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Abstract

We study the following boundary value problem

{
�u + λup−1eup = 0, u > 0 in Ω;
u = 0 on ∂Ω,

(0.1)

where Ω is a bounded domain in R2 with smooth boundary, λ > 0 is a small parameter and 0 < p < 2. We 
construct bubbling solutions to problem (0.1) using a Lyapunov–Schmidt reduction procedure.
© 2014 Elsevier Inc. All rights reserved.
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1. Introduction

We consider the following boundary value problem

{
�u + λup−1eup = 0, u > 0 in Ω;
u = 0 on ∂Ω,

(1.1)
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where Ω is a bounded domain in R2 with smooth boundary, λ > 0 is a small parameter and 
0 < p ≤ 2. This problem is the Euler–Lagrange equation for the functional

J
p
λ (u) = 1

2

∫
Ω

|∇u|2 − λ

p

∫
Ω

eup

, u ∈ H 1
0 (Ω). (1.2)

If p = 1, problem (1.1) becomes

{
�u + λeu = 0, u > 0 in Ω;
u = 0 on ∂Ω,

(1.3)

which can be called the Liouville equation after [24]. This problem is related to Berger’s problem 
concerning the existence of metrics in a given Riemannian surface with prescribed Gaussian 
curvatures. We refer the reader to the book of T. Aubin [6] for the description of the links between 
this equation and possible geometric applications.

There are many results about the behavior and existence of solution to (1.3). Thanks to the 
works of H. Brezis and F. Merle [9], Y.Y. Li and I. Shafrir [23], L. Ma and J. Wei [25], K. Na-
gasaki and T. Suzuki [29], the asymptotic behavior of solutions to problem (1.3) has been well 
understood. More precisely, it is by now known that if uλ is an unbounded family of solutions 
to (1.1) for which λ 

∫
Ω

euλ remains uniformly bounded as λ → 0, then there is an integer k ≥ 1, 
such that necessarily

lim
λ→0

λ

∫
Ω

euλ = 8kπ. (1.4)

Moreover, there are k distinct points ξj , j = 1, · · · , k, in Ω , separated uniformly from each other 
and from he boundary ∂Ω , such that, as λ → 0, uλ peaks to infinity in each one of them, and 
remains bounded away from them, that is, the solutions uλ to problem (1.3) remain uniformly 
bounded on Ω\ 

⋃k
j=1 Bδ(ξj ) and

sup
Bδ(ξj )

uλ → +∞, as λ → 0,

for any δ > 0. The location of the blow-up points ξ1, · · · , ξk is such that, after passing to a 
subsequence, it converges to a critical point of the function

ϕk(ξ1, · · · , ξk) =
k∑

j=1

H(ξj , ξj ) +
∑
i 	=j

G(ξi, ξj ), (1.5)

where G(x, y) is the Green’s function of the problem

{−�xG(x, y) = 8πδy(x), x ∈ Ω;
G(x,y) = 0, x ∈ ∂Ω,

(1.6)

and H(·,·) is its regular part defined as
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H(x,y) = G(x,y) − 4 log
1

|x − y| . (1.7)

Conversely, many authors constructed blow-up solutions to problem (1.3) with property (1.4). 
In [8], S. Baraket and F. Pacard considered problem (1.3) in an open bounded subset Ω of C, 
and they showed that given a non-degenerate critical point (ξ1, . . . , ξk) of the function ϕk de-
fined in (1.5), there is a sequence uλ of solutions to (1.3), that converges to a function u∗ in 
C

2,α
loc (Ω\{ξ1, · · · , ξk}), where u∗ is the solution of

⎧⎪⎨
⎪⎩

−�u∗ =
k∑

j=1

8πδξj
, in Ω;

u∗ = 0 on ∂Ω.

P. Esposito, M. Grossi, A. Pistoia [20] generalized this result relaxing the assumption of non-
degenerate critical point for ϕk to that of stable critical point for ϕk . By using the notion of 
topologically non-trivial critical value for ϕk , that we will recall later on, M. del Pino, M. Kowal-
czyk, M. Musso [14] could establish the following general result: If the domain Ω is not simply 
connected, and given any integer k ≥ 1, there exist k points ξ1, . . . , ξk in Ω and a family of so-
lutions uλ to (1.3), satisfying (1.4) and bubbling at exactly those k points. The shape of these 
solutions is given by

uλ(x) =
k∑

j=1

G(x, ξj ) + o(1), as λ → 0 (1.8)

where o(1) → 0 as λ → 0 uniformly in compact sets contained in Ω \ {ξ1, . . . , ξk}. Furthermore

J 1
λ (uλ) = −16kπ + 8kπ log 8 − 8kπ logλ − 4πϕk(ξ) + o(1) (1.9)

where ϕk is defined in (1.5) and o(1) → 0 as λ → 0.
If p = 2, problem (1.1) becomes

{
�u + λueu2 = 0, u > 0 in Ω;
u = 0 on ∂Ω.

(1.10)

This problem is the Euler–Lagrange equation for the functional J 2
λ (see (1.2)) which corresponds 

to the free energy associated to the critical Trudinger embedding (in the sense of Orlicz spaces) 
[35,27,34]

H 1
0 (Ω) 
 u �−→ eu2 ∈ Lp(Ω) ∀p ≥ 1,

which is connected to the critical Trudinger–Moser inequality

C(Ω) = sup

{∫
e4πu2

/u ∈ H 1
0 (Ω),

∫
|∇u|2 = 1

}
< +∞,
Ω Ω
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[28]. Observe that, in general, critical points of the above constrained variational problem sat-
isfy, after a simple scaling, an equation of the form (1.10). The Trudinger–Moser embedding is 
critical, involving loss of compactness in H 1

0 (Ω) for the functionals J 2
λ which translates into 

the presence of non-convergent Palais–Smale (PS) sequences. Let us consider for instance a 
sequence λn → λ0 ≥ 0, and a sequence un with ∇J 2

λn
(un) → 0, J 2

λn
(un) → c. For the Trudinger–

Moser functional J 2
λ , a classification of all PS sequences for Jλ does not seem possible after the 

results in [2]. Actually PS holds as long as c < 2π , see [1,13]. On the other hand, for solutions
more is known. From the result in [16] (see also [3,4,16,30]), we have the following fact:

Assume that un solves problem (1.10) for λ = λn, with J 2
λn

(un) bounded as λn → 0. Then, 
passing to a subsequence, there is an integer k ≥ 0 such that

J 2
λn

(un) = 2kπ + o(1). (1.11)

When k = 1 a more precise answer is obtained in [3]: the solution un has for large n only one 
isolated maximum, which blows up around a point x0 ∈ Ω which is characterized as a critical 
point of Robin’s function x �→ H(x, x). When k > 1, such a description for the behavior of un is 
not known and it seems to be still an open problem.

It is natural to ask whether or not solutions satisfying (1.11) exist. From the result in [2], it 
follows that there is a λ0 > 0 such that a solution to (1.10) exists whenever 0 < λ < λ0 (this is 
in fact true for a larger class of nonlinearities with critical exponential growth). By construction 
this solution falls, as λ → 0, into the bubbling category (1.11) with k = 1. In the case of a domain 
with a sufficiently small hole, Struwe in [32] built a solution taking advantage of the presence 
of topology. M. del Pino, M. Musso and B. Ruf in [15] established a general result concerning 
existence and multiplicity of solutions of problem (1.10).

In order to state this result, let us introduce the following function of k distinct points 
ξ1, ξ2, · · · , ξk ∈ Ω and k positive numbers m1, m2, · · · , mk ,

ϕk,2(ξ,m) = a

k∑
j=1

m2
j + 2

k∑
j=1

m2
j logm2

j +
k∑

j=1

m2
jH(ξj , ξj ) +

∑
i 	=j

mimjG(ξi, ξj ), (1.12)

where a > 0 is an absolute constant, and G(x, y) is the Green’s function defined in (1.6) and 
H(·,·) its regular part. The authors in [15] established that, if ϕk,2 has a topologically non-trivial
critical value, with corresponding critical point (ξ1, . . . , ξk, m1, . . . , mk) ∈ Ωk ×R

k+, then there 
exists a solution uλ of (1.10) with the shape

uλ(x) = √
λ

[
k∑

j=1

mjG(x, ξj ) + o(1)

]
, as λ → 0, (1.13)

where o(1) → 0 as λ → 0 uniformly on compact sets of Ω \ {ξ1, . . . , ξk}. Furthermore,

J 2
λ (uλ) = 2kπ + αλ + 4πλϕk,2(ξ,m) + λo(1)

where α is an absolute constant, ϕk,2 is defined in (1.12) and o(1) → 0 as λ → 0. In particular, in 
the case Ω is not simply connected they constructed the solution uλ of (1.10), with two bubbling 
points, namely satisfying
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uλ(x) = √
λ

[
2∑

j=1

mjG(x, ξj ) + o(1)

]
, as λ → 0,

where (m1, m2, ξ1, ξ2) is a critical point of ϕ2,2 defined in (1.12), and o(1) → 0 as λ → 0 uni-
formly on compact sets of Ω \ {ξ1, ξ2}.

The above result shows a difference between the behavior of finite-energy solutions to prob-
lem (1.3) (or problem (1.1) with p = 1) and those to problem (1.10) (or problem (1.1) with 
p = 2): far away from the concentration points ξ1, . . . , ξk , solutions to (1.3) are at main order 
sums of Green’s functions centered at ξj (see (1.8)), while solutions to (1.10) are at main order 
sum of Green’s functions centered at ξj but with different positive weights 

√
λmj whose val-

ues depend on the location of the concentration points ξ1, . . . , ξk (see (1.13)). In other words: 
To construct solutions to (1.10), one not only needs to choose carefully the concentration points 
ξ1, . . . , ξk , as for problem (1.3), but one has to carefully choose the correct weights m1, . . . , mk .

This paper is motivated to understand the solutions to problem (1.1) when p is between 1
and 2. In fact, we obtain existence results for (1.1) in the whole range 0 < p < 2, and we find 
that in this range problem (1.1) behaves as in the case p = 1, in the sense described above. Let 
us state our result.

Let us define

M = {
(ξ1, · · · , ξk) ∈ Ωk : dist(ξj , ∂Ω) ≥ δ, |ξi − ξj | ≥ δ for i 	= j

}
for some δ > 0. Let ε be a parameter, which depends on λ, defined as

pλ

(
− 4

p
log ε

) 2(p−1)
p

ε
2(p−2)

p = 1. (1.14)

Observe that, as λ → 0, then ε → 0, and λ = ε2 if p = 1. Our result states as follows.

Theorem 1.1. Let 0 < p < 2 and k be an integer with k ≥ 1. If Ω is not simply connected, then 
there exists λ0 > 0 so that, for any 0 < λ < λ0 problem (1.1) has a solution uλ. Furthermore

lim
λ→0

ε
2(2−p)

p

∫
Ω

eu
p
λ = 8kπ, (1.15)

where ε satisfies (1.14). Moreover, there exists a k-tuple ξλ = (ξλ
1 , · · · , ξλ

k ) ∈ M such that as 
λ → 0

∇ϕk

(
ξλ

1 , · · · , ξλ
k

)→ 0,

and

uλ(x) = 1

p

(
− 4

p
log ε

) 1−p
p

(
k∑

j=1

G
(
x, ξλ

j

)+ o(1)

)
(1.16)

where o(1) → 0, as λ → 0, on each compact subset of Ω̄\{ξλ, · · · , ξλ}. Furthermore
1 k
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J
p
λ (uλ) = λε

2(p−2)
p

[
8kπ

(2 − p)p
[−2 + p log 8] − 16kπ

p
log ε

− 4π

2 − p
ϕk

(
ξλ
)+ O

(| log ε|−1)] (1.17)

where O(1) is uniformly bounded as λ → 0.

In [31], T. Ogawa and T. Suzuki investigated the asymptotic behavior of the blow-up solu-
tions for problem (1.1) when 0 < p ≤ 2 and Ω = B(0, 1). Every smooth positive solution of this 
problem must be radially symmetric and decreasing in |x| by the result of Gidas, Ni and Niren-
berg [22], then u(0) = ‖u‖L∞ . Suppose uλ is a solution satisfying ‖uλ‖L∞ → ∞ as λ → 0, then 
uλ(x) → 0 locally uniformly on B̄\{0}, as λ → 0. Thus, if we consider problem (1.1) in the unit 
disk of R2, suppose u is the solution of (1.1), then u blow up at origin as λ → 0. We also mention 
that problems involving Laplacian in bounded domain in R2 with more generality exponential 
nonlinearity have been studied in [5,33]. In particular, the author in [33] considered the existence 
of solution to

−�u = λueup

, u > 0 in B, u = 0 on ∂B,

where λ > 0 and B ⊂R
2 is the unit ball and 1 ≤ p ≤ 2.

