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Abstract

We consider scalar delay differential equations of the form

ẋ (t) = −μx (t) + f (x (t − 1)) ,

where μ > 0 and f is a nondecreasing C1-function. If χ is a fixed point of fμ : R � u �→ f (u) /μ ∈R with 
f ′
μ (χ) > 1, then [−1,0] � s �→ χ ∈ R is an unstable equilibrium. A periodic solution is said to have large 

amplitude if it oscillates about at least two fixed points χ− < χ+ of fμ with f ′
μ (χ−) > 1 and f ′

μ (χ+) > 1. 
We investigate what type of large-amplitude periodic solutions may exist at the same time when the num-
ber of such fixed points (and hence the number of unstable equilibria) is an arbitrary integer N ≥ 2. It is 
shown that the number of different configurations equals the number of ways in which N symbols can be 
parenthesized. The location of the Floquet multipliers of the corresponding periodic orbits is also discussed.
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1. Introduction

We study the delay differential equation

ẋ (t) = −μx (t) + f (x (t − 1)) (1.1)

under the hypotheses

(H0) μ > 0,
(H1) feedback function f ∈ C1 (R,R) is nondecreasing.

If χ ∈R is a fixed point of fμ : R � u �→ f (u) /μ ∈ R, then χ̂ ∈ C = C ([−1,0] ,R), defined by 
χ̂ (s) = χ for all s ∈ [−1,0], is an equilibrium of the semiflow. In this paper we assume that

(H2) if χ is a fixed point of fμ, then f ′
μ (χ) �= 1.

This hypothesis guarantees that all equilibria are hyperbolic. It is well known that if χ is an 
unstable fixed point of fμ (that is, if f ′

μ (χ) > 1), then χ̂ is an unstable equilibrium. If χ is a 
stable fixed point of fμ (that is, if f ′

μ (χ) < 1), then χ̂ is also stable (exponentially stable). The 
stable and unstable equilibria alternate in pointwise ordering.

Mallet-Paret and Sell have verified a Poincaré–Bendixson type result for (1.1) in the case when 
f ′ (u) > 0 for all u ∈ R [17]. Krisztin, Walther and Wu obtained further detailed results on the 
structure of the solutions (see e.g. [9,7,8,12–14]). They have characterized the geometrical and 
topological properties of the closure of the unstable set of an unstable equilibrium, the so-called
Krisztin–Walther–Wu attractor. If there is only one unstable equilibrium, sufficient conditions 
can be given for the closure of the unstable set to be the global attractor.

The chief motivation for the present work comes from the paper [17] of Mallet-Paret and Sell. 
They have shown that if f ′ (u) > 0 for all u ∈R, then

π2 : C � ϕ �→ (ϕ (0) , ϕ (−1)) ∈R2

maps different (nonconstant and constant) periodic orbits of (1.1) onto disjoint sets in R2, and 
the images of nonconstant periodic orbits are simple closed curves in R2. They have also shown 
that a nonconstant periodic solution p : R → R of (1.1) oscillates about a fixed point χ of fμ if 
and only if π2χ̂ = (χ,χ) is in the interior of π2 {pt : t ∈R}. See Fig. 1.1. These results give a 
strong restriction on what type of periodic solutions the equation may have for the same feedback 
function f : Suppose that p1 : R → R and p2 : R → R are periodic solutions of equation (1.1). 
For both i ∈ {1,2}, let Ei be the set of those fixed points of fμ about which pi oscillates. Then 
either E1 ⊆ E2 or E2 ⊆ E1 or E1 ∩ E2 = ∅. We can easily extend these assertions to the case 
when f ′ (u) ≥ 0 for all u ∈R, see Proposition 3.4 in Section 3.

This paper considers large-amplitude periodic solutions: periodic solutions oscillating about at 
least two unstable fixed points of fμ. Fig. 1.2 lists all configurations of large-amplitude periodic 
solutions allowed by the previously cited results of Mallet-Paret and Sell in case there are three 
and four unstable equilibria, respectively. It is a natural question whether all of them indeed exist 
for some nonlinearities f .

Allowing any number of unstable equilibria, we confirm the existence of all possible configu-
rations of large-amplitude periodic solutions by constructing the suitable feedback functions and 
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Fig. 1.1. Three examples excluded by Mallet-Paret and Sell. Here we show the images of periodic orbits and equilibria 
under π2.

Fig. 1.2. Possible configurations for three or four unstable equilibria: The images of the large-amplitude periodic orbits 
and the unstable equilibria under π2.

periodic solutions explicitly. The oscillation frequency of these periodic solutions is the lowest 
possible. The corresponding periodic orbits are hyperbolic, unstable, and they have exactly one 
Floquet multiplier outside the unit circle. We do not state uniqueness; there may exist more peri-
odic solutions that cannot be obtained from each other by translation of time and oscillate about 
the same fixed points of fμ.

Proving the nonexistence of periodic solutions is a challenging problem in general, see for 
example the papers [2,12,19] for some well-known results. We can verify that unrequired large-
amplitude periodic solutions do not appear for the feedback functions constructed in the paper. 
So for any configuration in Fig. 1.2, there is a nonlinearity f such that equation (1.1) admits the 
marked large-amplitude periodic solutions (maybe even more of the same type), but it has none 
of those that are not indicated.

In the negative feedback case, i.e., when f is nonincreasing, there is at most one equilibrium. 
Still, it is possible to prove the coexistence of an arbitrary number of slowly oscillatory periodic 
orbits, see paper [22] for an explicit construction. If f is continuously differentiable, then these 
periodic orbits are hyperbolic and stable.

2. The main result

Before formulating the main result precisely, we give an introduction to the theoretical back-
ground and to the notation used in the paper. Consider equation (1.1) under (H0)–(H2).

The phase space for (1.1) is the Banach space C = C ([−1,0] ,R) with the maximum norm. 
If J is an interval, u : J → R is continuous and [t − 1, t] ⊆ J , then the segment ut ∈ C is defined 
by ut (s) = u (t + s), −1 ≤ s ≤ 0.
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Fig. 2.1. A nonlinearity f giving N unstable and N + 1 stable equilibria.

Fig. 2.2. An
[
i, j

]
periodic function.

A solution of equation (1.1) is either a continuous function x : [t0 − 1,∞) → R, t0 ∈ R, that 
is differentiable for t > t0 and satisfies equation (1.1) on (t0,∞), or a continuously differentiable 
function x : R → R satisfying the equation for all t ∈R. To all ϕ ∈ C, there corresponds a unique 
solution xϕ : [−1,∞) → R with xϕ

0 = ϕ.
Let � : [0,∞) × C � (t, ϕ) �→ x

ϕ
t ∈ C denote the solution semiflow. The global attractor A, 

if exists, is a nonempty, compact set in C with the following two properties: A is invariant in the 
sense that � (t,A) =A for all t ≥ 0. A attracts bounded sets in the sense that for every bounded 
set B ⊂ C and for every open set U ⊃ A, there exists t ≥ 0 with � ([t,∞) × B) ⊂ U . Global 
attractors are uniquely determined [5].

In this paper the number of unstable equilibria is an arbitrary integer N ≥ 2. We use the 
notation ξ1 < ξ2 < . . . < ξN for those fixed points of fμ that give the unstable equilibria. Typ-
ically we will consider feedback functions for which fμ admits N + 1 further fixed points ζj , 
j ∈ {0,1, . . . ,N}, inducing stable equilibria. Then

ζ0 < ξ1 < ζ1 < ξ2 < ζ2 < . . . < ξN < ζN .

See Fig. 2.1 for an example.
As usual, an arbitrary solution x is called oscillatory about a fixed point χ of fμ if the set 

x−1 (χ) ⊂ R is not bounded from above. A solution x is slowly oscillatory if for any fixed point 
χ in x (R) and for any t ∈ R such that [t − 1, t] is in the domain of x, the function [t − 1, t] �
s �→ x (s) − χ ∈R has one or two sign changes.

As it has been mentioned before, we say that a periodic solution has large amplitude if it 
oscillates about at least two elements of {ξ1, ξ2, . . . , ξN }. This definition is the straightforward 
generalization of the one used in [10]. By an 

[
i, j

]
periodic solution with 1 ≤ i < j ≤ N , we 

mean a large-amplitude periodic solution that oscillates about the elements of 
{
ξi, ξi+1, . . . , ξj

}
but not about the elements of {ξ1, ξ2, . . . , ξi−1} ∪ {

ξj+1, . . . , ξN

}
, see Fig. 2.2.

If p : R → R is a periodic solution with minimal period ω > 1, one can consider the period 
map � (ω, ·) and its derivative M = D2� (ω,p0). M is called the monodromy operator. It is a 
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compact operator, and 0 belongs to its spectrum σ = σ (M). Eigenvalues of finite multiplicity – 
the so-called Floquet multipliers of the periodic orbit Op = {pt : t ∈ [0,ω)} – form σ (M)\ {0}. 
It is known that 1 is a Floquet multiplier with eigenfunction ṗ0. The periodic orbit Op is said 
to be hyperbolic if the generalized eigenspace of M corresponding to the eigenvalue 1 is one-
dimensional, furthermore there are no Floquet multipliers on the unit circle besides 1.

We know a lot about the dynamics from previous works of Krisztin, Walther and Wu in the 
case when f ′ (u) > 0 for all u ∈R. With the notation introduced above, consider the subset

Ci = {ϕ ∈ C : ζi−1 ≤ ϕ (s) ≤ ζi for all s ∈ [−1,0]} , i ∈ {1, . . . ,N} , (2.1)

of the phase space C. Clearly, the equilibria ζ̂i−1, ξ̂i , ζ̂i belong to Ci . The monotonicity of f
implies that the set (2.1) is positively invariant under the solution semiflow �, see Proposition 3.1
of this paper. Krisztin, Walther and Wu have characterized the closure of the unstable set{

ϕ ∈ C : xϕ exists on R and x
ϕ
t → ξ̂i as t → −∞

}
.

It has a so-called spindle-like structure: it contains ζ̂i−1, ξ̂i , ζ̂i , periodic orbits oscillating about ξi , 
and heteroclinic connections among them. In the simplest situation the periodic orbit is unique, 
and it oscillates slowly [12,13]. In other cases, the closure of the unstable set has a more com-
plicated structure. For example, more periodic orbits appear via a series of Hopf-bifurcations in 
a small neighborhood of ξ̂i as f ′ (ξi) increases, see [14]. Under certain technical conditions, the 
closure of the unstable set of ξ̂i is the global attractor of the restriction �|[0,∞)×Ci

[7,12]. For 
further details, see the paper [9], and the references therein.

The monograph [13] of Krisztin, Walther and Wu raised originally the question, whether 
the global attractor is the union of the global attractors Ai of the restrictions �|[0,∞)×Ci

, i ∈
{1, . . . ,N}. We already know from the previous paper [10] of Krisztin and Vas that this is not 
necessarily the case. In the N = 2 case there exists a strictly increasing feedback function f
such that equation (1.1) has exactly two periodic orbits outside A1 ∪ A2, and the unstable sets 
of them constitute the global attractor besides A1 ∪A2. These two periodic solutions have large 
amplitude; they oscillate slowly about ξ1 and ξ2. See paper [11] of Krisztin and Vas for the 
geometrical description of the unstable sets of these large-amplitude periodic orbits.

The purpose of this paper is to develop the result of [10] by investigating what type of large-
amplitude periodic solutions may exist for the same nonlinearity f if the number of unstable 
equilibria is an arbitrary integer greater than 1.

Our main result can be formulated using parenthetical expressions. A pair of parentheses 
consists of a left parenthesis “(” and a right parenthesis “)”, furthermore, “(” precedes “)” if read 
from left to right. A parenthetical expression of N numbers consists of the integers 1, 2, . . . , N
and a finite (possibly zero) number of pairs of parentheses such that

• the integers 1, 2, . . . , N are used exactly once in increasing order,
• a pair of parenthesis encloses at least two numbers out of 1, 2, . . . , N , e.g., the expressions 

(1)23 or 1()23 are not allowed,
• multiple enclosing of the same sublist of numbers is not allowed, e.g., ((12))3 is not allowed,
• for any two pairs of parentheses, if the left parenthesis “(” of the first pair precedes the left 

parenthesis “(” of the second one, then the right parenthesis “)” of the second pair precedes 
the right parenthesis “)” of the first one.
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For example, the parenthetical expressions of 3 numbers are

123, (12)3, 1(23), (123), ((12)3), (1(23)). (2.2)

We emphasize that parentheses appear in pairs in a correct parenthetical expression, and it is 
definite which right parenthesis “)” belongs to a given left parenthesis “(”.

By the result of Mallet-Paret and Sell, if the derivative of f is positive, p1 : R → R and 
p2 : R → R are periodic solutions of (1.1), and Ei is the set of fixed points of fμ about which 
pi oscillates for both i ∈ {1,2}, then either E1 ⊆ E2 or E2 ⊆ E1 or E1 ∩ E2 = ∅. This assertion 
is already true under hypotheses (H0)–(H1). See Proposition 3.4 in Section 3 for a proof in the 
μ = 1 case.

This property guarantees that we can assign a correct parenthetical expression of N numbers 
to each μ and f satisfying (H0) and (H1) if we use the following rule: for all i < j , the numbers 
i, i + 1, . . . , j are enclosed by a pair of parentheses (not containing further numbers) if and only 
if (1.1) with this parameter μ and nonlinearity f admits at least one 

[
i, j

]
periodic solution.

The monotonicity of f is important here. In general we cannot guarantee that we can assign 
a correct parenthetical expression in the above explained way to each μ > 0 and f ∈ C1 (R,R). 
For example, in case of four unstable equilibria, we cannot exclude that the equation has [1,3]
and [2,4] periodic solutions for the same nonmonotone f ∈ C1 (R,R). Then we would get the 
incorrect expression (11(223)14)2, where (1123)1 corresponds to the [1, 3] periodic solution, and 
(2234)2 corresponds to the [2, 4] periodic solution.

Tibor Krisztin has conjectured that the converse statement is true, that is, we can assign a 
configuration of large-amplitude periodic solutions to each parenthetical expression. The main 
result of the paper is the following.

Theorem 2.1. Fix a parenthetical expression of N numbers, where N ≥ 2. Then there exists μ
and f satisfying (H0)–(H2) such that the following assertions hold.

(i) For this μ and f , there exist exactly N unstable equilibria

ξ̂1, ξ̂2, . . . , ξ̂N with ξ1 < ξ2 < . . . < ξN .

For all i, j ∈ {1, . . . ,N} with i < j , the equation (1.1) has an 
[
i, j

]
periodic solution if and only if 

there exists a pair of parentheses in the expression that contains only the numbers i, i + 1, . . . , j .
(ii) For any i, j ∈ {1, . . . ,N} such that the numbers i, i + 1, . . . , j are enclosed by a pair of 

parentheses (not containing further integers), at least one of the 
[
i, j

]
periodic solutions is slowly 

oscillatory. The corresponding periodic orbit is hyperbolic, with exactly one Floquet multiplier 
outside the unit circle, which is real, greater than 1 and simple.

Fig. 2.3 shows the configurations corresponding to ((1 (23)) (45))6 and ((((12)3)4)5)6: 
the images of the large-amplitude periodic orbits and unstable equilibria under the projection 
π2 : C � ϕ �→ (ϕ (0) , ϕ (−1)) ∈ R2.

In the proof of assertion (i) of Theorem 2.1, we explicitly construct a nondecreasing 
C1-function f . This nonlinearity is close to a step function in the sense that it is constant on 
certain subintervals of the real line. Roughly speaking, we can control whether certain types of 
large-amplitude periodic orbits appear or not by setting the heights of the steps properly.

