclusion of Theorem 20 is that there exists a Ke ∈A ρL
4

and μe ∈ Λ such that E(Ke,μe) = 0.

Moreover, for 0 < δ <
ρL
4 we obtain the following estimates for Ke and μe:

∥∥Ke − K �L
∥∥
A ρL

2 −�δ

� Cν−�δ−�τ L− p
2 + n

4 ,

|μe − μs| � C L− p
2 + n

4 . (9.4)

We obtain estimates on the Sobolev norm of K �L − Ks by using the smoothing operators in Sobolev
spaces defined in 44 and choosing the smoothing parameters β, t ∈ R

+ to be β = p
2 − n

4 − �τ and

t = (ν−�‖K‖−1
H p )

1
β :∥∥K �L − Ks

∥∥
H p �

∥∥St
(

K �L − Ks
)∥∥

H p + ∥∥(Id − St)
(

K �L − Ks
)∥∥

H p

� Ctβ
∥∥K �L − Ks

∥∥
p−β � Cν−�L− p

2 + n
4 +�τ . (9.5)
H
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Notice that the last inequality is a consequence of the definition of the Sobolev norm,∥∥K �L − Ks
∥∥2

H p−β =
∑
|k|>L

(
1 + |k|2)p−β |K̂k|2 � C L−2β

∑
|k|>L

(
1 + |k|2)p|K̂k|2 � C L−2β‖Ks‖2

H p .

We remark that when L > 1
δ

, the first estimate in (9.4) implies that

∥∥Ke − K �L
∥∥

H p � Cν−�L− p
2 + n

4 +�τ . (9.6)

Therefore, we combine (9.6) and (9.5) to obtain the inequality

‖Ke − Ks‖H p � Cν−�L− p
2 + n

4 +�τ .

This last estimate, together with the second estimate in (9.4), implies that for L large enough the
inequality (see Theorem 29)

C‖DμD(I,ϕ) fμ‖H p−�τ ν−�M3+M− max
(∥∥M−1(Ke − Ks)

∥∥
H p , |μe − μs|

)
< 1 (9.7)

should hold. By the uniqueness in H p , we have that Ke = Ks . In particular, Ks ∈A ρL
4

. �
9.2. Criterion for the breakdown of analyticity

The second consequence of the a-posteriori formalism states a criterion for the breakdown of
analyticity of quasi-periodic attractors. The justification of the criterion is based on Theorem 54. Note
that using Theorem 20 and Theorem 29 we can obtain the bootstrap of regularity uniformly in a
region.

Theorem 55. Let fμ,φ be a family of analytic mappings, satisfying the hypotheses of Theorem 20. We assume
that for some φ0 > 0 the mapping fμφ0 ,φ0 has a Sobolev regular quasi-periodic solution (Kφ0 ,μφ0) that satis-
fies the non-degeneracy assumption (5.1). Then, if |φ−φ0| is small enough depending on the size of the Sobolev
norm of Kφ0 and on |μφ0 |, then fμφ,φ has an analytic solution, which is locally unique.

We use Theorem 55 to construct and to justify the correctness of numerically accessible algorithms
to estimate the breakdown of analyticity. A prototype algorithm to estimate the breakdown is given
below.

Algorithm 56.
Choose a path in the parameter space starting with the integrable case
Initialize
The parameters and the solution at the integrable case
Repeat

Increase the parameters along the path
Run the iterative step
If (Iterations of the Newton’s step do not converge)

Decrease the increment in parameters
Else (Iteration success)

Record the values of the parameters
and the Sobolev norm of the solution

If Non-degeneracy conditions fail
Return “inconclusive”

Until Sobolev norm exceeds a threshold
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The ending point of the algorithm is the estimated critical value, namely when the Newton’s steps
converge, but the Sobolev norm exceeds a threshold.

Algorithm 56 has been implemented to estimate the breakdown of analyticity of quasi-periodic
attractors of conformally symplectic maps in [15]; for similar calculations in the symplectic case
see [19].