We will prove Theorem 1.1 as a consequence of a more general theorem, in a spirit simi-
lar to the one used in [14]. To do so, we need to recall the notion of topologically non-trivial 
critical level for ϕk . Let us consider an open set D compactly contained in the domain of the 
functional ϕk . We recall that ϕk links in D at critical level C relative to B and B0 if B and B0 are 
closed subsets of D̄ with B connected and B0 ⊂ B such that the following conditions hold: Let 
us set Γ to be the class of the maps Φ ∈ C(B, D) with the property that there exists a function 
Ψ ∈ C([0, 1] × B, D) such that

Ψ (0, ·) = IdB, Ψ (1, ·) = Φ, Ψ (t, ·)|B0 = IdB0 for ∀t ∈ [0,1].

We assume

sup
ξ∈B0

ϕk(ξ) < C := inf
Φ∈Γ

sup
ξ∈B

ϕk

(
Φ(ξ)

)
, (1.18)

and for all ξ ∈ ∂D such that ϕk(ξ) = C, there exists a vector τ tangent to ∂D at ξ such that

∇ϕk(ξ) · τ 	= 0. (1.19)

Under these conditions a critical point ξ̄ ∈ D with ϕk(ξ̄ ) = C exists, as a standard deformation 
argument involving the negative gradient flow of ϕk shows. Condition (1.18) is a general way 
of describing a change of topology in the level sets {ϕk ≤ c} in D taking place at c = C, while 
(1.19) prevents intersection of the level set C with the boundary. It is easy to check that the above 
conditions hold if

inf
ξ∈D

ϕk(ξ) < inf
ξ∈∂D

ϕk(ξ), or sup ϕk(ξ) > sup ϕk(ξ),

ξ∈D ξ∈∂D
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namely the case of (possibly degenerate) local minimum or maximum points of ϕk . The level C
may be taken in these cases respectively as that of the minimum and the maximum of ϕk in D. 
These hold also if ϕk is C1-close to a function with a non-degenerate critical point in D. We call 
C a non-trivial critical level of ϕk in D.

Theorem 1.2. For 0 < p < 2, let k ≥ 1, assume that ϕk defined by (1.5) has a topologically 
non-trivial critical level C in D, then the problem (1.1) has a family solutions uλ for λ small 
enough, such that

lim
λ→0

ε
2(2−p)

p

∫
Ω

eu
p
λ = 8kπ, (1.20)

where ε satisfies (1.14). Moreover, there exists a k-tuple ξλ = (ξλ
1 , · · · , ξλ

k ) ∈ M such that as 
λ → 0

ϕk

(
ξλ

1 , · · · , ξλ
k

)→ c,

and

uλ(x) = 1

p

(
− 4

p
log ε

) 1−p
p

(
k∑

j=1

G
(
x, ξλ

j

)+ o(1)

)
(1.21)

where o(1) → 0 on each compact subset of Ω̄\{ξλ
1 , · · · , ξλ

k }. Furthermore

J
p
λ (uλ) = λε

2(p−2)
p

[
8kπ

(2 − p)p
[−2 + p log 8] − 16kπ

p
log ε

− 4π

2 − p
ϕk

(
ξλ
)+ O

(| log ε|−1)] (1.22)

where O(1) is uniformly bounded as λ → 0.

The proof of our result relies on a Lyapunov–Schmidt reduction procedure, introduced in 
[7,21] and used in many different contexts, see for instance [14,15,17–20]. The key step is to 
find the ansatz for the solution. Usually, the ansatz is built as a sum of terms, which turns out 
to be solutions of the associate limit problem, which are properly scaled and translated. For 
our problem, our approximate solution is built by using the following “basic cells”: the radially 
symmetric solutions of the following Liouville equation

�w + ew = 0 in R
2,

∫
R2

ew < +∞,

which are given by

wμ(z) := log
8μ2

2 2 2
, wμ(z − ξ) := log

8μ2

2 2 2
(1.23)
(μ + |z| ) (μ + |z − ξ | )
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where μ is any positive number and ξ any point in R2 (see [12]). If we use a sum of the above 
basic cells, properly scaled, and centered at several points of the domain as our approximate 
solution, we get a very good approximation of a solution in a region far away from the points, 
which unfortunately turns out to be not good enough close to these points. Thus we need to 
improve the approximation, at least near the points, and we do this adding two other terms in the 
expansion of the solution. This can be done in a very natural way, which has first been used in 
[17] for studying the following problem

{
�u + up = 0, u > 0 in Ω;
u = 0 on ∂Ω,

(1.24)

where Ω is a smooth bounded domain in R2, and p is a large exponent. Later on, this method has 
been applied in other contexts, see [10,18,19,26]. Observe that this method allows to improve the 
approximation near the points, but it is not useful to improve the approximation far away from 
these points. Nevertheless, as already mentioned, the approximation we build for this problem is 
sufficiently accurate in a regime far from the points. After the approximate solution is build, we 
find an actual solution to (1.1) as a small perturbation of the approximation.

The paper is organized as follows: Section 2 is devoted to describing a first approximation 
solution to problem (1.1) and estimating the error. Furthermore, problem (1.1) is written as a fixed 
point problem, involving a linear operator. In Section 3, we study the invertibility of the linear 
problem. In Section 4, we study the nonlinear problem. In Section 5, we study the variational 
reduction, we prove Theorems 1.1 and 1.2 in Section 6.

In this paper, the symbol C denotes a generic positive constant independent of λ, it could be 
changed from one line to another. The symbols O(t) (respectively o(t)) will denote quantities 
for which O(t)

|t | stays bounded (respectively, o(t)
|t | tends to zero) as parameter λ goes to zero. In 

particular, we will often use the notation o(1) standing for a quantity which tends to zero as 
λ → 0.

2. Preliminaries and ansatz for the solution

In this first section we describe the approximate solution for problem (1.1) and then we esti-
mate the error of such approximation in appropriate norms.

Let us consider k distinct points ξ1, ξ2, · · · , ξk in Ω ; we choose a sufficiently small but fixed 
number δ > 0 and assume that for j = 1, 2, · · · , k,

dist(ξj , ∂Ω) ≥ δ, |ξi − ξj | ≥ δ for i 	= j . (2.1)

Furthermore, we consider k positive numbers μj such that

δ < μj < δ−1, for all j = 1, . . . , k. (2.2)

The parameters μj will be chosen properly later on. Define the function

Uμj ,ξj
(x) = log

8μ2
j

(μ2ε2 + |x − ξ |2)2
.

j j
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Let us denote PUμj ,ξj
(x) the projection of Uμj ,ξj

into the space H 1
0 (Ω), in other words, 

PUμj ,ξj
(x) is the unique solution of

{
�PUμj ,ξj

= �Uμj ,ξj
, in Ω;

PUμj ,ξj
= 0, on ∂Ω.

(2.3)

Lemma 2.1. Assume (2.1) and (2.2). We have

PUμj ,ξj
(x) = Uμj ,ξj

(x) + H(x, ξj ) − log
(
8μ2

j

)+ O
(
μ2

j ε
2) (2.4)

in C1(Ω̄) as ε → 0, and

PUμj ,ξj
(x) = G(x, ξj ) + O

(
μ2

j ε
2) (2.5)

in C1
loc(Ω̄\{ξj }) as ε → 0, where G(·,·) and H(·,·) are Green’s function and its regular part as 

defined in (1.6) and (1.7).

Proof. Let z(x) = PUμj ,ξj
(x) − Uμj ,ξj

(x) + log(8μ2
j ), then z(x) satisfies

{
�z(x) = 0 in Ω;
z(x) = 2 log

(
μ2

j ε
2 + |x − ξj |2

)
on ∂Ω.

On the other hand, we note that η(x) = H(x, ξj ) satisfies

{
�η(x) = 0 in Ω;
η(x) = 2 log |x − ξj |2 on ∂Ω.

Then we get

⎧⎪⎨
⎪⎩

�
(
z(x) − η(x)

)= 0 in Ω;
z(x) − η(x) = −2 log

|x − ξj |2
μ2

j ε
2 + |x − ξj |2

on ∂Ω.

Since |x − ξj | > δ for x ∈ ∂Ω , then by the maximum principle we get

max
Ω̄

∣∣z(·) − η(·)∣∣= max
x∈∂Ω

∣∣z(·) − η(·)∣∣= O
(
μ2

j ε
2),

as ε → 0, uniformly in Ω . Then we obtain the C0-estimate in (2.4). Analogous computations 
give the C1-closeness and hence the validity of (2.4). By (2.4) we deduce (2.5). �

We shall show later on that PUμj ,ξj
(x) is a good approximation for a solution to (1.1) far from 

the points ξj , but unfortunately it is not good enough for our construction close to the points ξj . 
This is the reason why we need to further adjust PUμj ,ξj

(x). To do this, we need to introduce 
the following functions w0 and w1.
j j
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Let wμj
be defined as in (1.23). Define the function wi

j to be radial solution of

�wi
j + e

wμj wi
j = e

wμj f i in R
2, for i = 0,1, (2.6)

and

f 0 = −
(

wμj
+ 1

2
(wμj

)2
)

, (2.7)

f 1 = −
(

w0
j + p − 2

2(p − 1)
(wμj

)2 + 1

2

(
w0

j

)2 + 1

8
(wμj

)4

+ 2wμj
w0

j + 1

2
(wμj

)3 + 1

2
w0

j (wμj
)2
)

. (2.8)

In fact, as shown in [17] (see also [11]), there exist radially symmetric solutions with the proper-
ties that

wi
j (y) = Cij log

|y|
μj

+ O

(
1

|y|
)

as |y| → ∞, (2.9)

for some explicit constants Cij , which can be explicitly computed. In particular, when i = 0, the 
constant C0j is given by

C0j = −8

+∞∫
0

t
t2 − 1

(t2 + 1)3

[
log

8μ−2
j

(1 + t2)2
+ 1

2

(
log

8μ−2
j

(1 + t2)2

)2]
dt

= −4

+∞∫
0

t2 − 1

(t2 + 1)3

[
log

8μ−2
j

(1 + t2)2
+ 1

2

(
log

8μ−2
j

(1 + t2)2

)2]
d
(
t2)

set r = t2 + 1

= −4

+∞∫
1

r − 2

r3

[
log

(
8μ−2

j

)− 2 log r

+ 1

2

(
log

(
8μ−2

j

))2 − 2 log
(
8μ−2

j

)
log r + 2(log r)2

]
dr.

Since

+∞∫
1

r − 2

r3
dr = 0,

+∞∫
1

r − 2

r3
log r dr = 1

2
, and

+∞∫
1

r − 2

r3
(log r)2 dr = 3

2
,

we get

C0j = 4 log 8 − 8 − 8 logμj . (2.10)
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Let us define

w0
μj ,ξj

(x) := w0
j

(
x − ξj

ε

)
, w1

μj ,ξj
(x) := w1

j

(
x − ξj

ε

)
for x ∈ Ω.

Let Pw0
μj ,ξj

and Pw1
μj ,ξj

denote the projections into H 1
0 (Ω) of w0

μj ,ξj
and w1

μj ,ξj
, respectively. 

By (2.9), we have that

P
(
wi

μj ,ξj
(x)

)= P

(
wi

j

(
y − ξ ′

j

μj

))

= wi
j

(
y − ξ ′

j

μj

)
− Cij

4
H(x, ξj ) + Cij log(μj ε) + O(μjε) (2.11)

in C1(Ω̄) as ε → 0, and

P
(
wi

μj ,ξj
(x)

)= P

(
wi

j

(
y − ξ ′

j

μj

))
= −Cij

4
G(x, ξj ) + O(μjε) (2.12)

in C1
loc(Ω̄\{ξj }) as ε → 0.