In general, determining the Floquet multipliers is an infinite dimensional problem. Our con-
struction allows us to reduce this problem to a finite dimensional one. This is why we can prove 
Theorem 2.1.(ii).
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Fig. 2.3. Configurations corresponding to the expressions ((1 (23)) (45))6 and ((((12)3)4)5)6.

The hyperbolicity of the periodic orbits guarantees that Theorem 2.1 remains true for non-
decreasing perturbations of the feedback function, see Theorem 8.2. In consequence, we can 
require f in Theorem 2.1 to be even strictly increasing.

This correspondence between the configurations of large-amplitude periodic solutions and 
the parenthetical expressions implies the following under hypotheses (H0)–(H2). If we ignore 
the exact number of large-amplitude periodic solutions oscillating about the same given subsets 
of {ξ1, ξ2, . . . , ξN }, the number of possible configurations for N unstable equilibria equals the 
number CN of ways in which N numbers can be correctly parenthesized. One can check that CN , 
N ≥ 2, are the so so-called large Schröder numbers [1]. Applying a well-known combinatorial 
tool, generating functions, it can be calculated that

CN = −1

2

N∑
i=0

( 1
2
i

)( 1
2

N − i

)(
−3 − 2

√
2
)i (−3 + 2

√
2
)N−i

, N ≥ 2. (2.3)

By this formula, C2 = 2, C3 = 6, C4 = 22, C5 = 90, C6 = 394 and C7 = 1806. Numerical 
simulation shows that CN grows geometrically.

It is an interesting problem to show the existence of unstable periodic orbits for delay equa-
tions by computer assisted proofs. Using a technique from [21], Szczelina has recently found 
numerical approximations of apparently unstable orbits in [20] for an equation of the form (1.1). 
Lessard and Kiss, applying a different approach developed in [16], have rigorously proven the 
coexistence of three periodic orbits for Wright’s equation with two delays in [6], and at least 
one of them is presumed to be unstable. Although method of Lessard and Kiss can be applied to 
determine both stable and unstable periodic solutions, it is not suitable for the stability analysis 
of the obtained solutions.

The paper is organized as follows. For the sake of notational simplicity, we fix μ to be 1. In 
Section 3 we prove some simple results. The proof of Theorem 2.1.(i) is found in Sections 4–6. 
In Section 4 we consider feedback functions f for which f (u) = Ksgn (u) if |u| ≥ 1 and 
f (u) ∈ [−K,K] if u ∈ (−1,1). We explicitly construct periodic solutions for such nonlinear-
ities. Then we use these feedback functions as building blocks in Sections 5 and 6 to determine 
a nonlinearity satisfying assertion (i) of Theorem 2.1. For a first reading one may skip Section 4, 
only read Corollary 4.10 without proof, and then look at the construction in Sections 5–6. We 
give a brief introduction to Floquet theory and then verify Theorem 2.1.(ii) in Section 7. The 
proof of Theorem 2.1.(ii) cannot be read without knowing the details of Section 4. In Section 8
we explain why the statements of Theorem 2.1 remain true for small perturbations of the nonlin-
earity. We close the paper with discussing open questions in Section 9.

3. Preliminaries

We fix μ to be 1 in the rest of the paper and consider the equation
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ẋ (t) = −x (t) + f (x (t − 1)) . (3.1)

The results of the paper can be easily modified for other choices of μ as well.
It is natural to use the pointwise ordering on C. For ϕ, ψ ∈ C, we say that

• ϕ ≤ ψ if ϕ(s) ≤ ψ(s) for all s ∈ [−1, 0],
• ϕ ≺ ψ if ϕ ≤ ψ and ϕ(0) < ψ(0).

Relations “≥” and “�” are defined analogously. The semiflow induced by equation (3.1) is mono-
tone if f is nondecreasing.

Proposition 3.1. Assume (H1). Let ϕ and ψ be elements of C with ϕ ≤ ψ (ϕ ≺ ψ). Then xϕ(t) ≤
xψ(t)

(
xϕ(t) < xψ(t)

)
for all t ≥ 0.

Proof. If xϕ : [−1,∞) → R is a solution of equation (3.1) with xϕ
0 = ϕ, then xϕ can computed 

recursively on [0,∞) using the variation-of-constants formula:

xϕ (t) = xϕ (n) e−(t−n) +
t∫

n

e−(t−s)f
(
xϕ (s − 1)

)
ds

for all nonnegative integers n and t ∈ [n,n + 1]. The proposition follows from this formula. �
The next two propositions have appeared in the paper [17] of Mallet-Paret and Sell for the 

case f ′ (u) > 0, u ∈R.

Proposition 3.2. Assume that (H1) holds, and p :R → R is a periodic solution of (3.1) with min-
imal period ω > 0. Fix t0 < t1 < t0 + ω so that p (t0) = mint∈R p(t) and p (t1) = maxt∈R p(t). 
Then

(i) p is of monotone type in the sense that p is nondecreasing on [t0, t1] and nonincreasing on 
[t1, t0 + ω];

(ii) if p oscillates about a fixed point χ of f , then p (t0) < χ < p (t1).

Proof. Statement (i) is proven in [17] only if f ′ > 0. For the proof of statement (i) under hy-
pothesis (H1), see Proposition 5.1 in [10].

The proof of statement (ii) under (H1). Note that as μ = 1, χ̂ is an equilibrium. It is clear that 
p (t0) ≤ χ ≤ p (t1). If p (t0) = χ , then with ϕ = χ̂ and ψ = pt1 we have ϕ ≺ ψ , and

χ = xϕ(t) < xψ(t) = p (t + t1) for all t ≥ 0

by Proposition 3.1. This is impossible as p oscillates about χ . Similarly, p (t1) > χ . �
Remark 3.3. It follows immediately that if (H1) holds, and p : R → R is a periodic solution 
of (3.1) with minimal period ω ∈ (1,2), then p is slowly oscillatory: On the one hand, Propo-
sition 3.1 easily gives that for all fixed points χ of f in p (R), the map t �→ p (t) − χ has at 
least one sign change on each interval of length 1. On the other hand, Proposition 3.2 implies 
that t �→ p (t)− χ has at most two sign changes on each interval of length ω, hence also on each 
interval of length 1.
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For a simple closed curve c : [a, b] →R2, let int (c [a, b]) denote the interior, i.e., the bounded 
component of R2 \ c ([a, b]).

Proposition 3.4. Assume (H1).
(i) π2 : C � ϕ �→ (ϕ (0) , ϕ (−1)) ∈ R2 maps nonconstant periodic orbits and equilibria of 

(3.1) into simple closed curves and points in R2, respectively. The images of different (noncon-
stant and constant) periodic orbits are disjoint in R2.

(ii) A periodic solution p : R →R of (3.1) with minimal period ω > 0 oscillates about a fixed 
point χ of f if and only if π2χ̂ ∈ int

(
π2Op

)
, where Op = {pt : t ∈ [0,ω]}.

(iii) In consequence, if p1 : R → R and p2 : R → R are periodic solutions of equation (3.1), 
and Ei is the set of fixed points of f about which pi oscillates for both i ∈ {1,2}, then either

E1 ⊆ E2 and p1 (R) ⊆ p2 (R) ,

or

E2 ⊆ E1 and p2 (R) ⊆ p1 (R) ,

or E1 ∩ E2 = ∅.

Proof. The paper [17] verifies (i) in the case f ′ > 0, while [10] gives a proof in the slightly more 
general case f ′ ≥ 0. See Proposition 2.4 of [10].

In order to prove (ii), first assume that p oscillates about a fixed point χ of f . Let ω denote 
the minimal period of p. Set points t0 < t1 < t0 + ω such that p (t0) = mint∈R p(t) and p (t1) =
maxt∈R p(t). Then p (t0) < χ < p (t1) by Proposition 3.2.(ii).

According to Proposition 3.2.(i), the set of zeros of t �→ p (t) − χ in (t0, t1) is an interval:

{t ∈ (t0, t1) : p(t) = χ} = [
z0,, z1

]
with t0 < z0 ≤ z1 < t1. One may also set z2 and z3 so that [z2, z3] ⊂ (t1, t0 + ω), p(t) = χ for 
t ∈ [

z2,, z3
]

and p(t) �= χ for t ∈ (t1, t0 + ω)\ [
z2,, z3

]
. Of course, z0 = z1 or z2 = z3 is possible.

Consider the curve � : [t0, t0 + ω] � t �→ π2pt ∈ R2. By property (i), � is a simple closed 
curve, and � (t) �= π2χ̂ = (χ,χ) for t ∈ [t0, t0 + ω].

For t ∈ (z1, t1], p(t) > χ , ṗ(t) ≥ 0, hence f (p (t − 1)) = ṗ(t) + p(t) > χ and necessarily 
p(t − 1) > χ . We claim that p (t − 1) > χ holds also for t ∈ [

z0,, z1
]
. If not, then there exists 

z∗ ∈ [
z0,, z1

]
so that p (z∗ − 1) = χ , which contradicts � (z∗) �= π2χ̂ . Therefore

�(t) ∈
{
(u, v) ∈R2 : u ≥ χ, v > χ

}
for t ∈ [z0, t1] .

It can be verified in a similar manner that p(t − 1) < χ holds for t ∈ [z2, t0 + ω] and thus

�(t) ∈
{
(u, v) ∈R2 : u ≤ χ, v < χ

}
for t ∈ [z2, t0 + ω] .

Since � is a simple closed curve and there exists no t ∈ [t0, t0 + ω]\ ([z0, z1] ∪ [z2, z3]) such 
that �(t) is in 

{
(χ, v) ∈R2 : v ∈ R

}
, we obtain that π2χ̂ = (χ,χ) ∈ int (� [t0, t0 + ω]).
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The reverse statement is easy. If p does not oscillate about a fixed point χ of f , then p (t) > χ

or p (t) < χ for all t ∈ R, and

�(t) ∈
{
(u, v) ∈R2 : u > χ, v > χ

}
for all t ∈ R

or

�(t) ∈
{
(u, v) ∈ R2 : u < χ, v < χ

}
for all t ∈R,

respectively. This means that (χ,χ) /∈ int (� [t0, t0 + ω]).
Statement (iii) follows at once from (i) and (ii). �

4. Construction of a single periodic solution

Let K > 1. We define F (K) as the class of functions f ∈ C1 (R,R) with

• f (u) ∈ [−K,K] for u ∈ (−1,1),
• f (u) = Ksgn(u) for |u| ≥ 1.

The elements of F (K) are not required to satisfy (H1) or (H2).

Proposition 4.1. There exists a threshold number K0 > 1 such that for all K > K0 and f ∈
F (K), the equation

ẋ (t) = −x (t) + f (x (t − 1)) (3.1)

has a periodic solution p : R → R with the following properties: The minimal period of p is in 
(1,2), maxt∈R p (t) ∈ (1,K) and mint∈R p (t) ∈ (−K,−1).

We prove Proposition 4.1 by determining a suitable periodic solution explicitly. The paper 
[10] has already described two significantly different periodic solutions in the special case when 
f ∈ F (K) and f (x) = 0 for all x ∈ [−1 + ε,1 − ε] with some small ε > 0. Section 3.1 of [10]
has determined the first periodic solution that we now denote by p1. Section 3.2 of [10] has given 
the second one p2. The construction below is a generalization of the one that has been published 
for p2 in Section 3.2.

In paper [10], the initial functions of p1 and p2 were determined as fixed points of three-
dimensional maps. Here we not only generalize but also simplify the calculations regarding p2
because now we obtain the initial function of the periodic solution as the fixed point of a one-
dimensional map. The construction of p1 is indeed three-dimensional, and at this point we cannot 
extend it to all f ∈ F (K).

In the following we assume that f ∈ F (K), where K > 1.

Step 0. Preliminary observations
For both i ∈ {−K,K}, consider the map

�i :R×R � (
s, x∗) �→ i + (

x∗ − i
)
e−s ∈R.
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If t0 < t1, and x is a solution of equation (3.1) on [t0 − 1,∞) with x (t − 1) ≥ 1 for all t ∈ (t0, t1), 
then equation (3.1) reduces to the ordinary differential equation

ẋ (t) = −x (t) + K

on the interval (t0, t1), and thus

x(t) = �K (t − t0, x (t0)) for all t ∈ [t0, t1] . (4.1)

Similarly, if t0 < t1, x is a solution of equation (3.1) on [t0 − 1,∞), and x (t − 1) ≤ −1 for all 
t ∈ (t0, t1), then

x(t) = �−K (t − t0, x (t0)) for all t ∈ [t0, t1] . (4.2)

We say that a function x : [t0, t1] → R is of type (K) (or (−K)) on [t0, t1], if (4.1) (or (4.2)) 
holds.

If x : [t0 − 1,∞) → R is a solution of equation (3.1), and x is type of (i) on [t0 − 1, t1 − 1]
with some i ∈ {−K,K}, then the equality

x (t) = x (t0) et0−t + e−t

t∫
t0

esf (�i (s − t0, j))ds (4.3)

holds for all t ∈ [t0, t1] with j = x (t0 − 1). This observation motivates the next definition. 
A function x : [t0, t1] → R is of type (i, j) on [t0, t1] with i ∈ {−K,K} and j ∈ R if (4.3) holds 
for all t ∈ [t0, t1].

Let T1 denote the time needed by a function of type (−K) to decrease from 1 to −1. As 
K > 1, T1 is well-defined, and

T1 = ln
K + 1

K − 1
.

Then T1 is the time needed by a function of type (K) to increase from −1 to 1. Set T2 to be the 
time needed by a function of type (K) to increase from −1 to 0:

T2 = ln
K + 1

K
.

As the reader will see from the rest of the section, we search for a periodic solution p that 
is of type (K) when it increases from −1 to 1, and of type (−K) when it decreases from 1
to −1. Hence, if J is a subinterval of R mapped by p onto [−1,1], then the length of J is T1, 
furthermore p is of type (K,−1) or of type (−K,1) on J + 1 = {t + 1 : t ∈ J }.

Step 1. A C1-submanifold of initial functions
We introduce a one-dimensional C1-submanifold of the phase space C. This manifold will 

contain the initial segment of the periodic solution.
If K is large enough, then U1 = (0,1 − T1 − T2) is a nontrivial open interval. For given 

a ∈ U1, set si = si (a), i ∈ {0,1,2}, and s3 as
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Fig. 4.1. The plot of h(a).

s0 = −1,

s1 = s0 + a = −1 + a,

s2 = s1 + T1 = −1 + a + T1,

s3 = −T2.

The definitions of U1, T1 and T2 imply that

−1 = s0 < s1 < s2 < s3 < 0.

For all a ∈ U1, define the function h (a) ∈ C1 (R,R) by

h(a) (t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K, if t < s1,

f (�−K (t − s1,1)) , if s1 ≤ t < s2,

−K, if s2 ≤ t < s3,

f (�K (t − s3,−1)) , if s3 ≤ t.

See Fig. 4.1 for the plot of h (a). Then define the map 
 : U1 → C by


 (a) (t) = e−t

t∫
−1

esh (a) (s)ds for all − 1 ≤ t ≤ 0. (4.4)

It is clear that 
 is continuous on U1 because U1 � a �→ h (a) ∈ C (R,R) is continuous. Notice 
that 
 (a) is the unique solution of the initial value problem{

ẏ (t) = −y (t) + h(a) (t) , −1 ≤ t ≤ 0,

y (−1) = 0.
(4.5)

The next characterization of 

(
U1

)
reveals the idea behind the above definitions. See also 

Fig. 4.2 for the plot of a typical element of 

(
U1

)
.