A recurrent remark concerning schemes like Algorithm 56 is that one can make the results more
convincing by observing that the norms blow up according to a power law. Renormalization group
predicts that there is a power law blow up for each Sobolev norm and that there is a simple relation
between the scaling exponents corresponding to Sobolev norms (see [28,15]). These empirically found
scaling relations are consistent with a renormalization group description of the breakdown. A version
of this renormalization group was proposed in [76].

10. Perturbative expansions

In several applications, the conformally symplectic mappings (or flows) include parameters, some
of which may be small. For example, in celestial mechanics applications, one can often consider the
masses of the planets as small (compared to the masses of the Sun) or even the dissipation to be
small.

In these circumstances, it is natural (and standard in theoretical physics) to obtain perturbative
expansions of the objects of interest in terms of the small parameter. From the mathematical point
of view, there are several natural results one can consider. One result shows that indeed one can
compute the expansion in power series and that the formal expansion can be carried to all orders
(when the family of maps is analytic). A second type of results is to prove estimates on the reminder
and the general term, thus showing that the formal power series indeed defines a convergent series.
We will present results of all these types. Theorem 59 shows that there are perturbation results
to all orders, Theorem 60 shows that, when the unperturbed case is dissipative, the perturbative
series indeed defines an analytic function. Note that Theorem 59 applies also to the case that the
unperturbed system is conservative. Indeed, when the unperturbed system is conservative and the
perturbations are not, we present arguments that suggest that for typical systems, the perturbative
expansions exist to all orders, but do not converge. The proof of Theorems 59 and 60 is based on
the use of the automatic reducibility coming from the geometry. We note that the proofs of the above
results also lead to an efficient algorithm to compute the perturbative expansions. Indeed, we obtain
a quadratic algorithm, whose step doubles the number of terms computed so far in the perturbative
expansion. The cost in operations is only polynomial in the degree.

10.1. Basic set up

Since we will deal with analytic functions, it is convenient to consider maps defined in complex
extensions, namely

f : Λ × V × An ×T
n
ρ → An ×T

n
ρ,

where Λ ⊂ C
n , An ⊂ C

n , 0 ∈ V ⊂ C are open sets. We think of the variables in An,Tn
ρ to be the

dynamical action-angle variables. The variables in Λ are the variables μ that we have considered so
far. Note that we have already developed a theory for families of maps in this form. The variable in V ,
which we will denote by ε and which we will refer to as external parameter, has the meaning of the
perturbation parameter. Since often the perturbation parameter is small, it is convenient to assume
that ε = 0 is in the range of parameters Λ.

The goal of this section is to study how the results obtained for ε fixed depend on the value of ε.
That is, we will investigate the function μ(ε) and we study whether one can obtain perturbative
expansions in ε of the result. We write the families as

fμ,ε(I,ϕ) = ( Ī, ϕ̄),
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so that we consider μ,ε as parameters. We assume that each of the mappings fμ,ε is conformally
symplectic, namely

( fμ,ε)
∗Ω = λεΩ,

for some function λε . We assume that for ε = 0 the family fμ,0 admits a solution μ0, K0 of the
invariance equation

fμ0,0 ◦ K0 = K0 ◦ Tω, (10.1)

satisfying the non-degeneracy condition of Theorem 20. An important particular case for the assump-
tion (10.1) is that fμ0,0 is an integrable mapping, but this is not needed. Finally, we assume that
ω is Diophantine (see (3.1)). Note that Theorem 20 implies that, changing ε in a sufficiently small
neighborhood, there exists a solution (με, Kε) of the equation

fμε,ε ◦ Kε = Kε ◦ Tω. (10.2)

Theorem 20 gives that the solution is locally unique and that it depends in a Lipschitz way on ε (in
appropriate topologies for the mapping K ).

In this section we aim to study the functions με, Kε . First, we will show that there are solutions
of the parameterized equations (10.2) in the sense of power series in ε and later we will show that
these power series are actually analytic (notice that there are some differences among the hypotheses
of the two results). As it is well known, the existence of solutions to all orders are required to satisfy
some Diophantine condition, such as (3.1) (or the Brjuno–Rüssmann conditions in [79]). The second
difference is that we can establish analyticity on parameters only when all the maps are contractive.
Of course, when all maps are symplectic, the results are well known [70].