We define

Uλ(x) = 1

pγ p−1

k∑
j=1

(
PUμj ,ξj

(x) + p − 1

p

1

γ p
Pw0

μj ,ξj
(x)

+
(

p − 1

p

)2 1

γ 2p
Pw1

μj ,ξj
(x)

)
. (2.13)

From (2.5) and (2.12), one has, away from the points ξj ,

Uλ(x) = 1

pγ p−1

k∑
j=1

G(x, ξj )

(
1 − p − 1

p

1

γ p

C0j

4
−
(

p − 1

p

)2 1

γ 2p

C1j

4
+ O

(
ε2)).

(2.14)

Consider now the change of variables

v(y) = pγ p−1u(εy) − pγ p, with γ p = − 4

p
log ε.

By (1.14), then problem (1.1) reduces to

{
�v + g(v) = 0, v > 0 in Ωε;
v = −pγ p on ∂Ωε,

(2.15)

where Ωε = ε−1Ω , and
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g(v) =
(

1 + v

pγ p

)p−1

e
γ p[(1+ v

pγp )p−1]
. (2.16)

Let us define the first approximation solution to (2.15) as

Vλ(y) = pγ p−1Uλ(εy) − pγ p, (2.17)

with Uλ defined by (2.13). We write y = ε−1x, ξ ′
j = ε−1ξj . For |x − ξj | < δ with δ sufficiently 

small but fixed, by using (2.4), (2.5), (2.11), (2.12) and the fact that Uμj ,ξj
(εy) −pγ p = wj(y −

ξ ′
j ), we have

Vλ(y) = PUμj ,ξj
(εy) + p − 1

p

1

γ p
Pw0

μj ,ξj
(εy) +

(
p − 1

p

)2 1

γ 2p
Pw1

μj ,ξj
(εy) − pγ p

+
k∑

i 	=j

(
PUμi,ξi

(εy) + p − 1

p

1

γ p
Pw0

μi,ξi
(εy) +

(
p − 1

p

)2 1

γ 2p
Pw1

μi,ξi
(εy)

)

= Uμj ,ξj
(εy) + H(εy, ξj ) − log

(
8μ2

j

)+ O
(
μ2

j ε
2)− pγ p

+ p − 1

p

1

γ p

[
w0

j

(
y − ξ ′

μj

)
− C0j

4
H(εy, ξj ) + C0j log(μj ε) + O(μjε)

]

+
(

p − 1

p

)2 1

γ 2p

[
w1

j

(
y − ξ ′

μj

)
− C1j

4
H(εy, ξj ) + C1j log(μj ε) + O(μjε)

]

+
k∑

i 	=j

G(ξi, ξj )

[
1 − C0j

4

p − 1

p

1

γ p
− C1j

4

(
p − 1

p

)2 1

γ 2p

]
+ O

(
ε2)

= wj(y) + p − 1

p

1

γ p
w0

j (y) +
(

p − 1

p

)2 1

γ 2p
w1

j (y)

− log
(
8μ2

j

)+
[

1 − C0j

4

p − 1

p

1

γ p
− C1j

4

(
p − 1

p

)2 1

γ 2p

]

×
(

H(ξj , ξj ) +
k∑

i 	=j

G(ξi, ξj )

)

+
[
C0j

p − 1

p

1

γ p
+ C1j

(
p − 1

p

)2 1

γ 2p

](
log(μj ) + log ε

)
+ O

(
ε
∣∣y − ξ ′∣∣)+ O

(
ε2), (2.18)

where

wj(y) := wμj

(
y − ξ ′

j

)
, w0

j (y) := w0
j

(
y − ξ ′

j

μj

)
, w1

j (y) := w1
j

(
y − ξ ′

j

μj

)
.

We now choose the parameters μj : we assume they are defined by the relation
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log
(
8μ2

j

)=
(

H(ξj , ξj ) +
k∑

i 	=j

G(ξi, ξj )

)
− p − 1

4
C0j

− p − 1

p

1

γ p

C0j

4

(
H(ξj , ξj ) +

k∑
i 	=j

G(ξi, ξj ) + 4 log(μj ) − (p − 1)
C1j

C0j

)

−
(

p − 1

p

)2 1

γ 2p

C1j

4

(
H(ξj , ξj ) +

k∑
i 	=j

G(ξi, ξj ) + 4 log(μj )

)
. (2.19)

Taking into account the explicit expression (2.10) of the constant C0j , we observe that μj bifur-
cates, as λ goes to zero, from the value μ̄j defined by

μ̄j = 8− p
2(2−p) e

p−1
2−p e

1
2(2−p)

[H(ξj ,ξj )+∑k
i 	=j G(ξi ,ξj )] (2.20)

solution of equation

log
(
8μ2

j

)=
(

H(ξj , ξj ) +
k∑

i 	=j

G(ξi, ξj )

)
− p − 1

4
C0j . (2.21)

Thus, μj is a perturbation of order 1
γ p of the value μ̄j , namely

log
(
8μ2

j

)=
[

2(p − 1)

2 − p
(1 − log 8) + 1

2 − p

(
H(ξj , ξj ) +

k∑
i 	=j

G(ξi, ξj )

)](
1 + O

(
1

γ p

))
.

(2.22)

Then, by this choice of the parameters μj , we deduce that, if |y − ξ ′
j | < δ/ε with δ sufficiently 

small but fixed, we can rewrite

Vλ(y) = wj(y) + p − 1

p

1

γ p
w0

j (y) +
(

p − 1

p

)2 1

γ 2p
w1

j (y) + θ(y), (2.23)

with

θ(y) = O
(
ε
∣∣y − ξ ′

j

∣∣)+ O
(
ε2).

We will look for solutions to (2.15) of the form

v = Vλ + φ,

where Vλ is defined as in (2.17), and φ represents a lower order correction. We aim at finding a 
solution for φ small provided that the points ξj are suitably chosen. For small φ, we can rewrite 
problem (2.15) as a nonlinear perturbation of its linearization, namely,
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{
L(φ) = −[

Eλ + N(φ)
]
, x ∈ Ωε;

φ = 0, x ∈ ∂Ωε,
(2.24)

where

L(φ) := �φ + g′(Vλ)φ, (2.25)

Eλ := �Vλ + g(Vλ), (2.26)

N(φ) := g(Vλ + φ) − g(Vλ) − g′(Vλ)φ. (2.27)

We recall that g(t) = (1 + t
pγ p )p−1e

γ p[(1+ t
pγp )p−1]

.
In order to solve the problem (2.24), first we have to study the invertibility properties of the 

linear operator L. In order to do this, we introduce a weighted L∞-norm defined as

‖h‖∗ := sup
y∈Ωε

(
k∑

j=1

(
1 + ∣∣y − ξ ′

j

∣∣)−3 + ε2

)−1∣∣h(y)
∣∣ (2.28)

for any h ∈ L∞(Ωε). With respect to this norm, the error term Eλ given in (2.26) can be estimated 
in the following way.

Lemma 2.2. Let δ > 0 be a small but fixed number and assume that the points ξj satisfy (2.1). 
There exists C > 0, such that we have

‖Eλ‖∗ ≤ C

γ 3p
= C

| log ε|3 (2.29)

for all λ small enough.

Proof. Far away from the points ξj , namely for |x−ξj | > δ, i.e. |y−ξ ′
j | > δ

ε
, for all j = 1, · · · , k, 

from (2.5) and (2.12) we have that

�Vλ(y) = pγ p−1ε2�U(εy) = O
(
γ p−1ε4).

On the other hand, in this region we have

1 + Vλ(y)

pγ p
= 1 + 4 logε + O(1)

pγ p
= O(1)

| log ε| (2.30)

where O(1) denotes a smooth function, uniformly bounded, as ε → 0, in the considered region. 
Hence

g(Vλ) =
(

1 + Vλ

pγ p

)p−1

e
γ p[(1+ Vλ

pγp )p−1]

≤

⎧⎪⎨
⎪⎩

C ε
4
p

| log ε|p−1 if 1 ≤ p < 2;

C ε
4
p

p−1 e
γ p O(1)

| log ε|p if 0 < p < 1.
| log ε|
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=

⎧⎪⎨
⎪⎩

C ε
4
p

| log ε|p−1 if 1 ≤ p < 2;

C ε
4
p

| log ε|p−1 e
O(1)

| log ε|p−1 if 0 < p < 1.

Thus if we are far away from the points ξj , or equivalently for |y − ξ ′
j | > δ

ε
, the size of the error, 

measured with respect to the ‖ · ‖∗-norm, is relatively small. In other words, if we denote by 
1outer the characteristic function of the set {y : |y − ξ ′

j | > δ
ε
, j = 1, . . . , k}, then in this region we 

have

‖Eλ1outer‖∗ ≤

⎧⎪⎪⎨
⎪⎪⎩

C ε
2(2−p)

p

| log ε|p−1 if 1 ≤ p < 2;

C ε
2−p
p

| log ε|p−1 e
log ε

2−p
p + C

| log ε|p−1 if 0 < p < 1.

=

⎧⎪⎨
⎪⎩

C ε
2(2−p)

p

| log ε|p−1 if 1 ≤ p < 2;

C ε
2−p
p

| log ε|p−1 e
− 2−p

p
| log ε|+C| log ε|1−p

if 0 < p < 1.

≤

⎧⎪⎨
⎪⎩

C ε
2(2−p)

p

| log ε|p−1 if 1 ≤ p < 2;

C ε
2−p
p

| log ε|p−1 if 0 < p < 1.

(2.31)

Here we used that − 2−p
p

| log ε| + C| log ε|1−p < 0 for 0 < p < 1 and ε small.

Let us now fix the index j in {1, · · · , k}; for |y − ξ ′
j | < δ

ε
, we have

�Vλ(y) = −ewj (y) + p − 1

p

1

γ p
�w0

j (y) +
(

p − 1

p

)2 1

γ 2p
�w1

j (y) + O
(
ε2). (2.32)

On the other hand, for any R > 0 large but fixed, in the ball |y − ξ ′
j | < Rε := R| log ε|α , with 

α ≥ 3, we can use Taylor expansion to first get

(
1 + Vλ

pγ p

)p−1

= 1 + p − 1

p

1

γ p
wj +

(
p − 1

p

)2 1

γ 2p

[
w0

j + p − 2

2(p − 1)
(wj )

2
]

+
(

p − 1

p

)3 1

γ 3p

(
log |y|),

γ p

[(
1 + Vλ

pγ p

)p

− 1

]
= wj +

(
p − 1

p

)
1

γ p

[
w0

j + (wj )
2

2

]

+
(

p − 1

p

)2 1

γ 2p

(
w1

j + wjw
0
j

)+ 1

γ 3p

(
log |y|)

and
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e
γ p[(1+vVλ

pγp

)

p−1] = ewj

[
1 +

(
p − 1

p

)
1

γ p

[
w0

j + (wj )
2

2

]

+
(

p − 1

p

)2 1

γ 2p

[
w1

j + wjw
0
j + 1

2

(
w0

j + (wj )
2)2

]
+ 1

γ 3p

(
log |y|)]

Thus we obtain

g(Vλ) :=
(

1 + Vλ

pγ p

)p−1

e
γ p[(1+ Vλ

pγp )p−1]

= ewj

[
1 +

(
p − 1

p

)
1

γ p

[
w0

j + (wj )
2

2
+ wj

]

+
(

p − 1

p

2) 1

γ 2p

[
w1

j + 2wjw
0
j + 1

2

(
w0

j + (wj )
2

2

)2

+ w0
j + p − 2

2(p − 1)
w2

j + w3
j

2

]

+ O

( log |y − ξ ′
j |

γ 3p

)]
.

Thus, thanks to the fact that we have improved our original approximation with the terms w0
j

and w1
j , and the definition of ∗-norm, we get that

‖Eλ1B(ξ ′
j ,Rε)

‖∗ ≤ C

γ 3p
= C

| log ε|3 , for any j = 1, . . . , k. (2.33)

Here 1B(ξ ′
j ,Rε)

denotes the characteristic function of B(ξj , Rε). Finally, in the remaining region, 

namely where Rε < |y − ξ ′
j | < δ

ε
, for any j = 1, . . . , k, we have from one hand that |�Vλ(y)| ≤

Cewj (y), and also |g(Vλ(y))| ≤ Cewj (y) as a consequence of (2.18). This fact, together with 
(2.33) and (2.31) gives the estimate (2.29). �

As in the above computation, we find that very close to the point ξj in Ω , we have

∥∥g′(Vλ) − ewj
∥∥∗ → 0 as λ → 0, (2.34)

and there exists some positive constant D0 such that

g′(Vλ) ≤ D0

k∑
j=1

ewj . (2.35)

Moreover, we can get

∥∥g′′(Vλ)
∥∥∗ ≤ C. (2.36)
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Proof of (2.34) and (2.35). We have

g′(Vλ) = p − 1

p

1

γ p

(
1 + Vλ

pγ p

)p−2

e
γ p[(1+ Vλ

pγp )p−1]

+
(

1 + Vλ

pγ p

)2(p−1)

e
γ p[(1+ Vλ

pγp )p−1]

:= Ia + Ib.