Remark 4.2. A function ϕ ∈ C belongs to 

(
U1

)
if and only if there exists s1 ∈ (−1,−T1 − T2)

so that with s2 = s1 + T1 and s3 = −T2,
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Fig. 4.2. The plot of an element of 

(
U1

)
and of the corresponding solution.

(i) ϕ(−1) = 0,
(ii) ϕ is of type (K) on [−1, s1],
(iii) ϕ is of type (−K,1) on [s1, s2],
(iv) ϕ is of type (−K) on [s2, s3],
(v) ϕ is of type (K,−1) on [s3,0].

We need to examine the smoothness of 
. For each fixed a ∈ U1, the map R � t �→
h (a) (t) ∈ R is C1-smooth with derivative h′ (a). Fix t∗ ∈ (s2, s3). If a ∈ U1 and |δ| is small 
enough, then

h(a + δ) (t) =
{

h(a) (t − δ) if t ≤ t∗,
h (a) (t) if t > t∗.

It follows that

∂

∂a
h (a) (t) =

{
−h′ (a) (t) if t ∈ [−1, t∗

]
,

0 if t ∈ (t∗,0
]
.

Define the nontrivial element ψ = ψ (a) ∈ C by

ψ (t) = e−t

t∫
−1

es ∂

∂a
h (a) (s)ds for all t ∈ [−1,0] .

Proposition 4.3. The map U1 � a �→ 
 (a) ∈ C is C1-smooth with D
 (a)1 = ψ for all a ∈ U1.

Proof. 
 (a) is the unique solution of the initial value problem (4.5). Hence the proposition 
follows from the differentiability of the solutions of ordinary differential equations with respect 
to the parameters. �

It follows that 

(
U1

)
is a one-dimensional C1-submanifold of C. We look for a periodic 

solution with initial segment in 

(
U1

)
.

We are going to need the exact values of 
 (a) at si = si (a), i ∈ {1,2,3}, and at 0 for all 
a ∈ U1. Let
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c1 =
T1∫

0

euf (�−K (u,1))du.

Note that c1 is independent of a. Then using the definitions of 
 and h, we deduce that


 (a) (s1) = e−s1

s1∫
−1

Kesds = K
(
1 − e−a

)
, (4.6)


 (a) (s2) = e−s2

s2∫
−1

esh (a) (s)ds

= es1−s2
 (a) (s1) + e−s2

s2∫
s1

esf (�−K (s − s1,1))ds

= e−T1 (
 (a) (s1) + c1)

= K − 1

K + 1

(
K

(
1 − e−a

) + c1
)
, (4.7)


 (a) (s3) = e−s3

s3∫
−1

esh (a) (s)ds

= es2−s3
 (a) (s2) + e−s3

s3∫
s2

(−K)esds

= e−1+a+T1+T2 (
 (a) (s2) + K) − K

= e−1+a (K + 1)

(
1 + c1

K
+ K + 1

K − 1

)
− e−1 (K + 1) − K (4.8)

and


 (a) (0) =
0∫

−1

esh (a) (s)ds = es3
 (a) (s3) +
0∫

s3

esf (�K (s − s3,−1))ds. (4.9)

We see that 
 (a) (si), i ∈ {1,2,3}, and 
 (a) (0) are continuously differentiable functions of 
a ∈ U1.

Step 2. Construction of a one-dimensional return map
Let

U2 =
{
a ∈ U1 : 
 (a) (s) > 1 for s ∈ [s1, s2] and 
 (a) (s) < −1 for s ∈ [s3,0]

}
.
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It is easy to see from Proposition 4.3 that U2 is an open subset of U1. Later we shall see that U2

is nonempty if K is large enough.
For a ∈ U2, there exist

−1 < t1 < s1 < s2 < t2 < t3 < s3

such that


 (a) (t1) = 
 (a) (t2) = 1 and 
 (a) (t3) = −1,

see Fig. 4.2. As 
 (a) is of type (K) on [−1, s1] and of type (−K) on [s2, s3], it is strictly 
monotone on these intervals. Hence t1, t2 and t3 are unique. For t1 we have

e−t1

t1∫
−1

Kesds = 1, and thus t1 = −1 + ln
K

K − 1
. (4.10)

Similarly,

1 = e−t2

t2∫
−1

esh (a) (s)ds = es2−t2
 (a) (s2) − Ke−t2

t2∫
s2

esds

and

−1 = e−t3

t3∫
−1

esh (a) (s)ds = es2−t3
 (a) (s2) − Ke−t3

t3∫
s2

esds,

from which

t2 = s2 + ln
K + 
 (a) (s2)

K + 1
and t3 = s2 + ln

K + 
 (a) (s2)

K − 1
(4.11)

follows. Note that t3 − t2 = T1 and t2, t3 are C1-smooth functions of a.
Let us introduce the notation

c2 =
T1∫

0

euf (�K (u,−1))du.

For a ∈ U2, consider the solution x = x
(a) : [−1,∞) → R of equation (3.1). We need the 
following result before defining a further open subset of U1.
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Proposition 4.4. (i) The maps

U2 � a �→ x
(a) (t1 + 1) = e−T1
 (a) (s3) + e−T1c2 ∈R

and

U2 � a �→ x
(a) (t2 + 1) = K + K

K + 
 (a) (s2)

(
x
(a) (t1 + 1) − K

)
e−a ∈ R

are continuously differentiable.
(ii) The map

U2 � a �→ x
(a)|[0,t1+1] ∈ C ([0, t1 + 1] ,R)

is continuous.

Proof. Statement (i). As T1 and c2 are independent of a, K + 
 (a) (s2) > 0 and 
 (a) (s2) and 

 (a) (s3) are C1-smooth functions on U2, one has to show only that the stated equalities indeed 
hold. As 
 (a) (−1) = 0 and 
 (a) is of type (K) on [−1, t1] (see Remark 4.2), x = x
(a) is of 
type (K,0) on [0, t1 + 1]. By (4.3) and (4.9),

x (t) = x (0) e−t + e−t

t∫
0

esf (�K (s,0))ds

= es3−t
 (a) (s3) + e−t

0∫
s3

esf (�K (s − s3,−1))ds + e−t

t∫
0

esf (�K (s,0))ds

for all t ∈ [0, t1 + 1]. It follows immediately from the definition of �K and from s3 = −T2 =
ln (K/ (K + 1)) that

�K (s − s3,−1) = �K (s,0) for all s ∈ R.

Therefore

x (t) = es3−t
 (a) (s3) + e−t

t∫
s3

esf (�K (s − s3,−1))ds

= es3−t
 (a) (s3) + es3−t

t−s3∫
0

euf (�K (u,−1))du, t ∈ [0, t1 + 1] . (4.12)

We see from the definition of s3 and (4.10) that

t1 + 1 − s3 = ln
K

K − 1
− ln

K

K + 1
= T1.

Hence (4.12) with t = t1 + 1 gives the formula for x (t1 + 1).
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By Remark 4.2 and the definition of U2, 
 (a) strictly increases on [−1, s1], 
 (a) (t) > 1
for all t ∈ [s1, s2], and 
 (a) strictly decreases on [s2, s3]. It follows that 
 (a) (t) > 1 for all 
t ∈ (t1, t2), hence x is of type (K) on the interval [t1 + 1, t2 + 1], and thus

x (t2 + 1) = K + (x (t1 + 1) − K)et1−t2 .

By (4.10) and (4.11) and the definition of s2,

t1 − t2 = ln
K

K + 
 (a) (s2)
− a.

We obtain that the formula for x (t2 + 1) indeed holds.
Statement (ii). We see from (4.12) that for all a1 ∈ U2 and a2 ∈ U2,

max
t∈[0,t1+1]

∣∣∣x
(a1) (t) − x
(a2) (t)

∣∣∣ = max
t∈[0,t1+1]

es3−t |
 (a1) (s3) − 
 (a2) (s3)|
≤ es3 |
 (a1) (s3) − 
 (a2) (s3)| .

Statement (ii) hence follows from the continuity of U2 � a �→ 
 (a) (s3) ∈R. �
Now let

U3 =
{
a ∈ U2 : x
(a) (t) < −1 for all t ∈ [0, t1 + 1] and x
(a) (t2 + 1) > 0

}
.

From Proposition 4.4 it is clear that U3 is an open subset of R. Later we shall see that U3 is 
nonempty.

Fig. 4.2 shows an element of 

(
U3

)
.

Remark 4.5. Observe that the elements of 

(
U3

)
can be characterized as follows. A function 

ϕ ∈ C belongs to 

(
U3

)
if and only if there exists s1 ∈ (−1,−T1 − T2) so that with s2 = s1 +T1

and s3 = −T2, properties (i)–(v) of Remark 4.2 hold, furthermore
(vi) ϕ (t) > 1 for all t ∈ [s1, s2],
(vii) if −1 < t1 < s1 with ϕ (t1) = 1, then xϕ (t) < −1 for all t ∈ [s3, t1 + 1],
(viii) if s2 < t2 < s3 with ϕ (t2) = 1, then xϕ (t2 + 1) > 0.

For a ∈ U3, x = x
(a) is of type (K) on [t1 + 1, t2 + 1], hence it is strictly increasing on 
[t1 + 1, t2 + 1]. So there exists unique t4 and τ with t1 +1 < t4 < τ < t2 +1 such that x (t4) = −1
and x (τ) = 0, see Fig. 4.2.

As 
 (a) strictly decreases on [t3, s3], x (t) < −1 for all t ∈ [s3, t1 + 1] by Remark 4.5, and 
x strictly increases on [t1 + 1, t2 + 1], we deduce that

x (t) < −1 for t ∈ (t3, t4) and x (t) ∈ (−1,0) for t ∈ (t4, τ ) . (4.13)

Proposition 4.6. The map

U3 � a �→ τ = ln
K − x (t1 + 1)

K − 1
∈ (0,1) (4.14)

is continuously differentiable.
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Proof. As x is of type (K) on the interval [t1 + 1, t2 + 1], we have

0 = x (τ) = K + (x (t1 + 1) − K)et1+1−τ ,

from which the formula easily follows with the aid of (4.10). It is clear that τ ∈ (0,1) be-
cause τ ∈ (t1 + 1, t2 + 1) ⊂ (0,1). The smoothness of τ is a consequence of the smoothness 
of x (t1 + 1). �

Similarly,

−1 = x (t4) = K + (x (t1 + 1) − K)et1+1−t4

and (4.10) together yield that

t4 = ln
K (K − x (t1 + 1))

K2 − 1
. (4.15)

As the next result shows, solutions with initial functions in 

(
U3

)
return to 


(
U1

)
.

Proposition 4.7. Suppose a ∈ U3 and define t2 and τ as above. Then xτ+1 ∈ 

(
U1

)
and xτ+1 =


 (t2 + 1 − τ).

Proof. It is clear from the above construction (to be more precise, from the definitions of 
τ, t2, t3, t4, the fact that x is of type (K) on [t1 + 1, t2 + 1], property (iv) of Remark 4.2 and 
the observation (4.13)) that

(i) x (τ) = 0,
(ii) x is of type (K) on [τ, t2 + 1],
(iii) x is of type (−K,1) on [t2 + 1, t3 + 1],
(iv) x is of type (−K) on [t3 + 1, t4 + 1],
(v) x is of type (K,−1) on [t4 + 1, τ + 1].
So by Remark 4.2, it suffices to show that
(a) ŝ1 := (t2 + 1) − (τ + 1) = t2 − τ is in (−1,−T1 − T2),
(b) ŝ2 := (t3 + 1) − (τ + 1) = t3 − τ equals ŝ1 + T1,
(c) ŝ3 := (t4 + 1) − (τ + 1) = t4 − τ equals −T2.

Property (c) comes from (4.14) and (4.15). By the definition of ŝ1, property (b) is equivalent to 
t3 = t2 + T1, which follows from (4.11). It is clear that ŝ1 > −1. Hence (a) comes from ŝ1 =
ŝ2 − T1 < ŝ3 − T1 = −T2 − T1. �

The above results motivate us to define the map

F : U3 →R by F (a) = t2 + 1 − τ.

The next proposition is an immediate consequence of the smoothness of t2 and τ as functions 
of a.

Proposition 4.8. F is C1-smooth.
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Note that if a ∈ U3 and F (a) = a, then x
(a)
τ+1 = 
 (a), and x
(a) is a periodic solution of 

equation (3.1) with minimal period τ + 1.

Step 3. The map F has a unique fixed point
A trivial upper bound for the absolute values of c1 and c2 is the following:

|c1| , |c2| ≤ K

T1∫
0

eudu = 2K

K − 1
. (4.16)

If K > 1 is fixed, then c1 and c2 are uniformly bounded for all f ∈ F (K).
We will use a further technical result which holds for more general feedback functions.

Proposition 4.9. Suppose that f : R → R is continuous, K1 ∈ R, K2 ∈ R, f (u) ∈ [K1,K2] for 
all u ∈ R, t0 ∈ R, and x : [t0 − 1,∞) → R is a solution of (3.1) with x (t0) ∈ (K1,K2). Then 
x (t) ∈ (K1,K2) for all t ≥ t0.

Proof. We prove the upper bound for x. Let y : R → R be the solution of the initial value 
problem {

ẏ(t) = −y(t) + K2, t ∈ R,

y (t0) = x (t0) .

Then y (t) = K2 + (x (t0) − K2) et0−t < K2 for t ∈ R. We know that ẋ (t) ≤ −x(t) + K2 for all 
t ∈ R. Theorem 6.1 of Chapter I.6 in [4] hence implies that for t ≥ t0, x (t) ≤ y (t) < K2.

The lower bound can be verified analogously. �
Proof of Proposition 4.1. We show that if K > 1 is large enough and f ∈ F (K), then the map 
F has a unique fixed point in U3, namely there exists a unique a ∈ U3 such that

t2 + 1 − τ = a. (4.17)

Substituting (4.11), (4.14) and then the definitions of s2 and T1 into equation (4.17), we obtain 
that (4.17) is equivalent to 
 (a) (s2) = −x (t1 + 1). Then using (4.7), (4.8), the formula for 
x (t1 + 1) in Proposition 4.4 and again the definition of T1, we see that 
 (a) (s2) = −x (t1 + 1)

is an equation of second order in ea: it can be written in the form

αz2 + βz + γ = 0, (4.18)

where z = ea , the coefficients α, β, γ are independent of a, and they are defined as

α = e−1
(

2K

K − 1
+ c1

K

)
,

β = c1 + c2

K + 1
− e−1,

γ = −K
.

K + 1
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Observe that α > 0 for all K > 1 because of (4.16). As γ < 0, it is clear that 
√

β2 − 4αγ > |β|. 
This means that

z = −β − √
β2 − 4αγ

2α

is a negative solution of (4.18). We conclude that for all K > 1 and f ∈F (K), the map F has at 
most one fixed point a∗ in U3, and it is given by

a∗ = ln
−β + √

β2 − 4αγ

2α
. (4.19)

It remains to show that if K is chosen sufficiently large, then a∗ determined by (4.19) is indeed 
in U3 for all f ∈F (K), that is, with the notation used before,

(i) a∗ ∈ (0,1 − T1 − T2),
(ii) 
 (a∗) (t) > 1 for t ∈ [s1, s2],
(iii) x


(
a∗)

(t) < −1 for all t ∈ [s3, t1 + 1],
(iv) x


(
a∗)

(t2 + 1) > 0.
Property (i). Applying the bound (4.16) for |c1| and |c1|, we see that

lim
K→∞ sup

f ∈F(K)

∣∣∣α − 2e−1
∣∣∣ = 0, lim

K→∞ sup
f ∈F(K)

∣∣∣β + e−1
∣∣∣ = 0, lim

K→∞ sup
f ∈F(K)

|γ + 1| = 0,

and thus

lim
K→∞ sup

f ∈F(K)

∣∣∣∣∣a∗ − ln
1 + √

1 + 8e

4

∣∣∣∣∣ = 0. (4.20)

As limK→∞ (1 − T1 − T2) = 1, property (i) immediately follows for all large K and for all f ∈
F (K).