Remark 57. We have considered only the case in which the perturbing parameter is one-dimensional.
However, the results easily generalize to deduce the analyticity with respect to more parameters.
Indeed, if ε = (ε1, . . . , εn), εi ∈ C, we can consider ε1, . . . , εi−1, εi+1, . . . , εn fixed and we can apply
the same technique to show the convergence of expansions in εi . Then, it suffices to use Hartogs
theorem [56] to conclude that μ, K are jointly analytic in all variables.

10.2. Formal series solutions

We are seeking solutions of (10.2) of the form

με =
∞∑

i=0

μ(i)εi, Kε =
∞∑

i=0

K (i)εi,

for some unknown coefficients μ(i) , K (i) . More precisely, we seek μ(i), K (i) such that, using a trunca-
tion of με and Kε to the order N , one has

f∑N
i=0 μ(i)εi ,ε ◦

N∑
i=0

K (i)εi =
N∑

i=0

K (i) ◦ Tωεi + o
(
εN+1). (10.3)

The o(εN+1) in (10.3) can be understood in two meanings, which are indeed equivalent:

A) Formal sense: if we substitute the series, expand and group all the terms in ε, then all the
coefficients of εi , i � N , vanish.
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B) Asymptotic sense: if we substitute

μ
�N
ε =

N∑
i=0

μ(i)εi, K �N
ε =

N∑
i=0

K (i)εi,

into (10.2), we obtain for some ρ ′ > 0:∥∥ f
μ

�N
ε ,ε

◦ K �N
ε − K �N

ε ◦ Tω

∥∥
Aρ′ � CεN+1. (10.4)

Remark 58. For the series that we are considering, both notions are equivalent as it can be easily
seen. Note that the function at the left hand side of (10.4) is analytic in ε. Since there are only
non-negative powers of ε involved, the coefficients of the expansion in ε up to the order N depend
only on the coefficients of the expansion of με , Kε up to the order N . Hence, if we substitute a
polynomial truncation of the power series, we obtain that the coefficients of order i � N of the power
series are given by the formulas obtained in the formal power series expansions. If they vanish, then
we obtain (10.4).

Theorem 59. Assume that the families fμ,ε are as above, that ω satisfies fμ,0 ◦ K0 = K0 ◦ Tω and that
Assumption H3 in Theorem 20 is satisfied. Assume furthermore that ω satisfies (3.1). Then, there is a formal
power series solution of (10.2). Moreover, there is one and only one such a series that, besides (10.2), satisfies
also the normalization (5.3).

The reason why we impose the normalization (5.3) is that the solutions of the invariance equa-
tion are not unique, since we can always change the origin of the phases in the parameterization,
and still obtain a solution. Of course, if these changes of phases are performed arbitrarily for each
value of the parameter, there is no possibility of obtaining any smooth dependence. Of course, other
normalizations could work just as well.

Proof. Since fμ(0),0 ◦ K (0) = K (0) ◦ Tω and ( fμ(0),0)
∗Ω = λ0Ω for some value λ0, proceeding as in

Section 3.1, there exist M, S as in (3.14) such that

D fμ(0),0 ◦ K (0)(θ)M(θ) = M(θ + ω)B(θ), B(θ) ≡
(

Id S(θ)

0 λ0 Id

)
. (10.5)

Note that since K (0),μ(0) are exact solutions of the invariance equation, the formulas in (10.5) are
exact as indicated in Section 3.1. As standard in perturbation theory, we expand (10.2) in ε and
match the coefficients of equal powers of ε on both sides of the equation. This will give us recursive
equations that, as we will see, determine K (i),μ(i) , provided that we have computed all the previous
ones. Equating terms of order ε in (10.2), we find

D fμ(0),0 ◦ K (0)K (1) − K (1) ◦ Tω + (Dμ f )μ(0),0 ◦ K (0)μ(1) + (Dε f )μ(0),0 ◦ K (0) = 0. (10.6)

More generally, matching the terms of order εi we obtain

D fμ(0),0 ◦ K (0)K (i) − K (i) ◦ Tω + (Dμ f )μ(0),0 ◦ K (0)μ(i)