Far away from the points ξj , namely for |x − ξj | > δ, i.e. |y − ξ ′
j | > δ

ε
, for all j = 1, · · · , k, 

a consequence of (2.30) is that

Ia = ε
4
p

| log ε|p−1
O(1), and Ib = ε

4
p

| log ε|2(p−1)
O(1)

Then we have

g′(Vλ)1outer = ε
4
p

| log ε|p−1
O(1) (2.37)

On the other hand, fix the index j in {1, · · · , k}, for |y − ξ ′
j | < Rε with Rε = R| log ε|, for any 

R > 0 large but fixed, we use Taylor expansion to get

Ia = p − 1

p

1

γ p

(
1 + 1

pγ p

(
wj(y) + p − 1

p

1

γ p
w0

j (y) +
(

p − 1

p

)2 1

γ 2p
w1

j (y) + θ(y)

))p−2

× e
γ p[(1+ 1

pγp (wj (y)+ p−1
p

1
γp w0

j (y)+(
p−1
p

)2 1
γ 2p

w1
j (y)+θ(y)))p−1]

= p − 2

p

1

γ p

(
p − 1

p − 2
+ p − 1

p

1

γ p
wj (y) +

(
p − 1

p

)2 1

γ 2p
w0

j (y)

+
(

p − 1

p

)3 1

γ 3p
w1

j (y) + p − 1

p

1

γ p
θ(y)

)

× ewj (y)e
p−1
p

1
γp w0

j (y)
e
(

p−1
p

)2 1
γ 2p

w1
j (y)

eθ(y)e
1
2

p−1
p

1
γp [wj (y)+ p−1

p
1

γp w0
j (y)+(

p−1
p

)2 1
γ 2p

w1
j (y)+θ(y)]2

,

and

Ib =
(

1 + 1

pγ p

(
wj(y) + p − 1

p

1

γ p
w0

j (y) +
(

p − 1

p

)2 1

γ 2p
w1

j (y) + θ(y)

))2(p−1)

× e
γ p[(1+ 1

pγp (wj (y)+ p−1
p

1
γp w0

j (y)+(
p−1
p

)2 1
γ 2p

w1
j (y)+θ(y)))p−1]

=
(

1 + 2(p − 1)

p

1

γ p
wj (y) + 2

(
p − 1

p

)2 1

γ 2p
w0

j (y)
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+ 2

(
p − 1

p

)3 1

γ 3p
w1

j (y) + 2(p − 1)

p

1

γ p
θ(y)

)

× ewj (y)e
p−1
p

1
γp w0

j (y)
e
(

p−1
p

)2 1
γ 2p

w1
j (y)

eθ(y)e
1
2

p−1
p

1
γp [wj (y)+ p−1

p
1

γp w0
j (y)+(

p−1
p

)2 1
γ 2p

w1
j (y)+θ(y)]2

.

By the definition of w0
j and w1

j , we get that

Ia1B(ξ ′
j ,Rε)

= O(1)

| log ε| , Ib1B(ξ ′
j ,Rε)

− ewj (y) = O(1)

| log ε| (2.38)

Finally, in the remaining region, namely where for any j = 1, . . . , k, we have Rε < |y − ξ ′
j | < δ

ε
, 

we have

|Ia| ≤ C

| log ε|e
wj (y), |Ib| ≤ Cewj (y). (2.39)

Then, from (2.38) and the definition of ∗-norm, we find that very close to the point ξj in Ω , we 
have

∥∥g′(Vλ) − ewj
∥∥∗ = O(1)

| log ε|
which implies (2.34). Combining (2.37), (2.38) with (2.39) we obtain estimate (2.35). �
Proof of (2.36). We have

g′′(Vλ) = (p − 1)(p − 2)

p2

1

γ 2p

(
1 + Vλ

pγ p

)p−3

e
γ p[(1+ Vλ

pγp )p−1]

= 3(p − 1)

p

1

γ p

(
1 + Vλ

pγ p

)2p−3

e
γ p[(1+ Vλ

pγp )p−1]

+
(

1 + Vλ

pγ p

)3(p−1)

e
γ p[(1+ Vλ

pγp )p−1]

:= Ic + Id + Ie.

By a similar computation as above: Far away from the points ξj , namely for |x − ξj | > δ, i.e. 
|y − ξ ′

j | > δ
ε
, for all j = 1, · · · , k, we have

Ic = ε
4
p

| log ε|p−1
O(1), Id = ε

4
p

| log ε|2(p−1)
O(1), and Ie = ε

4
p

| log ε|3(p−1)
O(1)

Then

g′′(Vλ)1outer = ε
4
p

p−1
O(1) (2.40)
| log ε|
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where again O(1) denotes a function which is uniformly bounded, as ε → 0, in the considered 
region. Let us now fix the index j in {1, · · · , k}; for |y − ξ ′

j | < Rε with any Rε := R| log ε| for 
some R > 0 large but fixed, by Taylor expansion, we have

Ic = (p − 1)(p − 2)

p2

1

γ 2p

(
1 + 1

pγ p

(
wj(y) + p − 1

p

1

γ p
w0

j (y)

+
(

p − 1

p

)2 1

γ 2p
w1

j (y) + θ(y)

))p−3

× e
γ p[(1+ 1

pγp (wj (y)+ p−1
p

1
γp w0

j (y)+(
p−1
p

)2 1
γ 2p

w1
j (y)+θ(y)))p−1]

= (p − 2)(p − 3)

p2

1

γ 2p

(
p − 1

p − 3
+ p − 1

p

1

γ p
wj (y) +

(
p − 1

p

)2 1

γ 2p
w0

j (y)

+
(

p − 1

p

)3 1

γ 3p
w1

j (y) + p − 1

p

1

γ p
θ(y)

)

× ewj (y)e
p−1
p

1
γp w0

j (y)
e
(

p−1
p

)2 1
γ 2p

w1
j (y)

eθ(y)e
1
2

p−1
p

1
γp [wj (y)+ p−1

p
1

γp w0
j (y)+(

p−1
p

)2 1
γ 2p

w1
j (y)+θ(y)]2

,

Id = 3(p − 1)

p

1

γ p

(
1 + 1

pγ p

(
wj(y) + p − 1

p

1

γ p
w0

j (y)

+
(

p − 1

p

)2 1

γ 2p
w1

j (y) + θ(y)

))2p−3

× e
γ p[(1+ 1

pγp (wj (y)+ p−1
p

1
γp w0

j (y)+(
p−1
p

)2 1
γ 2p

w1
j (y)+θ(y)))p−1]

= 3(2p − 3)

p

1

γ p

(
p − 1

2p − 3
+ p − 1

p

1

γ p
wj (y) +

(
p − 1

p

)2 1

γ 2p
w0

j (y)

+
(

p − 1

p

)3 1

γ 3p
w1

j (y) + p − 1

p

1

γ p
θ(y)

)

× ewj (y)e
p−1
p

1
γp w0

j (y)
e
(

p−1
p

)2 1
γ 2p

w1
j (y)

eθ(y)e
1
2

p−1
p

1
γp [wj (y)+ p−1

p
1

γp w0
j (y)+(

p−1
p

)2 1
γ 2p

w1
j (y)+θ(y)]2

,

and

Ie =
(

1 + 1

pγ p

(
wj(y) + p − 1

p

1

γ p
w0

j (y) +
(

p − 1

p

)2 1

γ 2p
w1

j (y) + θ(y)

))3(p−1)

× e
γ p[(1+ 1

pγp (wj (y)+ p−1
p

1
γp w0

j (y)+(
p−1
p

)2 1
γ 2p

w1
j (y)+θ(y)))p−1]

=
(

1 + 3(p − 1)

p

1

γ p
wj (y) + 3

(
p − 1

p

)2 1

γ 2p
w0

j (y) + 3

(
p − 1

p

)3 1

γ 3p
w1

j (y)

+ 3(p − 1)

p

1

γ p
θ(y)

)

× ewj (y)e
p−1
p

1
γp w0

j (y)
e
(

p−1
p

)2 1
γ 2p

w1
j (y)

eθ(y)e
1
2

p−1
p

1
γp [wj (y)+ p−1

p
1

γp w0
j (y)+(

p−1
p

)2 1
γ 2p

w1
j (y)+θ(y)]2

.
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Therefore, we get

Ic1B(ξ ′
j ,Rε)

= O(1)

| log ε| , Id1B(ξ ′
j ,Rε)

= O(1)

| log ε|2 , Ie1B(ξ ′
j ,Rε)

= O(1). (2.41)

Finally, for Rε < |y − ξ ′
j | < δ

ε
, for any j , we have

|Ic| ≤ C

| log ε| , |Id | ≤ C

| log ε|2 , |Ie| = O(1) + Cewj (y). (2.42)

From (2.40), (2.41) with (2.42), by the definition of ∗-norm, we obtain (2.36) holds. �
3. The linearized problem

In this section, we prove the bounded invertibility of the operator L. We observe that the 
operator L can be approximately regarded as a superposition of the linear operator

Lj(φ) = �φ + ewj φ = �φ + 8μ2
j

(μ2
j + |y − ξ ′

j |2)2
φ.

The key fact to develop a satisfactory solvability theory for the operator L is the nondegeneracy of 
w up to the natural invariances of the equation under translations and dilations, which translates 
into the fact that

z0j (y) = ∂μj
wμj

(y), zij (y) = ∂yi
wμj

(y), i = 1,2,

satisfy the function �Z+ewj Z = 0, see [8] for a proof. Define for i = 0, 1, 2 and j = 1, 2, · · · , k,

Zij (y) := zij

(
y − ξ ′

j

)
, i = 0,1,2. (3.1)

Consider a large but fixed number R0 > 0 and a radial and smooth cut-off function η with η(r) =
1 if r < R0 and η(r) = 0 if r > R0 + 1. Write

ηj (y) = η
(∣∣y − ξ ′

j

∣∣). (3.2)

Given h ∈ L∞(Ωε), we consider the problem of finding a function φ such that for certain 
scalars cij , i = 1, 2, j = 1, 2, · · · , k, it satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

L(φ) = h +
2∑

i=1

k∑
j=1

cijZij ηj , in Ωε;

φ = 0 on ∂Ωε;∫
Ωε

φZij ηj = 0 for i = 1,2, j = 1, · · · , k.

(3.3)

Consider the norm
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‖φ‖∞ = sup
y∈Ωε

∣∣φ(y)
∣∣.

The main result of this section is the following:

Proposition 3.1. Let δ > 0 be fixed. There exist positive numbers λ0 and C, such that for any 
points ξj , j = 1, · · · , k, in Ω , satisfying (2.1), μj given by (2.22), and h ∈ L∞(Ωε), there is a 
unique solution φ := Tλ(h) to problem (3.3) for all λ ≤ λ0. Moreover,

‖φ‖∞ ≤ C

(
log

1

ε

)
‖h‖∗. (3.4)

The proof will be split into a series of lemmas which we state and prove next.

Lemma 3.1. The operator L satisfies the maximum principle in Ω̃ε = Ωε \⋃k
j=1 B(ξ ′

j , R) for R

large. Namely, if L(φ) ≤ 0 in Ω̃ε and φ ≥ 0 on ∂Ω̃ε , then φ ≥ 0 in Ω̃ε .

Proof. Given a > 0, we consider the function

Z(y) =
k∑

j=1

z0
(
a
∣∣y − ξ ′

j

∣∣), y ∈ Ωε, (3.5)

where z0(r) = r2−1
r2+1

is the radial solution in R2 of

�z0 + 8

(1 + r2)2
z0 = 0.