Property (ii). By the definition of 
 and formula (4.6),



(
a∗) (t) = e−t

t∫
−1

esh (a) (s)ds

= es1−t

(
a∗) (s1) + e−t

t∫
s1

esf (�−K (s − s1,1))ds

= es1−tK
(

1 − e−a∗) + es1−t

t−s1∫
0

euf (�−K (u,1))du

for all t ∈ [s1, s2]. Hence



(
a∗) (t) ≥ es1−s2K

(
1 − e−a∗) − es1−s1 |c1| = K − 1

K
(

1 − e−a∗) − |c1|

K + 1
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for all t ∈ [s1, s2]. Here we used that s2 − s1 = T1. As |c1| is bounded for K > 2, and 1 − e−a∗

has a positive limit as K → ∞, we see that (ii) is satisfied for all f ∈ F (K) if K is large enough.
Property (iii). The definition of 
 gives that for t ∈ [s3,0],



(
a∗) (t) = es3−t


(
a∗) (s3) + es3−t

t−s3∫
0

euf (�K (u,−1))du. (4.21)

We see from (4.12) that (4.21) actually holds for all t ∈ [s3, t1 + 1]. Regarding the value 

 (a∗) (s3), observe that (4.8), the limit of a∗ in (4.20), and the bound for |c1| together yield 
that

lim
K→∞


 (a∗) (s3)(√
1+8e−1

2e
− 1

)
K

= 1

uniformly for f ∈ F (K). As the denominator in the above fraction is negative, 
 (a∗) (s3) < 0
if K is large enough, and it tends to −∞ as K → ∞.

By using formula (4.21), 
 (a∗) (s3) < 0 and t1 +1 − s3 = T1, we now obtain the upper bound



(
a∗) (t) ≤ K − 1

K + 1



(
a∗) (s3) + |c2| for all t ∈ [s3, t1 + 1] .

As 
 (a∗) (s3) tends to −∞, and c2 is bounded if K > 2, property (iii) also holds for all F (K)

if K is chosen sufficiently large.
Property (iv). Recall the formula given by Proposition 4.4 for x


(
a∗)

(t2 + 1). With the equal-
ity 
 (a∗) (s2) = −x


(
a∗)

(t1 + 1) confirmed at the beginning of this proof, we derive that

x

(
a∗)

(t2 + 1) = K − Ke−a = 

(
a∗) (s1) ,

and hence (iv) follows from (ii).
Define p : R → R as the (τ + 1)-periodic extension of x


(
a∗)|[−1,τ ] to R. Then it is clear 

from the construction that p is a solution of (3.1), the minimal period of p is τ + 1 ∈ (1,2), 
maxt∈R p (t) > 1 and mint∈R p (t) < −1. It follows from Proposition 4.9 that p (t) ∈ (−K,K)

for all real t . �
Extension of the result

An analogous result holds for a wider class of feedback functions. Consider any C1-nonlin-
earity defined on a finite closed subinterval of the real line. Next we prove that we can extend 
this function to the real line such that a new periodic solution appears. The range of this periodic 
solution contains the original finite interval.

Corollary 4.10. Let η > 0, A1, A2, B1, B2 ∈ R with A1 < A2, B1 < B2 and 2η < A2 − A1. 
Assume that f̂ ∈ C1

([
A1 + η,A2 − η

]
,R

)
is given, and

B1 ≤ f̂ (u) ≤ B2 for all A1 + η ≤ u ≤ A2 − η.

Consider the threshold number K0 > 1 from Proposition 4.1. Let
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Fig. 4.3. The plot of f in Corollary 4.10.

K1 < min

{− (A2 − A1)K0 + A1 + A2

2
, A1, B1, A1 + A2 − B2

}
(4.22)

and K2 = A1 + A2 − K1. Let f be a C1-extension of f̂ to the real line with

f (u) = K1 for u ≤ A1, f (u) = K2 for u ≥ A2,

and

f (u) ∈ [K1,K2] for u ∈ [A1,A2] .

Then equation (3.1) with nonlinearity f has a periodic solution p : R →R such that
(i) the minimal period of p is in (1,2),
(ii) maxt∈R p (t) ∈ (A2,K2) and mint∈R p (t) ∈ (K1,A1).

See Fig. 4.3 for a plot of f in the corollary.

Proof. First note that if (4.22) holds, then

K2 = A1 + A2 − K1 > max {A2, B2} .

This observation with (4.22) means that the intervals (K1,A1) and (A2,K2) in assertion (ii) 
are indeed both nontrivial, furthermore, K1 < B1 < B2 < K2, so it is possible to choose 
C1-extensions f of f̂ such that f (u) ∈ [K1,K2] for all u ∈ [A1,A2].

Assume that f is a C1-function given as in the proposition.
Consider the linear transformation L of R that maps A1 to −1 and A2 to 1:

L(u) = 2u − A1 − A2

A2 − A1
for u ∈R.

Let L−1 denote the inverse linear transformation. Define g : R → R by g (u) = Lf
(
L−1u

)
for 

u ∈ R. Then g ∈ C1 (R,R). As the above introduced linear transformations are order preserving, 
we calculate that
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g (u) = 2K1 − A1 − A2

A2 − A1
for all u ≤ L(A1) = −1,

g (u) = 2K2 − A1 − A2

A2 − A1
= −2K1 − A1 − A2

A2 − A1
for all u ≥ L(A2) = 1,

and

2K1 − A1 − A2

A2 − A1
≤ g (u) ≤ 2K2 − A1 − A2

A2 − A1
for all u ∈ (−1,1) .

We conclude that g ∈ F (K) with

K = A1 + A2 − 2K1

A2 − A1
. (4.23)

The assumption (4.22) guarantees that K > K0. By Proposition 4.1, the equation ẏ (t) =
−y (t) + g (y (t − 1)) has a periodic solution q : R → R. The minimal period of q is in (1,2), 
furthermore,

max
t∈R

q (t) ∈ (1,K) and min
t∈R q (t) ∈ (−K,−1) .

Define the periodic function p : R → R by p (t) = L−1q (t) for all t ∈ R. Substituting p into 
equation (3.1), one can see that p is a solution of (3.1) with the above chosen nonlinearity f . It 
is clear that p has the desired properties. �

Note that the bounds B1 and B2 in the previous corollary are not necessarily strict bounds 
for f̂ .

5. Further auxiliary results

5.1. Two technical results

Set μ = 1 as before, and consider equation (3.1). The first proposition in this section studies 
the ranges of the large-amplitude periodic solutions.

Proposition 5.1. Suppose that (H1) holds, and f has exactly 2N + 1 fixed points

ζ0 < ξ1 < ζ1 < ξ2 < ζ2 . . . < ξN < ζN

with N ≥ 2, f ′ (ζi) < 1 for all i ∈ {0,1, . . . ,N} and f ′ (ξi) > 1 for all i ∈ {1, . . . ,N}. Assume 
that p : R → R is an 

[
i, j

]
periodic solution of equation (3.1) with some integers 1 ≤ i < j ≤ N , 

namely p oscillates about the elements of 
{
ξi, ξi+1, . . . , ξj

}
but not about the elements of 

{ξ1, ξ2, . . . , ξi−1} ∪ {
ξj+1, . . . , ξN

}
. Then

ζi−1 < p (t) < ζj for all t ∈ R.
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Proof. 1. Set tmin ∈ R and tmax ∈ R such that p (tmin) = mint∈R p (t) and p (tmax) =
maxt∈R p (t). The proof is based on the observation that

f (p (tmin)) < p (tmin) and f (p (tmax)) > p (tmax) . (5.1)

The weaker inequalities f (p (tmin)) ≤ p (tmin) and f (p (tmax)) ≥ p (tmax) can be seen from

0 = ṗ (tmin) = −p (tmin) + f (p (tmin − 1)) ≥ −p (tmin) + f (p (tmin))

and

0 = ṗ (tmax) = −p (tmax) + f (p (tmax − 1)) ≤ −p (tmax) + f (p (tmax)) .

Proposition 3.2.(ii) in addition implies that there exist no equilibria χ̂ ∈ C such that χ ∈
{p (tmin) ,p (tmax)}, i.e.,

f (p (tmin)) �= p (tmin) and f (p (tmax)) �= p (tmax) .

2. We show that p (t) > ζi−1 for all real t . First suppose that i = 1 and ζi−1 = ζ0. Note that by 
the assumptions of the proposition, f (u) ≥ u for all u ∈ (−∞, ζ0], and thus (5.1) excludes the 
possibility that p (tmin) ≤ ζ0. Now assume that i > 1. Then p (t) > ξi−1 for all real t , otherwise 
p oscillates about ξi−1. As f (u) > u for u ∈ (ξi−1, ζi−1) and f (ζi−1) = ζi−1, (5.1) shows that 
it is impossible that p (tmin) ∈ (ξi−1, ζi−1]. Thus p (t) > ζi−1 for all real t in any case i ≥ 1.

It is similar to verify that p (t) < ζj for all t ∈ R. �
The following simple result will be used to exclude the existence of the unwanted large-

amplitude periodic solutions.

Proposition 5.2. Suppose that f : R → R is continuous, and ζ−, ξ−, ξ+, ζ+ ∈ R are fixed points 
of f with ζ− < ξ− < ξ+ < ζ+. Suppose that equation (3.1) admits a periodic solution p such 
that (ξ−, ξ+) ⊂ p (R) ⊂ (ζ−, ζ+). Then

log
ζ+ − ξ−
ζ+ − ξ+

≤ 1 and log
ξ+ − ζ−
ξ− − ζ−

≤ 1. (5.2)

Proof. Let y :R → R be the solution of the initial value problem{
ẏ(t) = −y(t) + ζ+, t ∈R,

y (0) = ξ−.

Then y (t) = ζ+ + (ξ− − ζ+) e−t for t ∈ R. It is a straightforward calculation to show that the 
unique solution of y (T ) = ξ+ is

T = log
ζ+ − ξ−
ζ+ − ξ+

,

that is, y needs T time to increase from ξ− to ξ+.
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We may assume (by considering a time shift of p if necessary) that p (0) = ξ−. It is clear that

ṗ (t) ≤ −p(t) + f (ζ+) = −p(t) + ζ+

for all t ∈ R. In consequence, Theorem 6.1 of Chapter I.6 in [4] implies that for t ≥ 0, p (t) ≤
y (t).

Let t∗ > 0 be minimal with p (t∗) = ξ+. Necessarily t∗ ≤ 1, otherwise p1 ≺ ξ̂+ and thus 
p (t) < ξ+ for all t ≥ 1 by Proposition 3.1. On the other hand, the inequality p (t) ≤ y (t) for 
t ≥ 0 yields that t∗ ≥ T . Summing up, T ≤ t∗ ≤ 1, i.e., the first estimate in (5.2) is true.

The second estimate can be verified in an analogous manner. �
The stability of the equilibria given by the fixed points ζ− < ξ− < ξ+ < ζ+ is irrelevant in 

the above proposition. However, in accordance with our previously introduced conventions in 
notation, ζ− and ζ+ will always denote stable fixed points of f in the forthcoming applications, 
while ξ− and ξ+ will always denote unstable fixed points.

We will also need the next technical condition for continuously differentiable functions de-
fined on R or on a subinterval of R. Let f ′− and f ′+ denote the left hand and right hand derivatives 
of f , respectively.

(C) If ζ− and ζ+ are the smallest and largest fixed points of f , respectively, then f ′+ (ζ−) =
f ′− (ζ+) = 0. In addition, f has at least one unstable fixed point in both intervals(

ζ−,
ζ− + ζ+

2

)
and

(
ζ− + ζ+

2
, ζ+

)
.

5.2. Nonlinearities generating the simplest configurations of large-amplitude periodic orbits

Let ρ : [0,2] → R be a nondecreasing C1-function with fixed points 0, 1, 2 such that 
ρ (u) < u for u ∈ (0,1), ρ (u) > u for u ∈ (1,2), ρ ′ (0) = ρ′ (2) = 0 and ρ′ (1) > 1. The function

ρ (u) = sin
(π

2
(u − 1)

)
+ 1

is a suitable choice.
For all M ≥ 1, define

fM : R � u �→

⎧⎪⎨⎪⎩
0 if u < 0,

ρ (u − 2k) + 2k if u ∈ [2k,2k + 2) and k ∈ {0,1, . . . ,M − 1} ,

2M if u ≥ 2M.

(5.3)

Then fM satisfies (H1)–(H2). It has exactly M unstable fixed points

ξk = 2k − 1, k ∈ {1,2, . . . ,M} ,

and it has M + 1 stable fixed points ζk = 2k, k ∈ {0,1, . . . ,M}, with f ′
M (ζk) = 0 for all k ∈

{0,1, . . . ,M}. See Fig. 5.1 for the plot of f3.
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Fig. 5.1. The plot of f3.

Proposition 5.3. Let M ≥ 1. Equation (3.1) with nonlinearity f = fM admits no large-amplitude 
periodic solutions.

Proof. It is clear that if f = f1, then equation (3.1) cannot have large-amplitude periodic solu-
tions. Suppose for contradiction that M > 1, 1 ≤ i < j ≤ M , and equation (3.1) with nonlinearity 
f = fM has an 

[
i, j

]
periodic solution p. Then it follows from Proposition 5.1 and the loca-

tion of the equilibria that p (t) ∈ (2i − 2,2j) for all real t . We can apply Proposition 5.2 with 
ξ− = ξi = 2i − 1, ξ+ = ξj = 2j − 1, ζ− = 2i − 2 and ζ+ = 2j . The first inequality in (5.2)
already gives that

1 ≥ log
ζ+ − ξ−
ζ+ − ξ+

= log (2 (j − i) + 1) ≥
j−i≥1

log 3,

which is impossible as log 3 > 1. �
Observe that if η ∈ (0,1), then fM (u) < u for all u ∈ (0, η) and fM (u) > u for all u ∈

(2M − η,2M).
Let us introduce a new nonlinearity f ∗

M for all M ≥ 2 by modifying fM on (−∞, η) ∪
(2M − η,∞). So let η ∈ (0,1), and choose K1, K2 ∈R with

K1 < M (1 − K0) < 0 and K2 = 2M − K1 > 2M, (5.4)

where K0 > 1 is the threshold number from Proposition 4.1. Set

f ∗
M : R � u �→

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

K1 if u ≤ 0,

ρ1 (fM (u)) if u ∈ (0, η) ,

fM (u) if u ∈ [
η,2M − η

]
,

ρ2 (fM (u)) if u ∈ (2M − η,2M),

K2 if u ≥ 2M,

(5.5)

where ρ1 and ρ2 are defined so that f ∗
M : R →R fulfills (H1), furthermore

ρ1 (fM (u)) < fM (u) < u for all u ∈ (0, η) (5.6)

and
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Fig. 5.2. The plot of f ∗
3 . Observe that f3 has to be modified for u < η and for u > 6 − η.