= Pi
(

K (1), . . . , K (i−1),μ(1), . . .μ(i−1)
)
, (10.7)

where Pi is a polynomial expression in K (1), . . . , K (i−1),μ(1), . . . ,μ(i−1) , whose coefficients are given
by the polynomial derivatives of fμ,ε evaluated at μ = μ(0) , ε = 0, and composed with K (0) . Of course
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(10.6) is an equation for (μ(1), K (1)), while (10.7) is an equation for (μ(i), K (i)). Eqs. (10.6) and (10.7)
have to be supplemented with the equations obtained expanding (5.3), namely∫

Tn

[
M−1(θ)

(
K (i)(θ) − K (0)(θ)

)]
1 dθ = 0, (10.8)

so that we adjust the average of the first component of W , being W = ∑∞
i=0 W (i)εi , as it was done

in (5.3) which implies a shifting of the origin of the angle coordinate. Eq. (10.7) can be conveniently
studied using (10.5). As in the Newton’s step, we substitute (10.5) into (10.7) and, introducing the
notation of the Newton’s step, namely K (i)(θ) = M(θ)W (i)(θ), we obtain

B(θ)W (i)(θ) − W (i)(θ + ω) + M−1(θ + ω)(Dμ f )μ(0),0 ◦ K (0)(θ)μ(i)

= M−1(θ + ω)Pi
(

K (1), . . . , K (i−1),μ(1), . . . ,μ(i−1)
)
. (10.9)

We recall that expressing equation (10.9) in components (denoted with subscripts) we obtain the
following equations:

λ0
(
W (i))

2(θ) − (
W (i))

2(θ + ω) + [
M−1(θ + ω)(Dμ f )μ(0),0 ◦ K (0)

]
2μ

(i)

= [
M−1(θ + ω)Pi(θ)

]
2,(

W (i))
1(θ) − (

W (i))
1(θ + ω) + S(θ)

(
W (i))

2(θ) + [
M−1(θ + ω)(Dμ f )μ(0),0 ◦ K (0)(θ)

]
1μ

(i)

= [
M−1(θ + ω)Pi(θ)

]
1.

These equations can be solved as in Section 6 using the non-degeneracy assumption and the Dio-
phantine property of ω. We note that for λ0 	= 1, it suffices to solve one equation involving small
divisors and another equation without small divisors. When λ0 = 1, we have to solve two equations
involving small divisors. Recall that the existence of solutions of the small divisor equations requires
that some average vanishes. Hence, depending on whether |λ0| 	= 1 or λ0 = 1 one needs to deal with
one or two obstructions. Of course, we also obtain different estimates on the solutions depending on
whether we solve one or two equations, but this is not our concern here. In the case when |λ0| 	= 1,
we start by solving for (W (i))2. Because the equation does not have small divisors, once we fix μ(i) ,
the (W (i))2 is determined uniquely. The μ(i) is determined in such a way that the equation for (W (i))1
– which involves small divisors – has a solution. Under a non-degeneracy condition of the form (5.1),
we can determine (W (i))1, (W (i))2, μ(i) . The solution is unique up to a constant, which is chosen so
that (10.8) is satisfied. In the case when λ0 = 1, we obtain that the equation for (W (i))2 can be solved
by choosing properly μ(i) . Nevertheless, the solution is determined only up to an additive constant,
which can be chosen in such a way that the equation for (W (i))1 is solvable. Again, this determines
(W (i))1 up to an additive constant, which is chosen so that (10.8) is satisfied. �
10.3. Convergence of the perturbative series expansions

In this section we prove that the formal series expansions of the previous sections are convergent.
The proof is a rather simple consequence of the “a-posteriori” format of Theorem 20.

Theorem 60. In the conditions of Theorem 59, assume furthermore that |λ| 	= 1. Then, the normalized power
series obtained in Theorem 59 converges to an analytic function.