First, we observe that, if |y − ξ ′
j | ≥ R for R > 1

a
, then Z(y) > 0. By the definition of z0 we have

−�Z(y) =
k∑

j=1

8a2(a2|y − ξ ′
j |2 − 1)

(1 + a2|y − ξ ′
j |2)3

≥
k∑

j=1

1

3

8a2

(1 + a2|y − ξ ′
j |2)2

≥
k∑

j=1

4

27

8

a2|y − ξ ′
j |4

provided R >
√

2
a

. On the other hand, in the same region, we have

g′(Vλ)Z(x) ≤ D0

k∑
j=1

ewj Z(y) ≤ D0

k∑
j=1

C

|y − ξ ′
j |4

,

for some constant C > 0 and D0 satisfies (2.35). Hence if a is taken small and fixed, and R > 0 is 
chosen sufficiently large depending on this a, then we have L(Z) < 0 in Ω̃ε . The function Z(y)

is what we are looking for. �
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Let us fix such a number R > 0 which we may take large whenever it is needed. Define the 
“inner norm” of φ in the following way

‖φ‖i = sup
y∈⋃k

j=1 B(ξ ′
j ,R)

∣∣φ(y)
∣∣.

Lemma 3.2. There exists a uniform constant C > 0 such that if L(φ) = h in Ωε , φ = 0 on ∂Ωε , 
then

‖φ‖∞ ≤ C
[‖φ‖i + ‖h‖∗

]
, (3.6)

for any h ∈ L∞(Ωε).

Proof. We will establish this estimate with the use of suitable barriers. Let M be large, such that 
Ωε ⊂ B(ξ ′

j , 
M
ε

) for all j . Consider the solution ψj of the following problem

⎧⎪⎪⎨
⎪⎪⎩

−�ψj = 2

|y − ξ ′
j |3

+ 2ε2, R <
∣∣y − ξ ′

j

∣∣< M

ε
;

ψj (y) = 0 for
∣∣y − ξ ′

j

∣∣= R,
∣∣y − ξ ′

j

∣∣= M

ε
.

We observe that by the direct computation we have that

ψj(r) = 1

R
− 1

r
− ε2(r − R) −

[
1

R
− 1

r
− ε2

(
M

ε
− R

)]
log r

R

log M
εR

.

Therefore, this function is uniform bound independent of ε as long as a < R < 1
2ε

.
Define now the function

φ̃(y) = 2‖φ‖iZ(y) + ‖h‖∗
k∑

j=1

ψj (y),

where Z is the function defined in (3.5). First, observe that by the definition of Z, choosing R
large if necessary,

φ̃(y) ≥ 2‖φ‖iZ(y) ≥ ‖φ‖i ≥ ∣∣φ(y)
∣∣ for

∣∣y − ξ ′
j

∣∣= R, j = 1, · · · , k,

and, by the positivity of Z(y) and ψj(y),

φ̃(y) ≥ 0 = φ(y) for y ∈ ∂Ωε.

Finally, by the definition of ‖ · ‖∗ we have that

∣∣h(y)
∣∣≤

(
k∑(

1 + ∣∣y − ξ ′
j

∣∣)−3 + ε2

)
‖h‖∗,
j=1
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then

L(φ̃) = 2‖φ‖iL(Z) + ‖h‖∗L
(

k∑
j=1

ψj

)
≤ ‖h‖∗

k∑
j=1

(
�ψj + g′(Vλ)ψj

)

= ‖h‖∗
k∑

j=1

(
− 2

|y − ξ ′
j |3

− 2ε2 + g′(Vλ)ψj

)

≤ ‖h‖∗
k∑

j=1

(
− 2

|y − ξ ′
j |3

− 2ε2 + 2kD0

R
ewj

)

≤ −‖h‖∗

(
k∑

j=1

(
1 + ∣∣y − ξ ′

j

∣∣)−3 + ε2

)

≤ −∣∣h(y)
∣∣≤ ∣∣L(φ)(y)

∣∣,
provided R large enough. Hence, from Lemma 3.1, we obtain that

∣∣φ(y)
∣∣≤ φ̃(y) for y ∈ Ω̃ε,

and, since Z(y) ≤ 1 we get

‖φ‖∞ ≤ C
[‖φ‖i + ‖h‖∗

]
. �

Next we prove uniform a priori estimates for the problem (3.3) when φ satisfies additionally 
orthogonality under dilations. Specifically, we consider the problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L(φ) = h, in Ωε;
φ = 0 on ∂Ωε;∫
Ωε

ηjZijφ = 0 for i = 0,1,2, j = 1, · · · , k,
(3.7)

and prove the following estimate.

Lemma 3.3. Let δ > 0 be fixed. There exist positive numbers λ0 and C, such that for any 
points ξj , j = 1, · · · , k, in Ω , satisfying (2.1), μj given by (2.22), and h ∈ L∞(Ωε), and any 
solution φ to problem (3.7), one has

‖φ‖∞ ≤ C‖h‖∗. (3.8)

Proof. We carry out the proof of lemma by a contradiction. If the result were false, then there 
would exist a sequence λn → 0, points ξn

j ∈ Ω , j = 1, · · · , k in Ω , satisfying (2.1), function hn

with ‖hn‖∗ → 0 and φn with ‖φn‖∞ = 1,
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L(φn) = hn in Ωεn;
φn = 0 on ∂Ωεn;∫
Ωε

ηjZijφn = 0 for all i = 0,1,2, j = 1, · · · , k.
(3.9)

Then from Lemma 3.2, we see that ‖φn‖i stays away from zero. Up to a subsequence, for one of 
the indices, say j , we can assume that there exists R > 0 such that,

sup
|y−(ξn

j )′|<R

∣∣φn(y)
∣∣≥ κ > 0 for all n.

Let us set φ̂n(z) = φn((ξ
n
j )′ + z). Elliptic estimate allows us to assume that φ̂n converges uni-

formly over compact subsets of R2 to a bounded, nonzero solution φ̂ of

�φ + 8μ2
j

(μ2
j + |z|2)2

φ = 0.

This implies that φ̂ is a linear combination of the functions zij , i = 0, 1, 2. But orthogonality con-
ditions over φ̂n pass to the limit thanks to ‖φ̂n‖∞ ≤ 1. The dominated convergence theorem then 
yields that 

∫
R2 η(z)zij φ̂ = 0 for i = 0, 1, 2, thus a contradiction with lim infn→∞ ‖φn‖i > 0. �

Now we establish a priori estimates for the problem (3.7) with the orthogonality condition ∫
Ωε

ηjZ0jφ = 0 dropped. We consider the problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L(φ) = h in Ωε;
φ = 0 on ∂Ωε;∫
Ωε

ηjZijφ = 0 for i = 1,2, j = 1, · · · , k.
(3.10)

Lemma 3.4. Let δ > 0 be fixed. There exist positive numbers λ0 and C, such that for any points 
ξj ∈ Ω , j = 1, · · · , k, satisfying (2.1), μj given by (2.22), and h ∈ L∞(Ωε), and any solution φ
to problem (3.10), one has

‖φ‖∞ ≤ C

(
log

1

ε

)
‖h‖∗, (3.11)

for all λ < λ0.

Proof. The proof is already contained in [14] but we reproduce it here for the sake of complete-
ness. Let R > R0 + 1 be a large and fixed number, and ẑ0 be the solution of the problem
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�ẑ0j + 8μ2
j

(μ2
j + |y − ξ ′

j |2)2
ẑ0j = 0,

ẑ0j (y) = z0j (R) for
∣∣y − ξ ′

j

∣∣= R,

ẑ0j (y) = 0 for
∣∣y − ξ ′

j

∣∣= δ

3ε
.

By computation, this function is explicitly given by

ẑ0j (y) = z0j (y)

[
1 −

∫ r

R
ds

sz2
0j (s)∫ δ

3ε

R
ds

sz2
0j (s)

]
, r = ∣∣y − ξ ′

j

∣∣.

Next we consider the radial smooth cut-off functions χ1 and χ2 withe the following properties:

0 ≤ χ1 ≤ 1, χ1 ≡ 1 in B(0,R), χ1 ≡ 0 in B(0,R + 1)c; and

0 ≤ χ2 ≤ 1, χ2 ≡ 1 in B

(
0,

δ

4ε

)
, χ1 ≡ 0 in B

(
0,

δ

3ε

)c

,

and |χ ′
2(r)| ≤ Cε, |χ ′′

2 (r)| ≤ Cε2. Then we set

χ1j (y) = χ1
(∣∣y − ξ ′

j

∣∣), χ2j (y) = χ2
(∣∣y − ξ ′

j

∣∣),
and define the test function

z̃0j = χ1jZ0j + (1 − χ1j )χ2j ẑ0j .

Letting φ be a solution to (3.10), we will modify φ so that the extra orthogonality conditions 
with respect to Z0j are satisfied. We set

φ̃ = φ +
k∑

j=1

dj z̃0j

with the number dj is defined as

dj = −
∫
Ωε

ηjZ0j φ∫
Ωε

ηj |Z0j |2 .

Then

L(φ̃) = h +
k∑

j=1

djL(z̃0j ), (3.12)

and the orthogonality condition
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∫
Ωε

ηjZ0i φ̃ = 0, for all i = 0,1,2,

holds. Then from the previous lemma we have the following estimate

‖φ̃‖∞ ≤ C

[
‖h‖∗ +

k∑
j=1

|dj |
∥∥L(z̃0j )

∥∥∗

]
. (3.13)

Next, we show that

∥∥L(z̃0j )
∥∥∗ ≤ C

log 1
ε

, and |dj | ≤ C

(
log

1

ε

)2

‖h‖∗. (3.14)

Indeed, we have

L(z̃0j ) = 2∇χ1j∇(Z0j − ẑ0j ) + �χ1j (Z0j − ẑ0j )

+ 2∇χ2j∇ ẑ0j + �χ2j ẑ0j + O
(
ε4).

We consider the following four regions

Ω1 = {
y : ∣∣y − ξ ′

j

∣∣≤ R
}
, Ω2 = {

y : R <
∣∣y − ξ ′

j

∣∣< R + 1
}
,

Ω3 =
{
y : R + 1 ≤ ∣∣y − ξ ′

j

∣∣≤ δ

4ε

}
, Ω4 =

{
y : δ

4ε
<
∣∣y − ξ ′

j

∣∣< δ

3ε

}
.

First, we note that L(z̃0) = O(ε4) for y ∈ Ω1 ∪ Ω3. For y ∈ Ω2, we have

ẑ0j − Z0j = −z0j (r)

∫ r

R
ds

sz2
0j (s)∫ δ

3ε

R
ds

sz2
0j (s)

,

so that

|ẑ0j − Z0j | ≤ C

log 1
ε

.

Similarly, in this region, we have

∣∣ẑ′
0j − Z′

0j

∣∣≤ C

log 1
ε

.

On the other hand, for y ∈ Ω4, we have

ẑ0j (r) ≤ C

log 1
, and ẑ′

0j (r) ≤ Cε

log 1
.

ε ε
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Therefore, from the definition of the ∗-norm, we get

∥∥L(z̃0j )
∥∥∗ ≤ C

log 1
ε

, (3.15)

where the number C depends in principle on the chosen large constant R.
Next we show that the other inequality of (3.14) holds. Testing Eq. (3.12) against z̃0l we have

〈
φ̃,L(z̃0l )

〉= 〈h, z̃0l〉 + dl

〈
L(z̃0l ), z̃0l

〉
,

where 〈f, g〉 = ∫
Ωε

fg. This relation and (3.13) give us that

dl

〈
L(z̃0l ), z̃0l

〉≤ C‖h‖∗
[
1 + ∥∥L(z̃0l )

∥∥∗
]+ C

k∑
j=1

|dj |
∥∥L(z̃0l )

∥∥2
∗. (3.16)

We want to measure the size of 〈L(z̃0l), ̃z0l〉. We decompose

〈
L(z̃0l ), z̃0l

〉= ∫
Ω2

L(z̃0l )z̃0l +
∫
Ω4

L(z̃0l )z̃0l + O(ε). (3.17)

Since

∣∣∣∣
∫
Ω4

L(z̃0l )z̃0l

∣∣∣∣≤ C

∫
|∇χ2l ||∇ ẑ0l ||ẑ0l | + C

∫
|�χ2l ||ẑ0l |2 + O

(
ε2)≤ C

(log 1
ε
)2

. (3.18)

Moreover, for y ∈ Ω2, we have

∫
Ω2

L(z̃0l )z̃0l = 2
∫

∇χ1l∇(Z0l − ẑ0l )ẑ0 +
∫

�χ1l (Z0l − ẑ0l )ẑ0l + O(ε)

=
∫

∇χ1l∇(Z0l − ẑ0l )ẑ0l −
∫

∇χ1l (Z0l − ẑ0l )∇ ẑ0l + O(ε),

from the integration by parts. Now, we observe that in the considered region Ω2, |ẑ0l − Z0l | ≤
C

log 1
ε

, while |ẑ′
0l | ∼ 1

R3 + 1
R

1
log 1

ε

. Then, for R large but independent of ε we have

∣∣∣∣
∫

∇χ1l (Z0l − ẑ0l )∇ ẑ0l

∣∣∣∣≤ C1

R3

1

log 1
ε

,

with C1 being a constant to be chosen independent of R. Moreover
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∫
∇χ1l∇(Z0l − ẑ0l )ẑ0l = 2π

R+1∫
R

χ ′
1l (z0l − ẑ0l )

′ẑ0lr dr

= 2π∫ δ
3ε

R
ds

sz2
0l

R+1∫
R

χ ′
1l

[
1 −

4μ2
l r

2z0l

∫ r

R
ds

sz2
0l

(μ2
l + r2)2

]
dr

= − C2

log 1
ε

[
1 + O

(
1

log 1
ε

)]
,

where C2 is a positive constant independent of ε. Thus, choosing R large enough, we get

∫
Ω2

L(z̃0l )z̃0l ∼ − C2

log 1
ε

.