ρ2 (fM (u)) > fM (u) > u for all u ∈ (2M − η,2M) . (5.7)

See Fig. 5.2 for the plot of f ∗
3 . One can easily check that the second-order polynomials

ρ1 : (0, fM (η)) � v �→ K1

f 2
M (η)

v2 +
(

1 − 2K1

fM (η)

)
v + K1 ∈ R

and

ρ2 : (fM (2M − η) ,2M) � v �→ −K1

(2M − fM (2M − η))2
v2

+
(

1 + 2K1fM (2M − η)

(2M − fM (2M − η))2

)
v

− K1f
2
M (2M − η)

(2M − fM (2M − η))2
∈R

are suitable choices.
Two remarks regarding the above definition: We need condition (5.4) because we intend to 

apply Corollary 4.10. Conditions (5.6) and (5.7) will be used to guarantee that f ∗
M has no fixed 

points in (0, η) ∪ (2M − η,2M).

Proposition 5.4. For all M ≥ 2, f ∗
M satisfies (H1), (H2) and (C). The unstable fixed points of 

f ∗
M are

ξk = 2k − 1, k ∈ {1,2, . . . ,M} .

In addition, f ∗
M has M + 1 stable fixed points. The smallest stable fixed point of f ∗

M is K1 < 0, 
the largest one is K2 > 2M , and the others are

ζk = 2k, k ∈ {1,2, . . . ,M − 1} .

The derivative of f ∗ vanishes at its stable fixed points.
M
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Proof. As K1 < 0 and f ∗
M (u) = K1 for all u ≤ 0, K1 is a stable fixed point of f ∗

M , and (
f ∗

M

)′
(K1) = 0. It is clear that f ∗

M has no other fixed point in (−∞,0]. Similarly, K2 > 2M

is the unique fixed point of f ∗
M in [2M,∞), and 

(
f ∗

M

)′
(K2) = 0. By the choices of ρ1 and ρ2, 

f ∗
M has no fixed points in (0, η) ∪ (2M − η,2M), see (5.6) and (5.7). The assertions regarding 

the rest of the fixed points follow from the fact that f ∗
M (u) = fM (u) for all u ∈ [

η,2M − η
]
.

The definition of f ∗
M and the fact that fM satisfies (H1)–(H2) implies that (H1)–(H2) also 

hold for f ∗
M .

Note that (K1 + K2) /2 = M . So condition (C) holds with ζ− = K1, ζ+ = K2, ξ− = ξ1 = 1 ∈
(0,M) and ξ+ = ξM = 2M − 1 ∈ (M,2M). �
Proposition 5.5. Let M ≥ 2. Equation (3.1) with nonlinearity f = f ∗

M has a slowly oscillatory 
[1,M] periodic solution. It admits no 

[
i, j

]
periodic solutions for indices 1 ≤ i < j ≤ M with 

i > 1 or j < M .

Proof. It is clear from Proposition 5.4 that the number of unstable fixed points of f ∗
M is M , and 

all of them are found in (0,2M).
Consider equation (3.1) with nonlinearity f = f ∗

M , M ≥ 2. We can apply Corollary 4.10
with K1, K2, η chosen as in the definition of f ∗

M , A1 = 0, A2 = 2M , B1 = 0 and B2 = 2M . 
Corollary 4.10 yields that there is a periodic solution p : R → R such that (0,2M) ⊂ p (R) ⊂
(K1,K2), that is, p is a [1,M] periodic solution. As the minimal period of p is in (1,2), it is 
necessarily slowly oscillatory, see Remark 3.3.

Now consider any indices i, j with 1 ≤ i < j ≤ M so that i > 1 or j < M . It remains to 
exclude the existence of an 

[
i, j

]
periodic solution q : R → R. First suppose that 1 ≤ i < j < M . 

Then q (R) ⊆ (K1,2j) by Proposition 5.1, and we can use Proposition 5.2 with ζ− = K1, ζ+ =
2j , ξ− = ξi = 2i − 1 and ξ+ = ξj = 2j − 1. The first inequality in (5.2) implies that

1 ≥ log
ζ+ − ξ−
ζ+ − ξ+

= log (2j − (2i − 1)) ≥ log 3,

which contradicts log 3 > 1. Using the second inequality in (5.2) with ζ− = 2i − 2, ξ− = 2i − 1
and ξ+ = 2M − 1, the reader can see in an analogous way that there exist no [i,M] periodic 
solutions for 1 < i < M . �
6. The proof of Theorem 2.1.(i)

This section is the proof of Theorem 2.1.(i).
We introduce the following partial order. A pair of parentheses in a parenthetical expression 

is of 1st level, if it is not nested in any other pair of parentheses. For n ≥ 2, a pair of parentheses 
is of nth level, if it is nested in an (n − 1)th level pair, and not in any mth level pair for m ≥ n.

An nth level subexpression is an nth level pair of parentheses, together with all the numbers 
and parentheses enclosed by it.

Example. Consider the expression

(
1
(
((23)4)5 (67)89

))
10 (6.1)
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of 10 numbers for example. Then (1 (((23)4)5 (67)89)) is a 1st level subexpression, while 
(((23)4)5 (67)89) is of 2nd level, ((23)4) and (67) are of 3rd level, and (23) is of 4th level. 
This example shows that a 1st level subexpression is not necessarily the whole expression itself. 
We also see that not all 3rd level subexpressions contain a 4th level subexpression.

Now suppose that a subexpression contains exactly the numbers i, i + 1, . . . , j . Suppose that 
f is a continuously differentiable, nondecreasing function that is defined on R or on a subinterval 
of R, and it satisfies (H2). We say that f generates the subexpression if

• f has exactly j − i + 1 unstable fixed points ξi < ξi+1 < . . . < ξj giving the unstable equi-
libria ξ̂i , ξ̂i+1, . . . , ξ̂j ,

• for all i′, j ′ ∈ {i, . . . , j} with i′ < j ′, equation (3.1) with nonlinearity f admits an 
[
i′, j ′]

periodic solution if and only if there exists a pair of parentheses in the subexpression that 
encloses i′, i′ + 1, . . . , j ′ and no other numbers,

• these periodic solutions can be chosen to be slowly oscillatory.

Functions generating the original parenthetical expression are defined in an analogous way.

Outline of the proof.
Set N ≥ 2, and consider a parenthetical expression of N numbers. The proof of Theo-

rem 2.1.(i) is already complete when this expression contains no parentheses: we know from 
Proposition 5.3 that fN generates the trivial expression 12 . . .N . Otherwise fix m ≥ 1 such that 
the expression contains at least one pair of parentheses of mth level, but none of (m + 1)th level. 
The proof proceeds by mathematical induction on the levels of the subexpressions from the mth 
level to the 1st one: For all n decreasing from m to 1, and for each nth level subexpression, 
we construct a nonlinear function that satisfies (H1), (H2), (C) and generates the given subex-
pression. Then as last step of the proof, we obtain a nonlinearity that satisfies (H1), (H2) and 
generates the original parenthetical expression.

Initial step.
Suppose that n = m. Any mth level subexpression has the form (i . . . j ), where 1 ≤ i < j ≤ N . 

By Propositions 5.4 and 5.5, nonlinearity f ∗
j−i+1 defined in (5.5) generates (i . . . j ) and fulfills 

(H1), (H2) and (C).

Inductive step.
Now suppose that 1 ≤ n < m, and there are functions that not only generate the (n + 1)th 

level subexpressions, but also satisfy (H1), (H2) and (C). Fix a subexpression of nth level. Let 
i, i + 1, . . . , j denote the integers contained by it.

If there exists no (n + 1)th level subexpression within the subexpression under consideration 
(i.e., it has the form (i . . . j )), we are ready by Propositions 5.4 and 5.5.

Otherwise we use the nonlinearities generating the (n + 1)th level subexpressions and the 
functions fM defined in (5.3) as “building blocks” to determine a nonlinearity f that generates 
the fixed nth level subexpression. The procedure is the following.

Step 1. We divide the real line into intervals.
Step 2. We introduce a C1-function f̂ defined piecewise on these intervals such that f̂ gen-

erates the “inner part” of the considered nth level subexpression (that is, the whole 
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nth level subexpression except for that pair of parentheses that encloses all numbers 
i, i + 1, . . . , j ). Roughly speaking, the restriction of f̂ to any of these intervals will be 
either a transformation of fM , M ≥ 1, or of a nonlinearity generating an (n + 1)th level 
subexpression.

Step 3. At last we modify f̂ by using Corollary 4.10 in order to get f generating the given nth 
level subexpression.

Step 1. (Partition of the real line.)
Let k ≥ 1 denote the number of (n + 1)th level subexpressions nested in the considered nth 

level pair of parentheses. Reading from the left, there is a natural order among these subexpres-
sions. We use this order and distinguish 1st, 2nd, . . . , kth subexpression of (n + 1)th level.

We need to handle that there may exist integers among i, i + 1, . . . , j that are not contained in 
any (n + 1)th level subexpression. Let r1 ≥ 0 be the number of integers among i, i +1, . . . , j that 
are smaller than any integer in the 1st subexpression of (n + 1)th level. For all l ∈ {2, . . . , k}, let 
rl ≥ 0 denote the number of integers that are greater than any integer contained in the (l − 1)th 
subexpression and smaller than any integer in the lth subexpression of (n + 1)th level. At last, 
rk+1 is the number of integers among i, i + 1, . . . , j that are greater than any integer in the kth 
subexpression of (n + 1)th level.

Example. Let us return back to our previous example (6.1). Assume that n = 2, that is, we look 
for a nonlinearity f generating the 2nd level subexpression (((23)4)5 (67)89). Then i = 2 and 
j = 9. As ((23)4) and (67) are the 3rd level subexpressions within this subexpression, k = 2. In 
addition, r1 = 0, r2 = 1 and r3 = 2.

Using k ≥ 1 and rl , l ∈ {1, . . . , k + 1}, defined as above, we introduce k + 2 subintervals of 
the real line spaced at distances 2rl . The first interval is I0 = (−∞, β0

]
with an arbitrary right 

end point β0 ∈ R. The endpoints of the next k intervals Il = [
αl, βl

]
, l ∈ {1, . . . , k}, are defined 

as follows:

αl = βl−1 + 2rl and βl = αl + 2.

The length of Il is 2 for each l ∈ {1,2, . . . , k}. At last, define the left end point of the last interval 
Ik+1 = [

αk+1,∞) as

αk+1 = βk + 2rk+1.

With this procedure, we also obtain intervals Jl = [
βl−1, αl

]
, l ∈ {1, . . . , k + 1}, of length 2rl . 

Jl may be trivial as rl = 0 is allowed.
The idea behind this definition is simple. We will set the auxiliary function f̂ so that f̂ |Il

will generate the lth subexpression of (n + 1)th level for all l ∈ {1, . . . , k}. If rl > 0 for some 
l ∈ {1, . . . , k + 1}, then f̂ |Jl

will generate the trivial parenthetical expression (i.e., the expres-
sion containing no parentheses) of rl numbers. The restrictions f̂ |I0 and f̂ |Ik+1 will be constant 
functions.

The length of the intervals Il and Jl will play a key role later (in the proof of Proposition 6.4).

Example. Consider example (6.1) again, and suppose that we look for an f generating the 2nd 
level subexpression (((23)4)5 (67)89). Then I0 = (−∞, β0

] = (−∞,0], I1 = [
α1, β1

] = [0,2], 
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Fig. 6.1. The partition of the real line in our example.

I2 = [
α2, β2

] = [4,6], I3 = [α3,∞) = [10,∞) are good choices. Interval J1 is trivial, J2 =[
β1, α2

] = [2,4] and J3 = [
β2, α3

] = [6,10], see Fig. 6.1.

Step 2. (The auxiliary function f̂ .)
We need the subsequent transformations. For a, b, c, d ∈ R with a �= c and b �= d , let 

La→b,c→d : R → R denote the linear map with L (a) = b and L (c) = d :

La→b,c→d (u) = u − c

a − c
b + u − a

c − a
d for u ∈ R.

Then L−1
a→b,c→d = Lb→a,d→c is the inverse of La→b,c→d .

If x is a solution of equation (3.1), then y, defined by y (t) = La→b,c→dx (t) for all t in the 
domain of x, is a solution of

ẏ (t) = −y (t) + g (y (t − 1)) , (6.2)

where

g : R � u �→ La→b,c→df
(
Lb→a,d→cu

) ∈ R. (6.3)

In particular, La→b,c→d creates a bijection between the periodic solutions and the equilibria of 
(3.1) and (6.2). It is easy to see that for χ∗ = La→b,c→dχ , g′ (χ∗) = f ′ (χ), and therefore the 
transformation preserves the stability of the equilibria. It is also clear that a periodic function x
oscillates (slowly) about ξi, ξi+1, . . . , ξj if and only if y = La→b,c→dx oscillates (slowly) about 
La→b,c→dξi, La→b,c→dξi+1, . . . , La→b,c→dξj . The parenthetical expression generated by g is 
the same as the one generated by f .

Emphasizing the dependence of g on a, b, c, d , in the following we use the notation

Ta→b,c→df : R � u �→ La→b,c→df
(
Lb→a,d→cu

) ∈ R.

We are ready to introduce the auxiliary function f̂ .
Let gl , l ∈ {1, . . . , k}, denote the nonlinearity that generates the lth subexpression of (n + 1)th 

level, furthermore satisfies (H1), (H2) and (C). By the induction hypothesis, such gl exists. Let 
al ∈ R and bl ∈R denote the smallest and largest fixed points of gl for each l ∈ {1, . . . , k}.

We define f̂ : R → R using the following three rules.

(R1) Let

f̂ (u) = Tal→αl,bl→βl
gl (u) for all u ∈ Il = [

αl, βl

]
and l ∈ {1, . . . , k} .
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(R2) For all u ∈ I0 = (−∞, β0
]
, set f̂ (u) = β0. For all u ∈ Ik+1 = [

αk+1,∞), set f̂ (u) =
αk+1.

(R3) Whenever rl > 0, i.e., Jl = [
βl−1, αl

]
is nontrivial for some l ∈ {1,2, . . . , k + 1}, let

f̂ (u) = T0→βl−1,2rl→αl
frl (u) for all u ∈ Jl = [

βl−1, αl

]
,

where frl , defined by (5.3), denotes a nonlinearity that generates the trivial parenthetical 
expression of rl numbers.

It is easy to see the following proposition.

Proposition 6.1. Function f̂ satisfies (H1) and (H2).

Proof. As the above used functions gl and frl satisfy (H1) and (H2), it suffices to prove that f̂
is differentiable at β0, at αl and at βl for all l ∈ {1, . . . , k}, furthermore at αk+1. The next three 
observations guarantee the differentiability of f̂ at these points.

1. Recall that al ∈ R and bl ∈ R denote the smallest and largest fixed points of gl for each 
l ∈ {1, . . . , k}. By condition (C), (gl)

′+ (al) = (gl)
′− (bl) = 0. Thus by (R1), αl and βl are fixed 

points of f̂ |Il
with f̂ ′+ (αl) = f̂ ′− (βl) = 0 for all l ∈ {1, . . . , k}. (This is the first place where 

condition (C) is used.)
2. By (R2), the points β0 and αk+1 are fixed points of f̂ |I0 and f̂ |Ik+1 , receptively, furthermore 

f̂ ′− (β0) = f̂ ′+ (αk+1) = 0.
3. Regarding rule (R3), recall that 0 and 2rl are the smallest and largest fixed points of 

frl , respectively. We also know that f ′
rl

(0) = f ′
rl

(2rl) = 0. Hence if Jl = [
βl−1, αl

]
is non-

trivial for some l ∈ {1,2, . . . , k + 1}, then βl−1 and αl are fixed points of f̂ |Jl
with f̂ ′+ (βl−1) =

f̂ ′− (αl) = 0. �
Example. We return back to our previous example. Suppose g1 generates ((23)4) and g2 gen-
erates (67). Actually, our procedure gives that g2 = f ∗

2 , where f ∗
2 is defined by (5.5). Now the 

auxiliary function f̂ : R →R is given by

f̂ (u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if u ≤ β0 = 0,

Ta1→0,b1→2g1 (u) if u ∈ I1 = [
α1, β1

] = [0,2] ,

T0→2,2→4f1 (u) if u ∈ J2 = [
β1, α2

] = [2,4] ,

Ta2→4,b2→6g2 (u) if u ∈ I2 = [
α2, β2

] = [4,6] ,

T0→6,4→10f2 (u) if u ∈ J3 = [
β2, α3

] = [6,10] ,

10 if u ≥ α3 = 10,

see Fig. 6.2.