Proof. First of all, we observe that Theorem 20 produces a family of solutions (με, Kε) for all |ε| suf-
ficiently small. The proof of the theorem shows that the solutions are Lipschitz functions with respect
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to ε. We now turn to prove that they are actually differentiable (in the complex sense) and therefore
analytic in ε. We note that the first order expansion gives us a formal derivative that satisfies the
inequality for η > 0:∥∥ fμε+η,ε+η ◦ (

K (0)
ε + ηK (1)

ε

) − (
K (0)

ε + ηK (1)
ε

) ◦ Tω

∥∥
Aρ−δ

� Cδ−αν−2η2

for suitable constants C > 0, α > 0. We finally remark that (μ
(0)
ε + ημ

(1)
ε , K (0)

ε + ηK (1)
ε ) is an approx-

imate solution of the invariance equation for ε + η up to an error bounded by O (ε2); on the other
hand, the non-degeneracy conditions remain the same.

For η small enough, we can apply Theorem 20 to obtain the existence of a solution (μ̃ε+η, K̃ε+η)

of (3.2) for the parameters ε + η, satisfying∣∣μ̃ε+η − μ
(0)
ε − ημ

(1)
ε

∣∣ � Cη2,∥∥K̃ε+η − K (0)
ε − ηK (1)

ε

∥∥
Aρ−2δ

� Cη2.

Using Theorem 29 we obtain that (μ̃, K̃ ) is precisely the solution produced by a direct application of
Theorem 20. Therefore, the resulting solution satisfies the inequalities:∣∣με+η − μ

(0)
ε − ημ

(1)
ε

∣∣ � Cη2,∥∥Kε+η − K (0)
ε − ηK (1)

ε

∥∥
Aρ−2δ

� Cη2.

As a consequence, the quantity μ
(1)
ε is the derivative of με and K (1)

ε is the derivative of Kε ,
whenever we consider Kε in the domain T

n
ρ−2δ . Once we know that (με, Kε) is differentiable for

ε in a complex neighborhood of zero, we know that its Taylor expansion in ε converges in the do-
main C

n × T
n
ρ−2δ . Since we know that the functions Kε,με are analytic, it is easy to argue that the

(convergent) Taylor expansions of these functions are the functions that we have computed in the
perturbative expansions. Using Remark 58, we note that the coefficients of the Taylor expansion solve
(10.7) and (10.8). Since the solutions of these equations are unique, we conclude that, indeed, the
formal solutions are the Taylor series of the analytic functions Kε,με and that, therefore, these Taylor
series converge in a sufficiently small domain. �
Remark 61. Perturbative expansions provide a tool to determine an explicit relation between the
frequency ω and the drift μ. For example, in the case of the dissipative standard map (2.2), one can
proceed as follows. Let �λ be defined as the finite difference operator acting on a function u = u(θ),
θ ∈ T, as �λu(θ) = u(θ + ω

2 )−λu(θ − ω
2 ); then, parametrizing the invariant torus as ϕ = θ + u(θ) and

using the invariance equation, one gets

�1�λu(θ) − λV ′(θ + u(θ)
) + γ = 0, (10.10)

where γ = ω(1 − λ) − μλ. Multiplying (10.10) by 1 + uθ and taking the average, one gets

γ + uθ�1�λu = 0,

namely

μλ = ω(1 − λ) + 〈uθ�1�λu〉,
which relates the frequency ω and the drift μ (see [14]).
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10.3.1. Some conjectures on the convergence of the perturbative expansions
Note that the hypotheses of Theorem 59 on the existence of power series are less restrictive than

those of Theorem 60 on the convergence of the power series expansions thus obtained. The existence
of formal power series is valid both for λ0 = 1 and for |λ0| 	= 1, whereas the convergence is estab-
lished only when |λ0| 	= 1. There is a good reason for these restrictions. In fact, we note that the
equations λ0(W (i))2 − (W (i))2 ◦ Tω = η could fail to have solutions for all η whenever

λ0 = exp(2π ik · ω), k ∈ Z
n\{0}. (10.11)

In such a case, we can only obtain solutions for η such that η̂ak = 0, a ∈ Z. Since these numbers
are dense on the unit circle, we cannot develop a theory for open sets of λ0 which contain 1. The
following heuristic argument supports our first conjecture.