Combining this and (3.17), (3.18) we get

〈
L(z̃0l ), z̃0l

〉≤ − C2

log 1
ε

[
1 + O

(
1

log 1
ε

)]
. (3.19)

From (3.15), (3.16) and (3.18) we have

|dj | ≤ C

(
log

1

ε

)2

‖h‖∗.

We thus have from estimate (3.13) that

‖φ‖∞ ≤ C

(
log

1

ε

)
‖h‖∗. �

Proof of Proposition 3.1. We first establish the validity of the a priori estimate (3.4). The pre-
vious lemma yields

‖φ‖∞ ≤ C

(
log

1

ε

)[
‖h‖∗ +

2∑
i=1

k∑
j=1

|cij |
]
. (3.20)

Let us consider the cut-off function χ2j defined in the previous lemma. Multiplying the first 
equation of (3.3) by Zijχ2j , we find

〈
L(φ),Zijχ2j

〉= 〈h,Zijχ2j 〉 + cij

∫
Ωε

ηj |Zij |2. (3.21)

We have

L(Zijχ2j ) = �χ2jZij + 2∇Zij∇χ2j + εO
(
(1 + r)−3),
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with r = |y − ξ ′
j |. Since �χ2j = O(ε2), ∇χ2j = O(ε), and Zij = O(r−1), ∇Zij = O(r−2), we 

get

L(Zijχ2j ) = O
(
ε3)εO(

(1 + r)−3).
Then we have

∣∣〈L(φ),Zijχ2j

〉∣∣= ∣∣〈φ,L(Zijχ2j )
〉∣∣≤ Cε‖φ‖∞.

Combining this with (3.20) and (3.21) we find

|cij | ≤ C

[
‖h‖∗ + ε log

1

ε

∑
l,m

|clm|
]
. (3.22)

Then,

|cij | ≤ C‖h‖∗.

Combining this with (3.20) we obtain the estimate (3.4) holds.
Next prove the solvability of problem (3.3). We consider the Hilbert space

H =
{
φ ∈ H 1

0 (Ωε) :
∫
Ωε

φZij ηj = 0 for i = 1,2, j = 1,2, · · · , k
}
,

endowed with the usual inner product 〈φ, ψ〉 = ∫
Ωε

∇φ∇ψ . Problem (3.3), expressed in a weak 
form, is equivalent to find φ ∈ H such that

〈φ,ψ〉 =
∫
Ωε

(Wφ − h)ψ dx, for all ψ ∈H,

where W = g′(Vλ). With the aid of Riesz’s representation theorem, this equation gets rewritten 
in H in the operator form

(Id − K)φ = h̃, (3.23)

for certain h̃ ∈ H, where K is a compact operator in H. The homogeneous equation φ = Kφ

in H, which is equivalent to (3.3) with h ≡ 0, has only the trivial solution in view of the a priori 
estimate (3.4). Now, Fredholm’s alternative guarantees unique solvability of (3.23) for any h̃ ∈H. 
This finishes the proof. �

The result of Proposition 3.1 implies that the unique solution φ = Tλ(h) of (3.3) defines a 
continuous linear map form the Banach space C∗ of all functions h in L∞ for which ‖h‖∗ < ∞
into L∞, with norm bounded uniformly in λ.
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Lemma 3.5. The operator Tλ is differentiable with respect to the variables ξ1, . . . , ξk in Ω satis-
fying (2.1); one has the estimate

∥∥∂(ξ ′
m)l Tλ(h)

∥∥∞ ≤ C

(
log

1

ε

)2

‖h‖∗ for l = 1,2, m = 1,2, · · · , k, (3.24)

for a given positive C, independent of ε, and for all ε small enough.

Proof. Differentiating Eq. (3.3), formally Z := ∂(ξ ′
m)l φ should satisfy

L(Z) = −∂(ξ ′
m)l

(
g′(Vλ)

)
φ +

2∑
i=1

cim∂(ξ ′
m)l (ηmZim) +

2∑
i=1

k∑
j=1

dijZij ηj

with dij = ∂(ξ ′
m)l cij , and the orthogonality conditions now become

∫
Ωε

ZimηmZ = −
∫
Ωε

∂(ξ ′
m)l (Zlmηm)φ.

We consider the constants bim defined as

bim

∫
Ωε

ηmZ2
im =

∫
Ωε

∂(ξ ′
m)l (Zimηm)φ, for l = 1,2.

Define

Z̃ = Z +
2∑

i=1

bimηmZim,

and

f = −∂(ξ ′
m)l

(
g′(Vλ)

)
φ +

2∑
i=1

cim∂(ξ ′
m)l (Zimηm) +

2∑
i=1

bimL(ηmZim).

We then have

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

L(Z̃) = f +
2∑

i=1

k∑
j=1

bimηmZim, in Ωε;

Z̃ = 0 on ∂Ωε;∫
Ωε

ηmZimZ̃ = 0 for i = 0,1,2.

Namely, Z̃ = Tλ(f ). Using the result of Proposition 3.1 we find that
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‖f ‖∗ ≤ C

(
log

1

ε

)
‖h‖∗,

hence,

∥∥∂(ξ ′
m)l Tλ(h)

∥∥∞ ≤ C

(
log

1

ε

)2

‖h‖∗ for l = 1,2, m = 1,2, · · · , k. �
4. The nonlinear problem

In what follows we keep the notation introduced in the previous sections. We recall that our 
goal is to solve problem (3.3). The strategy is to solve first the following problem

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

L(φ) = −[
Eλ + N(φ)

]+
2∑

i=1

k∑
j=1

cij ηjZij , in Ωε;

φ = 0 on ∂Ωε;∫
Ωε

ηjZijφ = 0 for all i = 1,2, j = 1,2, · · · , k.

(4.1)

We have the following result.

Lemma 4.1. Under the assumptions of Proposition 3.1, there exist positive numbers C and λ0, 
such that problem (4.1) has a unique solution φ which satisfies

‖φ‖∞ ≤ C

| log ε|2 ,

for all λ < λ0. Moreover, if we consider the map ξ ′ �→ φ into the space C(Ω̄ε), the derivative 
Dξ ′φ exists and defines a continuous function of ξ ′. Besides, there is a constant C > 0, such that

‖Dξ ′φ‖∞ ≤ C

| log ε| . (4.2)

Proof. In terms of the operator Tλ defined in Proposition 3.1, problem (4.1) becomes

φ = Tλ

(−(
N(φ) + Eλ

)) := A(φ). (4.3)

For a given number M > 0, let us consider the region

FM :=
{
φ ∈ C(Ω̄) : ‖φ‖∞ ≤ M

| log ε|2
}
.

From Proposition 3.1, we get

∥∥A(φ)
∥∥∞ ≤ C

(
log

1
)[∥∥N(φ)

∥∥∗ + ‖Eλ‖∗
]
.

ε
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By the definition of N(φ) in (2.27), we can write

∣∣N(φ)
∣∣≤ C

∣∣g′′(Vλ + sφ)
∣∣|φ|2 ≤ C

∣∣g′′(Vλ + sφ)
∣∣‖φ‖2∞

for some 0 < s < 1. Thus, using the fact that ‖φ‖∞ → 0 as λ → 0, and (2.36), we obtain

∥∥N(φ)
∥∥∗ ≤ C‖φ‖2∞

Thus

∥∥A(φ)
∥∥∞ ≤ C| log ε|

(
C‖φ‖2∞ + 1

| log ε|3
)

.

We then get that A(FM) ⊂ FM for a sufficiently large but fixed M and all small λ. Moreover, for 
any φ1, φ2 ∈ FM , one has

∥∥N(φ1) − N(φ2)
∥∥∗ ≤ C

(
max
i=1,2

‖φi‖∞
)
‖φ1 − φ2‖∞.

In fact,

N(φ1) − N(φ2) = g(Vλ + φ1) − g(Vλ + φ2) − g′(Vλ)(φ1 − φ2)

=
1∫

0

d

dt
g
(
Vλ + φ2 + t (φ1 − φ2)

)
dt − g′(Vλ)(φ1 − φ2)

=
1∫

0

g′(Vλ + φ2 + t (φ1 − φ2) − g′(Vλ)
)
dt (φ1 − φ2).

Thus, for a certain t∗ ∈ (0, 1), and s ∈ (0, 1)

∣∣N(φ1) − N(φ2)
∣∣≤ C

∣∣g′(Vλ + φ2 + t∗(φ1 − φ2) − g′(Vλ)
)∣∣‖φ1 − φ2‖∞

≤ C
∣∣g′′(Vλ + sφ2 + t∗(φ1 − φ2)

)∣∣(‖φ1‖∞ + ‖φ2‖∞
)‖φ1 − φ2‖∞.

Thanks to (2.36) and the fact that ‖φ1‖∞, ‖φ2‖∞ → 0 as λ → 0, we conclude that

∥∥N(φ1) − N(φ2)
∥∥∗ ≤ C

∥∥g′′(Vλ)
∥∥∗
(‖φ1‖∞ + ‖φ2‖∞

)‖φ1 − φ2‖∞
≤ C

(‖φ1‖∞ + ‖φ2‖∞
)‖φ1 − φ2‖∞.

Then we have

∥∥A(φ1) − A(φ2)
∥∥∞ ≤ C| log ε|∥∥N(φ1) − N(φ2)

∥∥∗ ≤ C| log ε|
(

max
i=1,2

‖φi‖∞
)
‖φ1 − φ2‖∞.

Thus the operator A has a small Lipschitz constant in FM for all small λ, and therefore a unique 
fixed point of A exists in this region.
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We shall next analyze the differentiability of the map ξ ′ = (ξ ′
1, · · · , ξ ′

k) �→ φ. Assume for 
instance that the partial derivative ∂(ξ ′

j )i
φ exists for i = 1, 2. Since φ = Tλ(−(N(φ) + Eλ)), 

formally it follows that

∂(ξ ′
j )i

φ = (∂(ξ ′
j )i

Tλ)
(−(

N(φ) + Eλ

))+ Tλ

(−(
∂(ξ ′

j )i
N(φ) + ∂(ξ ′

j )i
Eλ

))
.

From Lemma 3.5, we have

∥∥∂(ξ ′
j )i

Tλ

(−(
N(φ) + Eλ

))∥∥∞ ≤ C| log ε|2∥∥N(φ) + Eλ

∥∥∗ ≤ C
1

| log ε| .

On the other hand,

∂(ξ ′
j )i

N(φ) = [
g′(Vλ + φ) − g′(Vλ) − g′′(Vλ)φ

]
∂(ξ ′

j )i
Vλ + ∂(ξ ′

j )i

[
g′(Vλ) − ewj

]
φ

+ [
g′(Vλ + φ) − g′(Vλ)

]
∂(ξ ′

j )i
φ + [

g′(Vλ) − ewj
]
∂(ξ ′

j )i
φ.