It is clear that for any l ∈ {1, . . . , k}, there exists a pair of parentheses enclosing all the numbers 
within the lth subexpression of (n + 1)th level. In other words, the equation

ẋ (t) = −x (t) + gl (x (t − 1)) (6.4)
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Fig. 6.2. The plot of f̂ in our example. On the interval [0,10], the graph of f̂ lies in the gray squares.

admits at least one large-amplitude periodic solution ql : R → R that oscillates about all the 
unstable fixed points of gl . We know from Proposition 5.1 that ql (R) ⊂ (al, bl).

Note that already gl|ql(R) generates the lth parenthetical subexpression. This comes from the 
fact that if r is a periodic solution of (6.4), and r does not oscillate about all unstable fixed points 
of gl , then r (R)� ql (R) by Proposition 3.4.

Define pl : R → R by

pl (t) = Lal→αl,bl→βl
ql (t) for all real t,

where al, αl, bl, βl are defined as above. The following result is immediate.

Proposition 6.2. For all l ∈ {1, . . . , k}, pl (R) ⊂ intIl = (αl, βl). Function f̂ |pl(R) generates the 
lth parenthetical subexpression of (n + 1)th level.

At last, let us collect what we know about the fixed points of f̂ .

(P 1) It is obvious that β0 and αk+1 are the smallest and largest fixed points of f̂ , respectively, 
and f̂ ′ (β0) = f̂ ′ (αk+1) = 0. By construction, f̂ has j − i + 1 unstable fixed points in 
(β0, αk+1).

(P 2) Consider any l ∈ {1, . . . , k + 1} for which rl > 0. We know the exact location of the fixed 
points of f̂ in the interval Jl = [

βl−1, αl

]
because they arise in the form L0→βl−1,2rl→αl

χ , 
where χ is a fixed point of frl . As the length of Jl is αl − βl−1 = 2rl , the transformation 
L0→βl−1,2rl→αl

is only a shift of the real line: it maps all u ∈R to βl−1 + u. Since 2s − 1
is an unstable fixed point of frl for all s ∈ {1, . . . , rl}, we deduce that

βl−1 + 2s − 1, s ∈ {1, . . . , rl} ,

are the unstable fixed points of f̂ in Jl . Similarly,

βl−1 + 2s, s ∈ {0,1, . . . , rl} ,

are the stable fixed point of f̂ in Jl with zero derivative.
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(P 3) Regarding the fixed points of f̂ in Il , l ∈ {1, . . . , k}, it is important to note that as gl

satisfies condition (C), f̂ |Il
satisfies (C) too.

Step 3. (The function f generating the considered nth level subexpression.)
Now, by modifying f̂ , we can define a nonlinearity f that generates the fixed nth level subex-

pression. In the following we apply Corollary 4.10 with A1 = B1 = β0 and A2 = B2 = αk+1. 
The constants η, K1 and K2 have to be chosen as given below.

By (P 1), β0 and αk+1 are the smallest and largest fixed points of f̂ , respectively. Set η > 0
so small that all the other fixed points of f̂ belong to (β0 + η,αk+1 − η). By Proposition 6.2, 
pl (R) ⊂ intIl ⊂ (β0, αk+1) for all l. So by decreasing η > 0 if necessary, we can achieve that the 
range pl (R) of the periodic solution pl is a subset of (β0 + η,αk+1 − η) for all l ∈ {1, . . . , k}.

Choose

K1 < min

{− (αk+1 − β0)K0 + β0 + αk+1

2
, β0

}
,

where K0 is the threshold number from Proposition 4.1. Let K2 = β0 + αk+1 − K1 > αk+1.
Set

f : R � u �→

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

K1, u ≤ β0

ρ1

(
f̂ (u)

)
, u ∈ (β0, β0 + η)

f̂ (u) , u ∈ [
β0 + η,αk+1 − η

]
ρ2

(
f̂ (u)

)
, u ∈ (αk+1 − η,αk+1)

K2, u ≥ αk+1,

(6.5)

where ρ1 and ρ2 are defined so that f : R →R fulfills (H1), furthermore

ρ1

(
f̂ (u)

)
< f̂ (u) for all u ∈ (β0, β0 + η) (6.6)

and

ρ2

(
f̂ (u)

)
> f̂ (u) for all u ∈ (αk+1 − η,αk+1) . (6.7)

This choice of f is possible. The functions ρ1 and ρ2 can be selected as in the definition of f ∗
M .

Example. Fig. 6.3 demonstrates that in our example f̂ has to be modified on the interval 
(−∞, η) ∪ (10 − η,∞) with some η > 0 to get a function f generating (((23)4)5 (67)89).

As f̂ ′ (β0) = f̂ ′ (αk+1) = 0, and as f̂ has no fixed points in (β0, β0 + η) ∪ (αk+1 − η,αk+1), 
it is true that

f̂ (u) < u for all u ∈ (β0, β0 + η) and f̂ (u) > u for all u ∈ (αk+1 − η,αk+1) .

This observation, (6.6) and (6.7) together imply that f possesses no fixed points in (β0, β0 + η)∪
(αk+1 − η,αk+1). Next we summarize what else we know about the fixed points of f .
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Fig. 6.3. The plot of f in our example.

Proposition 6.3. Function f satisfies not only (H1) but also (H2) and (C). K1 and K2 are 
the smallest and largest fixed points of f , respectively, with f ′ (K1) = f ′ (K2) = 0. Function f
inherits all fixed points χ of f̂ in the interval 

[
β0 + η,αk+1 − η

]
(that is, all fixed points of f̂

besides β0 and αk+1) with f ′ (χ) = f̂ ′ (χ). It has no other fixed points. It follows that f has 
exactly j − i + 1 unstable fixed points.

Let ξi < ξi+1 < . . . < ξj denote the unstable fixed points of f̂ and f .

Proof. We omit most of the proof as it is analogous to the proof of Proposition 5.4. We only 
verify that f satisfies (C) with ζ− = K1 and ζ+ = K2.

If r1 > 0, then the smallest unstable fixed point of both f and f̂ is ξi = β0 + 1 (see property 
(P 2)). If r1 = 0, then the smallest unstable fixed point of f and f̂ is the one of f̂ |I1 . By property 
(P 3), f̂ |I1 satisfies (C), so it has an unstable fixed point smaller than (α1 + β1) /2 = α1 + 1 =
β0 + 1. Summing up, ξi ≤ β0 + 1. Similarly, ξj ≥ αk+1 − 1.

Next we show that αk+1 − β0 ≥ 4. Let |I | denote the length of an interval I ⊂ R. If k ≥ 2, 
then αk+1 − β0 ≥ |I1| + |I2| = 4. If k = 1, then (as no multiple enclosing of the same sublist of 
numbers allowed in a correct parenthetical expression) either r1 > 0 or r2 > 0. Suppose r1 > 0
for example. Then αk+1 − β0 ≥ |J1| + |I1| ≥ 4.

In order to verify (C), we need to confirm that ξi < (K1 + K1) /2 < ξj . It is enough to show 
that β0 + 1 < (K1 + K1) /2 < αk+1 − 1. Actually, using the equality K2 = β0 + αk+1 − K1 and 
the inequality αk+1 − β0 ≥ 4, we obtain that

K1 + K2

2
= β0 + αk+1

2
∈ [

β0 + 2, αk+1 − 2
]
. �

By Corollary 4.10, the equation with this nonlinearity f has a periodic solution p : R → R

such that (β0, αk+1) ⊂ p (R) ⊂ (K1,K2). Necessarily p is an 
[
i, j

]
solution. Let us see what we 

know about the other large-amplitude periodic solutions. The length of the intervals Il and Jl

becomes essential in the proof of the following proposition.
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Proposition 6.4. Consider f : R → R obtained above. Assume that equation (3.1) has an 
[
i′, j ′]

periodic solution q : R → R so that i ≤ i′ < j ′ ≤ j , and either i �= i′ or j �= j ′. Then an index 
l ∈ {1, . . . , k} can be given such that ξi′, ξi′+1, . . . , ξj ′ ∈ Il .

Proof. We need to exclude the following cases:
(i) ξi′ ∈ Jl1 and ξj ′ ∈ Il2 with l1, l2 ∈ {1, . . . , k}, rl1 > 0 and l1 ≤ l2,
(ii) ξi′ ∈ Jl1 and ξj ′ ∈ Jl2 with l1, l2 ∈ {1, . . . , k + 1}, rl1 > 0, rl2 > 0 and l1 ≤ l2,
(iii) ξi′ ∈ Il1 and ξj ′ ∈ Jl2 with l1 ∈ {1, . . . , k}, l2 ∈ {2, . . . , k + 1}, rl2 > 0 and l1 < l2,
(iv) ξi′ ∈ Il1 and ξj ′ ∈ Il2 with l1, l2 ∈ {1, . . . , k} and l1 < l2.
Suppose for contradiction that we are in case (i).
1. We claim that ξj ′ − ξi′ ≥ 2.
On the one hand, we show that ξj ′ ≥ αl2 + 1. Let E1 and E2 = {

ξi′ , ξi′+1, . . . , ξj ′
}

be the sets 
of those unstable fixed points of f about which pl2 and q oscillate, respectively. It is clear that 
ξi′ ∈ E2\E1 and ξj ′ ∈ E1 ∩ E2. It follows from Proposition 3.4 that E1 ⊂ E2, that is, the 

[
i′, j ′]

periodic solution q oscillates about all unstable fixed points of f in Il2 . In other words, ξj ′ is 
the largest unstable fixed point of f in Il2 . Since f and f̂ have the same unstable fixed points 
by Proposition 6.3, ξj ′ is the largest unstable fixed point of f̂ in Il2 . As the restriction of f̂ to 
Il2 = [

αl2, βl2

]
satisfies (C) by property (P 3), we deduce that

ξj ′ ≥ αl2 + βl2

2
= αl2 + 1. (6.8)

(Note that this is the second place, where condition (C) is crucial.)
On the other hand, we prove that ξi′ ≤ αl1 − 1. Since βl1−1 + 2s − 1, s ∈ {

1, . . . , rl1
}
, are 

the unstable fixed points of f in Jl1 = [
βl1−1, αl1

]
by (P 2) and Proposition 6.3, a trivial upper 

bound for ξi′ is βl1−1 + 2rl1 − 1 = αl1 − 1.
As l1 ≤ l2 and thus αl1 ≤ αl2 , we obtain that

ξj ′ − ξi′ ≥ αl2 + 1 − (
αl1 − 1

) = 2. (6.9)

2. We divide case (i) into two subcases.
(a) First suppose that l2 < k or l2 = k and rk+1 > 0. In either case βl2 = sup Il2 is smaller than 

αk+1, hence βl2 is a stable fixed point not only of f̂ but also of f . As K1 is also a fixed point of f , 
and K1 < ξi′ < ξj ′ < βl2 , Proposition 5.1 guarantees that the range q (R) of the 

[
i′, j ′] periodic 

solution q is a subset of 
(
K1, βl2

)
. So we can apply Proposition 5.2 with ζ− = K1, ζ+ = βl2 , 

ξ− = ξi′ and ξ+ = ξj ′ . The first inequality in Proposition 5.2 gives that

1 ≥ log
βl2 − ξi′

βl2 − ξj ′
= log

(
1 + ξj ′ − ξi′

βl2 − ξj ′

)
. (6.10)

As βl2 − αl2 = 2, estimate (6.8) gives that βl2 − ξj ′ < 1. This observation together with (6.9)
implies that the right hand side of inequality (6.10) is not smaller than log 3, which is a contra-
diction.

(b) Now suppose that l2 = k and rk+1 = 0. Recall from the beginning of this proof that ξj ′ is 
the largest unstable fixed point of f in Ik = [

αk,βk

]
. As rk+1 = 0, we have αk+1 = βk , which 

means that f has no unstable fixed points greater than βk . We conclude that ξj ′ is the largest 
unstable fixed point of f , i.e., j ′ = j . Then necessarily i′ > i by our initial assumption.
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We claim that ξi′ − 1 is a stable fixed point of f . This follows simply from property (P 2) and 
Proposition 6.3 if l1 ≥ 2. If l1 = 1, the claim is the consequence of (P 2), Proposition 6.3 and the 
fact that ξi′ is not the smallest unstable fixed point f .

We can apply Proposition 5.2 with ζ− = ξi′ − 1, ζ+ = K2, ξ− = ξi′ and ξ+ = ξj . The second 
inequality in Proposition 5.2 with (6.9) implies that

1 ≥ log
ξj − (ξi′ − 1)

ξi′ − (ξi′ − 1)
≥ log 3,

which is a contradiction again.
Handling the cases (ii)–(iv) is analogous. In each case we can prove that ξj ′ − ξi′ ≥ 2. In 

each case we can apply Proposition 5.2 with ξ− = ξi′ , ξ+ = ξj ′ and with ζ−, ζ+ chosen so that 
ζ+ − ξj ′ ≤ 1 if j ′ < j , and ξi − ζ− ≤ 1 if i′ > i. We omit the details. �

Now it is easy to see the following.

Corollary 6.5. Function f generates the nth level subexpression under consideration.

Proof. 1. First of all, by Proposition 6.3, f has j − i + 1 unstable fixed points ξi < ξi+1 <

. . . < ξj in (β0, αk+1).
2. Consider the pair of parentheses in the subexpression that encloses all the integers i, . . . , j

(that is, the nth level pair of parentheses). It has been already mentioned that the equation with 
the above constructed nonlinearity f has a periodic solution p : R → R such that (β0, αk+1) ⊂
p (R) ⊂ (K1,K2). This comes from Corollary 4.10. Necessarily p is an 

[
i, j

]
solution. As the 

minimal period of p is in (1,2), it is slowly oscillatory, see Remark 3.3.
3. Assume that a given pair of parentheses in our nth level subexpression encloses exactly 

the numbers i′, i′ + 1, . . . j ′, where i ≤ i′ < j ′ ≤ j , and either i �= i′ or j �= j ′. Then there is 
l ∈ {1, . . . , k} such that this pair of parentheses is included the lth subexpression of (n + 1)th 
level. Recall from the definition of f that

f |[β0+η,αk+1−η
] = f̂ |[β0+η,αk+1−η

],
and hence f |pl(R) = f̂ |pl(R). So by Proposition 6.2, f |pl(R) generates the lth subexpression 
of (n + 1)th level. This means that (3.1) with feedback function f admits a periodic solution 
q : R → R oscillating slowly about ξi′, ξi′+1, . . . , ξj ′ .