Conjecture 62. If λ0 = 1 and λμε 	≡ 1, then the perturbative expansion diverges for a generic family fμ,ε .

The heuristic argument for Conjecture 62 follows from the open mapping theorem: if λμε is non-
trivial (which is a generic condition), in any complex neighborhood of zero in the ε-plane, we see
that there would be some values ε∗ for which λμε∗ is of the form (10.11). For these values, we can-
not guarantee that there exists a derivative with respect to ε by the previous argument. Indeed, it
seems plausible that these derivatives do not exist because the right hand side of the equation we
have to solve does not satisfy the constraints. This would be clear if fμε ,με, Kε were arbitrary, but
of course, they are closely related. The same argument applies when |λ0| = 1, but nevertheless the
series is defined to all orders. These numbers are of full measure in the unit circle.

Conjecture 63. When λ0 = 1 and ω is Diophantine, the perturbative series are Gevrey. For a family which
satisfies some non-degeneracy assumption, the functions Kε,με are analytic in a domain which is a ball in the
complex plane minus a sequence of balls with centers in a curve and whose radii are bounded by a function
that decreases exponentially fast with the distance to the origin.

In the paper [52], there is an argument that shows that, using Theorem 20, the second part of
Conjecture 63 is a consequence of the first part. The first part of Conjecture 63 seems plausible
because of analogies with other cases.

Conjecture 64. Let f0 be a non-degenerate system with an analytic invariant torus, K0 . Let ω be a frequency
that does not satisfy a non-resonance condition of the form

lim
N→∞ max

q∈Zn, |q|�N, p∈Z
|ω · q − p|−1 exp(−αN) = 0

for all α ∈R
+ . Then, there exists an analytic family fε – indeed polynomial in ε – for which it is impossible to

obtain an asymptotic expansion. Indeed, such functions are generic.

Similar phenomena in other contexts have been discussed in [82,66,80]. Note that a consequence
of Conjecture 64 is that there is a residual set of frequencies for which the perturbative expansions
can be defined to all orders, but nevertheless diverge for all ε 	= 0.

10.4. A fast algorithm for the computation of perturbative expansions. An alternative proof of Theorem 60

The main observation is that Algorithm 33 can be lifted to analytic families. The quadratic con-
vergence of the algorithm implies that the number of terms in the expansion doubles at every step.
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Also, using the usual KAM estimates, we can establish that the series converges. We just describe the
iterative step starting from the equation

f
μ

(N)
ε

◦ K (N)
ε − K (N)

ε ◦ Tω = E(N)
ε ;

proceeding as in Section 3.1, in analogy to (10.5), we obtain that

D f
μ

(N)
ε

◦ K (N)
ε (θ)M(N)

ε (θ) = M(N)
ε (θ + ω)B(N)

ε (θ) + O
(
εN)

,

B(N)
ε (θ) =

(
Id S(N)

ε (θ)

0 λN
ε Id

)
.

Note that in this case, of course, all the objects involved in the solution of the cohomology
equations are functions depending on ε. The fact that the estimates are uniform in ε leads to the
conclusion that exactly the same estimates used in the iterative step hold for the convergence in
the sup-norm of families (see [32]). Since the uniform limit of analytic functions is also analytic, we
obtain that the solution depends analytically on parameters. We also note that this is a practical algo-
rithm to compute the perturbative series expansions. Using the methods of automatic differentiation
for functions of two variables ([12], see [42] for a modern review), one can implement the operators
involved in the evaluation of the Newton’s method.

Compared with a direct numerical solution of (10.7) this method is not only faster, but it also has
the advantage that, being a Newton’s method, it is numerically stable; on the contrary, in the order by
order method, the errors in the low-order affect the high-order terms, but they are never corrected,
so that the errors accumulate on higher order terms. On the other hand, the Newton’s method keeps
on correcting even the low-order terms.
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Appendix A. A dissipative KAM scheme for flows

In this section, we discuss a practical scheme to compute parameterizations of invariant tori for
flows. We present only the formal calculations; the convergence of the scheme can be proved in
a very similar way as it was done for mappings. We will not discuss the method in the greatest
generality as possible, but we will assume that the symplectic form is given by Ω = dϕ ∧ dI . In this
context, we consider a conformally symplectic family of vector fields of the form (2.4), (2.5), that we
write as

İ = −∂ H(I,ϕ)

∂ϕ
+ λI + μ,

ϕ̇ = ∂ H(I,ϕ)

∂ I
, (A.1)

defined over a manifold M⊂ T
n ×R

n and being μ a parameter in R
n .