Then,

∥∥∂(ξ ′
j )i

N(φ)
∥∥∗ ≤ C

{
‖φ‖2∞ + 1

| log ε| ‖φ‖∞ + ‖∂(ξ ′
j )i

φ‖∞‖φ‖∞ + 1

| log ε| ‖∂(ξ ′
j )i

φ‖∞
}
.

Since ‖∂(ξj )i Eλ‖∗ ≤ C

| log ε|3 , and by Proposition 3.1 we then have

‖∂(ξ ′
j )i

φ‖∞ ≤ C

| log ε| ,

for all i = 1, 2, j = 1, · · · , k. Then, the regularity of the map ξ ′ �→ φ can be proved by standard 
arguments involving the implicit function theorem and the fixed point representation (4.3). This 
concludes the proof of the lemma. �
5. Variational reduction

We have solved the nonlinear problem (4.1). In order to find a solution to the original problem 
we need to find ξ ′ such that

cij

(
ξ ′)= 0 for all i = 1,2, j = 1, · · · , k. (5.1)

This problem is variational: indeed it is equivalent to finding critical points of a function of 
ξ = εξ ′. Associated to (1.1), let us consider the energy functional Jλ given by

Jλ(u) = 1

2

∫
Ω

|∇u|2 dx − λ

p

∫
Ω

eup

dx, u ∈ H 1
0 (Ω), (5.2)

and the finite-dimensional restriction
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Fλ(ξ) = Jλ

(
(Uλ + φ̃)(x, ξ)

)
, (5.3)

where

(Uλ + φ̃)(x, ξ) = γ + 1

pγ p−1

(
(Vλ + φ)

(
x

ε
,
ξ

ε

))
(5.4)

with Vλ defined in (2.17), φ is the unique solution to problem (4.1) given by Lemma 4.1. Critical 
points of Fλ correspond to solutions of (5.1) for a small λ, as the following result states.

Lemma 5.1. Under the assumptions of Proposition 3.1, the functional Fλ(ξ) is of class C1. 
Moreover, for all λ > 0 sufficiently small, if DξFλ(ξ) = 0, then ξ satisfies (5.1).

Proof. A direct consequence of the results obtained in Lemma 4.1 and the definition of function 
Uλ is the fact that the map ξ �→ Fλ(ξ) is of class C1. Define

Iλ(v) = 1

2

∫
Ωε

|∇v|2 dy −
∫
Ωε

e
γ p[(1+ v

pγp )p−1]
dy. (5.5)

Let us differentiate the function Fλ(ξ) with respect to ξ . Since

Jλ

(
(Uλ + φ̃)(x, ξ)

)= 1

p2γ 2(p−1)
Iλ

(
(Vλ + φ)

(
x

ε
,
ξ

ε

))
, (5.6)

we can differentiate directly Iλ(Vλ(ξ) + φ(ξ)) under the integral sign. Let m ∈ {1, . . . , k} and 
l ∈ 1,2. We have

∂ξm,l
Fλ(ξ) = 1

p2γ 2(p−1)
ε−1DIλ

(
Vλ(ξ) + φ(ξ)

)[
∂(ξ ′

m)lVλ(ξ) + ∂(ξ ′
m)l φ(ξ)

]

= 1

p2γ 2(p−1)
ε−1

2∑
i=1

k∑
j=1

∫
Ωε

cij ηjZij

[
∂(ξ ′

m)lVλ(ξ) + ∂(ξ ′
m)l φ(ξ)

]

= 1

p2γ 2(p−1)
ε−1

[
2∑

i=1

k∑
j=1

∫
Ωε

cij ηjZij ∂(ξ ′
m)lVλ(ξ) +

2∑
i=1

k∑
j=1

∫
Ωε

cij ηjZij ∂(ξ ′
m)l φ(ξ)

]

By the expansion of Vλ, we have

∂(ξ ′
m)lVλ = ∂(ξ ′

m)l

(
k∑

m=1

(
PUμm,ξm(εy) + p − 1

p

1

γ p
Pw0

μm,ξm
(εy)

+
(

p − 1

p

)2 1

γ 2p
Pw1

μm,ξm
(εy)

)
− pγ p

)

= ∂(ξ ′
m)l

(
wm(y) + p − 1 1

p
w0

m(y) +
(

p − 1
)2 1

2p
w1

m(y) + θ(y)

)

p γ p γ
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= ∂(ξ ′
m)lwm(y) + p − 1

p

1

γ p
∂(ξ ′

m)lw
0
m(y) +

(
p − 1

p

)2 1

γ 2p
∂(ξ ′

m)lw
1
m(y) + ∂(ξ ′

m)l θ(y)

= −Zlm + p − 1

p

1

γ p
∂(ξ ′

m)lw
0
m(y) +

(
p − 1

p

)2 1

γ 2p
∂(ξ ′

m)lw
1
m(y) + ∂(ξ ′

m)l θ(y).

Hence, for j 	= m, we have

∫
Ωε

ηjZij ∂(ξ ′
m)lVλ(ξ) =

(
−

∫
B(ξ ′

j ,R)

ηjZijZlm

)(
1 + O

(
1

γ p

))
= O(ε),

while for j = m and i 	= l, by symmetry we get

∫
Ωε

ηjZij ∂(ξ ′
m)lVλ(ξ) =

(
−

∫
B(ξ ′

j ,R)

ηjZij

(
Zlm + p − 1

p

1

γ p
∂(ξ ′

m)lw
0
m(y)

))

×
(

1 + O

(
1

γ 2p

))
= O

(
1

γ p

)
.

If now j = m and i = l, we get

∫
Ωε

ηjZij ∂(ξ ′
m)lVλ(ξ) =

(
−

∫
B(ξ ′

m,R)

ηmZlmZlm

)(
1 + O

(
1

γ p

))
.

We thus conclude that

2∑
i=1

k∑
j=1

∫
Ωε

cij ηjZij ∂(ξ ′
m)lVλ(ξ) = −clm

∫
B(ξ ′

m,R)

ηmZlmZlm + O

(
1

γ p

)
.

On the other hand, given (4.2), we have that

∣∣∣∣∣
2∑

i=1

k∑
j=1

∫
Ωε

cij ηjZij ∂(ξ ′
m)l φ(ξ)

∣∣∣∣∣≤ C
∑
i,j

|cij |‖∂(ξ ′
m)l φ‖∞ ≤ o(1)

∑
i,j

|cij |.

Thus, if DξFλ(ξ) = 0, for i, l = 1, 2, j = 1, 2, · · · , k, we then have

clm

(∫
Ωε

ηmZlmZlm

)(
1 + o(1)

)= 0, m = 1, . . . , k, l = 1,2. (5.7)

This concludes the proof of the lemma. �
Next we give an asymptotic estimate of Fλ(ξ) defined in (5.3). We have the following result.
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Lemma 5.2. Let δ > 0 be fixed. There exist positive numbers λ0 and C, such that μj are given 
by (2.17), the following expansion holds

λ−1ε
2(2−p)

p Fλ(ξ) = 8kπ

(2 − p)p
[−2 + p log 8] − 16kπ

p
log ε − 4π

2 − p
ϕk(ξ) + | log ε|−1θλ(ξ)

(5.8)

uniformly for any points ξj , j = 1, · · · , k in Ω , satisfying (2.1), where

ϕk(ξ) = ϕk(ξ1, · · · , ξk) =
k∑

j=1

H(ξj , ξj ) +
∑
i 	=j

G(ξi, ξj ). (5.9)

Furthermore

λ−1ε
2(2−p)

p ∇(ξm)lFλ(ξ) = − 4π

(2 − p)p
∇(ξm)l ϕk(ξ) + | log ε|−1θλ(ξ). (5.10)

In (5.8) and (5.10), the function θλ denotes a smooth function of the points ξ , which is uniformly 
bounded, as λ → 0, for points ξ satisfying (2.1).

Proof. We have

Fλ(ξ) = Jλ

(
Uλ(ξ) + φ̃(ξ)

)
= 1

2

∫
Ω

∣∣∇(
Uλ(ξ) + φ̃(ξ)

)∣∣2 dx − λ

p

∫
Ω

e(Uλ(ξ)+φ̃(ξ))p dx. (5.11)

Using the change of variables (5.4), namely (Uλ + φ̃)(x, ξ) = γ + 1
pγ p−1 ((Vλ + φ)(x

ε
, ξ

ε
)), to-

gether with (5.5) and (5.6), we have that

Jλ

(
Uλ(ξ) + φ̃(ξ)

)− Jλ

(
Uλ(ξ)

)= 1

p2γ 2(p−1)

[
Iλ(Vλ + φ) − Iλ(Vλ)

]

Since by construction I ′
λ(Vλ + φ)[φ] = 0, we have

Jλ

(
Uλ(ξ) + φ̃(ξ)

)− Jλ

(
Uλ(ξ)

)

= 1

p2γ 2(p−1)

1∫
0

D2Iλ(Vλ + tφ)φ2(1 − t) dt

= 1

p2γ 2(p−1)

1∫
0

[∫
Ωε

(
Eλ + N(φ)

)
φ +

∫
Ωε

[
g′

λ(Vλ) − g′
λ(Vλ + tφ)

]
φ2
]
(1 − t) dt

Since ‖Eλ‖∗ ≤ c
3 , ‖φ‖∞ ≤ c

2 , ‖N(φ)‖∗ ≤ c
4 and (2.36), we get that
| log ε| | log ε| | log ε|
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∣∣Jλ

(
Uλ(ξ) + φ̃(ξ)

)− Jλ

(
Uλ(ξ)

)∣∣≤ C

γ 2(p−1)| log ε|3 (5.12)

Next we expand

Jλ

(
Uλ(ξ)

)= 1

2

∫
Ω

∣∣∇(
Uλ(ξ)

)∣∣2 dx − λ

p

∫
Ω

e(Uλ(ξ))p dx. (5.13)

First we expand the term 
∫
Ω

|∇Uλ|2. By (2.23) we have

1

2

∫
Ω

∣∣∇(
Uλ(ξ)

)∣∣2 = 1

2

1

p2γ 2(p−1)

{
k∑

j=1

∫
Ω

|∇PUμj ,ξj
|2 +

∑
l 	=j

∫
Ω

∇PUμl,ξl
∇PUμj ,ξj

+ p − 1

p

1

γ p

k∑
j=1

∫
Ω

∇PUμj ,ξj
(x)∇Pw0

μj ,ξj
(x)

+
(

p − 1

p

)2 1

γ 2p

k∑
j=1

∫
Ω

∇PUμj ,ξj
∇Pw1

μj ,ξj

+
(

p − 1

p

)2 1

γ 2p

[
k∑

j=1

∫
Ω

∣∣∇Pw0
μj ,ξj

∣∣2 +
∑
l 	=j

∫
Ω

∇Pw0
μl,ξl

∇Pw0
μj ,ξj

]

+
(

p − 1

p

)3 1

γ 3p

k∑
j=1

∫
Ω

∇Pw0
μj ,ξj

∇Pw1
μj ,ξj

+
(

p − 1

p

)4 1

γ 4p

[
k∑

j=1

∫
Ω

∣∣∇w1
μj ,ξj

∣∣2 +
∑
l 	=j

∫
Ω

∇Pw1
μl,ξl

∇Pw1
μj ,ξj

]}
.

(5.14)

Let us estimate the first two terms. We observe that the remaining terms are O( 1
γ 2(p−1)γ p ). First, 

we note that PUμj ,ξj
satisfies

−�PUμj ,ξj
= ε2e

Uμj ,ξj , in Ω, PUμj ,ξj
= 0 on ∂Ω.