Conversely, suppose q : R →R is an 
[
i′, j ′] periodic solution of (3.1) so that i ≤ i′ < j ′ ≤ j , 

and i �= i′ or j �= j ′. By Proposition 6.4, an index l ∈ {1, . . . , k} can be given such that 
ξi′ , ξi′+1, . . . , ξj ′ ∈ Il . Then either q oscillates about all unstable fixed points of f in Il , or 
q (R) � pl (R) by Proposition 3.4. As f |pl(R) = f̂ |pl(R) generates the lth subexpression of 
(n + 1)th level, we see in both cases that there exists a pair of parentheses that encloses only 
the numbers ξi′, ξi′+1, . . . , ξj ′ .

Summing up, f generates the considered nth level subexpression. �
Final step.

Assume that there are functions that generate the 1st level subexpressions, furthermore satisfy 
(H1), (H2) and (C). It remains to show that the original parenthetical expression can be gener-
ated. Repeat Steps 1 and 2 with n = 0. Let f = f̂ , where f̂ is obtained in Step 2. It is clear that f



G. Vas / J. Differential Equations 262 (2017) 1850–1896 1887
fulfills (H1), (H2) and admits N unstable fixed points. One needs to repeat the argument in the 
proof of Proposition 6.4 with i = 1 and j = N to show that if q : R → R is an 

[
i′, j ′] periodic 

solution with 1 ≤ i′ < j ′ < N or with 1 < i′ < j ′ ≤ N , then an index l ∈ {1, . . . , k} can be given 
such that ξi′, ξi′+1, . . . , ξj ′ ∈ Il . Then it is easy to see – as in the proof of Corollary 6.5 – that f
generates the original parenthetical expression of N numbers. We omit the details of this part.

The proof of Theorem 2.1.(i) is complete. Note that all the periodic solutions we constructed 
are slowly oscillatory. This property is needed to verify Theorem 2.1.(ii).

7. On the Floquet multipliers (the proof of Theorem 2.1.(ii))

Let us recall some facts from Floquet theory. Let μ = 1 and suppose f : R → R satisfies 
(H1). Suppose p :R → R is a nonconstant periodic solution of equation

ẋ (t) = −x (t) + f (x (t − 1)) (3.1)

with minimal period ω ∈ (1,2).
Consider the monodromy operator M = D2� (ω,p0). It is well known that Mϕ = z

ϕ
ω for all 

ϕ ∈ C, where zϕ : [−1,∞) → R is the solution of the linear variational equation

ż(t) = −z(t) + f ′ (p (t − 1)) z (t − 1) (7.1)

with zϕ
0 = ϕ. The solutions of (7.1) are given by the variation-of-constants formula:

zϕ (t) = en−t zϕ (n) +
t∫

n

es−t f ′ (p (s − 1)) zϕ (s − 1)ds (7.2)

for all nonnegative integers n and t ∈ [n,n + 1].
As mentioned in the introduction, M is a compact operator, and 0 belongs to its spectrum σ =

σ (M). Eigenvalues of finite multiplicity form σ (M)\ {0}. These eigenvalues are called Floquet 
multipliers. As ṗ is a nonzero solution of the variational equation (7.1), 1 is a Floquet multiplier 
with eigenfunction ṗ0. The periodic orbit Op = {pt : t ∈ [0,ω)} is said to be hyperbolic if the 
generalized eigenspace of M corresponding to the eigenvalue 1 is one-dimensional, furthermore 
there are no Floquet multipliers on the unit circle besides 1.

The Floquet multipliers are invariant under the time shifts of p. If a �= c and b �= d , then the 
Floquet multipliers are also invariant under the linear transformation La→b,c→d mapping a to c
and b to d : Consider the periodic function q : R → R defined by q (t) = La→b,c→dp (t), t ∈ R. 
Then q is a periodic solution of ẏ (t) = −y (t) + g (y (t − 1)), where

g : R � u �→ La→b,c→df
(
Lb→a,d→cu

) ∈R.

As g′ (q (t − 1)) = f ′ (p (t − 1)) for all t ∈R, we see that the monodromy operator correspond-
ing to q and g is also determined by the linear variational equation (7.1), i.e., it is the same as the 
monodromy operator corresponding to p and f .

Let

D := {ϕ ∈ C : ϕ (s) ≥ 0 for all s ∈ [0,1]} and D̃ := {ϕ ∈ D : ϕ (0) > 0} .



1888 G. Vas / J. Differential Equations 262 (2017) 1850–1896
The interior of D is

D̊ = {ϕ ∈ C : ϕ (s) > 0 for all s ∈ [0,1]} .

The formula (7.2) shows that M (D) ⊂ D and M
(
D̃

) ⊂ D̊. Furthermore, we see from (7.1)
that for each ϕ ∈ D, the function [0,∞) � t �→ et zϕ (t) ∈ R is nondecreasing. In particular, 
zϕ (t) ≥ e−t ϕ (0) for all ϕ ∈ D and t ≥ 0.

We know from paper [18] of Mallet-Paret and Sell or from Appendix VII of monograph [13]
of Krisztin, Walther and Wu that Op has a real Floquet multiplier λ1 > 1 with a strictly positive 
eigenvector v1 if f ′ (u) > 0 for all u ∈R. Modifying the argument shown in [13], one can prove 
the same assertion under the weaker assumption f ′ (u) ≥ 0, u ∈ R. Here we give the proof only 
for the sake of completeness.

Proposition 7.1. Assume that f : R → R satisfies (H1), and p : R → R is a periodic solution 
of equation (3.1) with minimal period ω ∈ (1,2). Then there exists λ > 1 and ϕ ∈ D̊ such that 
Mϕ = λϕ.

Proof. The first step of the proof is to show that λ > 0 and ϕ ∈ D̊ can be given with Mϕ = λϕ. 
Consider the closed, convex and bounded set

A = {
ϕ ∈ D : ϕ (0) = 1, [−1,0] � t �→ etϕ (t) ∈R is nondecreasing

} ⊂ D̃.

If ϕ ∈ A, then Mϕ = z
ϕ
ω ∈ D̊, and [−1,0] � t �→ et z

ϕ
ω (t) ∈ R is nondecreasing. So the map

T : A � ϕ �→ 1

zϕ (ω)
Mϕ ∈ C

is continuous and has range in A. Using the variation-of-constants formula (7.2), one can derive 
a uniform bound for all |zϕ (t)|, t ∈ [−1,ω], ϕ ∈ A. Then equation (3.1) yields a uniform bound 
for |żϕ (t)|, t ∈ [0,ω], ϕ ∈ A. Also note that zϕ (ω) ≥ e−ω. Hence the derivatives

d

dt
T (ϕ) (t) = 1

zϕ (ω)
żϕ (t + ω) , ϕ ∈ A, t ∈ [−1,0] ,

are also uniformly bounded. By the Arzelà–Ascoli theorem, T (A) ⊂ A is precompact. The 
Schauder fixed point theorem yields that T has a fixed point, that is, there exists ϕ ∈ A so that 
Mϕ = zϕ (ω)ϕ. Set λ = zϕ (ω). We have already pointed out that λ > 0. In addition,

ϕ = 1

λ
Mϕ ∈ D̊.

The next step is to verify that λ > 1. First assume that λ ∈ (0,1). Then ϕ + εṗ0 ∈ D for some 
ε > 0 and Mn (ϕ + εṗ0) = λnϕ + εṗ0 → εṗ0 /∈ D as n → ∞, which contradicts the fact that 
M (D) ⊂ D. Next assume that λ = 1. We may suppose (by shifting p if necessary) that ṗ (0) > 0. 
Choose r > 0 such that ϕ + rṗ0 ∈ D\D̊, i.e., ϕ (s) + rṗ0 (s) ≥ 0 for all s ∈ [−1,0] and there 
exists s∗ ∈ [−1,0] with ϕ (s∗)+ rṗ0 (s∗) = 0. Then, on the one hand, M (ϕ + rṗ0) = ϕ + rṗ0 ∈
D\D̊. On the other hand, ϕ (0) + rṗ0 (0) > 0, hence ϕ + rṗ0 ∈ D̃ and M (ϕ + rṗ0) ∈ D̊. We 
have obtained a contradiction. Therefore λ > 1. �
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Regarding the location of the Floquet multipliers, Theorem 2.1.(ii) states more than Proposi-
tion 7.1.

We need Poincaré return maps. Let a closed linear subspace H ⊂ C of codimension 1 be 
given so that p0 ∈ H and ṗ0 /∈ H . As before, let � denote the solution semiflow corresponding to 
(3.1), and let xϕ denote the solution of (3.1) with initial segment ϕ. An application of the implicit 
function theorem yields a convex bounded open neighborhood N of p0 in H , ν ∈ (0,ω) and a 
C1-map γ : N → (ω − ν,ω + ν) with γ (p0) = ω so that for each (t, ϕ) ∈ (ω − ν,ω + ν) × N , 
segment xϕ

t belongs to H if and only if t = γ (ϕ) (see [3,15] and Appendix I in [13]). The 
Poincaré map P is given by

P : N � ϕ �→ �(γ (ϕ),ϕ) ∈ H.

Then P is continuously differentiable, and p0 is a fixed point of P . In addition, P depends 
smoothly on the right hand side of (3.1) [15].

Let σ (DP (p0)) denote the spectrum of DP (p0) : H → H . We obtain from Theo-
rem XIV.4.5 in [3] that σ (DP (p0)) \ {0,1} = σ (M) \ {0,1}. For every λ ∈ σ (M) \ {0,1}, the 
projection along Rṗ0 onto H defines an isomorphism from the realified generalized eigenspace 
of λ and M onto the realified generalized eigenspace of λ and DP (p0). This means that λ �= 1
is a simple Floquet multiplier if and only if λ is a simple eigenvalue of DP (p0). By Theo-
rem XIV.4.5, 1 /∈ σ (DP (p0)) if and only if the generalized eigenspace associated with 1 and M
is one-dimensional. It follows that Op is hyperbolic if and only if DP (p0) has no eigenvalues 
on the unit circle.

The periodic solutions in the proof of Theorem 2.1 all arise in the form La→b,c→dp, where 
a �= c, b �= d , and p : R → R is given by Proposition 4.1. For this reason let us consider a 
nonlinearity f ∈ F (K) with K > K0 and the periodic solution p : R → R of Proposition 4.1. 
The initial function of p is p0 = 
 (a∗), where a∗ is defined by (4.19). In the following let us use 
any other notation introduced in Section 4. Recall that the minimal period of p is ω = τ + 1 ∈
(1,2). By construction, p0 ∈ H = {ϕ ∈ C : ϕ (−1) = 0} and ṗ0 /∈ H . Consider the corresponding 
Poincaré map P .

Since P is C1-smooth and has fixed point 
 (a∗), there exists a convex open neighborhood 
N̂ ⊂ N of p0 in H so that P 2 = P ◦ P is defined on N̂ . We will use the following observation 
regarding the range of P 2.

Proposition 7.2. Consider the periodic solution p : R → R of Proposition 4.1. There exists an 
open neighborhood V ⊆ N̂ of p0 in H so that if ϕ ∈ V , then P 2 (ϕ) ∈ 


(
U3

)
.

Proof. If ϕ → p0 in C-norm, then xϕ
1 → p1 in C1-norm. Hence if ϕ ∈ V , where V is an ap-

propriate open ball in H centered at p0, then t1, t2, t3, t4 ∈ R can be given close to t1, t2, t3, t4, 
respectively, such that

−1 < t1 < t2 < t3 < 0 < t1 + 1 < t4,

ϕ
(
t1

) = ϕ
(
t2

) = 1, ϕ
(
t3

) = xϕ
(
t4

) = −1,

ϕ (s) > 1 for all s ∈ (
t1, t2

)
and xϕ (s) < −1 for all s ∈ (

t3, t4
)
.

It follows that xϕ is of type (K) on 
[
t1 + 1, t2 + 1

]
and of type (−K) on 

[
t3 + 1, t4 + 1

]
.
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If V is small enough, then xϕ has a smallest positive zero τ close to τ ∈ (t4, t2 + 1) in 
the interval 

(
t4, t2 + 1

)
. Moreover, since xϕ is of type (K) on 

[
t4, τ

] ⊂ [
t1 + 1, t2 + 1

]
and 

xϕ
(
t4

) = −1, it is of type (K,−1) on 
[
t4 + 1, τ + 1

]
.

Observe that P (ϕ) = x
ϕ
τ+1, and we have already verified that

(a) P (ϕ) (−1) = 0,
(b) P (ϕ) is of type (K) on 

[−1, t2 − τ
]
,

(c) P (ϕ) is of type (−K) on 
[
t3 − τ , t4 − τ

]
,

(d) P (ϕ) is of type (K,−1) on 
[
t4 − τ ,0

]
.

If we set s1 = t2 − τ , s2 = t3 − τ and s3 = t4 − τ , properties (a)–(d) resemble properties (i), 
(ii), (iv) and (v) of Remark 4.2. However, for any small neighborhood V of p0 in H , one can find 
ϕ ∈ V so that the equality s2 = s1 + T1 is not satisfied. Regarding condition (iii) in Remark 4.2, 
we also cannot guarantee that P (ϕ) is of type (−K,1) on [s1, s2]. Hence it may happen that 
P (ϕ) /∈ 


(
U1

)
and thus P (ϕ) /∈ 


(
U3

)
.

By construction, p (t3 + 1) > 1 and p (t4 + 1) < −1. Therefore we may achieve, by shrinking 
the radius of V , that xϕ

(
t3 + 1

)
> 1 and xϕ

(
t4 + 1

)
< −1. In other words, we may achieve that 

P (ϕ)
(
t3 − τ

)
> 1 and P (ϕ)

(
t4 − τ

)
< −1. For such initial function ϕ, let J ⊂ [

t3 − τ , t4 − τ
]

denote the subinterval mapped by P (ϕ) onto [−1,1]. By property (c), P (ϕ) is of type (−K)

on J . It follows that the length of J is T1, and xP(ϕ) is of type (−K,1) on J +1 = {t + 1 : t ∈ J }. 
Repeating the argument above, now it is easy to see that if we take the neighborhood V small 
enough, then P 2 (ϕ) satisfies all conditions (i)–(v) of Remark 4.2.

Using the smooth dependence of solutions on initial data and decreasing the radius of V
further, we can achieve that P 2 (ϕ) satisfies conditions (vi)–(vii) of Remark 4.5, and thus 
P 2 (ϕ) ∈ 


(
U3

)
. �

Let us recall Proposition 4.3 from [10].

Proposition 7.3. Suppose that U0 and U1 are open subsets of Rm, U1 ⊂ U0 and u0 ∈ U1. Let X
be a real Banach space, V0, V1 be open subsets of X with V1 ⊂ V0, and let x0 ∈ V1. Assume that 
the maps

Q : U0 → Rm, R : U0 → X, S : V0 → X

are C1-smooth, Q (u0) = u0, R (u0) = x0, S (x0) = x0, Q (U1) ⊂ U0, S (V1) ⊂ R (U1) ⊂ V0, 
moreover, DR (u0) ∈ L (Rm,X) is injective and S (R (u)) = R (Q(u)) for all u ∈ U1. Then

σ (DS (x0)) = {0} ∪ σ (DQ(u0)) ,

and for each λ ∈ σ (DS (x0)) \ {0}, the corresponding generalized eigenspaces of DS (x0) and 
DQ (u0) have the same dimension.

Now we are in position to complete the proof of Theorem 2.1.

Proof of Theorem 2.1.(ii). Recall that all the periodic solutions determined in the proof of 
Theorem 2.1.(i) are slowly oscillatory. They can be written in the form La→b,c→dp, where a �= c, 
b �= d , and p : R →R is given by Proposition 4.1. As the Floquet multipliers are invariant under 
such linear transformations, it suffices to prove that the periodic orbits given by Proposition 4.1
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are hyperbolic and have exactly one real Floquet multiplier outside the unit circle. We show that 
this Floquet multiplier is greater than 1 and simple.