Let ω ∈ R
n be a Diophantine frequency for flows, namely ω ∈Dn(ν, τ ) with

Dn(ν, τ ) = {
ω ∈R

n: |ω · k| � ν|k|−τ ∀k ∈ Z
n\{0}}.
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We parameterize an invariant attractor with frequency ω as (I,ϕ) = K (θ) for θ ∈ T
n , such that θ̇ = ω

for a suitable embedding K : Tn →M. Let ∂ω be the partial derivative operator ∂ω ≡ ω · ∂θ ; denoting
by Fμ the vector field associated to (A.1), we obtain that K must satisfy the invariance equation

∂ω K (θ) − Fμ ◦ K (θ) = 0. (A.2)

Taking the gradient of (A.2) we obtain

D
(
∂ω K (θ)

) − ∇(
Fμ ◦ K (θ)

)
DK(θ) = 0.

The Lagrangian character of the torus implies that K satisfies

DK(θ)T J ◦ K (θ)DK(θ) = 0.

The equivalent of the automatic reducibility of Section 3.1 is obtained through the following proposi-
tion.

Proposition 65. Let N(θ) ≡ (DK(θ)T DK(θ))−1; let M be the matrix obtained by juxtaposing the matrices
DK(θ), J DK(θ)N(θ), i.e.

M(θ) ≡ [
DK(θ)

∣∣ J DK(θ)N(θ)
]
. (A.3)

Then, setting A ≡ ∇ Fμ ◦ K , we have:

∂ωM(θ) − A(θ)M(θ) = M(θ)

(
0 S(θ)

0 λ Id

)
. (A.4)

with

S(θ) ≡ N(θ)DK(θ)T J
(

A(θ) + A(θ)T )
DK(θ)N(θ).

Proof. Let us compute separately the first and second half of the columns of W (θ) ≡ ∂ωM(θ) −
A(θ)M(θ). The first half columns are zero, since (A.2) implies (for simplicity of notation we omit the
argument θ ):

∂ω(DK) = (∇ Fμ ◦ K )DK

or

∂ω(DK) = A DK . (A.5)

The second half columns M2 are given by

M2(θ) ≡ ∂ω( J DK N) − A J DK N;

due to (A.5) we obtain



R.C. Calleja et al. / J. Differential Equations 255 (2013) 978–1049 1045
M2 = J∂ω(DK)N + J DK ∂ω(N) − A J DK N

= J A DK N + J DK ∂ω(N) − A J DK N

= ( J A − A J )DK N + J DK ∂ω(N).

The conformally symplectic condition for flows can be written as

(∇ Fμ ◦ K ) J + J (∇ Fμ ◦ K )T = −λ J . (A.6)

From (A.6) one obtains that A J = − J AT − λ J , so that

M2 = J
(

A + AT )
DK N + λ J DK N + J DK ∂ω(N).

Moreover, using N DKT DK = Id, it follows that

∂ω(N) = −N DKT (
A + AT )

DK N; (A.7)

in fact, from

∂ω(N)DKT DK +N∂ω

(
DKT )

DK +N DKT ∂ω(DK) = 0

and being ∂ω(DK) = A DK , ∂ω(DKT ) = DKT AT , one has

∂ω(N)N−1 + N DKT AT DK +N DKT A DK = 0,

which gives (A.7). Since the vectors { ∂ K (θ)
∂θi

, J ∂ K (θ)
∂θi

}i=1,...,n form a basis of R
2n , we can find n × n

matrices S(θ), T (θ), such that

M2(θ) = DK(θ)S(θ) + J DK(θ)N(θ)T (θ). (A.8)

Multiplying by −DKT J , one obtains

T = −DKT J M2 = λ Id .