Then we have

∫
Ω

∣∣∇PUμj ,ξj
(x)

∣∣2

= ε2
∫

e
Uμj ,ξj PUμj ,ξj

(x)
Ω
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= ε2
∫
Ω

e
Uμj ,ξj

(
Uμj ,ξj

(x) + H(x, ξj ) − log
(
8μ2

j

)+ O
(
μ2

j ε
2))

=
∫
Ω

8ε2μ2
j

(ε2μ2
j + |x − ξj |2)2

(
log

1

(ε2μ2
j + |x − ξj |2)2

+ H(x, ξj ) + O
(
μ2

j ε
2))

=
∫
Ω

8ε−2μ−2
j

(1 + | x−ξj

εμj
|2)2

(
log

ε−4μ−4
j

(1 + | x−ξj

εμj
|2)2

+ H(x, ξj ) + O
(
μ2

j ε
2))

=
∫

Ωεμj

8

(1 + |z|2)2

(
log

1

(1 + |z|2)2
+ H(ξj + εμjz, ξj ) − 4 log(εμj )

)
+ O

(
μ2

j ε
2)

=
∫

Ωεμj

8

(1 + |z|2)2
log

1

(1 + |z|2)2
+

∫
Ωεμj

8

(1 + |z|2)2

(
H(ξj + εμjz, ξj ) − H(ξj , ξj )

)

+
∫

Ωεμj

8

(1 + |z|2)2
H(ξj , ξj ) − 4 log(εμj )

∫
Ωεμj

8

(1 + |y|2)2
+ O

(
μ2

j ε
2). (5.15)

But ∫
Ωεμj

8

(1 + |y|2)2
= 8π + O(ε), (5.16)

and ∫
Ωεμj

8

(1 + |y|2)2
log

1

(1 + |y|2)2
= −16π + O(ε). (5.17)

Moreover,

∫
Ωεμj

8

(1 + |y|2)2

(
H(ξj + εμjy, ξj ) − H(ξj , ξj )

)=
∫

Ωεμj

1

(1 + |y|2)2
O
(
εα|y|α)= O(ε).

(5.18)

Therefore from (5.15)–(5.18), we have

∫
Ω

∣∣∇PUμj ,ξj
(x)

∣∣2 dx

= −16π + 8πH(ξj , ξj ) − 32π log ε − 16π log
(
8μ2

j

)+ 16π log(8) + O

(
1

γ p

)
. (5.19)

Now, we calculate that
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∑
l 	=j

∫
Ω

∇PUμl,ξl
∇PUμj ,ξj

dx

=
∑
l 	=j

∫
Ω

ε2eUμl ,ξl PUμj ,ξj

=
∑
l 	=j

∫
Ω

8ε2μ2
l

(ε2μ2
l + |x − ξl |2)2

(
log

8μ2
j

(ε2μ2
j + |x − ξj |2)2

+ H(x, ξj )

− log
(
8μ2

j

)+ O
(
μ2

j ε
2))

=
∑
l 	=j

∫
Ω

8ε2μ2
l

(ε2μ2
l + |x − ξl |2)2

(
log

1

(ε2μ2
j + |x − ξj |2)2

+ H(x, ξj ) + O
(
μ2

j ε
2))

=
∑
l 	=j

∫
Ωεμl

8

(1 + |z|2)2

(
log

1

(ε2μ2
j + |εμlz + ξl − ξj |2)2

+ H(ξl + εμlz, ξj )

)
+ O

(
μ2

j ε
2)

=
∑
l 	=j

∫
Ωεμl

8

(1 + |z|2)2
G(ξl, ξj ) + O

(
μ2

j ε
2)

= 8π
∑
l 	=j

G(ξl, ξj ) + O
(
μ2

j ε
2). (5.20)

Thus, from (5.14), (5.19), (5.20) and (2.22) we have

1

2

∫
Ω

∣∣∇Uλ(x)
∣∣2 dx = 1

p2γ 2(p−1)

{
−8kπ − 16kπ log ε + 8kπ log(8) − 8kπ

2(p − 1)

2 − p
(1 − log 8)

− 4pπ

2 − p

(
k∑

j=1

H(ξj , ξj ) +
k∑

i 	=j

G(ξi, ξj )

)
+ O

(
1

| log ε|
)}

. (5.21)

Finally, let us evaluate the second term in the energy

λ

p

∫
Ω

e(Uλ)p dx = λ

p

∫
Ω

e
γ p(1+ 1

pγp (Vλ)( x
ε
))p

dx

= λ

p

k∑
j=1

∫
B(ξj ,δ̃)

e
γ p(1+ 1

pγp (Vλ)( x
ε
))p

dx

+ λ

p

∫
Ω\⋃k

j=1 B(ξj ,δ̃)

e
γ p(1+ 1

pγp (Vλ)( x
ε
))p

dx

:= I + II. (5.22)



2298 S. Deng, M. Musso / J. Differential Equations 257 (2014) 2259–2302
First we observe that

II = λΘλ(ξ) (5.23)

with Θλ(ξ) a function, uniformly bounded, as λ → 0. On the other hand,

I = 1

p2γ 2(p−1)

k∑
j=1

∫
B(ξ ′

j ,δ̃/ε)

e
γ p[(1+ 1

pγp (Vλ)(y))p−1]
dy

= 1

p2γ 2(p−1)

k∑
j=1

∫
B(ξ ′

j ,δ̃/ε)

e
{wj (y)+ p−1

p
1

γp w0
j (y)+(

p−1
p

)2 1
γ 2p

w1
j (y)+θ(y)}

(
1 + O

(
1

γ p

))
dy

= 1

p2γ 2(p−1)

k∑
j=1

∫
B(0, δ̃

μj ε
)

8

(1 + |y|2)2

(
1 + O

(
1

γ p

))
dy

= 1

p2γ 2(p−1)
8kπ

(
1 + | log ε|−1Θλ(ξ)

)
, (5.24)

with Θλ(ξ) a function, uniformly bounded, as λ → 0. From (5.22)–(5.24) we get

λ

p

∫
Ω

e(Uλ)p dx = 1

p2γ 2(p−1)
8kπ

(
1 + | log ε|−1Θλ(ξ)

)
. (5.25)

Therefore, from (5.11), (5.12), (5.13), (5.21), (5.25) and (1.14) and by the choice of the param-
eters μj in (2.22), and (1.14), we can write the whole asymptotic expansion of Fλ(ξ), namely 
(5.8) holds.

Let us now prove the validity of (5.10). Fix m ∈ {1, . . . , k} and l ∈ {1, 2}. Arguing as in the 
proof of Lemma 5.1, we have

∂(ξm)lFλ(ξ) = 1

p2γ 2(p−1)
ε−1

[
2∑

i=1

k∑
j=1

cij

∫
Ωε

ηjZij ∂(ξ ′
m)lVλ

](
1 + O

(
1

γ p

))
. (5.26)

On the one hand, if we multiply equation in (4.1) against ∂(ξ ′
m)lVλ, we get

∫
Ωε

(
�υξ + g(υξ )

)
∂(ξ ′

m)lVλ =
2∑

i=1

k∑
j=1

cij

∫
Ωε

ηjZij ∂(ξ ′
m)lVλ

where υξ = (Vλ + φ)(y, ξ ′) = (Vλ + φ)(x
ε
, ξ

ε
). On the other hand, we have that

∂(ξm)lUλ(x) = ε−1

p−1
∂(ξ ′

m)lVλ

(
x
)

.

pγ ε
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Putting together these informations, we have that

∂(ξm)lFλ(ξ) =
(∫

Ω

[
�(Uλ + φ̃) + λ(Uλ + φ̃)p−1e(Uλ+φ̃)p

]
∂(ξm)lUλ

)(
1 + o(1)

)
.

Furthermore, since ‖φ̃‖∞ ≤ C

γ p−1 ‖φ‖∞, by definition of Uλ we have that

(U + φ̃)(x) = Uλ(x)

(
1 + O

(
1

γ p

))
in Ω.

Hence, by means of integrations by parts, and the boundary conditions satisfied by Uλ, we get that

∂(ξm)lFλ(ξ) =
(∫

Ω

[
�Uλ + λU

p−1
λ eU

p
λ
]
∂(ξm)lUλ

)(
1 + O

(
1

γ p

))
,

where O(1) here denotes a smooth function of the points ξ , which is uniformly bounded as 
λ → 0. We thus conclude that

∂(ξm)lFλ(ξ) =
(∫

Ω

[−∇Uλ∇∂(ξm)lUλ + λU
p−1
λ eU

p
λ ∂(ξm)lUλ

])(
1 + O

(
1

γ p

))

= −∂(ξm)l Jλ(Uλ)

(
1 + O

(
1

γ p

))
.

Computations analogous to the ones we performed to get expansion (5.8) give us the validity of 
(5.10). This concludes the proof of the lemma. �
6. Proof of the main results

In this section, we will prove the main result.

Proof of Theorem 1.2. From Lemma 5.1, the function

Uλ(ξ) + φ̃(ξ) = 1

pγ p−1

(
pγ p + (Vλ + φ)

(
x

ε

))

where Vλ defined by (2.17) and φ(ξ) is the unique solution of problem (4.1), is a solution of prob-
lem (1.1) if we adjust ξ so that it is a critical point of Fλ(ξ) defined by (5.3). This is equivalent 
to finding a critical point of

F̃λ(ξ) := Aλ−1ε
2(2−p)

p Fλ(ξ) + B + C log ε,

for suitable constants A, B and C. On the other hand, from Lemma 5.2, for ξ ∈ M, we have that,

F̃λ(ξ) = ϕk(ξ) + O
(| log ε|−1)Θλ(ξ),

where ϕk is given by (1.5), and Θλ(ξ) is uniformly bounded in the considered region as λ → 0.
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Let us observe that if M > C, then assumptions (1.18), (1.19) still hold for the function 
min{M, ϕk(ξ)} as well as for min{M, ϕk(ξ) + O(| log ε|−1)Θλ(ξ)}. It follows that the function 
min{M, F̃ (ξ)} satisfies for all λ small assumptions (1.18), (1.19) in D and therefore has a critical 
value Cλ < M which is close to the value C in this region. If ξλ ∈D is a critical point at this level 
for F̃λ(ξ) + β , then since

F̃λ(ξλ) ≤ Cλ < M

we have that there exists a δ > 0 such that |ξλ,j − ξλ,i | > δ, dist(ξλ,j , ∂Ω) > 0. This implies 
C1-closeness of F̃λ(ξ) and ϕk(ξ) at this level, hence ∇ϕk(ξλ) → 0. The function uλ = U(ξλ) +
φ̃(ξλ) is therefore a solution as predicted by the theorem.

Expansion (1.20) follows from (1.14) and (5.25), while (1.21) holds as a direct consequence 
of the construction of Uλ. Expansion (1.22) is a consequence of (5.8). �
Proof of Theorem 1.1. According to the result of Theorem 1.2, the proof of Theorem 1.2 re-
duces to show that, for any k ≥ 1 the function ϕk has a non-trivial critical value in some open 
set D, compactly contained in Ωk . This fact has already been established in [14] for the function 
(−ϕk) in the context of construction of solutions to the Liouville problem

�u + ε2eu = 0, in Ω, u = 0, on ∂Ω

for a not simply connected domain Ω in R2. For completeness, we recall here the principal 
ingredients employed in the proof of the existence of a non-trivial critical value for (−ϕk) and 
we refer the reader to [14] for a complete proof of each step.

Let D be given by

D = {
x ∈ Ωk : dist

(
x, ∂Ωk

)
> δ

}
for some positive and small δ to be chosen. Let Ω1 be a bounded non-empty component of 
R

2 \ Ω̄ and let γ be a closed, smooth Jordan curve contained in Ω which encloses Ω1. Let S be 
the image of γ , B0 = ∅ and B = Sk . Define

C = inf
Φ∈Γ

sup
z∈B

(−ϕk)
(
Φ(z)

)
(6.1)

where

Γ = {
Φ(z) = Ψ (1, z) : Ψ : [0,1] × B →D continuous and Ψ (0, z) = z

}
.

Observe that, since 
∑

j H(ξj , ξj ) is bounded in D and 
∑

i 	=j G(ξi, ξj ) is bounded below, the 
function (−ϕk) is bounded above in D.

With an argument based on degree theory, in Lemma 7.1 in [14], it is proven that:

There exists K > 0, independent of δ in the definition of D, such that C ≥ −K .

This fact ensures the validity of (1.18).
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A delicate analysis of the behavior of H and G contained in Lemma 7.2 and Lemma 7.3 in 
[14] is the key step to show the validity of the following result:

Given K > 0, there exists δ > 0 such that, if (ξ1, . . . , ξk) ∈ ∂D, and |ϕk(ξ1, . . . , ξk)| ≤ K , then 
there exists a vector τ , tangent to ∂D, such that ∇ϕk(ξ1, . . . , ξk) · τ 	= 0.

This fact is proved in Lemma 7.4 in [14] and it shows the validity of (1.19). Having established 
(1.18) and (1.19), we conclude that ϕk has a non-trivial critical value in D, which gives the proof 
of Theorem 1.1. �
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