Set X = H and m = 1. Choose u0 to be the fixed point a∗ of F in U3 given by (4.19), and let 
x0 = p0 = 
 (a∗). Let U0 be the open set on which F 2 = F ◦ F is defined:

U0 =
{
a ∈ U3 : F(a) ∈ U3

}
.

Choose V0 = V , where V is the open neighborhood of x0 = p0 in H given by Proposition 7.2. 
Set

U1 =
{
a ∈ U0 : F 2 (a) ∈ U0 and 
 (a) ∈ V0

}
.

Then U1 ⊂ U0 is open and u0 ∈ U1. Let V1 ⊂ V0 be an open ball with x0 ∈ V1 and P 2 (V1) ⊂

 (U1). This set exists because P 2 (x0) = x0 ∈ 
 (U1), P 2 is continuous, P 2 maps V0 into 



(
U3

)
by Proposition 7.2, and 
 (U1) is an open subset of 


(
U3

)
.

Define

Q = F 2 : U0 →R, R = 
 : U0 → H, S = P 2 : V0 → H.

Proposition 4.8 shows that Q is C1-smooth, Proposition 4.3 gives that R is C1-smooth and 
DR (u0) is injective. The map S is also smooth. Clearly Q (u0) = u0, R (u0) = x0 and 
S (x0) = x0, moreover, Q (U1) ⊂ U0, R (U1) ⊂ V0 and S (V1) ⊂ R (U1) hold. It is also clear that 
S (R (u)) = R (Q(u)) for all u ∈ U1.

As Q is a one-dimensional map, Proposition 7.3 yields that DS (x0) has at most one nontrivial 
eigenvalue which is simple. It follows that DP (x0) = DP (p0) also has at most one nontrivial 
eigenvalue which is simple. (Indeed, if μ is an eigenvalue of DP (x0), then μ2 is an eigenvalue 
of DP (x0) ◦ DP (x0) = DP 2 (x0) = DS (x0), and the generalized eigenspace of DP (x0) as-
sociated to μ is a subset of the generalized eigenspace of DS (x0) associated to μ2.) On the 
other hand, from σ (DP (p0)) \ {0,1} = σ (M) \ {0,1} and from Proposition 7.1 it follows that 
DP (p0) has at least one real eigenvalue that is greater than 1. Summing up, DP (p0) has exactly 
one nontrivial eigenvalue λ, which is simple, real and greater than 1. �

Notice that, although we used Proposition 7.3 with Q = F 2, we could avoid calculating 
DF (a∗) with the aid of Proposition 7.1.

8. Perturbations of the feedback function

For U ⊆R open, let C1
b (U,R) denote the space of bounded continuously differentiable func-

tions g : U → R with bounded first derivative. We consider the usual C1-norm on C1
b (U,R). 

The nonlinearity constructed in the proof of Theorem 2.1 belongs to C1
b (R,R).

The following proposition is a particular case of a more general theorem of Lani-Wayda [15]. 
This result is the key to our second main theorem considering perturbed nonlinearities.

Proposition 8.1. Assume that μ > 0, f ∈ C1
b (R,R) and p is a periodic solution of equation 

(1.1) with minimal period ω > 1 such that Op = {pt : t ∈ [0,ω)} is hyperbolic. Let a closed 
linear subspace H ⊂ C of codimension 1 be given so that p0 ∈ H and ṗ0 /∈ H . Let U ⊂ R be 
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open with {p (t) : t ∈ [0,ω)} ⊂ U . Then there exists an open ball B ⊂ C1
b(U, R) centered at f , 

an open neighborhood V of p0 in H and a C1-function χ : B → V ⊂ H with χ (f ) = p0 such 
that for g ∈ B , the solution xχ(g) of

ẋ(t) = −μx(t) + g (x(t − 1)) (8.1)

with initial value χ (g) is periodic (and therefore can be defined on R). The minimal period 
of xχ(g) is in (ω − ν,ω + ν) with some ν > 0. If g ∈ B , and ϕ ∈ V is the initial segment 
of any periodic solution of (8.1) with minimal period in (ω − ν,ω + ν), then ϕ = χ (g). If 
‖g − f ‖C1

b (U,R) → 0, then χ (g) → χ (f ) = p0 in C.

The hyperbolicity of the periodic orbits implies that Theorem 2.1 remains true for certain 
perturbations of the feedback function. The second main result of the paper is the following.

Theorem 8.2. Fix a parenthetical expression of N numbers, where N ≥ 2. Set μ and f so that 
(H0), (H1) and (H2) are satisfied, and Theorem 2.1 holds. Then there exists an open subset 
U ⊂R and an open ball B ⊂ C1

b(U, R) centered at f such that Theorem 2.1 remains true for all 
nondecreasing g ∈ B .

Proof. Consider a parenthetical expression of N ≥ 2 numbers, μ and f as given in the theorem.
Even if we do not distinguish those periodic solutions that can be obtained from each other 

by translation of time, we cannot exclude that equation (1.1) has an infinite number of large-
amplitude slowly oscillatory periodic solutions. First we select a finite number of them. Choose 
r > 0 and slowly oscillatory periodic solutions p1, p2, . . . , pr : R → R so that whenever the 
numbers i, i + 1, . . . , j are enclosed by a pair of parentheses (not containing further numbers) in 
the expression under consideration, then an index k ∈ {1,2, . . . , r} can be given such that pk is 
an 

[
i, j

]
periodic solution. By our initial assumption, these solutions can be chosen such that the 

corresponding orbits are hyperbolic and have one real Floquet multiplier outside the unit circle, 
which is simple and greater than 1.

Fix an open subset U ⊂ R containing all the fixed points of f and including the ranges of 
p1, p2, . . . , pr .

It is clear that if g ∈ C1
b (U,R) is close to f in C1

b -norm, then (8.1) has the same amount of 
equilibria with the same stability properties. Moreover, if

ξ̂1 ≤ ξ̂2 ≤ . . . ≤ ξ̂N and ξ̂
g

1 ≤ ξ̂
g

2 ≤ . . . ≤ ξ̂
g
N

denote the unstable fixed points of f and g, respectively, then∥∥∥ξ̂
g
i − ξ̂i

∥∥∥ → 0 for all i ∈ {1, . . . ,N} as ‖g − f ‖C1
b (U,R) → 0. (8.2)

Let k ∈ {1,2, . . . , r} be arbitrary. Set 1 ≤ i < j ≤ N such that pk is an 
[
i, j

]
periodic solution. 

As the minimal period of pk is greater than 1, and the corresponding orbit is hyperbolic, it 
comes from Proposition 8.1 and (8.2) that a ball Bk ⊂ C1

b(U, R) centered at f can be given such 
that for all g ∈ Bk , equation (8.1) also has a periodic solution pk,g : R → R oscillating about 
ξ

g
i , ξg

i+1, . . . , ξ
g
j and no other unstable fixed points of g. By Proposition 8.1, we may assume 

that the minimal period of pk,g is in (1,2). Remark 3.3 shows that if g ∈ Bk is nondecreasing, 
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then pk,g is slowly oscillatory. As the Floquet multipliers depend continuously on the feedback 

function, we may also assume that Opk,g =
{
p

k,g
t : t ∈ R

}
has exactly one Floquet multiplier 

outside the unit circle, which is real, greater than 1, and simple.
It remains to exclude the existence of unrequested large-amplitude periodic solutions. Suppose 

for contradiction that for some 1 ≤ i < j ≤ N , the numbers i, i + 1, . . . , j are not enclosed by a 
pair of parentheses, and there exists a sequence (gn)∞n=1 of nondecreasing functions in ∩r

k=1Bk

such that for all n ≥ 1, ‖gn − f ‖C1
b
< 1/n holds, and equation

ẋ (t) = −μx (t) + gn (x (t − 1)) (8.3)

has a large-amplitude periodic solution qn : R → R oscillating about ξgn

i , ξgn

i+1, . . . , ξ
gn

j and no 
other unstable fixed point of gn.

We can easily confirm that the minimal period ωn > 0 of qn is smaller than 2 for each n ≥ 1. 
Consider Proposition 3.2.(i)–(ii) with p = qn and χ = ξ

gn

i . We may suppose, by considering a 

suitable time translate of qn, that qn (t) ≥ ξ
gn

i for t ∈ [
0, νn

]
and qn (t) < ξ

gn

i for t ∈ (νn,ωn)

with some νn ∈ (0,ωn). If νn ≥ 1 for some n, then Proposition 3.1 would imply that qn (t) ≥ ξ
gn

i

for all t > νn, which is impossible. So νn < 1. Similarly, ωn − νn < 1. Summing up, ωn < 2.
Since

sup
x∈R

∣∣gn (x)
∣∣ ≤ ∥∥gn

∥∥
C1

b
≤ ‖f ‖C1

b
+ 1, n ≥ 1,

Proposition 4.9 yields that 
∥∥qn

t

∥∥ ≤ ‖f ‖C1
b
+ 1 for all n ≥ 1 and t ∈R. Then (8.3) gives a uniform 

upper bound for 
∥∥q̇n

t

∥∥, n ≥ 1, t ∈ R. The Arzelà–Ascoli theorem hence implies the existence of 
a subsequence (qnk )∞k=1 that converges to a continuous function q : R →R as k → ∞ uniformly 
on each compact subset of R. As (ωn)∞n=1 is bounded, we may suppose that ωnk → ω ≥ 0 as 
k → ∞. It is easy to see (e.g., by using the variation-of-constant formula) that q is a periodic 
solution of (1.1) with minimal period ω. It is also clear that q is an 

[
i, j

]
periodic solution of 

(1.1). As f generates the parenthetical expression, we arrived at a contradiction.
It follows that exists an open ball B ⊂ ∩r

k=1Bk centered at f such that equation (8.1) ad-
mits exactly the required large-amplitude periodic solutions for all nondecreasing g ∈ B , i.e., 
Theorem 2.1 remains true for all nondecreasing g ∈ B . �
9. Closing remarks

9.1. The unstable sets of the periodic orbits

Consider a strictly increasing nonlinear function g ∈ B and any large-amplitude slowly os-
cillatory (LSOP) solution p : R → R given by Theorem 8.2. As the orbit Op = {pt : t ∈R} is 
hyperbolic, and it has exactly one Floquet multiplier outside the unit circle, we expect the unsta-
ble set

Wu
(
Op

) = {
ϕ ∈ C : xϕ exists on R and x

ϕ
t → Op as t → −∞}
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to be a two-dimensional C1-submanifold of C. Let ζ̂− and ζ̂+ denote the stable equilibria with 
the property that ζ− is the maximal fixed point of g with ζ− < mint∈R p (t) and ζ+ is the min-
imal fixed point of g with ζ+ > maxt∈R p (t). We claim that Wu

(
Op

)\Op is the union of the 
two-dimensional heteroclinic sets

C
p
− =

{
ϕ ∈Wu

(
Op

) : x
ϕ
t → ζ̂− as t → ∞

}
and

C
p
+ =

{
ϕ ∈ Wu

(
Op

) : x
ϕ
t → ζ̂+ as t → ∞

}
.

9.2. The exact number of LSOP solutions

Let us call two periodic solutions p : R → R and q : R → R significantly different if no 
constant T ∈ R can be given such that p (t + T ) = q (t) for all t ∈ R.

Our main results (Theorem 2.1 or Theorem 8.2) have not discussed the exact number of sig-
nificantly different slowly oscillatory 

[
i, j

]
periodic solutions in the case when we do have 

[
i, j

]
periodic solutions. In general we cannot expect uniqueness. For N = 2, the paper [10] has given 
two slowly oscillatory [1,2] periodic solutions, and the periodic orbit corresponding to the first 
solution has three Floquet multipliers outside the unit circle, while the second one has only one. 
It is an open question whether there exist slowly oscillatory 

[
1, j

]
periodic solutions for j ≥ 3

such that the corresponding orbit have more than one Floquet multiplier outside the unit circle.
Although we cannot guarantee uniqueness, we can guarantee the existence of an arbitrary 

number of 
[
i, j

]
solutions. This statement can be formulated precisely as follows. Fix N ≥ 2 and 

a parenthetical expression of N numbers. Assign an arbitrary positive integer ki,j to all numbers 
i and j such that 1 ≤ i < j ≤ N and the integers i, i + 1, . . . , j are enclosed by a pair of paren-
thesis not containing further numbers. Then there exists μ and f satisfying (H0)–(H2) such 
that Theorem 2.1 holds with the addition that if there is a pair of parentheses in the expression 
that contains only the numbers i, i + 1, . . . , j , then equation (1.1) has at least ki,j significantly 
different [i, j ] periodic solutions p1, p2, . . . , pki,j

.
We do not intend to give a rigorous proof. We indicate the idea by giving a nonlinearity 

f k for all k ≥ 1 such that f k satisfies (H1) and (H2), f k generates (12 . . .N), and equation 
(3.1) has LSOP solutions p1, p2, . . . , pk with (ξ1, ξN) ⊂ p1 (R) � p2 (R) � . . . � pk (R). This 
construction goes by induction on k. If k = 1, then we are ready by Propositions 5.4 and 5.5. 
Suppose we have already obtained the nonlinearity f k for some k ≥ 1. Then define f k+1 as

f k+1 : R � x �→

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

K1, x ≤ minpk (R) − η

ρ1
(
f k (x)

)
, x ∈ (minpk (R) − η,minpk (R))

f k (x) , x ∈ pk (R)

ρ2
(
f k (x)

)
, x ∈ (maxpk (R) ,maxpk (R) + η)

K2, x ≥ maxpk (R) + η,

where η > 0 is small, and K1, K2, ρ1 and ρ2 are defined so that f k+1 : R → R satisfies (H1)

and (H2), furthermore



G. Vas / J. Differential Equations 262 (2017) 1850–1896 1895
ρ1

(
f k (x)

)
< f k (x) < x for all x ∈ (minpk (R) − η,minpk (R))

and

ρ2

(
f k (x)

)
> f k (x) > x for all x ∈ (maxpk (R) ,maxpk (R) + η) .

Using the techniques of this paper, it is easy to see that – with suitably chosen η, K1, K2, ρ1
and ρ2 – function f k+1 possesses the required properties.

9.3. Further periodic solutions

A periodic solution of (1.1) is said to have small amplitude if it oscillates only about one 
unstable fixed point of fμ : R � u �→ f (u) /μ ∈ R. It is easy to guarantee the existence of such 
solutions: We know that as f ′ (ξi) increases for some i ∈ {1, . . . ,N}, small-amplitude periodic 
solutions oscillating about ξi appear via a series of Hopf bifurcations [9,13,14]. However, it is 
an open problem whether we can ensure their nonexistence for the nonlinearities discussed in 
the paper. A related result on the nonexistence of small-amplitude periodic solutions is found in 
[12].

This paper has not studied the existence of large-amplitude rapidly oscillatory periodic 
(LROP) solutions either. We call a solution x : [−1,∞) → R rapidly oscillatory if for any fixed 
point χ of fμ in the range x (R) of x, the function [−1,∞) � t �→ x (t)−χ ∈ R has at least three 
sign changes on each interval of length 1. We conjecture that the existence of LROP solutions 
can be excluded for the nondecreasing feedback functions in Theorems 2.1 and 8.2 by refining 
our construction. It would suffice to show that if K > K0 is not too large in Proposition 4.10 and 
f ∈ F (K) is nondecreasing, then equation (3.1) has no periodic solutions with minimal period 
smaller than 1.
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