Multiplying (A.8) by N(θ)DK(θ)T one obtains

S = −N DKT [
A J DK N − ∂ω( J DK N)

]
= −N DKT (A J − J A)DK N,

being DKT J DK = 0 and

∂ω( J DK N) = J A DK N + J DK ∂ω(N).

Since (A.6) implies that A J = − J AT − λ J , namely A J − J A = − J (A + AT ) − λ J , one has

S = N DKT J
(

A + AT )
DK N,

being N DKT J DK N = 0, so that we finally obtain (A.4). �
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Assume that (A.2) is satisfied up to an error term E , say

∂ω K − Fμ ◦ K = E.

As in Section 6.1, we denote by �, σ the corrections to K , μ and we write the linearized equation as

∂ω� − A� − (∇μFμ ◦ K )σ = −E.

To solve this equation we make the change of variables

�(θ) ≡ M(θ)W (θ),

with M as in (A.3) and W to be determined as follows. We aim to find the corrections �, σ , such
that the error of the approximate linearized equation is quadratically reduced. Let us assume that

∂ωM(θ) − A(θ)M(θ) = M(θ)

(
0 S(θ)

0 λ Id

)
+ R,

for some error function R = R(θ). The iterative step is obtained by solving the following equation
(A.9), where the term RW is neglected:

∂ωW +
(

0 S(θ)

0 λ Id

)
W = −Ẽ + M−1(∇μFμ ◦ K )σ , (A.9)

with Ẽ ≡ M−1 E . We have thus obtained differential equations with constant coefficients, which can
be solved using Fourier methods. Let

Ã ≡ −M−1(∇μFμ ◦ K );
denoting the components of W as (W1, W2), we have

∂ωW1(θ) + S(θ)W2(θ) = −Ẽ1(θ) − Ã1(θ)σ ,

∂ωW2(θ) + λW2(θ) = −Ẽ2(θ) − Ã2(θ)σ , (A.10)

where Ẽ ≡ (Ẽ1, Ẽ2), Ã ≡ [ Ã1| Ã2] with Ã1, Ã2 being n × n matrices. For any |λ| 	= 0 the second equa-
tion can always be solved, while for any λ the first equation involves small divisors and the right
hand side of (A.10) must have zero average. Using the same notation as in Section 6.2.1, namely set-
ting W1 = W 1 + (W1)

0, W2 = W 2 + (W2)
0, (W2)

0 = (Ba)
0 + σ(Bb)

0, one is led to choose W 2, σ as
the solution of (

S S(Bb)
0 + Ã1

λ Id Ã2

)(
W2
σ

)
=

(−S(Ba)0 − Ẽ1

−Ẽ2

)
, (A.11)

provided the following non-degeneracy condition is satisfied

det

(
S S(Bb)

0 + Ã1

λ Id Ã2

)
	= 0.

To conclude, we summarize the algorithm for computing the improved approximation for flows as
follows.
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Algorithm 66. Given K : Tn →M, μ ∈R
n perform the following computations:

1) a ← ∂ω K

2) b ← Fμ ◦ K

3) E ← a − b

4.1) α ← DK(θ)

4.2) N ← (αT α)−1

4.3) β ← αN

4.4) γ ← Jβ

4.5) M ← [α | γ ]
4.6) Ẽ ← M−1 E

4.7) A ← ∇ Fμ ◦ K

4.8) G ← ∇μ Fμ ◦ K

4.9) S ← NαT J (A + AT )β

4.10) Ã ← −M−1G

5) (Ba)
0 solves ∂ω(Ba)

0 + λ(Ba)
0 = −(̃E2)

0 , (Bb)
0 solves ∂ω(Bb)

0 + λ(Bb)
0 = −( Ã2)

0

6) Find W 2 , σ solving (A.11)

7) (W2)
0 = (Ba)

0 + σ(Bb)
0

8) W2 = (W2)
0 + W 2

9) W1 solves ∂ωW1(θ) + S(θ)W2(θ) = −Ẽ1(θ) − Ã1(θ)σ

10) K ← K + MW , μ ← μ + σ .
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